Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / drivers / scsi / libfc / fc_exch.c
blobd2e4c32deb83edcdf2af2fb6ccac8287cb062690
1 /*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 * Maintained at www.Open-FCoE.org
23 * Fibre Channel exchange and sequence handling.
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
31 #include <scsi/fc/fc_fc2.h>
33 #include <scsi/libfc.h>
34 #include <scsi/fc_encode.h>
36 #include "fc_libfc.h"
38 u16 fc_cpu_mask; /* cpu mask for possible cpus */
39 EXPORT_SYMBOL(fc_cpu_mask);
40 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
41 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
42 static struct workqueue_struct *fc_exch_workqueue;
45 * Structure and function definitions for managing Fibre Channel Exchanges
46 * and Sequences.
48 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
50 * fc_exch_mgr holds the exchange state for an N port
52 * fc_exch holds state for one exchange and links to its active sequence.
54 * fc_seq holds the state for an individual sequence.
57 /**
58 * struct fc_exch_pool - Per cpu exchange pool
59 * @next_index: Next possible free exchange index
60 * @total_exches: Total allocated exchanges
61 * @lock: Exch pool lock
62 * @ex_list: List of exchanges
64 * This structure manages per cpu exchanges in array of exchange pointers.
65 * This array is allocated followed by struct fc_exch_pool memory for
66 * assigned range of exchanges to per cpu pool.
68 struct fc_exch_pool {
69 u16 next_index;
70 u16 total_exches;
72 /* two cache of free slot in exch array */
73 u16 left;
74 u16 right;
76 spinlock_t lock;
77 struct list_head ex_list;
80 /**
81 * struct fc_exch_mgr - The Exchange Manager (EM).
82 * @class: Default class for new sequences
83 * @kref: Reference counter
84 * @min_xid: Minimum exchange ID
85 * @max_xid: Maximum exchange ID
86 * @ep_pool: Reserved exchange pointers
87 * @pool_max_index: Max exch array index in exch pool
88 * @pool: Per cpu exch pool
89 * @stats: Statistics structure
91 * This structure is the center for creating exchanges and sequences.
92 * It manages the allocation of exchange IDs.
94 struct fc_exch_mgr {
95 enum fc_class class;
96 struct kref kref;
97 u16 min_xid;
98 u16 max_xid;
99 mempool_t *ep_pool;
100 u16 pool_max_index;
101 struct fc_exch_pool *pool;
104 * currently exchange mgr stats are updated but not used.
105 * either stats can be expose via sysfs or remove them
106 * all together if not used XXX
108 struct {
109 atomic_t no_free_exch;
110 atomic_t no_free_exch_xid;
111 atomic_t xid_not_found;
112 atomic_t xid_busy;
113 atomic_t seq_not_found;
114 atomic_t non_bls_resp;
115 } stats;
119 * struct fc_exch_mgr_anchor - primary structure for list of EMs
120 * @ema_list: Exchange Manager Anchor list
121 * @mp: Exchange Manager associated with this anchor
122 * @match: Routine to determine if this anchor's EM should be used
124 * When walking the list of anchors the match routine will be called
125 * for each anchor to determine if that EM should be used. The last
126 * anchor in the list will always match to handle any exchanges not
127 * handled by other EMs. The non-default EMs would be added to the
128 * anchor list by HW that provides FCoE offloads.
130 struct fc_exch_mgr_anchor {
131 struct list_head ema_list;
132 struct fc_exch_mgr *mp;
133 bool (*match)(struct fc_frame *);
136 static void fc_exch_rrq(struct fc_exch *);
137 static void fc_seq_ls_acc(struct fc_frame *);
138 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
139 enum fc_els_rjt_explan);
140 static void fc_exch_els_rec(struct fc_frame *);
141 static void fc_exch_els_rrq(struct fc_frame *);
144 * Internal implementation notes.
146 * The exchange manager is one by default in libfc but LLD may choose
147 * to have one per CPU. The sequence manager is one per exchange manager
148 * and currently never separated.
150 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
151 * assigned by the Sequence Initiator that shall be unique for a specific
152 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
153 * qualified by exchange ID, which one might think it would be.
154 * In practice this limits the number of open sequences and exchanges to 256
155 * per session. For most targets we could treat this limit as per exchange.
157 * The exchange and its sequence are freed when the last sequence is received.
158 * It's possible for the remote port to leave an exchange open without
159 * sending any sequences.
161 * Notes on reference counts:
163 * Exchanges are reference counted and exchange gets freed when the reference
164 * count becomes zero.
166 * Timeouts:
167 * Sequences are timed out for E_D_TOV and R_A_TOV.
169 * Sequence event handling:
171 * The following events may occur on initiator sequences:
173 * Send.
174 * For now, the whole thing is sent.
175 * Receive ACK
176 * This applies only to class F.
177 * The sequence is marked complete.
178 * ULP completion.
179 * The upper layer calls fc_exch_done() when done
180 * with exchange and sequence tuple.
181 * RX-inferred completion.
182 * When we receive the next sequence on the same exchange, we can
183 * retire the previous sequence ID. (XXX not implemented).
184 * Timeout.
185 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
186 * E_D_TOV causes abort and calls upper layer response handler
187 * with FC_EX_TIMEOUT error.
188 * Receive RJT
189 * XXX defer.
190 * Send ABTS
191 * On timeout.
193 * The following events may occur on recipient sequences:
195 * Receive
196 * Allocate sequence for first frame received.
197 * Hold during receive handler.
198 * Release when final frame received.
199 * Keep status of last N of these for the ELS RES command. XXX TBD.
200 * Receive ABTS
201 * Deallocate sequence
202 * Send RJT
203 * Deallocate
205 * For now, we neglect conditions where only part of a sequence was
206 * received or transmitted, or where out-of-order receipt is detected.
210 * Locking notes:
212 * The EM code run in a per-CPU worker thread.
214 * To protect against concurrency between a worker thread code and timers,
215 * sequence allocation and deallocation must be locked.
216 * - exchange refcnt can be done atomicly without locks.
217 * - sequence allocation must be locked by exch lock.
218 * - If the EM pool lock and ex_lock must be taken at the same time, then the
219 * EM pool lock must be taken before the ex_lock.
223 * opcode names for debugging.
225 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
228 * fc_exch_name_lookup() - Lookup name by opcode
229 * @op: Opcode to be looked up
230 * @table: Opcode/name table
231 * @max_index: Index not to be exceeded
233 * This routine is used to determine a human-readable string identifying
234 * a R_CTL opcode.
236 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
237 unsigned int max_index)
239 const char *name = NULL;
241 if (op < max_index)
242 name = table[op];
243 if (!name)
244 name = "unknown";
245 return name;
249 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
250 * @op: The opcode to be looked up
252 static const char *fc_exch_rctl_name(unsigned int op)
254 return fc_exch_name_lookup(op, fc_exch_rctl_names,
255 ARRAY_SIZE(fc_exch_rctl_names));
259 * fc_exch_hold() - Increment an exchange's reference count
260 * @ep: Echange to be held
262 static inline void fc_exch_hold(struct fc_exch *ep)
264 atomic_inc(&ep->ex_refcnt);
268 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
269 * and determine SOF and EOF.
270 * @ep: The exchange to that will use the header
271 * @fp: The frame whose header is to be modified
272 * @f_ctl: F_CTL bits that will be used for the frame header
274 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
275 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
277 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
278 u32 f_ctl)
280 struct fc_frame_header *fh = fc_frame_header_get(fp);
281 u16 fill;
283 fr_sof(fp) = ep->class;
284 if (ep->seq.cnt)
285 fr_sof(fp) = fc_sof_normal(ep->class);
287 if (f_ctl & FC_FC_END_SEQ) {
288 fr_eof(fp) = FC_EOF_T;
289 if (fc_sof_needs_ack(ep->class))
290 fr_eof(fp) = FC_EOF_N;
292 * From F_CTL.
293 * The number of fill bytes to make the length a 4-byte
294 * multiple is the low order 2-bits of the f_ctl.
295 * The fill itself will have been cleared by the frame
296 * allocation.
297 * After this, the length will be even, as expected by
298 * the transport.
300 fill = fr_len(fp) & 3;
301 if (fill) {
302 fill = 4 - fill;
303 /* TODO, this may be a problem with fragmented skb */
304 skb_put(fp_skb(fp), fill);
305 hton24(fh->fh_f_ctl, f_ctl | fill);
307 } else {
308 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
309 fr_eof(fp) = FC_EOF_N;
313 * Initialize remainig fh fields
314 * from fc_fill_fc_hdr
316 fh->fh_ox_id = htons(ep->oxid);
317 fh->fh_rx_id = htons(ep->rxid);
318 fh->fh_seq_id = ep->seq.id;
319 fh->fh_seq_cnt = htons(ep->seq.cnt);
323 * fc_exch_release() - Decrement an exchange's reference count
324 * @ep: Exchange to be released
326 * If the reference count reaches zero and the exchange is complete,
327 * it is freed.
329 static void fc_exch_release(struct fc_exch *ep)
331 struct fc_exch_mgr *mp;
333 if (atomic_dec_and_test(&ep->ex_refcnt)) {
334 mp = ep->em;
335 if (ep->destructor)
336 ep->destructor(&ep->seq, ep->arg);
337 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
338 mempool_free(ep, mp->ep_pool);
343 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
344 * @ep: The exchange that is complete
346 static int fc_exch_done_locked(struct fc_exch *ep)
348 int rc = 1;
351 * We must check for completion in case there are two threads
352 * tyring to complete this. But the rrq code will reuse the
353 * ep, and in that case we only clear the resp and set it as
354 * complete, so it can be reused by the timer to send the rrq.
356 ep->resp = NULL;
357 if (ep->state & FC_EX_DONE)
358 return rc;
359 ep->esb_stat |= ESB_ST_COMPLETE;
361 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
362 ep->state |= FC_EX_DONE;
363 if (cancel_delayed_work(&ep->timeout_work))
364 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
365 rc = 0;
367 return rc;
371 * fc_exch_ptr_get() - Return an exchange from an exchange pool
372 * @pool: Exchange Pool to get an exchange from
373 * @index: Index of the exchange within the pool
375 * Use the index to get an exchange from within an exchange pool. exches
376 * will point to an array of exchange pointers. The index will select
377 * the exchange within the array.
379 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
380 u16 index)
382 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
383 return exches[index];
387 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
388 * @pool: The pool to assign the exchange to
389 * @index: The index in the pool where the exchange will be assigned
390 * @ep: The exchange to assign to the pool
392 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
393 struct fc_exch *ep)
395 ((struct fc_exch **)(pool + 1))[index] = ep;
399 * fc_exch_delete() - Delete an exchange
400 * @ep: The exchange to be deleted
402 static void fc_exch_delete(struct fc_exch *ep)
404 struct fc_exch_pool *pool;
405 u16 index;
407 pool = ep->pool;
408 spin_lock_bh(&pool->lock);
409 WARN_ON(pool->total_exches <= 0);
410 pool->total_exches--;
412 /* update cache of free slot */
413 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
414 if (pool->left == FC_XID_UNKNOWN)
415 pool->left = index;
416 else if (pool->right == FC_XID_UNKNOWN)
417 pool->right = index;
418 else
419 pool->next_index = index;
421 fc_exch_ptr_set(pool, index, NULL);
422 list_del(&ep->ex_list);
423 spin_unlock_bh(&pool->lock);
424 fc_exch_release(ep); /* drop hold for exch in mp */
428 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
429 * the exchange lock held
430 * @ep: The exchange whose timer will start
431 * @timer_msec: The timeout period
433 * Used for upper level protocols to time out the exchange.
434 * The timer is cancelled when it fires or when the exchange completes.
436 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
437 unsigned int timer_msec)
439 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
440 return;
442 FC_EXCH_DBG(ep, "Exchange timer armed\n");
444 if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
445 msecs_to_jiffies(timer_msec)))
446 fc_exch_hold(ep); /* hold for timer */
450 * fc_exch_timer_set() - Lock the exchange and set the timer
451 * @ep: The exchange whose timer will start
452 * @timer_msec: The timeout period
454 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
456 spin_lock_bh(&ep->ex_lock);
457 fc_exch_timer_set_locked(ep, timer_msec);
458 spin_unlock_bh(&ep->ex_lock);
462 * fc_seq_send() - Send a frame using existing sequence/exchange pair
463 * @lport: The local port that the exchange will be sent on
464 * @sp: The sequence to be sent
465 * @fp: The frame to be sent on the exchange
467 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
468 struct fc_frame *fp)
470 struct fc_exch *ep;
471 struct fc_frame_header *fh = fc_frame_header_get(fp);
472 int error;
473 u32 f_ctl;
475 ep = fc_seq_exch(sp);
476 WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
478 f_ctl = ntoh24(fh->fh_f_ctl);
479 fc_exch_setup_hdr(ep, fp, f_ctl);
480 fr_encaps(fp) = ep->encaps;
483 * update sequence count if this frame is carrying
484 * multiple FC frames when sequence offload is enabled
485 * by LLD.
487 if (fr_max_payload(fp))
488 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
489 fr_max_payload(fp));
490 else
491 sp->cnt++;
494 * Send the frame.
496 error = lport->tt.frame_send(lport, fp);
498 if (fh->fh_type == FC_TYPE_BLS)
499 return error;
502 * Update the exchange and sequence flags,
503 * assuming all frames for the sequence have been sent.
504 * We can only be called to send once for each sequence.
506 spin_lock_bh(&ep->ex_lock);
507 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
508 if (f_ctl & FC_FC_SEQ_INIT)
509 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
510 spin_unlock_bh(&ep->ex_lock);
511 return error;
515 * fc_seq_alloc() - Allocate a sequence for a given exchange
516 * @ep: The exchange to allocate a new sequence for
517 * @seq_id: The sequence ID to be used
519 * We don't support multiple originated sequences on the same exchange.
520 * By implication, any previously originated sequence on this exchange
521 * is complete, and we reallocate the same sequence.
523 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
525 struct fc_seq *sp;
527 sp = &ep->seq;
528 sp->ssb_stat = 0;
529 sp->cnt = 0;
530 sp->id = seq_id;
531 return sp;
535 * fc_seq_start_next_locked() - Allocate a new sequence on the same
536 * exchange as the supplied sequence
537 * @sp: The sequence/exchange to get a new sequence for
539 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
541 struct fc_exch *ep = fc_seq_exch(sp);
543 sp = fc_seq_alloc(ep, ep->seq_id++);
544 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
545 ep->f_ctl, sp->id);
546 return sp;
550 * fc_seq_start_next() - Lock the exchange and get a new sequence
551 * for a given sequence/exchange pair
552 * @sp: The sequence/exchange to get a new exchange for
554 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
556 struct fc_exch *ep = fc_seq_exch(sp);
558 spin_lock_bh(&ep->ex_lock);
559 sp = fc_seq_start_next_locked(sp);
560 spin_unlock_bh(&ep->ex_lock);
562 return sp;
566 * Set the response handler for the exchange associated with a sequence.
568 static void fc_seq_set_resp(struct fc_seq *sp,
569 void (*resp)(struct fc_seq *, struct fc_frame *,
570 void *),
571 void *arg)
573 struct fc_exch *ep = fc_seq_exch(sp);
575 spin_lock_bh(&ep->ex_lock);
576 ep->resp = resp;
577 ep->arg = arg;
578 spin_unlock_bh(&ep->ex_lock);
582 * fc_exch_abort_locked() - Abort an exchange
583 * @ep: The exchange to be aborted
584 * @timer_msec: The period of time to wait before aborting
586 * Locking notes: Called with exch lock held
588 * Return value: 0 on success else error code
590 static int fc_exch_abort_locked(struct fc_exch *ep,
591 unsigned int timer_msec)
593 struct fc_seq *sp;
594 struct fc_frame *fp;
595 int error;
597 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
598 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
599 return -ENXIO;
602 * Send the abort on a new sequence if possible.
604 sp = fc_seq_start_next_locked(&ep->seq);
605 if (!sp)
606 return -ENOMEM;
608 ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
609 if (timer_msec)
610 fc_exch_timer_set_locked(ep, timer_msec);
613 * If not logged into the fabric, don't send ABTS but leave
614 * sequence active until next timeout.
616 if (!ep->sid)
617 return 0;
620 * Send an abort for the sequence that timed out.
622 fp = fc_frame_alloc(ep->lp, 0);
623 if (fp) {
624 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
625 FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
626 error = fc_seq_send(ep->lp, sp, fp);
627 } else
628 error = -ENOBUFS;
629 return error;
633 * fc_seq_exch_abort() - Abort an exchange and sequence
634 * @req_sp: The sequence to be aborted
635 * @timer_msec: The period of time to wait before aborting
637 * Generally called because of a timeout or an abort from the upper layer.
639 * Return value: 0 on success else error code
641 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
642 unsigned int timer_msec)
644 struct fc_exch *ep;
645 int error;
647 ep = fc_seq_exch(req_sp);
648 spin_lock_bh(&ep->ex_lock);
649 error = fc_exch_abort_locked(ep, timer_msec);
650 spin_unlock_bh(&ep->ex_lock);
651 return error;
655 * fc_exch_timeout() - Handle exchange timer expiration
656 * @work: The work_struct identifying the exchange that timed out
658 static void fc_exch_timeout(struct work_struct *work)
660 struct fc_exch *ep = container_of(work, struct fc_exch,
661 timeout_work.work);
662 struct fc_seq *sp = &ep->seq;
663 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
664 void *arg;
665 u32 e_stat;
666 int rc = 1;
668 FC_EXCH_DBG(ep, "Exchange timed out\n");
670 spin_lock_bh(&ep->ex_lock);
671 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
672 goto unlock;
674 e_stat = ep->esb_stat;
675 if (e_stat & ESB_ST_COMPLETE) {
676 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
677 spin_unlock_bh(&ep->ex_lock);
678 if (e_stat & ESB_ST_REC_QUAL)
679 fc_exch_rrq(ep);
680 goto done;
681 } else {
682 resp = ep->resp;
683 arg = ep->arg;
684 ep->resp = NULL;
685 if (e_stat & ESB_ST_ABNORMAL)
686 rc = fc_exch_done_locked(ep);
687 spin_unlock_bh(&ep->ex_lock);
688 if (!rc)
689 fc_exch_delete(ep);
690 if (resp)
691 resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
692 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
693 goto done;
695 unlock:
696 spin_unlock_bh(&ep->ex_lock);
697 done:
699 * This release matches the hold taken when the timer was set.
701 fc_exch_release(ep);
705 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
706 * @lport: The local port that the exchange is for
707 * @mp: The exchange manager that will allocate the exchange
709 * Returns pointer to allocated fc_exch with exch lock held.
711 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
712 struct fc_exch_mgr *mp)
714 struct fc_exch *ep;
715 unsigned int cpu;
716 u16 index;
717 struct fc_exch_pool *pool;
719 /* allocate memory for exchange */
720 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
721 if (!ep) {
722 atomic_inc(&mp->stats.no_free_exch);
723 goto out;
725 memset(ep, 0, sizeof(*ep));
727 cpu = get_cpu();
728 pool = per_cpu_ptr(mp->pool, cpu);
729 spin_lock_bh(&pool->lock);
730 put_cpu();
732 /* peek cache of free slot */
733 if (pool->left != FC_XID_UNKNOWN) {
734 index = pool->left;
735 pool->left = FC_XID_UNKNOWN;
736 goto hit;
738 if (pool->right != FC_XID_UNKNOWN) {
739 index = pool->right;
740 pool->right = FC_XID_UNKNOWN;
741 goto hit;
744 index = pool->next_index;
745 /* allocate new exch from pool */
746 while (fc_exch_ptr_get(pool, index)) {
747 index = index == mp->pool_max_index ? 0 : index + 1;
748 if (index == pool->next_index)
749 goto err;
751 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
752 hit:
753 fc_exch_hold(ep); /* hold for exch in mp */
754 spin_lock_init(&ep->ex_lock);
756 * Hold exch lock for caller to prevent fc_exch_reset()
757 * from releasing exch while fc_exch_alloc() caller is
758 * still working on exch.
760 spin_lock_bh(&ep->ex_lock);
762 fc_exch_ptr_set(pool, index, ep);
763 list_add_tail(&ep->ex_list, &pool->ex_list);
764 fc_seq_alloc(ep, ep->seq_id++);
765 pool->total_exches++;
766 spin_unlock_bh(&pool->lock);
769 * update exchange
771 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
772 ep->em = mp;
773 ep->pool = pool;
774 ep->lp = lport;
775 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
776 ep->rxid = FC_XID_UNKNOWN;
777 ep->class = mp->class;
778 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
779 out:
780 return ep;
781 err:
782 spin_unlock_bh(&pool->lock);
783 atomic_inc(&mp->stats.no_free_exch_xid);
784 mempool_free(ep, mp->ep_pool);
785 return NULL;
789 * fc_exch_alloc() - Allocate an exchange from an EM on a
790 * local port's list of EMs.
791 * @lport: The local port that will own the exchange
792 * @fp: The FC frame that the exchange will be for
794 * This function walks the list of exchange manager(EM)
795 * anchors to select an EM for a new exchange allocation. The
796 * EM is selected when a NULL match function pointer is encountered
797 * or when a call to a match function returns true.
799 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
800 struct fc_frame *fp)
802 struct fc_exch_mgr_anchor *ema;
804 list_for_each_entry(ema, &lport->ema_list, ema_list)
805 if (!ema->match || ema->match(fp))
806 return fc_exch_em_alloc(lport, ema->mp);
807 return NULL;
811 * fc_exch_find() - Lookup and hold an exchange
812 * @mp: The exchange manager to lookup the exchange from
813 * @xid: The XID of the exchange to look up
815 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
817 struct fc_exch_pool *pool;
818 struct fc_exch *ep = NULL;
820 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
821 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
822 spin_lock_bh(&pool->lock);
823 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
824 if (ep && ep->xid == xid)
825 fc_exch_hold(ep);
826 spin_unlock_bh(&pool->lock);
828 return ep;
833 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
834 * the memory allocated for the related objects may be freed.
835 * @sp: The sequence that has completed
837 static void fc_exch_done(struct fc_seq *sp)
839 struct fc_exch *ep = fc_seq_exch(sp);
840 int rc;
842 spin_lock_bh(&ep->ex_lock);
843 rc = fc_exch_done_locked(ep);
844 spin_unlock_bh(&ep->ex_lock);
845 if (!rc)
846 fc_exch_delete(ep);
850 * fc_exch_resp() - Allocate a new exchange for a response frame
851 * @lport: The local port that the exchange was for
852 * @mp: The exchange manager to allocate the exchange from
853 * @fp: The response frame
855 * Sets the responder ID in the frame header.
857 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
858 struct fc_exch_mgr *mp,
859 struct fc_frame *fp)
861 struct fc_exch *ep;
862 struct fc_frame_header *fh;
864 ep = fc_exch_alloc(lport, fp);
865 if (ep) {
866 ep->class = fc_frame_class(fp);
869 * Set EX_CTX indicating we're responding on this exchange.
871 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
872 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
873 fh = fc_frame_header_get(fp);
874 ep->sid = ntoh24(fh->fh_d_id);
875 ep->did = ntoh24(fh->fh_s_id);
876 ep->oid = ep->did;
879 * Allocated exchange has placed the XID in the
880 * originator field. Move it to the responder field,
881 * and set the originator XID from the frame.
883 ep->rxid = ep->xid;
884 ep->oxid = ntohs(fh->fh_ox_id);
885 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
886 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
887 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
889 fc_exch_hold(ep); /* hold for caller */
890 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
892 return ep;
896 * fc_seq_lookup_recip() - Find a sequence where the other end
897 * originated the sequence
898 * @lport: The local port that the frame was sent to
899 * @mp: The Exchange Manager to lookup the exchange from
900 * @fp: The frame associated with the sequence we're looking for
902 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
903 * on the ep that should be released by the caller.
905 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
906 struct fc_exch_mgr *mp,
907 struct fc_frame *fp)
909 struct fc_frame_header *fh = fc_frame_header_get(fp);
910 struct fc_exch *ep = NULL;
911 struct fc_seq *sp = NULL;
912 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
913 u32 f_ctl;
914 u16 xid;
916 f_ctl = ntoh24(fh->fh_f_ctl);
917 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
920 * Lookup or create the exchange if we will be creating the sequence.
922 if (f_ctl & FC_FC_EX_CTX) {
923 xid = ntohs(fh->fh_ox_id); /* we originated exch */
924 ep = fc_exch_find(mp, xid);
925 if (!ep) {
926 atomic_inc(&mp->stats.xid_not_found);
927 reject = FC_RJT_OX_ID;
928 goto out;
930 if (ep->rxid == FC_XID_UNKNOWN)
931 ep->rxid = ntohs(fh->fh_rx_id);
932 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
933 reject = FC_RJT_OX_ID;
934 goto rel;
936 } else {
937 xid = ntohs(fh->fh_rx_id); /* we are the responder */
940 * Special case for MDS issuing an ELS TEST with a
941 * bad rxid of 0.
942 * XXX take this out once we do the proper reject.
944 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
945 fc_frame_payload_op(fp) == ELS_TEST) {
946 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
947 xid = FC_XID_UNKNOWN;
951 * new sequence - find the exchange
953 ep = fc_exch_find(mp, xid);
954 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
955 if (ep) {
956 atomic_inc(&mp->stats.xid_busy);
957 reject = FC_RJT_RX_ID;
958 goto rel;
960 ep = fc_exch_resp(lport, mp, fp);
961 if (!ep) {
962 reject = FC_RJT_EXCH_EST; /* XXX */
963 goto out;
965 xid = ep->xid; /* get our XID */
966 } else if (!ep) {
967 atomic_inc(&mp->stats.xid_not_found);
968 reject = FC_RJT_RX_ID; /* XID not found */
969 goto out;
974 * At this point, we have the exchange held.
975 * Find or create the sequence.
977 if (fc_sof_is_init(fr_sof(fp))) {
978 sp = &ep->seq;
979 sp->ssb_stat |= SSB_ST_RESP;
980 sp->id = fh->fh_seq_id;
981 } else {
982 sp = &ep->seq;
983 if (sp->id != fh->fh_seq_id) {
984 atomic_inc(&mp->stats.seq_not_found);
985 if (f_ctl & FC_FC_END_SEQ) {
987 * Update sequence_id based on incoming last
988 * frame of sequence exchange. This is needed
989 * for FCoE target where DDP has been used
990 * on target where, stack is indicated only
991 * about last frame's (payload _header) header.
992 * Whereas "seq_id" which is part of
993 * frame_header is allocated by initiator
994 * which is totally different from "seq_id"
995 * allocated when XFER_RDY was sent by target.
996 * To avoid false -ve which results into not
997 * sending RSP, hence write request on other
998 * end never finishes.
1000 spin_lock_bh(&ep->ex_lock);
1001 sp->ssb_stat |= SSB_ST_RESP;
1002 sp->id = fh->fh_seq_id;
1003 spin_unlock_bh(&ep->ex_lock);
1004 } else {
1005 /* sequence/exch should exist */
1006 reject = FC_RJT_SEQ_ID;
1007 goto rel;
1011 WARN_ON(ep != fc_seq_exch(sp));
1013 if (f_ctl & FC_FC_SEQ_INIT)
1014 ep->esb_stat |= ESB_ST_SEQ_INIT;
1016 fr_seq(fp) = sp;
1017 out:
1018 return reject;
1019 rel:
1020 fc_exch_done(&ep->seq);
1021 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
1022 return reject;
1026 * fc_seq_lookup_orig() - Find a sequence where this end
1027 * originated the sequence
1028 * @mp: The Exchange Manager to lookup the exchange from
1029 * @fp: The frame associated with the sequence we're looking for
1031 * Does not hold the sequence for the caller.
1033 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1034 struct fc_frame *fp)
1036 struct fc_frame_header *fh = fc_frame_header_get(fp);
1037 struct fc_exch *ep;
1038 struct fc_seq *sp = NULL;
1039 u32 f_ctl;
1040 u16 xid;
1042 f_ctl = ntoh24(fh->fh_f_ctl);
1043 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1044 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1045 ep = fc_exch_find(mp, xid);
1046 if (!ep)
1047 return NULL;
1048 if (ep->seq.id == fh->fh_seq_id) {
1050 * Save the RX_ID if we didn't previously know it.
1052 sp = &ep->seq;
1053 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1054 ep->rxid == FC_XID_UNKNOWN) {
1055 ep->rxid = ntohs(fh->fh_rx_id);
1058 fc_exch_release(ep);
1059 return sp;
1063 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1064 * @ep: The exchange to set the addresses for
1065 * @orig_id: The originator's ID
1066 * @resp_id: The responder's ID
1068 * Note this must be done before the first sequence of the exchange is sent.
1070 static void fc_exch_set_addr(struct fc_exch *ep,
1071 u32 orig_id, u32 resp_id)
1073 ep->oid = orig_id;
1074 if (ep->esb_stat & ESB_ST_RESP) {
1075 ep->sid = resp_id;
1076 ep->did = orig_id;
1077 } else {
1078 ep->sid = orig_id;
1079 ep->did = resp_id;
1084 * fc_seq_els_rsp_send() - Send an ELS response using information from
1085 * the existing sequence/exchange.
1086 * @fp: The received frame
1087 * @els_cmd: The ELS command to be sent
1088 * @els_data: The ELS data to be sent
1090 * The received frame is not freed.
1092 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1093 struct fc_seq_els_data *els_data)
1095 switch (els_cmd) {
1096 case ELS_LS_RJT:
1097 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1098 break;
1099 case ELS_LS_ACC:
1100 fc_seq_ls_acc(fp);
1101 break;
1102 case ELS_RRQ:
1103 fc_exch_els_rrq(fp);
1104 break;
1105 case ELS_REC:
1106 fc_exch_els_rec(fp);
1107 break;
1108 default:
1109 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1114 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1115 * @sp: The sequence that is to be sent
1116 * @fp: The frame that will be sent on the sequence
1117 * @rctl: The R_CTL information to be sent
1118 * @fh_type: The frame header type
1120 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1121 enum fc_rctl rctl, enum fc_fh_type fh_type)
1123 u32 f_ctl;
1124 struct fc_exch *ep = fc_seq_exch(sp);
1126 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1127 f_ctl |= ep->f_ctl;
1128 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1129 fc_seq_send(ep->lp, sp, fp);
1133 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1134 * @sp: The sequence to send the ACK on
1135 * @rx_fp: The received frame that is being acknoledged
1137 * Send ACK_1 (or equiv.) indicating we received something.
1139 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1141 struct fc_frame *fp;
1142 struct fc_frame_header *rx_fh;
1143 struct fc_frame_header *fh;
1144 struct fc_exch *ep = fc_seq_exch(sp);
1145 struct fc_lport *lport = ep->lp;
1146 unsigned int f_ctl;
1149 * Don't send ACKs for class 3.
1151 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1152 fp = fc_frame_alloc(lport, 0);
1153 if (!fp)
1154 return;
1156 fh = fc_frame_header_get(fp);
1157 fh->fh_r_ctl = FC_RCTL_ACK_1;
1158 fh->fh_type = FC_TYPE_BLS;
1161 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1162 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1163 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1164 * Last ACK uses bits 7-6 (continue sequence),
1165 * bits 5-4 are meaningful (what kind of ACK to use).
1167 rx_fh = fc_frame_header_get(rx_fp);
1168 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1169 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1170 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1171 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1172 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1173 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1174 hton24(fh->fh_f_ctl, f_ctl);
1176 fc_exch_setup_hdr(ep, fp, f_ctl);
1177 fh->fh_seq_id = rx_fh->fh_seq_id;
1178 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1179 fh->fh_parm_offset = htonl(1); /* ack single frame */
1181 fr_sof(fp) = fr_sof(rx_fp);
1182 if (f_ctl & FC_FC_END_SEQ)
1183 fr_eof(fp) = FC_EOF_T;
1184 else
1185 fr_eof(fp) = FC_EOF_N;
1187 lport->tt.frame_send(lport, fp);
1192 * fc_exch_send_ba_rjt() - Send BLS Reject
1193 * @rx_fp: The frame being rejected
1194 * @reason: The reason the frame is being rejected
1195 * @explan: The explanation for the rejection
1197 * This is for rejecting BA_ABTS only.
1199 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1200 enum fc_ba_rjt_reason reason,
1201 enum fc_ba_rjt_explan explan)
1203 struct fc_frame *fp;
1204 struct fc_frame_header *rx_fh;
1205 struct fc_frame_header *fh;
1206 struct fc_ba_rjt *rp;
1207 struct fc_lport *lport;
1208 unsigned int f_ctl;
1210 lport = fr_dev(rx_fp);
1211 fp = fc_frame_alloc(lport, sizeof(*rp));
1212 if (!fp)
1213 return;
1214 fh = fc_frame_header_get(fp);
1215 rx_fh = fc_frame_header_get(rx_fp);
1217 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1219 rp = fc_frame_payload_get(fp, sizeof(*rp));
1220 rp->br_reason = reason;
1221 rp->br_explan = explan;
1224 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1226 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1227 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1228 fh->fh_ox_id = rx_fh->fh_ox_id;
1229 fh->fh_rx_id = rx_fh->fh_rx_id;
1230 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1231 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1232 fh->fh_type = FC_TYPE_BLS;
1235 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1236 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1237 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1238 * Last ACK uses bits 7-6 (continue sequence),
1239 * bits 5-4 are meaningful (what kind of ACK to use).
1240 * Always set LAST_SEQ, END_SEQ.
1242 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1243 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1244 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1245 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1246 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1247 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1248 f_ctl &= ~FC_FC_FIRST_SEQ;
1249 hton24(fh->fh_f_ctl, f_ctl);
1251 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1252 fr_eof(fp) = FC_EOF_T;
1253 if (fc_sof_needs_ack(fr_sof(fp)))
1254 fr_eof(fp) = FC_EOF_N;
1256 lport->tt.frame_send(lport, fp);
1260 * fc_exch_recv_abts() - Handle an incoming ABTS
1261 * @ep: The exchange the abort was on
1262 * @rx_fp: The ABTS frame
1264 * This would be for target mode usually, but could be due to lost
1265 * FCP transfer ready, confirm or RRQ. We always handle this as an
1266 * exchange abort, ignoring the parameter.
1268 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1270 struct fc_frame *fp;
1271 struct fc_ba_acc *ap;
1272 struct fc_frame_header *fh;
1273 struct fc_seq *sp;
1275 if (!ep)
1276 goto reject;
1277 spin_lock_bh(&ep->ex_lock);
1278 if (ep->esb_stat & ESB_ST_COMPLETE) {
1279 spin_unlock_bh(&ep->ex_lock);
1280 goto reject;
1282 if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1283 fc_exch_hold(ep); /* hold for REC_QUAL */
1284 ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1285 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1287 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1288 if (!fp) {
1289 spin_unlock_bh(&ep->ex_lock);
1290 goto free;
1292 fh = fc_frame_header_get(fp);
1293 ap = fc_frame_payload_get(fp, sizeof(*ap));
1294 memset(ap, 0, sizeof(*ap));
1295 sp = &ep->seq;
1296 ap->ba_high_seq_cnt = htons(0xffff);
1297 if (sp->ssb_stat & SSB_ST_RESP) {
1298 ap->ba_seq_id = sp->id;
1299 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1300 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1301 ap->ba_low_seq_cnt = htons(sp->cnt);
1303 sp = fc_seq_start_next_locked(sp);
1304 spin_unlock_bh(&ep->ex_lock);
1305 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1306 fc_frame_free(rx_fp);
1307 return;
1309 reject:
1310 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1311 free:
1312 fc_frame_free(rx_fp);
1316 * fc_seq_assign() - Assign exchange and sequence for incoming request
1317 * @lport: The local port that received the request
1318 * @fp: The request frame
1320 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1321 * A reference will be held on the exchange/sequence for the caller, which
1322 * must call fc_seq_release().
1324 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1326 struct fc_exch_mgr_anchor *ema;
1328 WARN_ON(lport != fr_dev(fp));
1329 WARN_ON(fr_seq(fp));
1330 fr_seq(fp) = NULL;
1332 list_for_each_entry(ema, &lport->ema_list, ema_list)
1333 if ((!ema->match || ema->match(fp)) &&
1334 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1335 break;
1336 return fr_seq(fp);
1340 * fc_seq_release() - Release the hold
1341 * @sp: The sequence.
1343 static void fc_seq_release(struct fc_seq *sp)
1345 fc_exch_release(fc_seq_exch(sp));
1349 * fc_exch_recv_req() - Handler for an incoming request
1350 * @lport: The local port that received the request
1351 * @mp: The EM that the exchange is on
1352 * @fp: The request frame
1354 * This is used when the other end is originating the exchange
1355 * and the sequence.
1357 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1358 struct fc_frame *fp)
1360 struct fc_frame_header *fh = fc_frame_header_get(fp);
1361 struct fc_seq *sp = NULL;
1362 struct fc_exch *ep = NULL;
1363 enum fc_pf_rjt_reason reject;
1365 /* We can have the wrong fc_lport at this point with NPIV, which is a
1366 * problem now that we know a new exchange needs to be allocated
1368 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1369 if (!lport) {
1370 fc_frame_free(fp);
1371 return;
1373 fr_dev(fp) = lport;
1375 BUG_ON(fr_seq(fp)); /* XXX remove later */
1378 * If the RX_ID is 0xffff, don't allocate an exchange.
1379 * The upper-level protocol may request one later, if needed.
1381 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1382 return lport->tt.lport_recv(lport, fp);
1384 reject = fc_seq_lookup_recip(lport, mp, fp);
1385 if (reject == FC_RJT_NONE) {
1386 sp = fr_seq(fp); /* sequence will be held */
1387 ep = fc_seq_exch(sp);
1388 fc_seq_send_ack(sp, fp);
1389 ep->encaps = fr_encaps(fp);
1392 * Call the receive function.
1394 * The receive function may allocate a new sequence
1395 * over the old one, so we shouldn't change the
1396 * sequence after this.
1398 * The frame will be freed by the receive function.
1399 * If new exch resp handler is valid then call that
1400 * first.
1402 if (ep->resp)
1403 ep->resp(sp, fp, ep->arg);
1404 else
1405 lport->tt.lport_recv(lport, fp);
1406 fc_exch_release(ep); /* release from lookup */
1407 } else {
1408 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1409 reject);
1410 fc_frame_free(fp);
1415 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1416 * end is the originator of the sequence that is a
1417 * response to our initial exchange
1418 * @mp: The EM that the exchange is on
1419 * @fp: The response frame
1421 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1423 struct fc_frame_header *fh = fc_frame_header_get(fp);
1424 struct fc_seq *sp;
1425 struct fc_exch *ep;
1426 enum fc_sof sof;
1427 u32 f_ctl;
1428 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1429 void *ex_resp_arg;
1430 int rc;
1432 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1433 if (!ep) {
1434 atomic_inc(&mp->stats.xid_not_found);
1435 goto out;
1437 if (ep->esb_stat & ESB_ST_COMPLETE) {
1438 atomic_inc(&mp->stats.xid_not_found);
1439 goto rel;
1441 if (ep->rxid == FC_XID_UNKNOWN)
1442 ep->rxid = ntohs(fh->fh_rx_id);
1443 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1444 atomic_inc(&mp->stats.xid_not_found);
1445 goto rel;
1447 if (ep->did != ntoh24(fh->fh_s_id) &&
1448 ep->did != FC_FID_FLOGI) {
1449 atomic_inc(&mp->stats.xid_not_found);
1450 goto rel;
1452 sof = fr_sof(fp);
1453 sp = &ep->seq;
1454 if (fc_sof_is_init(sof)) {
1455 sp->ssb_stat |= SSB_ST_RESP;
1456 sp->id = fh->fh_seq_id;
1457 } else if (sp->id != fh->fh_seq_id) {
1458 atomic_inc(&mp->stats.seq_not_found);
1459 goto rel;
1462 f_ctl = ntoh24(fh->fh_f_ctl);
1463 fr_seq(fp) = sp;
1464 if (f_ctl & FC_FC_SEQ_INIT)
1465 ep->esb_stat |= ESB_ST_SEQ_INIT;
1467 if (fc_sof_needs_ack(sof))
1468 fc_seq_send_ack(sp, fp);
1469 resp = ep->resp;
1470 ex_resp_arg = ep->arg;
1472 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1473 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1474 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1475 spin_lock_bh(&ep->ex_lock);
1476 resp = ep->resp;
1477 rc = fc_exch_done_locked(ep);
1478 WARN_ON(fc_seq_exch(sp) != ep);
1479 spin_unlock_bh(&ep->ex_lock);
1480 if (!rc)
1481 fc_exch_delete(ep);
1485 * Call the receive function.
1486 * The sequence is held (has a refcnt) for us,
1487 * but not for the receive function.
1489 * The receive function may allocate a new sequence
1490 * over the old one, so we shouldn't change the
1491 * sequence after this.
1493 * The frame will be freed by the receive function.
1494 * If new exch resp handler is valid then call that
1495 * first.
1497 if (resp)
1498 resp(sp, fp, ex_resp_arg);
1499 else
1500 fc_frame_free(fp);
1501 fc_exch_release(ep);
1502 return;
1503 rel:
1504 fc_exch_release(ep);
1505 out:
1506 fc_frame_free(fp);
1510 * fc_exch_recv_resp() - Handler for a sequence where other end is
1511 * responding to our sequence
1512 * @mp: The EM that the exchange is on
1513 * @fp: The response frame
1515 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1517 struct fc_seq *sp;
1519 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1521 if (!sp)
1522 atomic_inc(&mp->stats.xid_not_found);
1523 else
1524 atomic_inc(&mp->stats.non_bls_resp);
1526 fc_frame_free(fp);
1530 * fc_exch_abts_resp() - Handler for a response to an ABT
1531 * @ep: The exchange that the frame is on
1532 * @fp: The response frame
1534 * This response would be to an ABTS cancelling an exchange or sequence.
1535 * The response can be either BA_ACC or BA_RJT
1537 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1539 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1540 void *ex_resp_arg;
1541 struct fc_frame_header *fh;
1542 struct fc_ba_acc *ap;
1543 struct fc_seq *sp;
1544 u16 low;
1545 u16 high;
1546 int rc = 1, has_rec = 0;
1548 fh = fc_frame_header_get(fp);
1549 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1550 fc_exch_rctl_name(fh->fh_r_ctl));
1552 if (cancel_delayed_work_sync(&ep->timeout_work))
1553 fc_exch_release(ep); /* release from pending timer hold */
1555 spin_lock_bh(&ep->ex_lock);
1556 switch (fh->fh_r_ctl) {
1557 case FC_RCTL_BA_ACC:
1558 ap = fc_frame_payload_get(fp, sizeof(*ap));
1559 if (!ap)
1560 break;
1563 * Decide whether to establish a Recovery Qualifier.
1564 * We do this if there is a non-empty SEQ_CNT range and
1565 * SEQ_ID is the same as the one we aborted.
1567 low = ntohs(ap->ba_low_seq_cnt);
1568 high = ntohs(ap->ba_high_seq_cnt);
1569 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1570 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1571 ap->ba_seq_id == ep->seq_id) && low != high) {
1572 ep->esb_stat |= ESB_ST_REC_QUAL;
1573 fc_exch_hold(ep); /* hold for recovery qualifier */
1574 has_rec = 1;
1576 break;
1577 case FC_RCTL_BA_RJT:
1578 break;
1579 default:
1580 break;
1583 resp = ep->resp;
1584 ex_resp_arg = ep->arg;
1586 /* do we need to do some other checks here. Can we reuse more of
1587 * fc_exch_recv_seq_resp
1589 sp = &ep->seq;
1591 * do we want to check END_SEQ as well as LAST_SEQ here?
1593 if (ep->fh_type != FC_TYPE_FCP &&
1594 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1595 rc = fc_exch_done_locked(ep);
1596 spin_unlock_bh(&ep->ex_lock);
1597 if (!rc)
1598 fc_exch_delete(ep);
1600 if (resp)
1601 resp(sp, fp, ex_resp_arg);
1602 else
1603 fc_frame_free(fp);
1605 if (has_rec)
1606 fc_exch_timer_set(ep, ep->r_a_tov);
1611 * fc_exch_recv_bls() - Handler for a BLS sequence
1612 * @mp: The EM that the exchange is on
1613 * @fp: The request frame
1615 * The BLS frame is always a sequence initiated by the remote side.
1616 * We may be either the originator or recipient of the exchange.
1618 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1620 struct fc_frame_header *fh;
1621 struct fc_exch *ep;
1622 u32 f_ctl;
1624 fh = fc_frame_header_get(fp);
1625 f_ctl = ntoh24(fh->fh_f_ctl);
1626 fr_seq(fp) = NULL;
1628 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1629 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1630 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1631 spin_lock_bh(&ep->ex_lock);
1632 ep->esb_stat |= ESB_ST_SEQ_INIT;
1633 spin_unlock_bh(&ep->ex_lock);
1635 if (f_ctl & FC_FC_SEQ_CTX) {
1637 * A response to a sequence we initiated.
1638 * This should only be ACKs for class 2 or F.
1640 switch (fh->fh_r_ctl) {
1641 case FC_RCTL_ACK_1:
1642 case FC_RCTL_ACK_0:
1643 break;
1644 default:
1645 FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1646 fh->fh_r_ctl,
1647 fc_exch_rctl_name(fh->fh_r_ctl));
1648 break;
1650 fc_frame_free(fp);
1651 } else {
1652 switch (fh->fh_r_ctl) {
1653 case FC_RCTL_BA_RJT:
1654 case FC_RCTL_BA_ACC:
1655 if (ep)
1656 fc_exch_abts_resp(ep, fp);
1657 else
1658 fc_frame_free(fp);
1659 break;
1660 case FC_RCTL_BA_ABTS:
1661 fc_exch_recv_abts(ep, fp);
1662 break;
1663 default: /* ignore junk */
1664 fc_frame_free(fp);
1665 break;
1668 if (ep)
1669 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1673 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1674 * @rx_fp: The received frame, not freed here.
1676 * If this fails due to allocation or transmit congestion, assume the
1677 * originator will repeat the sequence.
1679 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1681 struct fc_lport *lport;
1682 struct fc_els_ls_acc *acc;
1683 struct fc_frame *fp;
1685 lport = fr_dev(rx_fp);
1686 fp = fc_frame_alloc(lport, sizeof(*acc));
1687 if (!fp)
1688 return;
1689 acc = fc_frame_payload_get(fp, sizeof(*acc));
1690 memset(acc, 0, sizeof(*acc));
1691 acc->la_cmd = ELS_LS_ACC;
1692 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1693 lport->tt.frame_send(lport, fp);
1697 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1698 * @rx_fp: The received frame, not freed here.
1699 * @reason: The reason the sequence is being rejected
1700 * @explan: The explanation for the rejection
1702 * If this fails due to allocation or transmit congestion, assume the
1703 * originator will repeat the sequence.
1705 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1706 enum fc_els_rjt_explan explan)
1708 struct fc_lport *lport;
1709 struct fc_els_ls_rjt *rjt;
1710 struct fc_frame *fp;
1712 lport = fr_dev(rx_fp);
1713 fp = fc_frame_alloc(lport, sizeof(*rjt));
1714 if (!fp)
1715 return;
1716 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1717 memset(rjt, 0, sizeof(*rjt));
1718 rjt->er_cmd = ELS_LS_RJT;
1719 rjt->er_reason = reason;
1720 rjt->er_explan = explan;
1721 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1722 lport->tt.frame_send(lport, fp);
1726 * fc_exch_reset() - Reset an exchange
1727 * @ep: The exchange to be reset
1729 static void fc_exch_reset(struct fc_exch *ep)
1731 struct fc_seq *sp;
1732 void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1733 void *arg;
1734 int rc = 1;
1736 spin_lock_bh(&ep->ex_lock);
1737 fc_exch_abort_locked(ep, 0);
1738 ep->state |= FC_EX_RST_CLEANUP;
1739 if (cancel_delayed_work(&ep->timeout_work))
1740 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
1741 resp = ep->resp;
1742 ep->resp = NULL;
1743 if (ep->esb_stat & ESB_ST_REC_QUAL)
1744 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1745 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1746 arg = ep->arg;
1747 sp = &ep->seq;
1748 rc = fc_exch_done_locked(ep);
1749 spin_unlock_bh(&ep->ex_lock);
1750 if (!rc)
1751 fc_exch_delete(ep);
1753 if (resp)
1754 resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1758 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1759 * @lport: The local port that the exchange pool is on
1760 * @pool: The exchange pool to be reset
1761 * @sid: The source ID
1762 * @did: The destination ID
1764 * Resets a per cpu exches pool, releasing all of its sequences
1765 * and exchanges. If sid is non-zero then reset only exchanges
1766 * we sourced from the local port's FID. If did is non-zero then
1767 * only reset exchanges destined for the local port's FID.
1769 static void fc_exch_pool_reset(struct fc_lport *lport,
1770 struct fc_exch_pool *pool,
1771 u32 sid, u32 did)
1773 struct fc_exch *ep;
1774 struct fc_exch *next;
1776 spin_lock_bh(&pool->lock);
1777 restart:
1778 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1779 if ((lport == ep->lp) &&
1780 (sid == 0 || sid == ep->sid) &&
1781 (did == 0 || did == ep->did)) {
1782 fc_exch_hold(ep);
1783 spin_unlock_bh(&pool->lock);
1785 fc_exch_reset(ep);
1787 fc_exch_release(ep);
1788 spin_lock_bh(&pool->lock);
1791 * must restart loop incase while lock
1792 * was down multiple eps were released.
1794 goto restart;
1797 spin_unlock_bh(&pool->lock);
1801 * fc_exch_mgr_reset() - Reset all EMs of a local port
1802 * @lport: The local port whose EMs are to be reset
1803 * @sid: The source ID
1804 * @did: The destination ID
1806 * Reset all EMs associated with a given local port. Release all
1807 * sequences and exchanges. If sid is non-zero then reset only the
1808 * exchanges sent from the local port's FID. If did is non-zero then
1809 * reset only exchanges destined for the local port's FID.
1811 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1813 struct fc_exch_mgr_anchor *ema;
1814 unsigned int cpu;
1816 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1817 for_each_possible_cpu(cpu)
1818 fc_exch_pool_reset(lport,
1819 per_cpu_ptr(ema->mp->pool, cpu),
1820 sid, did);
1823 EXPORT_SYMBOL(fc_exch_mgr_reset);
1826 * fc_exch_lookup() - find an exchange
1827 * @lport: The local port
1828 * @xid: The exchange ID
1830 * Returns exchange pointer with hold for caller, or NULL if not found.
1832 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1834 struct fc_exch_mgr_anchor *ema;
1836 list_for_each_entry(ema, &lport->ema_list, ema_list)
1837 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1838 return fc_exch_find(ema->mp, xid);
1839 return NULL;
1843 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1844 * @rfp: The REC frame, not freed here.
1846 * Note that the requesting port may be different than the S_ID in the request.
1848 static void fc_exch_els_rec(struct fc_frame *rfp)
1850 struct fc_lport *lport;
1851 struct fc_frame *fp;
1852 struct fc_exch *ep;
1853 struct fc_els_rec *rp;
1854 struct fc_els_rec_acc *acc;
1855 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1856 enum fc_els_rjt_explan explan;
1857 u32 sid;
1858 u16 rxid;
1859 u16 oxid;
1861 lport = fr_dev(rfp);
1862 rp = fc_frame_payload_get(rfp, sizeof(*rp));
1863 explan = ELS_EXPL_INV_LEN;
1864 if (!rp)
1865 goto reject;
1866 sid = ntoh24(rp->rec_s_id);
1867 rxid = ntohs(rp->rec_rx_id);
1868 oxid = ntohs(rp->rec_ox_id);
1870 ep = fc_exch_lookup(lport,
1871 sid == fc_host_port_id(lport->host) ? oxid : rxid);
1872 explan = ELS_EXPL_OXID_RXID;
1873 if (!ep)
1874 goto reject;
1875 if (ep->oid != sid || oxid != ep->oxid)
1876 goto rel;
1877 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1878 goto rel;
1879 fp = fc_frame_alloc(lport, sizeof(*acc));
1880 if (!fp)
1881 goto out;
1883 acc = fc_frame_payload_get(fp, sizeof(*acc));
1884 memset(acc, 0, sizeof(*acc));
1885 acc->reca_cmd = ELS_LS_ACC;
1886 acc->reca_ox_id = rp->rec_ox_id;
1887 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1888 acc->reca_rx_id = htons(ep->rxid);
1889 if (ep->sid == ep->oid)
1890 hton24(acc->reca_rfid, ep->did);
1891 else
1892 hton24(acc->reca_rfid, ep->sid);
1893 acc->reca_fc4value = htonl(ep->seq.rec_data);
1894 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1895 ESB_ST_SEQ_INIT |
1896 ESB_ST_COMPLETE));
1897 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1898 lport->tt.frame_send(lport, fp);
1899 out:
1900 fc_exch_release(ep);
1901 return;
1903 rel:
1904 fc_exch_release(ep);
1905 reject:
1906 fc_seq_ls_rjt(rfp, reason, explan);
1910 * fc_exch_rrq_resp() - Handler for RRQ responses
1911 * @sp: The sequence that the RRQ is on
1912 * @fp: The RRQ frame
1913 * @arg: The exchange that the RRQ is on
1915 * TODO: fix error handler.
1917 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1919 struct fc_exch *aborted_ep = arg;
1920 unsigned int op;
1922 if (IS_ERR(fp)) {
1923 int err = PTR_ERR(fp);
1925 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1926 goto cleanup;
1927 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1928 "frame error %d\n", err);
1929 return;
1932 op = fc_frame_payload_op(fp);
1933 fc_frame_free(fp);
1935 switch (op) {
1936 case ELS_LS_RJT:
1937 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1938 /* fall through */
1939 case ELS_LS_ACC:
1940 goto cleanup;
1941 default:
1942 FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1943 "for RRQ", op);
1944 return;
1947 cleanup:
1948 fc_exch_done(&aborted_ep->seq);
1949 /* drop hold for rec qual */
1950 fc_exch_release(aborted_ep);
1955 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1956 * @lport: The local port to send the frame on
1957 * @fp: The frame to be sent
1958 * @resp: The response handler for this request
1959 * @destructor: The destructor for the exchange
1960 * @arg: The argument to be passed to the response handler
1961 * @timer_msec: The timeout period for the exchange
1963 * The frame pointer with some of the header's fields must be
1964 * filled before calling this routine, those fields are:
1966 * - routing control
1967 * - FC port did
1968 * - FC port sid
1969 * - FC header type
1970 * - frame control
1971 * - parameter or relative offset
1973 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1974 struct fc_frame *fp,
1975 void (*resp)(struct fc_seq *,
1976 struct fc_frame *fp,
1977 void *arg),
1978 void (*destructor)(struct fc_seq *,
1979 void *),
1980 void *arg, u32 timer_msec)
1982 struct fc_exch *ep;
1983 struct fc_seq *sp = NULL;
1984 struct fc_frame_header *fh;
1985 struct fc_fcp_pkt *fsp = NULL;
1986 int rc = 1;
1988 ep = fc_exch_alloc(lport, fp);
1989 if (!ep) {
1990 fc_frame_free(fp);
1991 return NULL;
1993 ep->esb_stat |= ESB_ST_SEQ_INIT;
1994 fh = fc_frame_header_get(fp);
1995 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1996 ep->resp = resp;
1997 ep->destructor = destructor;
1998 ep->arg = arg;
1999 ep->r_a_tov = FC_DEF_R_A_TOV;
2000 ep->lp = lport;
2001 sp = &ep->seq;
2003 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2004 ep->f_ctl = ntoh24(fh->fh_f_ctl);
2005 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2006 sp->cnt++;
2008 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2009 fsp = fr_fsp(fp);
2010 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2013 if (unlikely(lport->tt.frame_send(lport, fp)))
2014 goto err;
2016 if (timer_msec)
2017 fc_exch_timer_set_locked(ep, timer_msec);
2018 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
2020 if (ep->f_ctl & FC_FC_SEQ_INIT)
2021 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2022 spin_unlock_bh(&ep->ex_lock);
2023 return sp;
2024 err:
2025 if (fsp)
2026 fc_fcp_ddp_done(fsp);
2027 rc = fc_exch_done_locked(ep);
2028 spin_unlock_bh(&ep->ex_lock);
2029 if (!rc)
2030 fc_exch_delete(ep);
2031 return NULL;
2035 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2036 * @ep: The exchange to send the RRQ on
2038 * This tells the remote port to stop blocking the use of
2039 * the exchange and the seq_cnt range.
2041 static void fc_exch_rrq(struct fc_exch *ep)
2043 struct fc_lport *lport;
2044 struct fc_els_rrq *rrq;
2045 struct fc_frame *fp;
2046 u32 did;
2048 lport = ep->lp;
2050 fp = fc_frame_alloc(lport, sizeof(*rrq));
2051 if (!fp)
2052 goto retry;
2054 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2055 memset(rrq, 0, sizeof(*rrq));
2056 rrq->rrq_cmd = ELS_RRQ;
2057 hton24(rrq->rrq_s_id, ep->sid);
2058 rrq->rrq_ox_id = htons(ep->oxid);
2059 rrq->rrq_rx_id = htons(ep->rxid);
2061 did = ep->did;
2062 if (ep->esb_stat & ESB_ST_RESP)
2063 did = ep->sid;
2065 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2066 lport->port_id, FC_TYPE_ELS,
2067 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2069 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2070 lport->e_d_tov))
2071 return;
2073 retry:
2074 spin_lock_bh(&ep->ex_lock);
2075 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2076 spin_unlock_bh(&ep->ex_lock);
2077 /* drop hold for rec qual */
2078 fc_exch_release(ep);
2079 return;
2081 ep->esb_stat |= ESB_ST_REC_QUAL;
2082 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2083 spin_unlock_bh(&ep->ex_lock);
2087 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2088 * @fp: The RRQ frame, not freed here.
2090 static void fc_exch_els_rrq(struct fc_frame *fp)
2092 struct fc_lport *lport;
2093 struct fc_exch *ep = NULL; /* request or subject exchange */
2094 struct fc_els_rrq *rp;
2095 u32 sid;
2096 u16 xid;
2097 enum fc_els_rjt_explan explan;
2099 lport = fr_dev(fp);
2100 rp = fc_frame_payload_get(fp, sizeof(*rp));
2101 explan = ELS_EXPL_INV_LEN;
2102 if (!rp)
2103 goto reject;
2106 * lookup subject exchange.
2108 sid = ntoh24(rp->rrq_s_id); /* subject source */
2109 xid = fc_host_port_id(lport->host) == sid ?
2110 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2111 ep = fc_exch_lookup(lport, xid);
2112 explan = ELS_EXPL_OXID_RXID;
2113 if (!ep)
2114 goto reject;
2115 spin_lock_bh(&ep->ex_lock);
2116 if (ep->oxid != ntohs(rp->rrq_ox_id))
2117 goto unlock_reject;
2118 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2119 ep->rxid != FC_XID_UNKNOWN)
2120 goto unlock_reject;
2121 explan = ELS_EXPL_SID;
2122 if (ep->sid != sid)
2123 goto unlock_reject;
2126 * Clear Recovery Qualifier state, and cancel timer if complete.
2128 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2129 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2130 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2132 if (ep->esb_stat & ESB_ST_COMPLETE) {
2133 if (cancel_delayed_work(&ep->timeout_work))
2134 atomic_dec(&ep->ex_refcnt); /* drop timer hold */
2137 spin_unlock_bh(&ep->ex_lock);
2140 * Send LS_ACC.
2142 fc_seq_ls_acc(fp);
2143 goto out;
2145 unlock_reject:
2146 spin_unlock_bh(&ep->ex_lock);
2147 reject:
2148 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2149 out:
2150 if (ep)
2151 fc_exch_release(ep); /* drop hold from fc_exch_find */
2155 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2156 * @lport: The local port to add the exchange manager to
2157 * @mp: The exchange manager to be added to the local port
2158 * @match: The match routine that indicates when this EM should be used
2160 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2161 struct fc_exch_mgr *mp,
2162 bool (*match)(struct fc_frame *))
2164 struct fc_exch_mgr_anchor *ema;
2166 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2167 if (!ema)
2168 return ema;
2170 ema->mp = mp;
2171 ema->match = match;
2172 /* add EM anchor to EM anchors list */
2173 list_add_tail(&ema->ema_list, &lport->ema_list);
2174 kref_get(&mp->kref);
2175 return ema;
2177 EXPORT_SYMBOL(fc_exch_mgr_add);
2180 * fc_exch_mgr_destroy() - Destroy an exchange manager
2181 * @kref: The reference to the EM to be destroyed
2183 static void fc_exch_mgr_destroy(struct kref *kref)
2185 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2187 mempool_destroy(mp->ep_pool);
2188 free_percpu(mp->pool);
2189 kfree(mp);
2193 * fc_exch_mgr_del() - Delete an EM from a local port's list
2194 * @ema: The exchange manager anchor identifying the EM to be deleted
2196 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2198 /* remove EM anchor from EM anchors list */
2199 list_del(&ema->ema_list);
2200 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2201 kfree(ema);
2203 EXPORT_SYMBOL(fc_exch_mgr_del);
2206 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2207 * @src: Source lport to clone exchange managers from
2208 * @dst: New lport that takes references to all the exchange managers
2210 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2212 struct fc_exch_mgr_anchor *ema, *tmp;
2214 list_for_each_entry(ema, &src->ema_list, ema_list) {
2215 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2216 goto err;
2218 return 0;
2219 err:
2220 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2221 fc_exch_mgr_del(ema);
2222 return -ENOMEM;
2224 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2227 * fc_exch_mgr_alloc() - Allocate an exchange manager
2228 * @lport: The local port that the new EM will be associated with
2229 * @class: The default FC class for new exchanges
2230 * @min_xid: The minimum XID for exchanges from the new EM
2231 * @max_xid: The maximum XID for exchanges from the new EM
2232 * @match: The match routine for the new EM
2234 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2235 enum fc_class class,
2236 u16 min_xid, u16 max_xid,
2237 bool (*match)(struct fc_frame *))
2239 struct fc_exch_mgr *mp;
2240 u16 pool_exch_range;
2241 size_t pool_size;
2242 unsigned int cpu;
2243 struct fc_exch_pool *pool;
2245 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2246 (min_xid & fc_cpu_mask) != 0) {
2247 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2248 min_xid, max_xid);
2249 return NULL;
2253 * allocate memory for EM
2255 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2256 if (!mp)
2257 return NULL;
2259 mp->class = class;
2260 /* adjust em exch xid range for offload */
2261 mp->min_xid = min_xid;
2262 mp->max_xid = max_xid;
2264 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2265 if (!mp->ep_pool)
2266 goto free_mp;
2269 * Setup per cpu exch pool with entire exchange id range equally
2270 * divided across all cpus. The exch pointers array memory is
2271 * allocated for exch range per pool.
2273 pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
2274 mp->pool_max_index = pool_exch_range - 1;
2277 * Allocate and initialize per cpu exch pool
2279 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2280 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2281 if (!mp->pool)
2282 goto free_mempool;
2283 for_each_possible_cpu(cpu) {
2284 pool = per_cpu_ptr(mp->pool, cpu);
2285 pool->left = FC_XID_UNKNOWN;
2286 pool->right = FC_XID_UNKNOWN;
2287 spin_lock_init(&pool->lock);
2288 INIT_LIST_HEAD(&pool->ex_list);
2291 kref_init(&mp->kref);
2292 if (!fc_exch_mgr_add(lport, mp, match)) {
2293 free_percpu(mp->pool);
2294 goto free_mempool;
2298 * Above kref_init() sets mp->kref to 1 and then
2299 * call to fc_exch_mgr_add incremented mp->kref again,
2300 * so adjust that extra increment.
2302 kref_put(&mp->kref, fc_exch_mgr_destroy);
2303 return mp;
2305 free_mempool:
2306 mempool_destroy(mp->ep_pool);
2307 free_mp:
2308 kfree(mp);
2309 return NULL;
2311 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2314 * fc_exch_mgr_free() - Free all exchange managers on a local port
2315 * @lport: The local port whose EMs are to be freed
2317 void fc_exch_mgr_free(struct fc_lport *lport)
2319 struct fc_exch_mgr_anchor *ema, *next;
2321 flush_workqueue(fc_exch_workqueue);
2322 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2323 fc_exch_mgr_del(ema);
2325 EXPORT_SYMBOL(fc_exch_mgr_free);
2328 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2329 * upon 'xid'.
2330 * @f_ctl: f_ctl
2331 * @lport: The local port the frame was received on
2332 * @fh: The received frame header
2334 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2335 struct fc_lport *lport,
2336 struct fc_frame_header *fh)
2338 struct fc_exch_mgr_anchor *ema;
2339 u16 xid;
2341 if (f_ctl & FC_FC_EX_CTX)
2342 xid = ntohs(fh->fh_ox_id);
2343 else {
2344 xid = ntohs(fh->fh_rx_id);
2345 if (xid == FC_XID_UNKNOWN)
2346 return list_entry(lport->ema_list.prev,
2347 typeof(*ema), ema_list);
2350 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2351 if ((xid >= ema->mp->min_xid) &&
2352 (xid <= ema->mp->max_xid))
2353 return ema;
2355 return NULL;
2358 * fc_exch_recv() - Handler for received frames
2359 * @lport: The local port the frame was received on
2360 * @fp: The received frame
2362 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2364 struct fc_frame_header *fh = fc_frame_header_get(fp);
2365 struct fc_exch_mgr_anchor *ema;
2366 u32 f_ctl;
2368 /* lport lock ? */
2369 if (!lport || lport->state == LPORT_ST_DISABLED) {
2370 FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2371 "has not been initialized correctly\n");
2372 fc_frame_free(fp);
2373 return;
2376 f_ctl = ntoh24(fh->fh_f_ctl);
2377 ema = fc_find_ema(f_ctl, lport, fh);
2378 if (!ema) {
2379 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2380 "fc_ctl <0x%x>, xid <0x%x>\n",
2381 f_ctl,
2382 (f_ctl & FC_FC_EX_CTX) ?
2383 ntohs(fh->fh_ox_id) :
2384 ntohs(fh->fh_rx_id));
2385 fc_frame_free(fp);
2386 return;
2390 * If frame is marked invalid, just drop it.
2392 switch (fr_eof(fp)) {
2393 case FC_EOF_T:
2394 if (f_ctl & FC_FC_END_SEQ)
2395 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2396 /* fall through */
2397 case FC_EOF_N:
2398 if (fh->fh_type == FC_TYPE_BLS)
2399 fc_exch_recv_bls(ema->mp, fp);
2400 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2401 FC_FC_EX_CTX)
2402 fc_exch_recv_seq_resp(ema->mp, fp);
2403 else if (f_ctl & FC_FC_SEQ_CTX)
2404 fc_exch_recv_resp(ema->mp, fp);
2405 else /* no EX_CTX and no SEQ_CTX */
2406 fc_exch_recv_req(lport, ema->mp, fp);
2407 break;
2408 default:
2409 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2410 fr_eof(fp));
2411 fc_frame_free(fp);
2414 EXPORT_SYMBOL(fc_exch_recv);
2417 * fc_exch_init() - Initialize the exchange layer for a local port
2418 * @lport: The local port to initialize the exchange layer for
2420 int fc_exch_init(struct fc_lport *lport)
2422 if (!lport->tt.seq_start_next)
2423 lport->tt.seq_start_next = fc_seq_start_next;
2425 if (!lport->tt.seq_set_resp)
2426 lport->tt.seq_set_resp = fc_seq_set_resp;
2428 if (!lport->tt.exch_seq_send)
2429 lport->tt.exch_seq_send = fc_exch_seq_send;
2431 if (!lport->tt.seq_send)
2432 lport->tt.seq_send = fc_seq_send;
2434 if (!lport->tt.seq_els_rsp_send)
2435 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2437 if (!lport->tt.exch_done)
2438 lport->tt.exch_done = fc_exch_done;
2440 if (!lport->tt.exch_mgr_reset)
2441 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2443 if (!lport->tt.seq_exch_abort)
2444 lport->tt.seq_exch_abort = fc_seq_exch_abort;
2446 if (!lport->tt.seq_assign)
2447 lport->tt.seq_assign = fc_seq_assign;
2449 if (!lport->tt.seq_release)
2450 lport->tt.seq_release = fc_seq_release;
2452 return 0;
2454 EXPORT_SYMBOL(fc_exch_init);
2457 * fc_setup_exch_mgr() - Setup an exchange manager
2459 int fc_setup_exch_mgr(void)
2461 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2462 0, SLAB_HWCACHE_ALIGN, NULL);
2463 if (!fc_em_cachep)
2464 return -ENOMEM;
2467 * Initialize fc_cpu_mask and fc_cpu_order. The
2468 * fc_cpu_mask is set for nr_cpu_ids rounded up
2469 * to order of 2's * power and order is stored
2470 * in fc_cpu_order as this is later required in
2471 * mapping between an exch id and exch array index
2472 * in per cpu exch pool.
2474 * This round up is required to align fc_cpu_mask
2475 * to exchange id's lower bits such that all incoming
2476 * frames of an exchange gets delivered to the same
2477 * cpu on which exchange originated by simple bitwise
2478 * AND operation between fc_cpu_mask and exchange id.
2480 fc_cpu_mask = 1;
2481 fc_cpu_order = 0;
2482 while (fc_cpu_mask < nr_cpu_ids) {
2483 fc_cpu_mask <<= 1;
2484 fc_cpu_order++;
2486 fc_cpu_mask--;
2488 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2489 if (!fc_exch_workqueue)
2490 goto err;
2491 return 0;
2492 err:
2493 kmem_cache_destroy(fc_em_cachep);
2494 return -ENOMEM;
2498 * fc_destroy_exch_mgr() - Destroy an exchange manager
2500 void fc_destroy_exch_mgr(void)
2502 destroy_workqueue(fc_exch_workqueue);
2503 kmem_cache_destroy(fc_em_cachep);