Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / drivers / staging / zcache / tmem.c
blob1ca66ea9b28123825a4db9b08d8621da909c8c66
1 /*
2 * In-kernel transcendent memory (generic implementation)
4 * Copyright (c) 2009-2011, Dan Magenheimer, Oracle Corp.
6 * The primary purpose of Transcedent Memory ("tmem") is to map object-oriented
7 * "handles" (triples containing a pool id, and object id, and an index), to
8 * pages in a page-accessible memory (PAM). Tmem references the PAM pages via
9 * an abstract "pampd" (PAM page-descriptor), which can be operated on by a
10 * set of functions (pamops). Each pampd contains some representation of
11 * PAGE_SIZE bytes worth of data. Tmem must support potentially millions of
12 * pages and must be able to insert, find, and delete these pages at a
13 * potential frequency of thousands per second concurrently across many CPUs,
14 * (and, if used with KVM, across many vcpus across many guests).
15 * Tmem is tracked with a hierarchy of data structures, organized by
16 * the elements in a handle-tuple: pool_id, object_id, and page index.
17 * One or more "clients" (e.g. guests) each provide one or more tmem_pools.
18 * Each pool, contains a hash table of rb_trees of tmem_objs. Each
19 * tmem_obj contains a radix-tree-like tree of pointers, with intermediate
20 * nodes called tmem_objnodes. Each leaf pointer in this tree points to
21 * a pampd, which is accessible only through a small set of callbacks
22 * registered by the PAM implementation (see tmem_register_pamops). Tmem
23 * does all memory allocation via a set of callbacks registered by the tmem
24 * host implementation (e.g. see tmem_register_hostops).
27 #include <linux/list.h>
28 #include <linux/spinlock.h>
29 #include <linux/atomic.h>
31 #include "tmem.h"
33 /* data structure sentinels used for debugging... see tmem.h */
34 #define POOL_SENTINEL 0x87658765
35 #define OBJ_SENTINEL 0x12345678
36 #define OBJNODE_SENTINEL 0xfedcba09
39 * A tmem host implementation must use this function to register callbacks
40 * for memory allocation.
42 static struct tmem_hostops tmem_hostops;
44 static void tmem_objnode_tree_init(void);
46 void tmem_register_hostops(struct tmem_hostops *m)
48 tmem_objnode_tree_init();
49 tmem_hostops = *m;
53 * A tmem host implementation must use this function to register
54 * callbacks for a page-accessible memory (PAM) implementation
56 static struct tmem_pamops tmem_pamops;
58 void tmem_register_pamops(struct tmem_pamops *m)
60 tmem_pamops = *m;
64 * Oid's are potentially very sparse and tmem_objs may have an indeterminately
65 * short life, being added and deleted at a relatively high frequency.
66 * So an rb_tree is an ideal data structure to manage tmem_objs. But because
67 * of the potentially huge number of tmem_objs, each pool manages a hashtable
68 * of rb_trees to reduce search, insert, delete, and rebalancing time.
69 * Each hashbucket also has a lock to manage concurrent access.
71 * The following routines manage tmem_objs. When any tmem_obj is accessed,
72 * the hashbucket lock must be held.
75 /* searches for object==oid in pool, returns locked object if found */
76 static struct tmem_obj *tmem_obj_find(struct tmem_hashbucket *hb,
77 struct tmem_oid *oidp)
79 struct rb_node *rbnode;
80 struct tmem_obj *obj;
82 rbnode = hb->obj_rb_root.rb_node;
83 while (rbnode) {
84 BUG_ON(RB_EMPTY_NODE(rbnode));
85 obj = rb_entry(rbnode, struct tmem_obj, rb_tree_node);
86 switch (tmem_oid_compare(oidp, &obj->oid)) {
87 case 0: /* equal */
88 goto out;
89 case -1:
90 rbnode = rbnode->rb_left;
91 break;
92 case 1:
93 rbnode = rbnode->rb_right;
94 break;
97 obj = NULL;
98 out:
99 return obj;
102 static void tmem_pampd_destroy_all_in_obj(struct tmem_obj *);
104 /* free an object that has no more pampds in it */
105 static void tmem_obj_free(struct tmem_obj *obj, struct tmem_hashbucket *hb)
107 struct tmem_pool *pool;
109 BUG_ON(obj == NULL);
110 ASSERT_SENTINEL(obj, OBJ);
111 BUG_ON(obj->pampd_count > 0);
112 pool = obj->pool;
113 BUG_ON(pool == NULL);
114 if (obj->objnode_tree_root != NULL) /* may be "stump" with no leaves */
115 tmem_pampd_destroy_all_in_obj(obj);
116 BUG_ON(obj->objnode_tree_root != NULL);
117 BUG_ON((long)obj->objnode_count != 0);
118 atomic_dec(&pool->obj_count);
119 BUG_ON(atomic_read(&pool->obj_count) < 0);
120 INVERT_SENTINEL(obj, OBJ);
121 obj->pool = NULL;
122 tmem_oid_set_invalid(&obj->oid);
123 rb_erase(&obj->rb_tree_node, &hb->obj_rb_root);
127 * initialize, and insert an tmem_object_root (called only if find failed)
129 static void tmem_obj_init(struct tmem_obj *obj, struct tmem_hashbucket *hb,
130 struct tmem_pool *pool,
131 struct tmem_oid *oidp)
133 struct rb_root *root = &hb->obj_rb_root;
134 struct rb_node **new = &(root->rb_node), *parent = NULL;
135 struct tmem_obj *this;
137 BUG_ON(pool == NULL);
138 atomic_inc(&pool->obj_count);
139 obj->objnode_tree_height = 0;
140 obj->objnode_tree_root = NULL;
141 obj->pool = pool;
142 obj->oid = *oidp;
143 obj->objnode_count = 0;
144 obj->pampd_count = 0;
145 (*tmem_pamops.new_obj)(obj);
146 SET_SENTINEL(obj, OBJ);
147 while (*new) {
148 BUG_ON(RB_EMPTY_NODE(*new));
149 this = rb_entry(*new, struct tmem_obj, rb_tree_node);
150 parent = *new;
151 switch (tmem_oid_compare(oidp, &this->oid)) {
152 case 0:
153 BUG(); /* already present; should never happen! */
154 break;
155 case -1:
156 new = &(*new)->rb_left;
157 break;
158 case 1:
159 new = &(*new)->rb_right;
160 break;
163 rb_link_node(&obj->rb_tree_node, parent, new);
164 rb_insert_color(&obj->rb_tree_node, root);
168 * Tmem is managed as a set of tmem_pools with certain attributes, such as
169 * "ephemeral" vs "persistent". These attributes apply to all tmem_objs
170 * and all pampds that belong to a tmem_pool. A tmem_pool is created
171 * or deleted relatively rarely (for example, when a filesystem is
172 * mounted or unmounted.
175 /* flush all data from a pool and, optionally, free it */
176 static void tmem_pool_flush(struct tmem_pool *pool, bool destroy)
178 struct rb_node *rbnode;
179 struct tmem_obj *obj;
180 struct tmem_hashbucket *hb = &pool->hashbucket[0];
181 int i;
183 BUG_ON(pool == NULL);
184 for (i = 0; i < TMEM_HASH_BUCKETS; i++, hb++) {
185 spin_lock(&hb->lock);
186 rbnode = rb_first(&hb->obj_rb_root);
187 while (rbnode != NULL) {
188 obj = rb_entry(rbnode, struct tmem_obj, rb_tree_node);
189 rbnode = rb_next(rbnode);
190 tmem_pampd_destroy_all_in_obj(obj);
191 tmem_obj_free(obj, hb);
192 (*tmem_hostops.obj_free)(obj, pool);
194 spin_unlock(&hb->lock);
196 if (destroy)
197 list_del(&pool->pool_list);
201 * A tmem_obj contains a radix-tree-like tree in which the intermediate
202 * nodes are called tmem_objnodes. (The kernel lib/radix-tree.c implementation
203 * is very specialized and tuned for specific uses and is not particularly
204 * suited for use from this code, though some code from the core algorithms has
205 * been reused, thus the copyright notices below). Each tmem_objnode contains
206 * a set of pointers which point to either a set of intermediate tmem_objnodes
207 * or a set of of pampds.
209 * Portions Copyright (C) 2001 Momchil Velikov
210 * Portions Copyright (C) 2001 Christoph Hellwig
211 * Portions Copyright (C) 2005 SGI, Christoph Lameter <clameter@sgi.com>
214 struct tmem_objnode_tree_path {
215 struct tmem_objnode *objnode;
216 int offset;
219 /* objnode height_to_maxindex translation */
220 static unsigned long tmem_objnode_tree_h2max[OBJNODE_TREE_MAX_PATH + 1];
222 static void tmem_objnode_tree_init(void)
224 unsigned int ht, tmp;
226 for (ht = 0; ht < ARRAY_SIZE(tmem_objnode_tree_h2max); ht++) {
227 tmp = ht * OBJNODE_TREE_MAP_SHIFT;
228 if (tmp >= OBJNODE_TREE_INDEX_BITS)
229 tmem_objnode_tree_h2max[ht] = ~0UL;
230 else
231 tmem_objnode_tree_h2max[ht] =
232 (~0UL >> (OBJNODE_TREE_INDEX_BITS - tmp - 1)) >> 1;
236 static struct tmem_objnode *tmem_objnode_alloc(struct tmem_obj *obj)
238 struct tmem_objnode *objnode;
240 ASSERT_SENTINEL(obj, OBJ);
241 BUG_ON(obj->pool == NULL);
242 ASSERT_SENTINEL(obj->pool, POOL);
243 objnode = (*tmem_hostops.objnode_alloc)(obj->pool);
244 if (unlikely(objnode == NULL))
245 goto out;
246 objnode->obj = obj;
247 SET_SENTINEL(objnode, OBJNODE);
248 memset(&objnode->slots, 0, sizeof(objnode->slots));
249 objnode->slots_in_use = 0;
250 obj->objnode_count++;
251 out:
252 return objnode;
255 static void tmem_objnode_free(struct tmem_objnode *objnode)
257 struct tmem_pool *pool;
258 int i;
260 BUG_ON(objnode == NULL);
261 for (i = 0; i < OBJNODE_TREE_MAP_SIZE; i++)
262 BUG_ON(objnode->slots[i] != NULL);
263 ASSERT_SENTINEL(objnode, OBJNODE);
264 INVERT_SENTINEL(objnode, OBJNODE);
265 BUG_ON(objnode->obj == NULL);
266 ASSERT_SENTINEL(objnode->obj, OBJ);
267 pool = objnode->obj->pool;
268 BUG_ON(pool == NULL);
269 ASSERT_SENTINEL(pool, POOL);
270 objnode->obj->objnode_count--;
271 objnode->obj = NULL;
272 (*tmem_hostops.objnode_free)(objnode, pool);
276 * lookup index in object and return associated pampd (or NULL if not found)
278 static void **__tmem_pampd_lookup_in_obj(struct tmem_obj *obj, uint32_t index)
280 unsigned int height, shift;
281 struct tmem_objnode **slot = NULL;
283 BUG_ON(obj == NULL);
284 ASSERT_SENTINEL(obj, OBJ);
285 BUG_ON(obj->pool == NULL);
286 ASSERT_SENTINEL(obj->pool, POOL);
288 height = obj->objnode_tree_height;
289 if (index > tmem_objnode_tree_h2max[obj->objnode_tree_height])
290 goto out;
291 if (height == 0 && obj->objnode_tree_root) {
292 slot = &obj->objnode_tree_root;
293 goto out;
295 shift = (height-1) * OBJNODE_TREE_MAP_SHIFT;
296 slot = &obj->objnode_tree_root;
297 while (height > 0) {
298 if (*slot == NULL)
299 goto out;
300 slot = (struct tmem_objnode **)
301 ((*slot)->slots +
302 ((index >> shift) & OBJNODE_TREE_MAP_MASK));
303 shift -= OBJNODE_TREE_MAP_SHIFT;
304 height--;
306 out:
307 return slot != NULL ? (void **)slot : NULL;
310 static void *tmem_pampd_lookup_in_obj(struct tmem_obj *obj, uint32_t index)
312 struct tmem_objnode **slot;
314 slot = (struct tmem_objnode **)__tmem_pampd_lookup_in_obj(obj, index);
315 return slot != NULL ? *slot : NULL;
318 static void *tmem_pampd_replace_in_obj(struct tmem_obj *obj, uint32_t index,
319 void *new_pampd)
321 struct tmem_objnode **slot;
322 void *ret = NULL;
324 slot = (struct tmem_objnode **)__tmem_pampd_lookup_in_obj(obj, index);
325 if ((slot != NULL) && (*slot != NULL)) {
326 void *old_pampd = *(void **)slot;
327 *(void **)slot = new_pampd;
328 (*tmem_pamops.free)(old_pampd, obj->pool, NULL, 0);
329 ret = new_pampd;
331 return ret;
334 static int tmem_pampd_add_to_obj(struct tmem_obj *obj, uint32_t index,
335 void *pampd)
337 int ret = 0;
338 struct tmem_objnode *objnode = NULL, *newnode, *slot;
339 unsigned int height, shift;
340 int offset = 0;
342 /* if necessary, extend the tree to be higher */
343 if (index > tmem_objnode_tree_h2max[obj->objnode_tree_height]) {
344 height = obj->objnode_tree_height + 1;
345 if (index > tmem_objnode_tree_h2max[height])
346 while (index > tmem_objnode_tree_h2max[height])
347 height++;
348 if (obj->objnode_tree_root == NULL) {
349 obj->objnode_tree_height = height;
350 goto insert;
352 do {
353 newnode = tmem_objnode_alloc(obj);
354 if (!newnode) {
355 ret = -ENOMEM;
356 goto out;
358 newnode->slots[0] = obj->objnode_tree_root;
359 newnode->slots_in_use = 1;
360 obj->objnode_tree_root = newnode;
361 obj->objnode_tree_height++;
362 } while (height > obj->objnode_tree_height);
364 insert:
365 slot = obj->objnode_tree_root;
366 height = obj->objnode_tree_height;
367 shift = (height-1) * OBJNODE_TREE_MAP_SHIFT;
368 while (height > 0) {
369 if (slot == NULL) {
370 /* add a child objnode. */
371 slot = tmem_objnode_alloc(obj);
372 if (!slot) {
373 ret = -ENOMEM;
374 goto out;
376 if (objnode) {
378 objnode->slots[offset] = slot;
379 objnode->slots_in_use++;
380 } else
381 obj->objnode_tree_root = slot;
383 /* go down a level */
384 offset = (index >> shift) & OBJNODE_TREE_MAP_MASK;
385 objnode = slot;
386 slot = objnode->slots[offset];
387 shift -= OBJNODE_TREE_MAP_SHIFT;
388 height--;
390 BUG_ON(slot != NULL);
391 if (objnode) {
392 objnode->slots_in_use++;
393 objnode->slots[offset] = pampd;
394 } else
395 obj->objnode_tree_root = pampd;
396 obj->pampd_count++;
397 out:
398 return ret;
401 static void *tmem_pampd_delete_from_obj(struct tmem_obj *obj, uint32_t index)
403 struct tmem_objnode_tree_path path[OBJNODE_TREE_MAX_PATH + 1];
404 struct tmem_objnode_tree_path *pathp = path;
405 struct tmem_objnode *slot = NULL;
406 unsigned int height, shift;
407 int offset;
409 BUG_ON(obj == NULL);
410 ASSERT_SENTINEL(obj, OBJ);
411 BUG_ON(obj->pool == NULL);
412 ASSERT_SENTINEL(obj->pool, POOL);
413 height = obj->objnode_tree_height;
414 if (index > tmem_objnode_tree_h2max[height])
415 goto out;
416 slot = obj->objnode_tree_root;
417 if (height == 0 && obj->objnode_tree_root) {
418 obj->objnode_tree_root = NULL;
419 goto out;
421 shift = (height - 1) * OBJNODE_TREE_MAP_SHIFT;
422 pathp->objnode = NULL;
423 do {
424 if (slot == NULL)
425 goto out;
426 pathp++;
427 offset = (index >> shift) & OBJNODE_TREE_MAP_MASK;
428 pathp->offset = offset;
429 pathp->objnode = slot;
430 slot = slot->slots[offset];
431 shift -= OBJNODE_TREE_MAP_SHIFT;
432 height--;
433 } while (height > 0);
434 if (slot == NULL)
435 goto out;
436 while (pathp->objnode) {
437 pathp->objnode->slots[pathp->offset] = NULL;
438 pathp->objnode->slots_in_use--;
439 if (pathp->objnode->slots_in_use) {
440 if (pathp->objnode == obj->objnode_tree_root) {
441 while (obj->objnode_tree_height > 0 &&
442 obj->objnode_tree_root->slots_in_use == 1 &&
443 obj->objnode_tree_root->slots[0]) {
444 struct tmem_objnode *to_free =
445 obj->objnode_tree_root;
447 obj->objnode_tree_root =
448 to_free->slots[0];
449 obj->objnode_tree_height--;
450 to_free->slots[0] = NULL;
451 to_free->slots_in_use = 0;
452 tmem_objnode_free(to_free);
455 goto out;
457 tmem_objnode_free(pathp->objnode); /* 0 slots used, free it */
458 pathp--;
460 obj->objnode_tree_height = 0;
461 obj->objnode_tree_root = NULL;
463 out:
464 if (slot != NULL)
465 obj->pampd_count--;
466 BUG_ON(obj->pampd_count < 0);
467 return slot;
470 /* recursively walk the objnode_tree destroying pampds and objnodes */
471 static void tmem_objnode_node_destroy(struct tmem_obj *obj,
472 struct tmem_objnode *objnode,
473 unsigned int ht)
475 int i;
477 if (ht == 0)
478 return;
479 for (i = 0; i < OBJNODE_TREE_MAP_SIZE; i++) {
480 if (objnode->slots[i]) {
481 if (ht == 1) {
482 obj->pampd_count--;
483 (*tmem_pamops.free)(objnode->slots[i],
484 obj->pool, NULL, 0);
485 objnode->slots[i] = NULL;
486 continue;
488 tmem_objnode_node_destroy(obj, objnode->slots[i], ht-1);
489 tmem_objnode_free(objnode->slots[i]);
490 objnode->slots[i] = NULL;
495 static void tmem_pampd_destroy_all_in_obj(struct tmem_obj *obj)
497 if (obj->objnode_tree_root == NULL)
498 return;
499 if (obj->objnode_tree_height == 0) {
500 obj->pampd_count--;
501 (*tmem_pamops.free)(obj->objnode_tree_root, obj->pool, NULL, 0);
502 } else {
503 tmem_objnode_node_destroy(obj, obj->objnode_tree_root,
504 obj->objnode_tree_height);
505 tmem_objnode_free(obj->objnode_tree_root);
506 obj->objnode_tree_height = 0;
508 obj->objnode_tree_root = NULL;
509 (*tmem_pamops.free_obj)(obj->pool, obj);
513 * Tmem is operated on by a set of well-defined actions:
514 * "put", "get", "flush", "flush_object", "new pool" and "destroy pool".
515 * (The tmem ABI allows for subpages and exchanges but these operations
516 * are not included in this implementation.)
518 * These "tmem core" operations are implemented in the following functions.
522 * "Put" a page, e.g. copy a page from the kernel into newly allocated
523 * PAM space (if such space is available). Tmem_put is complicated by
524 * a corner case: What if a page with matching handle already exists in
525 * tmem? To guarantee coherency, one of two actions is necessary: Either
526 * the data for the page must be overwritten, or the page must be
527 * "flushed" so that the data is not accessible to a subsequent "get".
528 * Since these "duplicate puts" are relatively rare, this implementation
529 * always flushes for simplicity.
531 int tmem_put(struct tmem_pool *pool, struct tmem_oid *oidp, uint32_t index,
532 char *data, size_t size, bool raw, bool ephemeral)
534 struct tmem_obj *obj = NULL, *objfound = NULL, *objnew = NULL;
535 void *pampd = NULL, *pampd_del = NULL;
536 int ret = -ENOMEM;
537 struct tmem_hashbucket *hb;
539 hb = &pool->hashbucket[tmem_oid_hash(oidp)];
540 spin_lock(&hb->lock);
541 obj = objfound = tmem_obj_find(hb, oidp);
542 if (obj != NULL) {
543 pampd = tmem_pampd_lookup_in_obj(objfound, index);
544 if (pampd != NULL) {
545 /* if found, is a dup put, flush the old one */
546 pampd_del = tmem_pampd_delete_from_obj(obj, index);
547 BUG_ON(pampd_del != pampd);
548 (*tmem_pamops.free)(pampd, pool, oidp, index);
549 if (obj->pampd_count == 0) {
550 objnew = obj;
551 objfound = NULL;
553 pampd = NULL;
555 } else {
556 obj = objnew = (*tmem_hostops.obj_alloc)(pool);
557 if (unlikely(obj == NULL)) {
558 ret = -ENOMEM;
559 goto out;
561 tmem_obj_init(obj, hb, pool, oidp);
563 BUG_ON(obj == NULL);
564 BUG_ON(((objnew != obj) && (objfound != obj)) || (objnew == objfound));
565 pampd = (*tmem_pamops.create)(data, size, raw, ephemeral,
566 obj->pool, &obj->oid, index);
567 if (unlikely(pampd == NULL))
568 goto free;
569 ret = tmem_pampd_add_to_obj(obj, index, pampd);
570 if (unlikely(ret == -ENOMEM))
571 /* may have partially built objnode tree ("stump") */
572 goto delete_and_free;
573 goto out;
575 delete_and_free:
576 (void)tmem_pampd_delete_from_obj(obj, index);
577 free:
578 if (pampd)
579 (*tmem_pamops.free)(pampd, pool, NULL, 0);
580 if (objnew) {
581 tmem_obj_free(objnew, hb);
582 (*tmem_hostops.obj_free)(objnew, pool);
584 out:
585 spin_unlock(&hb->lock);
586 return ret;
590 * "Get" a page, e.g. if one can be found, copy the tmem page with the
591 * matching handle from PAM space to the kernel. By tmem definition,
592 * when a "get" is successful on an ephemeral page, the page is "flushed",
593 * and when a "get" is successful on a persistent page, the page is retained
594 * in tmem. Note that to preserve
595 * coherency, "get" can never be skipped if tmem contains the data.
596 * That is, if a get is done with a certain handle and fails, any
597 * subsequent "get" must also fail (unless of course there is a
598 * "put" done with the same handle).
601 int tmem_get(struct tmem_pool *pool, struct tmem_oid *oidp, uint32_t index,
602 char *data, size_t *size, bool raw, int get_and_free)
604 struct tmem_obj *obj;
605 void *pampd;
606 bool ephemeral = is_ephemeral(pool);
607 int ret = -1;
608 struct tmem_hashbucket *hb;
609 bool free = (get_and_free == 1) || ((get_and_free == 0) && ephemeral);
610 bool lock_held = false;
612 hb = &pool->hashbucket[tmem_oid_hash(oidp)];
613 spin_lock(&hb->lock);
614 lock_held = true;
615 obj = tmem_obj_find(hb, oidp);
616 if (obj == NULL)
617 goto out;
618 if (free)
619 pampd = tmem_pampd_delete_from_obj(obj, index);
620 else
621 pampd = tmem_pampd_lookup_in_obj(obj, index);
622 if (pampd == NULL)
623 goto out;
624 if (free) {
625 if (obj->pampd_count == 0) {
626 tmem_obj_free(obj, hb);
627 (*tmem_hostops.obj_free)(obj, pool);
628 obj = NULL;
631 if (tmem_pamops.is_remote(pampd)) {
632 lock_held = false;
633 spin_unlock(&hb->lock);
635 if (free)
636 ret = (*tmem_pamops.get_data_and_free)(
637 data, size, raw, pampd, pool, oidp, index);
638 else
639 ret = (*tmem_pamops.get_data)(
640 data, size, raw, pampd, pool, oidp, index);
641 if (ret < 0)
642 goto out;
643 ret = 0;
644 out:
645 if (lock_held)
646 spin_unlock(&hb->lock);
647 return ret;
651 * If a page in tmem matches the handle, "flush" this page from tmem such
652 * that any subsequent "get" does not succeed (unless, of course, there
653 * was another "put" with the same handle).
655 int tmem_flush_page(struct tmem_pool *pool,
656 struct tmem_oid *oidp, uint32_t index)
658 struct tmem_obj *obj;
659 void *pampd;
660 int ret = -1;
661 struct tmem_hashbucket *hb;
663 hb = &pool->hashbucket[tmem_oid_hash(oidp)];
664 spin_lock(&hb->lock);
665 obj = tmem_obj_find(hb, oidp);
666 if (obj == NULL)
667 goto out;
668 pampd = tmem_pampd_delete_from_obj(obj, index);
669 if (pampd == NULL)
670 goto out;
671 (*tmem_pamops.free)(pampd, pool, oidp, index);
672 if (obj->pampd_count == 0) {
673 tmem_obj_free(obj, hb);
674 (*tmem_hostops.obj_free)(obj, pool);
676 ret = 0;
678 out:
679 spin_unlock(&hb->lock);
680 return ret;
684 * If a page in tmem matches the handle, replace the page so that any
685 * subsequent "get" gets the new page. Returns 0 if
686 * there was a page to replace, else returns -1.
688 int tmem_replace(struct tmem_pool *pool, struct tmem_oid *oidp,
689 uint32_t index, void *new_pampd)
691 struct tmem_obj *obj;
692 int ret = -1;
693 struct tmem_hashbucket *hb;
695 hb = &pool->hashbucket[tmem_oid_hash(oidp)];
696 spin_lock(&hb->lock);
697 obj = tmem_obj_find(hb, oidp);
698 if (obj == NULL)
699 goto out;
700 new_pampd = tmem_pampd_replace_in_obj(obj, index, new_pampd);
701 ret = (*tmem_pamops.replace_in_obj)(new_pampd, obj);
702 out:
703 spin_unlock(&hb->lock);
704 return ret;
708 * "Flush" all pages in tmem matching this oid.
710 int tmem_flush_object(struct tmem_pool *pool, struct tmem_oid *oidp)
712 struct tmem_obj *obj;
713 struct tmem_hashbucket *hb;
714 int ret = -1;
716 hb = &pool->hashbucket[tmem_oid_hash(oidp)];
717 spin_lock(&hb->lock);
718 obj = tmem_obj_find(hb, oidp);
719 if (obj == NULL)
720 goto out;
721 tmem_pampd_destroy_all_in_obj(obj);
722 tmem_obj_free(obj, hb);
723 (*tmem_hostops.obj_free)(obj, pool);
724 ret = 0;
726 out:
727 spin_unlock(&hb->lock);
728 return ret;
732 * "Flush" all pages (and tmem_objs) from this tmem_pool and disable
733 * all subsequent access to this tmem_pool.
735 int tmem_destroy_pool(struct tmem_pool *pool)
737 int ret = -1;
739 if (pool == NULL)
740 goto out;
741 tmem_pool_flush(pool, 1);
742 ret = 0;
743 out:
744 return ret;
747 static LIST_HEAD(tmem_global_pool_list);
750 * Create a new tmem_pool with the provided flag and return
751 * a pool id provided by the tmem host implementation.
753 void tmem_new_pool(struct tmem_pool *pool, uint32_t flags)
755 int persistent = flags & TMEM_POOL_PERSIST;
756 int shared = flags & TMEM_POOL_SHARED;
757 struct tmem_hashbucket *hb = &pool->hashbucket[0];
758 int i;
760 for (i = 0; i < TMEM_HASH_BUCKETS; i++, hb++) {
761 hb->obj_rb_root = RB_ROOT;
762 spin_lock_init(&hb->lock);
764 INIT_LIST_HEAD(&pool->pool_list);
765 atomic_set(&pool->obj_count, 0);
766 SET_SENTINEL(pool, POOL);
767 list_add_tail(&pool->pool_list, &tmem_global_pool_list);
768 pool->persistent = persistent;
769 pool->shared = shared;