Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / include / linux / dmaengine.h
blob75f53f874b24a0c0abb790f501f2f60ace48e17e
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
21 #ifndef DMAENGINE_H
22 #define DMAENGINE_H
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/dma-direction.h>
27 #include <linux/scatterlist.h>
28 #include <linux/bitmap.h>
29 #include <asm/page.h>
31 /**
32 * typedef dma_cookie_t - an opaque DMA cookie
34 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
36 typedef s32 dma_cookie_t;
37 #define DMA_MIN_COOKIE 1
38 #define DMA_MAX_COOKIE INT_MAX
40 #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
42 /**
43 * enum dma_status - DMA transaction status
44 * @DMA_SUCCESS: transaction completed successfully
45 * @DMA_IN_PROGRESS: transaction not yet processed
46 * @DMA_PAUSED: transaction is paused
47 * @DMA_ERROR: transaction failed
49 enum dma_status {
50 DMA_SUCCESS,
51 DMA_IN_PROGRESS,
52 DMA_PAUSED,
53 DMA_ERROR,
56 /**
57 * enum dma_transaction_type - DMA transaction types/indexes
59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
60 * automatically set as dma devices are registered.
62 enum dma_transaction_type {
63 DMA_MEMCPY,
64 DMA_XOR,
65 DMA_PQ,
66 DMA_XOR_VAL,
67 DMA_PQ_VAL,
68 DMA_MEMSET,
69 DMA_INTERRUPT,
70 DMA_SG,
71 DMA_PRIVATE,
72 DMA_ASYNC_TX,
73 DMA_SLAVE,
74 DMA_CYCLIC,
77 /* last transaction type for creation of the capabilities mask */
78 #define DMA_TX_TYPE_END (DMA_CYCLIC + 1)
81 /**
82 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
83 * control completion, and communicate status.
84 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
85 * this transaction
86 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
87 * acknowledges receipt, i.e. has has a chance to establish any dependency
88 * chains
89 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
90 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
91 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
92 * (if not set, do the source dma-unmapping as page)
93 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
94 * (if not set, do the destination dma-unmapping as page)
95 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
96 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
97 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
98 * sources that were the result of a previous operation, in the case of a PQ
99 * operation it continues the calculation with new sources
100 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
101 * on the result of this operation
103 enum dma_ctrl_flags {
104 DMA_PREP_INTERRUPT = (1 << 0),
105 DMA_CTRL_ACK = (1 << 1),
106 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
107 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
108 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
109 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
110 DMA_PREP_PQ_DISABLE_P = (1 << 6),
111 DMA_PREP_PQ_DISABLE_Q = (1 << 7),
112 DMA_PREP_CONTINUE = (1 << 8),
113 DMA_PREP_FENCE = (1 << 9),
117 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
118 * on a running channel.
119 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
120 * @DMA_PAUSE: pause ongoing transfers
121 * @DMA_RESUME: resume paused transfer
122 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
123 * that need to runtime reconfigure the slave channels (as opposed to passing
124 * configuration data in statically from the platform). An additional
125 * argument of struct dma_slave_config must be passed in with this
126 * command.
127 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
128 * into external start mode.
130 enum dma_ctrl_cmd {
131 DMA_TERMINATE_ALL,
132 DMA_PAUSE,
133 DMA_RESUME,
134 DMA_SLAVE_CONFIG,
135 FSLDMA_EXTERNAL_START,
139 * enum sum_check_bits - bit position of pq_check_flags
141 enum sum_check_bits {
142 SUM_CHECK_P = 0,
143 SUM_CHECK_Q = 1,
147 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
148 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
149 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
151 enum sum_check_flags {
152 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
153 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
158 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
159 * See linux/cpumask.h
161 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
164 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
165 * @memcpy_count: transaction counter
166 * @bytes_transferred: byte counter
169 struct dma_chan_percpu {
170 /* stats */
171 unsigned long memcpy_count;
172 unsigned long bytes_transferred;
176 * struct dma_chan - devices supply DMA channels, clients use them
177 * @device: ptr to the dma device who supplies this channel, always !%NULL
178 * @cookie: last cookie value returned to client
179 * @chan_id: channel ID for sysfs
180 * @dev: class device for sysfs
181 * @device_node: used to add this to the device chan list
182 * @local: per-cpu pointer to a struct dma_chan_percpu
183 * @client-count: how many clients are using this channel
184 * @table_count: number of appearances in the mem-to-mem allocation table
185 * @private: private data for certain client-channel associations
187 struct dma_chan {
188 struct dma_device *device;
189 dma_cookie_t cookie;
191 /* sysfs */
192 int chan_id;
193 struct dma_chan_dev *dev;
195 struct list_head device_node;
196 struct dma_chan_percpu __percpu *local;
197 int client_count;
198 int table_count;
199 void *private;
203 * struct dma_chan_dev - relate sysfs device node to backing channel device
204 * @chan - driver channel device
205 * @device - sysfs device
206 * @dev_id - parent dma_device dev_id
207 * @idr_ref - reference count to gate release of dma_device dev_id
209 struct dma_chan_dev {
210 struct dma_chan *chan;
211 struct device device;
212 int dev_id;
213 atomic_t *idr_ref;
217 * enum dma_slave_buswidth - defines bus with of the DMA slave
218 * device, source or target buses
220 enum dma_slave_buswidth {
221 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
222 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
223 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
224 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
225 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
229 * struct dma_slave_config - dma slave channel runtime config
230 * @direction: whether the data shall go in or out on this slave
231 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
232 * legal values, DMA_BIDIRECTIONAL is not acceptable since we
233 * need to differentiate source and target addresses.
234 * @src_addr: this is the physical address where DMA slave data
235 * should be read (RX), if the source is memory this argument is
236 * ignored.
237 * @dst_addr: this is the physical address where DMA slave data
238 * should be written (TX), if the source is memory this argument
239 * is ignored.
240 * @src_addr_width: this is the width in bytes of the source (RX)
241 * register where DMA data shall be read. If the source
242 * is memory this may be ignored depending on architecture.
243 * Legal values: 1, 2, 4, 8.
244 * @dst_addr_width: same as src_addr_width but for destination
245 * target (TX) mutatis mutandis.
246 * @src_maxburst: the maximum number of words (note: words, as in
247 * units of the src_addr_width member, not bytes) that can be sent
248 * in one burst to the device. Typically something like half the
249 * FIFO depth on I/O peripherals so you don't overflow it. This
250 * may or may not be applicable on memory sources.
251 * @dst_maxburst: same as src_maxburst but for destination target
252 * mutatis mutandis.
254 * This struct is passed in as configuration data to a DMA engine
255 * in order to set up a certain channel for DMA transport at runtime.
256 * The DMA device/engine has to provide support for an additional
257 * command in the channel config interface, DMA_SLAVE_CONFIG
258 * and this struct will then be passed in as an argument to the
259 * DMA engine device_control() function.
261 * The rationale for adding configuration information to this struct
262 * is as follows: if it is likely that most DMA slave controllers in
263 * the world will support the configuration option, then make it
264 * generic. If not: if it is fixed so that it be sent in static from
265 * the platform data, then prefer to do that. Else, if it is neither
266 * fixed at runtime, nor generic enough (such as bus mastership on
267 * some CPU family and whatnot) then create a custom slave config
268 * struct and pass that, then make this config a member of that
269 * struct, if applicable.
271 struct dma_slave_config {
272 enum dma_data_direction direction;
273 dma_addr_t src_addr;
274 dma_addr_t dst_addr;
275 enum dma_slave_buswidth src_addr_width;
276 enum dma_slave_buswidth dst_addr_width;
277 u32 src_maxburst;
278 u32 dst_maxburst;
281 static inline const char *dma_chan_name(struct dma_chan *chan)
283 return dev_name(&chan->dev->device);
286 void dma_chan_cleanup(struct kref *kref);
289 * typedef dma_filter_fn - callback filter for dma_request_channel
290 * @chan: channel to be reviewed
291 * @filter_param: opaque parameter passed through dma_request_channel
293 * When this optional parameter is specified in a call to dma_request_channel a
294 * suitable channel is passed to this routine for further dispositioning before
295 * being returned. Where 'suitable' indicates a non-busy channel that
296 * satisfies the given capability mask. It returns 'true' to indicate that the
297 * channel is suitable.
299 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
301 typedef void (*dma_async_tx_callback)(void *dma_async_param);
303 * struct dma_async_tx_descriptor - async transaction descriptor
304 * ---dma generic offload fields---
305 * @cookie: tracking cookie for this transaction, set to -EBUSY if
306 * this tx is sitting on a dependency list
307 * @flags: flags to augment operation preparation, control completion, and
308 * communicate status
309 * @phys: physical address of the descriptor
310 * @chan: target channel for this operation
311 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
312 * @callback: routine to call after this operation is complete
313 * @callback_param: general parameter to pass to the callback routine
314 * ---async_tx api specific fields---
315 * @next: at completion submit this descriptor
316 * @parent: pointer to the next level up in the dependency chain
317 * @lock: protect the parent and next pointers
319 struct dma_async_tx_descriptor {
320 dma_cookie_t cookie;
321 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
322 dma_addr_t phys;
323 struct dma_chan *chan;
324 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
325 dma_async_tx_callback callback;
326 void *callback_param;
327 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
328 struct dma_async_tx_descriptor *next;
329 struct dma_async_tx_descriptor *parent;
330 spinlock_t lock;
331 #endif
334 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
335 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
338 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
341 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
343 BUG();
345 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
348 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
351 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
353 return NULL;
355 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
357 return NULL;
360 #else
361 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
363 spin_lock_bh(&txd->lock);
365 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
367 spin_unlock_bh(&txd->lock);
369 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
371 txd->next = next;
372 next->parent = txd;
374 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
376 txd->parent = NULL;
378 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
380 txd->next = NULL;
382 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
384 return txd->parent;
386 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
388 return txd->next;
390 #endif
393 * struct dma_tx_state - filled in to report the status of
394 * a transfer.
395 * @last: last completed DMA cookie
396 * @used: last issued DMA cookie (i.e. the one in progress)
397 * @residue: the remaining number of bytes left to transmit
398 * on the selected transfer for states DMA_IN_PROGRESS and
399 * DMA_PAUSED if this is implemented in the driver, else 0
401 struct dma_tx_state {
402 dma_cookie_t last;
403 dma_cookie_t used;
404 u32 residue;
408 * struct dma_device - info on the entity supplying DMA services
409 * @chancnt: how many DMA channels are supported
410 * @privatecnt: how many DMA channels are requested by dma_request_channel
411 * @channels: the list of struct dma_chan
412 * @global_node: list_head for global dma_device_list
413 * @cap_mask: one or more dma_capability flags
414 * @max_xor: maximum number of xor sources, 0 if no capability
415 * @max_pq: maximum number of PQ sources and PQ-continue capability
416 * @copy_align: alignment shift for memcpy operations
417 * @xor_align: alignment shift for xor operations
418 * @pq_align: alignment shift for pq operations
419 * @fill_align: alignment shift for memset operations
420 * @dev_id: unique device ID
421 * @dev: struct device reference for dma mapping api
422 * @device_alloc_chan_resources: allocate resources and return the
423 * number of allocated descriptors
424 * @device_free_chan_resources: release DMA channel's resources
425 * @device_prep_dma_memcpy: prepares a memcpy operation
426 * @device_prep_dma_xor: prepares a xor operation
427 * @device_prep_dma_xor_val: prepares a xor validation operation
428 * @device_prep_dma_pq: prepares a pq operation
429 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
430 * @device_prep_dma_memset: prepares a memset operation
431 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
432 * @device_prep_slave_sg: prepares a slave dma operation
433 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
434 * The function takes a buffer of size buf_len. The callback function will
435 * be called after period_len bytes have been transferred.
436 * @device_control: manipulate all pending operations on a channel, returns
437 * zero or error code
438 * @device_tx_status: poll for transaction completion, the optional
439 * txstate parameter can be supplied with a pointer to get a
440 * struct with auxiliary transfer status information, otherwise the call
441 * will just return a simple status code
442 * @device_issue_pending: push pending transactions to hardware
444 struct dma_device {
446 unsigned int chancnt;
447 unsigned int privatecnt;
448 struct list_head channels;
449 struct list_head global_node;
450 dma_cap_mask_t cap_mask;
451 unsigned short max_xor;
452 unsigned short max_pq;
453 u8 copy_align;
454 u8 xor_align;
455 u8 pq_align;
456 u8 fill_align;
457 #define DMA_HAS_PQ_CONTINUE (1 << 15)
459 int dev_id;
460 struct device *dev;
462 int (*device_alloc_chan_resources)(struct dma_chan *chan);
463 void (*device_free_chan_resources)(struct dma_chan *chan);
465 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
466 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
467 size_t len, unsigned long flags);
468 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
469 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
470 unsigned int src_cnt, size_t len, unsigned long flags);
471 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
472 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
473 size_t len, enum sum_check_flags *result, unsigned long flags);
474 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
475 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
476 unsigned int src_cnt, const unsigned char *scf,
477 size_t len, unsigned long flags);
478 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
479 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
480 unsigned int src_cnt, const unsigned char *scf, size_t len,
481 enum sum_check_flags *pqres, unsigned long flags);
482 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
483 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
484 unsigned long flags);
485 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
486 struct dma_chan *chan, unsigned long flags);
487 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
488 struct dma_chan *chan,
489 struct scatterlist *dst_sg, unsigned int dst_nents,
490 struct scatterlist *src_sg, unsigned int src_nents,
491 unsigned long flags);
493 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
494 struct dma_chan *chan, struct scatterlist *sgl,
495 unsigned int sg_len, enum dma_data_direction direction,
496 unsigned long flags);
497 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
498 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
499 size_t period_len, enum dma_data_direction direction);
500 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
501 unsigned long arg);
503 enum dma_status (*device_tx_status)(struct dma_chan *chan,
504 dma_cookie_t cookie,
505 struct dma_tx_state *txstate);
506 void (*device_issue_pending)(struct dma_chan *chan);
509 static inline int dmaengine_device_control(struct dma_chan *chan,
510 enum dma_ctrl_cmd cmd,
511 unsigned long arg)
513 return chan->device->device_control(chan, cmd, arg);
516 static inline int dmaengine_slave_config(struct dma_chan *chan,
517 struct dma_slave_config *config)
519 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
520 (unsigned long)config);
523 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
524 struct dma_chan *chan, void *buf, size_t len,
525 enum dma_data_direction dir, unsigned long flags)
527 struct scatterlist sg;
528 sg_init_one(&sg, buf, len);
530 return chan->device->device_prep_slave_sg(chan, &sg, 1, dir, flags);
533 static inline int dmaengine_terminate_all(struct dma_chan *chan)
535 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
538 static inline int dmaengine_pause(struct dma_chan *chan)
540 return dmaengine_device_control(chan, DMA_PAUSE, 0);
543 static inline int dmaengine_resume(struct dma_chan *chan)
545 return dmaengine_device_control(chan, DMA_RESUME, 0);
548 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
550 return desc->tx_submit(desc);
553 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
555 size_t mask;
557 if (!align)
558 return true;
559 mask = (1 << align) - 1;
560 if (mask & (off1 | off2 | len))
561 return false;
562 return true;
565 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
566 size_t off2, size_t len)
568 return dmaengine_check_align(dev->copy_align, off1, off2, len);
571 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
572 size_t off2, size_t len)
574 return dmaengine_check_align(dev->xor_align, off1, off2, len);
577 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
578 size_t off2, size_t len)
580 return dmaengine_check_align(dev->pq_align, off1, off2, len);
583 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
584 size_t off2, size_t len)
586 return dmaengine_check_align(dev->fill_align, off1, off2, len);
589 static inline void
590 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
592 dma->max_pq = maxpq;
593 if (has_pq_continue)
594 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
597 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
599 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
602 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
604 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
606 return (flags & mask) == mask;
609 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
611 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
614 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
616 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
619 /* dma_maxpq - reduce maxpq in the face of continued operations
620 * @dma - dma device with PQ capability
621 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
623 * When an engine does not support native continuation we need 3 extra
624 * source slots to reuse P and Q with the following coefficients:
625 * 1/ {00} * P : remove P from Q', but use it as a source for P'
626 * 2/ {01} * Q : use Q to continue Q' calculation
627 * 3/ {00} * Q : subtract Q from P' to cancel (2)
629 * In the case where P is disabled we only need 1 extra source:
630 * 1/ {01} * Q : use Q to continue Q' calculation
632 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
634 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
635 return dma_dev_to_maxpq(dma);
636 else if (dmaf_p_disabled_continue(flags))
637 return dma_dev_to_maxpq(dma) - 1;
638 else if (dmaf_continue(flags))
639 return dma_dev_to_maxpq(dma) - 3;
640 BUG();
643 /* --- public DMA engine API --- */
645 #ifdef CONFIG_DMA_ENGINE
646 void dmaengine_get(void);
647 void dmaengine_put(void);
648 #else
649 static inline void dmaengine_get(void)
652 static inline void dmaengine_put(void)
655 #endif
657 #ifdef CONFIG_NET_DMA
658 #define net_dmaengine_get() dmaengine_get()
659 #define net_dmaengine_put() dmaengine_put()
660 #else
661 static inline void net_dmaengine_get(void)
664 static inline void net_dmaengine_put(void)
667 #endif
669 #ifdef CONFIG_ASYNC_TX_DMA
670 #define async_dmaengine_get() dmaengine_get()
671 #define async_dmaengine_put() dmaengine_put()
672 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
673 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
674 #else
675 #define async_dma_find_channel(type) dma_find_channel(type)
676 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
677 #else
678 static inline void async_dmaengine_get(void)
681 static inline void async_dmaengine_put(void)
684 static inline struct dma_chan *
685 async_dma_find_channel(enum dma_transaction_type type)
687 return NULL;
689 #endif /* CONFIG_ASYNC_TX_DMA */
691 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
692 void *dest, void *src, size_t len);
693 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
694 struct page *page, unsigned int offset, void *kdata, size_t len);
695 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
696 struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
697 unsigned int src_off, size_t len);
698 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
699 struct dma_chan *chan);
701 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
703 tx->flags |= DMA_CTRL_ACK;
706 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
708 tx->flags &= ~DMA_CTRL_ACK;
711 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
713 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
716 #define first_dma_cap(mask) __first_dma_cap(&(mask))
717 static inline int __first_dma_cap(const dma_cap_mask_t *srcp)
719 return min_t(int, DMA_TX_TYPE_END,
720 find_first_bit(srcp->bits, DMA_TX_TYPE_END));
723 #define next_dma_cap(n, mask) __next_dma_cap((n), &(mask))
724 static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp)
726 return min_t(int, DMA_TX_TYPE_END,
727 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1));
730 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
731 static inline void
732 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
734 set_bit(tx_type, dstp->bits);
737 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
738 static inline void
739 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
741 clear_bit(tx_type, dstp->bits);
744 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
745 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
747 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
750 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
751 static inline int
752 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
754 return test_bit(tx_type, srcp->bits);
757 #define for_each_dma_cap_mask(cap, mask) \
758 for ((cap) = first_dma_cap(mask); \
759 (cap) < DMA_TX_TYPE_END; \
760 (cap) = next_dma_cap((cap), (mask)))
763 * dma_async_issue_pending - flush pending transactions to HW
764 * @chan: target DMA channel
766 * This allows drivers to push copies to HW in batches,
767 * reducing MMIO writes where possible.
769 static inline void dma_async_issue_pending(struct dma_chan *chan)
771 chan->device->device_issue_pending(chan);
774 #define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
777 * dma_async_is_tx_complete - poll for transaction completion
778 * @chan: DMA channel
779 * @cookie: transaction identifier to check status of
780 * @last: returns last completed cookie, can be NULL
781 * @used: returns last issued cookie, can be NULL
783 * If @last and @used are passed in, upon return they reflect the driver
784 * internal state and can be used with dma_async_is_complete() to check
785 * the status of multiple cookies without re-checking hardware state.
787 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
788 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
790 struct dma_tx_state state;
791 enum dma_status status;
793 status = chan->device->device_tx_status(chan, cookie, &state);
794 if (last)
795 *last = state.last;
796 if (used)
797 *used = state.used;
798 return status;
801 #define dma_async_memcpy_complete(chan, cookie, last, used)\
802 dma_async_is_tx_complete(chan, cookie, last, used)
805 * dma_async_is_complete - test a cookie against chan state
806 * @cookie: transaction identifier to test status of
807 * @last_complete: last know completed transaction
808 * @last_used: last cookie value handed out
810 * dma_async_is_complete() is used in dma_async_memcpy_complete()
811 * the test logic is separated for lightweight testing of multiple cookies
813 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
814 dma_cookie_t last_complete, dma_cookie_t last_used)
816 if (last_complete <= last_used) {
817 if ((cookie <= last_complete) || (cookie > last_used))
818 return DMA_SUCCESS;
819 } else {
820 if ((cookie <= last_complete) && (cookie > last_used))
821 return DMA_SUCCESS;
823 return DMA_IN_PROGRESS;
826 static inline void
827 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
829 if (st) {
830 st->last = last;
831 st->used = used;
832 st->residue = residue;
836 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
837 #ifdef CONFIG_DMA_ENGINE
838 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
839 void dma_issue_pending_all(void);
840 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
841 void dma_release_channel(struct dma_chan *chan);
842 #else
843 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
845 return DMA_SUCCESS;
847 static inline void dma_issue_pending_all(void)
850 static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask,
851 dma_filter_fn fn, void *fn_param)
853 return NULL;
855 static inline void dma_release_channel(struct dma_chan *chan)
858 #endif
860 /* --- DMA device --- */
862 int dma_async_device_register(struct dma_device *device);
863 void dma_async_device_unregister(struct dma_device *device);
864 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
865 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
866 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
868 /* --- Helper iov-locking functions --- */
870 struct dma_page_list {
871 char __user *base_address;
872 int nr_pages;
873 struct page **pages;
876 struct dma_pinned_list {
877 int nr_iovecs;
878 struct dma_page_list page_list[0];
881 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
882 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
884 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
885 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
886 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
887 struct dma_pinned_list *pinned_list, struct page *page,
888 unsigned int offset, size_t len);
890 #endif /* DMAENGINE_H */