2 * Definitions for the 'struct sk_buff' memory handlers.
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 #include <linux/dma-mapping.h>
34 /* Don't change this without changing skb_csum_unnecessary! */
35 #define CHECKSUM_NONE 0
36 #define CHECKSUM_UNNECESSARY 1
37 #define CHECKSUM_COMPLETE 2
38 #define CHECKSUM_PARTIAL 3
40 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_WITH_OVERHEAD(X) \
43 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
44 #define SKB_MAX_ORDER(X, ORDER) \
45 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
46 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
47 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49 /* A. Checksumming of received packets by device.
51 * NONE: device failed to checksum this packet.
52 * skb->csum is undefined.
54 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
55 * skb->csum is undefined.
56 * It is bad option, but, unfortunately, many of vendors do this.
57 * Apparently with secret goal to sell you new device, when you
58 * will add new protocol to your host. F.e. IPv6. 8)
60 * COMPLETE: the most generic way. Device supplied checksum of _all_
61 * the packet as seen by netif_rx in skb->csum.
62 * NOTE: Even if device supports only some protocols, but
63 * is able to produce some skb->csum, it MUST use COMPLETE,
66 * PARTIAL: identical to the case for output below. This may occur
67 * on a packet received directly from another Linux OS, e.g.,
68 * a virtualised Linux kernel on the same host. The packet can
69 * be treated in the same way as UNNECESSARY except that on
70 * output (i.e., forwarding) the checksum must be filled in
71 * by the OS or the hardware.
73 * B. Checksumming on output.
75 * NONE: skb is checksummed by protocol or csum is not required.
77 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
78 * from skb->csum_start to the end and to record the checksum
79 * at skb->csum_start + skb->csum_offset.
81 * Device must show its capabilities in dev->features, set
82 * at device setup time.
83 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
86 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
87 * TCP/UDP over IPv4. Sigh. Vendors like this
88 * way by an unknown reason. Though, see comment above
89 * about CHECKSUM_UNNECESSARY. 8)
90 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92 * Any questions? No questions, good. --ANK
97 struct pipe_inode_info
;
99 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
100 struct nf_conntrack
{
105 #ifdef CONFIG_BRIDGE_NETFILTER
106 struct nf_bridge_info
{
108 struct net_device
*physindev
;
109 struct net_device
*physoutdev
;
111 unsigned long data
[32 / sizeof(unsigned long)];
115 struct sk_buff_head
{
116 /* These two members must be first. */
117 struct sk_buff
*next
;
118 struct sk_buff
*prev
;
126 /* To allow 64K frame to be packed as single skb without frag_list. Since
127 * GRO uses frags we allocate at least 16 regardless of page size.
129 #if (65536/PAGE_SIZE + 2) < 16
130 #define MAX_SKB_FRAGS 16UL
132 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
135 typedef struct skb_frag_struct skb_frag_t
;
137 struct skb_frag_struct
{
139 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
148 #define HAVE_HW_TIME_STAMP
151 * struct skb_shared_hwtstamps - hardware time stamps
152 * @hwtstamp: hardware time stamp transformed into duration
153 * since arbitrary point in time
154 * @syststamp: hwtstamp transformed to system time base
156 * Software time stamps generated by ktime_get_real() are stored in
157 * skb->tstamp. The relation between the different kinds of time
158 * stamps is as follows:
160 * syststamp and tstamp can be compared against each other in
161 * arbitrary combinations. The accuracy of a
162 * syststamp/tstamp/"syststamp from other device" comparison is
163 * limited by the accuracy of the transformation into system time
164 * base. This depends on the device driver and its underlying
167 * hwtstamps can only be compared against other hwtstamps from
170 * This structure is attached to packets as part of the
171 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
173 struct skb_shared_hwtstamps
{
178 /* Definitions for tx_flags in struct skb_shared_info */
180 /* generate hardware time stamp */
181 SKBTX_HW_TSTAMP
= 1 << 0,
183 /* generate software time stamp */
184 SKBTX_SW_TSTAMP
= 1 << 1,
186 /* device driver is going to provide hardware time stamp */
187 SKBTX_IN_PROGRESS
= 1 << 2,
189 /* ensure the originating sk reference is available on driver level */
190 SKBTX_DRV_NEEDS_SK_REF
= 1 << 3,
192 /* device driver supports TX zero-copy buffers */
193 SKBTX_DEV_ZEROCOPY
= 1 << 4,
197 * The callback notifies userspace to release buffers when skb DMA is done in
198 * lower device, the skb last reference should be 0 when calling this.
199 * The desc is used to track userspace buffer index.
202 void (*callback
)(void *);
207 /* This data is invariant across clones and lives at
208 * the end of the header data, ie. at skb->end.
210 struct skb_shared_info
{
211 unsigned short nr_frags
;
212 unsigned short gso_size
;
213 /* Warning: this field is not always filled in (UFO)! */
214 unsigned short gso_segs
;
215 unsigned short gso_type
;
218 struct sk_buff
*frag_list
;
219 struct skb_shared_hwtstamps hwtstamps
;
222 * Warning : all fields before dataref are cleared in __alloc_skb()
226 /* Intermediate layers must ensure that destructor_arg
227 * remains valid until skb destructor */
228 void * destructor_arg
;
230 /* must be last field, see pskb_expand_head() */
231 skb_frag_t frags
[MAX_SKB_FRAGS
];
234 /* We divide dataref into two halves. The higher 16 bits hold references
235 * to the payload part of skb->data. The lower 16 bits hold references to
236 * the entire skb->data. A clone of a headerless skb holds the length of
237 * the header in skb->hdr_len.
239 * All users must obey the rule that the skb->data reference count must be
240 * greater than or equal to the payload reference count.
242 * Holding a reference to the payload part means that the user does not
243 * care about modifications to the header part of skb->data.
245 #define SKB_DATAREF_SHIFT 16
246 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
250 SKB_FCLONE_UNAVAILABLE
,
256 SKB_GSO_TCPV4
= 1 << 0,
257 SKB_GSO_UDP
= 1 << 1,
259 /* This indicates the skb is from an untrusted source. */
260 SKB_GSO_DODGY
= 1 << 2,
262 /* This indicates the tcp segment has CWR set. */
263 SKB_GSO_TCP_ECN
= 1 << 3,
265 SKB_GSO_TCPV6
= 1 << 4,
267 SKB_GSO_FCOE
= 1 << 5,
270 #if BITS_PER_LONG > 32
271 #define NET_SKBUFF_DATA_USES_OFFSET 1
274 #ifdef NET_SKBUFF_DATA_USES_OFFSET
275 typedef unsigned int sk_buff_data_t
;
277 typedef unsigned char *sk_buff_data_t
;
280 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
281 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
282 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
286 * struct sk_buff - socket buffer
287 * @next: Next buffer in list
288 * @prev: Previous buffer in list
289 * @tstamp: Time we arrived
290 * @sk: Socket we are owned by
291 * @dev: Device we arrived on/are leaving by
292 * @cb: Control buffer. Free for use by every layer. Put private vars here
293 * @_skb_refdst: destination entry (with norefcount bit)
294 * @sp: the security path, used for xfrm
295 * @len: Length of actual data
296 * @data_len: Data length
297 * @mac_len: Length of link layer header
298 * @hdr_len: writable header length of cloned skb
299 * @csum: Checksum (must include start/offset pair)
300 * @csum_start: Offset from skb->head where checksumming should start
301 * @csum_offset: Offset from csum_start where checksum should be stored
302 * @priority: Packet queueing priority
303 * @local_df: allow local fragmentation
304 * @cloned: Head may be cloned (check refcnt to be sure)
305 * @ip_summed: Driver fed us an IP checksum
306 * @nohdr: Payload reference only, must not modify header
307 * @nfctinfo: Relationship of this skb to the connection
308 * @pkt_type: Packet class
309 * @fclone: skbuff clone status
310 * @ipvs_property: skbuff is owned by ipvs
311 * @peeked: this packet has been seen already, so stats have been
312 * done for it, don't do them again
313 * @nf_trace: netfilter packet trace flag
314 * @protocol: Packet protocol from driver
315 * @destructor: Destruct function
316 * @nfct: Associated connection, if any
317 * @nfct_reasm: netfilter conntrack re-assembly pointer
318 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
319 * @skb_iif: ifindex of device we arrived on
320 * @tc_index: Traffic control index
321 * @tc_verd: traffic control verdict
322 * @rxhash: the packet hash computed on receive
323 * @queue_mapping: Queue mapping for multiqueue devices
324 * @ndisc_nodetype: router type (from link layer)
325 * @ooo_okay: allow the mapping of a socket to a queue to be changed
326 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
328 * @dma_cookie: a cookie to one of several possible DMA operations
329 * done by skb DMA functions
330 * @secmark: security marking
331 * @mark: Generic packet mark
332 * @dropcount: total number of sk_receive_queue overflows
333 * @vlan_tci: vlan tag control information
334 * @transport_header: Transport layer header
335 * @network_header: Network layer header
336 * @mac_header: Link layer header
337 * @tail: Tail pointer
339 * @head: Head of buffer
340 * @data: Data head pointer
341 * @truesize: Buffer size
342 * @users: User count - see {datagram,tcp}.c
346 /* These two members must be first. */
347 struct sk_buff
*next
;
348 struct sk_buff
*prev
;
353 struct net_device
*dev
;
356 * This is the control buffer. It is free to use for every
357 * layer. Please put your private variables there. If you
358 * want to keep them across layers you have to do a skb_clone()
359 * first. This is owned by whoever has the skb queued ATM.
361 char cb
[48] __aligned(8);
363 unsigned long _skb_refdst
;
379 kmemcheck_bitfield_begin(flags1
);
390 kmemcheck_bitfield_end(flags1
);
393 void (*destructor
)(struct sk_buff
*skb
);
394 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
395 struct nf_conntrack
*nfct
;
397 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
398 struct sk_buff
*nfct_reasm
;
400 #ifdef CONFIG_BRIDGE_NETFILTER
401 struct nf_bridge_info
*nf_bridge
;
405 #ifdef CONFIG_NET_SCHED
406 __u16 tc_index
; /* traffic control index */
407 #ifdef CONFIG_NET_CLS_ACT
408 __u16 tc_verd
; /* traffic control verdict */
415 kmemcheck_bitfield_begin(flags2
);
416 #ifdef CONFIG_IPV6_NDISC_NODETYPE
417 __u8 ndisc_nodetype
:2;
421 kmemcheck_bitfield_end(flags2
);
425 #ifdef CONFIG_NET_DMA
426 dma_cookie_t dma_cookie
;
428 #ifdef CONFIG_NETWORK_SECMARK
438 sk_buff_data_t transport_header
;
439 sk_buff_data_t network_header
;
440 sk_buff_data_t mac_header
;
441 /* These elements must be at the end, see alloc_skb() for details. */
446 unsigned int truesize
;
452 * Handling routines are only of interest to the kernel
454 #include <linux/slab.h>
456 #include <asm/system.h>
459 * skb might have a dst pointer attached, refcounted or not.
460 * _skb_refdst low order bit is set if refcount was _not_ taken
462 #define SKB_DST_NOREF 1UL
463 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
466 * skb_dst - returns skb dst_entry
469 * Returns skb dst_entry, regardless of reference taken or not.
471 static inline struct dst_entry
*skb_dst(const struct sk_buff
*skb
)
473 /* If refdst was not refcounted, check we still are in a
474 * rcu_read_lock section
476 WARN_ON((skb
->_skb_refdst
& SKB_DST_NOREF
) &&
477 !rcu_read_lock_held() &&
478 !rcu_read_lock_bh_held());
479 return (struct dst_entry
*)(skb
->_skb_refdst
& SKB_DST_PTRMASK
);
483 * skb_dst_set - sets skb dst
487 * Sets skb dst, assuming a reference was taken on dst and should
488 * be released by skb_dst_drop()
490 static inline void skb_dst_set(struct sk_buff
*skb
, struct dst_entry
*dst
)
492 skb
->_skb_refdst
= (unsigned long)dst
;
495 extern void skb_dst_set_noref(struct sk_buff
*skb
, struct dst_entry
*dst
);
498 * skb_dst_is_noref - Test if skb dst isn't refcounted
501 static inline bool skb_dst_is_noref(const struct sk_buff
*skb
)
503 return (skb
->_skb_refdst
& SKB_DST_NOREF
) && skb_dst(skb
);
506 static inline struct rtable
*skb_rtable(const struct sk_buff
*skb
)
508 return (struct rtable
*)skb_dst(skb
);
511 extern void kfree_skb(struct sk_buff
*skb
);
512 extern void consume_skb(struct sk_buff
*skb
);
513 extern void __kfree_skb(struct sk_buff
*skb
);
514 extern struct sk_buff
*__alloc_skb(unsigned int size
,
515 gfp_t priority
, int fclone
, int node
);
516 static inline struct sk_buff
*alloc_skb(unsigned int size
,
519 return __alloc_skb(size
, priority
, 0, NUMA_NO_NODE
);
522 static inline struct sk_buff
*alloc_skb_fclone(unsigned int size
,
525 return __alloc_skb(size
, priority
, 1, NUMA_NO_NODE
);
528 extern bool skb_recycle_check(struct sk_buff
*skb
, int skb_size
);
530 extern struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
);
531 extern struct sk_buff
*skb_clone(struct sk_buff
*skb
,
533 extern struct sk_buff
*skb_copy(const struct sk_buff
*skb
,
535 extern struct sk_buff
*pskb_copy(struct sk_buff
*skb
,
537 extern int pskb_expand_head(struct sk_buff
*skb
,
538 int nhead
, int ntail
,
540 extern struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
,
541 unsigned int headroom
);
542 extern struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
543 int newheadroom
, int newtailroom
,
545 extern int skb_to_sgvec(struct sk_buff
*skb
,
546 struct scatterlist
*sg
, int offset
,
548 extern int skb_cow_data(struct sk_buff
*skb
, int tailbits
,
549 struct sk_buff
**trailer
);
550 extern int skb_pad(struct sk_buff
*skb
, int pad
);
551 #define dev_kfree_skb(a) consume_skb(a)
553 extern int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
554 int getfrag(void *from
, char *to
, int offset
,
555 int len
,int odd
, struct sk_buff
*skb
),
556 void *from
, int length
);
558 struct skb_seq_state
{
562 __u32 stepped_offset
;
563 struct sk_buff
*root_skb
;
564 struct sk_buff
*cur_skb
;
568 extern void skb_prepare_seq_read(struct sk_buff
*skb
,
569 unsigned int from
, unsigned int to
,
570 struct skb_seq_state
*st
);
571 extern unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
572 struct skb_seq_state
*st
);
573 extern void skb_abort_seq_read(struct skb_seq_state
*st
);
575 extern unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
576 unsigned int to
, struct ts_config
*config
,
577 struct ts_state
*state
);
579 extern void __skb_get_rxhash(struct sk_buff
*skb
);
580 static inline __u32
skb_get_rxhash(struct sk_buff
*skb
)
583 __skb_get_rxhash(skb
);
588 #ifdef NET_SKBUFF_DATA_USES_OFFSET
589 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
591 return skb
->head
+ skb
->end
;
594 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
601 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
603 static inline struct skb_shared_hwtstamps
*skb_hwtstamps(struct sk_buff
*skb
)
605 return &skb_shinfo(skb
)->hwtstamps
;
609 * skb_queue_empty - check if a queue is empty
612 * Returns true if the queue is empty, false otherwise.
614 static inline int skb_queue_empty(const struct sk_buff_head
*list
)
616 return list
->next
== (struct sk_buff
*)list
;
620 * skb_queue_is_last - check if skb is the last entry in the queue
624 * Returns true if @skb is the last buffer on the list.
626 static inline bool skb_queue_is_last(const struct sk_buff_head
*list
,
627 const struct sk_buff
*skb
)
629 return skb
->next
== (struct sk_buff
*)list
;
633 * skb_queue_is_first - check if skb is the first entry in the queue
637 * Returns true if @skb is the first buffer on the list.
639 static inline bool skb_queue_is_first(const struct sk_buff_head
*list
,
640 const struct sk_buff
*skb
)
642 return skb
->prev
== (struct sk_buff
*)list
;
646 * skb_queue_next - return the next packet in the queue
648 * @skb: current buffer
650 * Return the next packet in @list after @skb. It is only valid to
651 * call this if skb_queue_is_last() evaluates to false.
653 static inline struct sk_buff
*skb_queue_next(const struct sk_buff_head
*list
,
654 const struct sk_buff
*skb
)
656 /* This BUG_ON may seem severe, but if we just return then we
657 * are going to dereference garbage.
659 BUG_ON(skb_queue_is_last(list
, skb
));
664 * skb_queue_prev - return the prev packet in the queue
666 * @skb: current buffer
668 * Return the prev packet in @list before @skb. It is only valid to
669 * call this if skb_queue_is_first() evaluates to false.
671 static inline struct sk_buff
*skb_queue_prev(const struct sk_buff_head
*list
,
672 const struct sk_buff
*skb
)
674 /* This BUG_ON may seem severe, but if we just return then we
675 * are going to dereference garbage.
677 BUG_ON(skb_queue_is_first(list
, skb
));
682 * skb_get - reference buffer
683 * @skb: buffer to reference
685 * Makes another reference to a socket buffer and returns a pointer
688 static inline struct sk_buff
*skb_get(struct sk_buff
*skb
)
690 atomic_inc(&skb
->users
);
695 * If users == 1, we are the only owner and are can avoid redundant
700 * skb_cloned - is the buffer a clone
701 * @skb: buffer to check
703 * Returns true if the buffer was generated with skb_clone() and is
704 * one of multiple shared copies of the buffer. Cloned buffers are
705 * shared data so must not be written to under normal circumstances.
707 static inline int skb_cloned(const struct sk_buff
*skb
)
709 return skb
->cloned
&&
710 (atomic_read(&skb_shinfo(skb
)->dataref
) & SKB_DATAREF_MASK
) != 1;
714 * skb_header_cloned - is the header a clone
715 * @skb: buffer to check
717 * Returns true if modifying the header part of the buffer requires
718 * the data to be copied.
720 static inline int skb_header_cloned(const struct sk_buff
*skb
)
727 dataref
= atomic_read(&skb_shinfo(skb
)->dataref
);
728 dataref
= (dataref
& SKB_DATAREF_MASK
) - (dataref
>> SKB_DATAREF_SHIFT
);
733 * skb_header_release - release reference to header
734 * @skb: buffer to operate on
736 * Drop a reference to the header part of the buffer. This is done
737 * by acquiring a payload reference. You must not read from the header
738 * part of skb->data after this.
740 static inline void skb_header_release(struct sk_buff
*skb
)
744 atomic_add(1 << SKB_DATAREF_SHIFT
, &skb_shinfo(skb
)->dataref
);
748 * skb_shared - is the buffer shared
749 * @skb: buffer to check
751 * Returns true if more than one person has a reference to this
754 static inline int skb_shared(const struct sk_buff
*skb
)
756 return atomic_read(&skb
->users
) != 1;
760 * skb_share_check - check if buffer is shared and if so clone it
761 * @skb: buffer to check
762 * @pri: priority for memory allocation
764 * If the buffer is shared the buffer is cloned and the old copy
765 * drops a reference. A new clone with a single reference is returned.
766 * If the buffer is not shared the original buffer is returned. When
767 * being called from interrupt status or with spinlocks held pri must
770 * NULL is returned on a memory allocation failure.
772 static inline struct sk_buff
*skb_share_check(struct sk_buff
*skb
,
775 might_sleep_if(pri
& __GFP_WAIT
);
776 if (skb_shared(skb
)) {
777 struct sk_buff
*nskb
= skb_clone(skb
, pri
);
785 * Copy shared buffers into a new sk_buff. We effectively do COW on
786 * packets to handle cases where we have a local reader and forward
787 * and a couple of other messy ones. The normal one is tcpdumping
788 * a packet thats being forwarded.
792 * skb_unshare - make a copy of a shared buffer
793 * @skb: buffer to check
794 * @pri: priority for memory allocation
796 * If the socket buffer is a clone then this function creates a new
797 * copy of the data, drops a reference count on the old copy and returns
798 * the new copy with the reference count at 1. If the buffer is not a clone
799 * the original buffer is returned. When called with a spinlock held or
800 * from interrupt state @pri must be %GFP_ATOMIC
802 * %NULL is returned on a memory allocation failure.
804 static inline struct sk_buff
*skb_unshare(struct sk_buff
*skb
,
807 might_sleep_if(pri
& __GFP_WAIT
);
808 if (skb_cloned(skb
)) {
809 struct sk_buff
*nskb
= skb_copy(skb
, pri
);
810 kfree_skb(skb
); /* Free our shared copy */
817 * skb_peek - peek at the head of an &sk_buff_head
818 * @list_: list to peek at
820 * Peek an &sk_buff. Unlike most other operations you _MUST_
821 * be careful with this one. A peek leaves the buffer on the
822 * list and someone else may run off with it. You must hold
823 * the appropriate locks or have a private queue to do this.
825 * Returns %NULL for an empty list or a pointer to the head element.
826 * The reference count is not incremented and the reference is therefore
827 * volatile. Use with caution.
829 static inline struct sk_buff
*skb_peek(struct sk_buff_head
*list_
)
831 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->next
;
832 if (list
== (struct sk_buff
*)list_
)
838 * skb_peek_tail - peek at the tail of an &sk_buff_head
839 * @list_: list to peek at
841 * Peek an &sk_buff. Unlike most other operations you _MUST_
842 * be careful with this one. A peek leaves the buffer on the
843 * list and someone else may run off with it. You must hold
844 * the appropriate locks or have a private queue to do this.
846 * Returns %NULL for an empty list or a pointer to the tail element.
847 * The reference count is not incremented and the reference is therefore
848 * volatile. Use with caution.
850 static inline struct sk_buff
*skb_peek_tail(struct sk_buff_head
*list_
)
852 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->prev
;
853 if (list
== (struct sk_buff
*)list_
)
859 * skb_queue_len - get queue length
860 * @list_: list to measure
862 * Return the length of an &sk_buff queue.
864 static inline __u32
skb_queue_len(const struct sk_buff_head
*list_
)
870 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
871 * @list: queue to initialize
873 * This initializes only the list and queue length aspects of
874 * an sk_buff_head object. This allows to initialize the list
875 * aspects of an sk_buff_head without reinitializing things like
876 * the spinlock. It can also be used for on-stack sk_buff_head
877 * objects where the spinlock is known to not be used.
879 static inline void __skb_queue_head_init(struct sk_buff_head
*list
)
881 list
->prev
= list
->next
= (struct sk_buff
*)list
;
886 * This function creates a split out lock class for each invocation;
887 * this is needed for now since a whole lot of users of the skb-queue
888 * infrastructure in drivers have different locking usage (in hardirq)
889 * than the networking core (in softirq only). In the long run either the
890 * network layer or drivers should need annotation to consolidate the
891 * main types of usage into 3 classes.
893 static inline void skb_queue_head_init(struct sk_buff_head
*list
)
895 spin_lock_init(&list
->lock
);
896 __skb_queue_head_init(list
);
899 static inline void skb_queue_head_init_class(struct sk_buff_head
*list
,
900 struct lock_class_key
*class)
902 skb_queue_head_init(list
);
903 lockdep_set_class(&list
->lock
, class);
907 * Insert an sk_buff on a list.
909 * The "__skb_xxxx()" functions are the non-atomic ones that
910 * can only be called with interrupts disabled.
912 extern void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
);
913 static inline void __skb_insert(struct sk_buff
*newsk
,
914 struct sk_buff
*prev
, struct sk_buff
*next
,
915 struct sk_buff_head
*list
)
919 next
->prev
= prev
->next
= newsk
;
923 static inline void __skb_queue_splice(const struct sk_buff_head
*list
,
924 struct sk_buff
*prev
,
925 struct sk_buff
*next
)
927 struct sk_buff
*first
= list
->next
;
928 struct sk_buff
*last
= list
->prev
;
938 * skb_queue_splice - join two skb lists, this is designed for stacks
939 * @list: the new list to add
940 * @head: the place to add it in the first list
942 static inline void skb_queue_splice(const struct sk_buff_head
*list
,
943 struct sk_buff_head
*head
)
945 if (!skb_queue_empty(list
)) {
946 __skb_queue_splice(list
, (struct sk_buff
*) head
, head
->next
);
947 head
->qlen
+= list
->qlen
;
952 * skb_queue_splice - join two skb lists and reinitialise the emptied list
953 * @list: the new list to add
954 * @head: the place to add it in the first list
956 * The list at @list is reinitialised
958 static inline void skb_queue_splice_init(struct sk_buff_head
*list
,
959 struct sk_buff_head
*head
)
961 if (!skb_queue_empty(list
)) {
962 __skb_queue_splice(list
, (struct sk_buff
*) head
, head
->next
);
963 head
->qlen
+= list
->qlen
;
964 __skb_queue_head_init(list
);
969 * skb_queue_splice_tail - join two skb lists, each list being a queue
970 * @list: the new list to add
971 * @head: the place to add it in the first list
973 static inline void skb_queue_splice_tail(const struct sk_buff_head
*list
,
974 struct sk_buff_head
*head
)
976 if (!skb_queue_empty(list
)) {
977 __skb_queue_splice(list
, head
->prev
, (struct sk_buff
*) head
);
978 head
->qlen
+= list
->qlen
;
983 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
984 * @list: the new list to add
985 * @head: the place to add it in the first list
987 * Each of the lists is a queue.
988 * The list at @list is reinitialised
990 static inline void skb_queue_splice_tail_init(struct sk_buff_head
*list
,
991 struct sk_buff_head
*head
)
993 if (!skb_queue_empty(list
)) {
994 __skb_queue_splice(list
, head
->prev
, (struct sk_buff
*) head
);
995 head
->qlen
+= list
->qlen
;
996 __skb_queue_head_init(list
);
1001 * __skb_queue_after - queue a buffer at the list head
1002 * @list: list to use
1003 * @prev: place after this buffer
1004 * @newsk: buffer to queue
1006 * Queue a buffer int the middle of a list. This function takes no locks
1007 * and you must therefore hold required locks before calling it.
1009 * A buffer cannot be placed on two lists at the same time.
1011 static inline void __skb_queue_after(struct sk_buff_head
*list
,
1012 struct sk_buff
*prev
,
1013 struct sk_buff
*newsk
)
1015 __skb_insert(newsk
, prev
, prev
->next
, list
);
1018 extern void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
,
1019 struct sk_buff_head
*list
);
1021 static inline void __skb_queue_before(struct sk_buff_head
*list
,
1022 struct sk_buff
*next
,
1023 struct sk_buff
*newsk
)
1025 __skb_insert(newsk
, next
->prev
, next
, list
);
1029 * __skb_queue_head - queue a buffer at the list head
1030 * @list: list to use
1031 * @newsk: buffer to queue
1033 * Queue a buffer at the start of a list. This function takes no locks
1034 * and you must therefore hold required locks before calling it.
1036 * A buffer cannot be placed on two lists at the same time.
1038 extern void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
1039 static inline void __skb_queue_head(struct sk_buff_head
*list
,
1040 struct sk_buff
*newsk
)
1042 __skb_queue_after(list
, (struct sk_buff
*)list
, newsk
);
1046 * __skb_queue_tail - queue a buffer at the list tail
1047 * @list: list to use
1048 * @newsk: buffer to queue
1050 * Queue a buffer at the end of a list. This function takes no locks
1051 * and you must therefore hold required locks before calling it.
1053 * A buffer cannot be placed on two lists at the same time.
1055 extern void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
1056 static inline void __skb_queue_tail(struct sk_buff_head
*list
,
1057 struct sk_buff
*newsk
)
1059 __skb_queue_before(list
, (struct sk_buff
*)list
, newsk
);
1063 * remove sk_buff from list. _Must_ be called atomically, and with
1066 extern void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
);
1067 static inline void __skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
1069 struct sk_buff
*next
, *prev
;
1074 skb
->next
= skb
->prev
= NULL
;
1080 * __skb_dequeue - remove from the head of the queue
1081 * @list: list to dequeue from
1083 * Remove the head of the list. This function does not take any locks
1084 * so must be used with appropriate locks held only. The head item is
1085 * returned or %NULL if the list is empty.
1087 extern struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
);
1088 static inline struct sk_buff
*__skb_dequeue(struct sk_buff_head
*list
)
1090 struct sk_buff
*skb
= skb_peek(list
);
1092 __skb_unlink(skb
, list
);
1097 * __skb_dequeue_tail - remove from the tail of the queue
1098 * @list: list to dequeue from
1100 * Remove the tail of the list. This function does not take any locks
1101 * so must be used with appropriate locks held only. The tail item is
1102 * returned or %NULL if the list is empty.
1104 extern struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
);
1105 static inline struct sk_buff
*__skb_dequeue_tail(struct sk_buff_head
*list
)
1107 struct sk_buff
*skb
= skb_peek_tail(list
);
1109 __skb_unlink(skb
, list
);
1114 static inline int skb_is_nonlinear(const struct sk_buff
*skb
)
1116 return skb
->data_len
;
1119 static inline unsigned int skb_headlen(const struct sk_buff
*skb
)
1121 return skb
->len
- skb
->data_len
;
1124 static inline int skb_pagelen(const struct sk_buff
*skb
)
1128 for (i
= (int)skb_shinfo(skb
)->nr_frags
- 1; i
>= 0; i
--)
1129 len
+= skb_shinfo(skb
)->frags
[i
].size
;
1130 return len
+ skb_headlen(skb
);
1134 * __skb_fill_page_desc - initialise a paged fragment in an skb
1135 * @skb: buffer containing fragment to be initialised
1136 * @i: paged fragment index to initialise
1137 * @page: the page to use for this fragment
1138 * @off: the offset to the data with @page
1139 * @size: the length of the data
1141 * Initialises the @i'th fragment of @skb to point to &size bytes at
1142 * offset @off within @page.
1144 * Does not take any additional reference on the fragment.
1146 static inline void __skb_fill_page_desc(struct sk_buff
*skb
, int i
,
1147 struct page
*page
, int off
, int size
)
1149 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1152 frag
->page_offset
= off
;
1157 * skb_fill_page_desc - initialise a paged fragment in an skb
1158 * @skb: buffer containing fragment to be initialised
1159 * @i: paged fragment index to initialise
1160 * @page: the page to use for this fragment
1161 * @off: the offset to the data with @page
1162 * @size: the length of the data
1164 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1165 * @skb to point to &size bytes at offset @off within @page. In
1166 * addition updates @skb such that @i is the last fragment.
1168 * Does not take any additional reference on the fragment.
1170 static inline void skb_fill_page_desc(struct sk_buff
*skb
, int i
,
1171 struct page
*page
, int off
, int size
)
1173 __skb_fill_page_desc(skb
, i
, page
, off
, size
);
1174 skb_shinfo(skb
)->nr_frags
= i
+ 1;
1177 extern void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
,
1180 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1181 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1182 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1184 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1185 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
1187 return skb
->head
+ skb
->tail
;
1190 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
1192 skb
->tail
= skb
->data
- skb
->head
;
1195 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
1197 skb_reset_tail_pointer(skb
);
1198 skb
->tail
+= offset
;
1200 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1201 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
1206 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
1208 skb
->tail
= skb
->data
;
1211 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
1213 skb
->tail
= skb
->data
+ offset
;
1216 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1219 * Add data to an sk_buff
1221 extern unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
);
1222 static inline unsigned char *__skb_put(struct sk_buff
*skb
, unsigned int len
)
1224 unsigned char *tmp
= skb_tail_pointer(skb
);
1225 SKB_LINEAR_ASSERT(skb
);
1231 extern unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
);
1232 static inline unsigned char *__skb_push(struct sk_buff
*skb
, unsigned int len
)
1239 extern unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
);
1240 static inline unsigned char *__skb_pull(struct sk_buff
*skb
, unsigned int len
)
1243 BUG_ON(skb
->len
< skb
->data_len
);
1244 return skb
->data
+= len
;
1247 static inline unsigned char *skb_pull_inline(struct sk_buff
*skb
, unsigned int len
)
1249 return unlikely(len
> skb
->len
) ? NULL
: __skb_pull(skb
, len
);
1252 extern unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
);
1254 static inline unsigned char *__pskb_pull(struct sk_buff
*skb
, unsigned int len
)
1256 if (len
> skb_headlen(skb
) &&
1257 !__pskb_pull_tail(skb
, len
- skb_headlen(skb
)))
1260 return skb
->data
+= len
;
1263 static inline unsigned char *pskb_pull(struct sk_buff
*skb
, unsigned int len
)
1265 return unlikely(len
> skb
->len
) ? NULL
: __pskb_pull(skb
, len
);
1268 static inline int pskb_may_pull(struct sk_buff
*skb
, unsigned int len
)
1270 if (likely(len
<= skb_headlen(skb
)))
1272 if (unlikely(len
> skb
->len
))
1274 return __pskb_pull_tail(skb
, len
- skb_headlen(skb
)) != NULL
;
1278 * skb_headroom - bytes at buffer head
1279 * @skb: buffer to check
1281 * Return the number of bytes of free space at the head of an &sk_buff.
1283 static inline unsigned int skb_headroom(const struct sk_buff
*skb
)
1285 return skb
->data
- skb
->head
;
1289 * skb_tailroom - bytes at buffer end
1290 * @skb: buffer to check
1292 * Return the number of bytes of free space at the tail of an sk_buff
1294 static inline int skb_tailroom(const struct sk_buff
*skb
)
1296 return skb_is_nonlinear(skb
) ? 0 : skb
->end
- skb
->tail
;
1300 * skb_reserve - adjust headroom
1301 * @skb: buffer to alter
1302 * @len: bytes to move
1304 * Increase the headroom of an empty &sk_buff by reducing the tail
1305 * room. This is only allowed for an empty buffer.
1307 static inline void skb_reserve(struct sk_buff
*skb
, int len
)
1313 static inline void skb_reset_mac_len(struct sk_buff
*skb
)
1315 skb
->mac_len
= skb
->network_header
- skb
->mac_header
;
1318 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1319 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1321 return skb
->head
+ skb
->transport_header
;
1324 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1326 skb
->transport_header
= skb
->data
- skb
->head
;
1329 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1332 skb_reset_transport_header(skb
);
1333 skb
->transport_header
+= offset
;
1336 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1338 return skb
->head
+ skb
->network_header
;
1341 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1343 skb
->network_header
= skb
->data
- skb
->head
;
1346 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1348 skb_reset_network_header(skb
);
1349 skb
->network_header
+= offset
;
1352 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1354 return skb
->head
+ skb
->mac_header
;
1357 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1359 return skb
->mac_header
!= ~0U;
1362 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1364 skb
->mac_header
= skb
->data
- skb
->head
;
1367 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1369 skb_reset_mac_header(skb
);
1370 skb
->mac_header
+= offset
;
1373 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1375 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1377 return skb
->transport_header
;
1380 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1382 skb
->transport_header
= skb
->data
;
1385 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1388 skb
->transport_header
= skb
->data
+ offset
;
1391 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1393 return skb
->network_header
;
1396 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1398 skb
->network_header
= skb
->data
;
1401 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1403 skb
->network_header
= skb
->data
+ offset
;
1406 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1408 return skb
->mac_header
;
1411 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1413 return skb
->mac_header
!= NULL
;
1416 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1418 skb
->mac_header
= skb
->data
;
1421 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1423 skb
->mac_header
= skb
->data
+ offset
;
1425 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1427 static inline int skb_checksum_start_offset(const struct sk_buff
*skb
)
1429 return skb
->csum_start
- skb_headroom(skb
);
1432 static inline int skb_transport_offset(const struct sk_buff
*skb
)
1434 return skb_transport_header(skb
) - skb
->data
;
1437 static inline u32
skb_network_header_len(const struct sk_buff
*skb
)
1439 return skb
->transport_header
- skb
->network_header
;
1442 static inline int skb_network_offset(const struct sk_buff
*skb
)
1444 return skb_network_header(skb
) - skb
->data
;
1447 static inline int pskb_network_may_pull(struct sk_buff
*skb
, unsigned int len
)
1449 return pskb_may_pull(skb
, skb_network_offset(skb
) + len
);
1453 * CPUs often take a performance hit when accessing unaligned memory
1454 * locations. The actual performance hit varies, it can be small if the
1455 * hardware handles it or large if we have to take an exception and fix it
1458 * Since an ethernet header is 14 bytes network drivers often end up with
1459 * the IP header at an unaligned offset. The IP header can be aligned by
1460 * shifting the start of the packet by 2 bytes. Drivers should do this
1463 * skb_reserve(skb, NET_IP_ALIGN);
1465 * The downside to this alignment of the IP header is that the DMA is now
1466 * unaligned. On some architectures the cost of an unaligned DMA is high
1467 * and this cost outweighs the gains made by aligning the IP header.
1469 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1472 #ifndef NET_IP_ALIGN
1473 #define NET_IP_ALIGN 2
1477 * The networking layer reserves some headroom in skb data (via
1478 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1479 * the header has to grow. In the default case, if the header has to grow
1480 * 32 bytes or less we avoid the reallocation.
1482 * Unfortunately this headroom changes the DMA alignment of the resulting
1483 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1484 * on some architectures. An architecture can override this value,
1485 * perhaps setting it to a cacheline in size (since that will maintain
1486 * cacheline alignment of the DMA). It must be a power of 2.
1488 * Various parts of the networking layer expect at least 32 bytes of
1489 * headroom, you should not reduce this.
1491 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1492 * to reduce average number of cache lines per packet.
1493 * get_rps_cpus() for example only access one 64 bytes aligned block :
1494 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1497 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1500 extern int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
);
1502 static inline void __skb_trim(struct sk_buff
*skb
, unsigned int len
)
1504 if (unlikely(skb_is_nonlinear(skb
))) {
1509 skb_set_tail_pointer(skb
, len
);
1512 extern void skb_trim(struct sk_buff
*skb
, unsigned int len
);
1514 static inline int __pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1517 return ___pskb_trim(skb
, len
);
1518 __skb_trim(skb
, len
);
1522 static inline int pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1524 return (len
< skb
->len
) ? __pskb_trim(skb
, len
) : 0;
1528 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1529 * @skb: buffer to alter
1532 * This is identical to pskb_trim except that the caller knows that
1533 * the skb is not cloned so we should never get an error due to out-
1536 static inline void pskb_trim_unique(struct sk_buff
*skb
, unsigned int len
)
1538 int err
= pskb_trim(skb
, len
);
1543 * skb_orphan - orphan a buffer
1544 * @skb: buffer to orphan
1546 * If a buffer currently has an owner then we call the owner's
1547 * destructor function and make the @skb unowned. The buffer continues
1548 * to exist but is no longer charged to its former owner.
1550 static inline void skb_orphan(struct sk_buff
*skb
)
1552 if (skb
->destructor
)
1553 skb
->destructor(skb
);
1554 skb
->destructor
= NULL
;
1559 * __skb_queue_purge - empty a list
1560 * @list: list to empty
1562 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1563 * the list and one reference dropped. This function does not take the
1564 * list lock and the caller must hold the relevant locks to use it.
1566 extern void skb_queue_purge(struct sk_buff_head
*list
);
1567 static inline void __skb_queue_purge(struct sk_buff_head
*list
)
1569 struct sk_buff
*skb
;
1570 while ((skb
= __skb_dequeue(list
)) != NULL
)
1575 * __dev_alloc_skb - allocate an skbuff for receiving
1576 * @length: length to allocate
1577 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1579 * Allocate a new &sk_buff and assign it a usage count of one. The
1580 * buffer has unspecified headroom built in. Users should allocate
1581 * the headroom they think they need without accounting for the
1582 * built in space. The built in space is used for optimisations.
1584 * %NULL is returned if there is no free memory.
1586 static inline struct sk_buff
*__dev_alloc_skb(unsigned int length
,
1589 struct sk_buff
*skb
= alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
);
1591 skb_reserve(skb
, NET_SKB_PAD
);
1595 extern struct sk_buff
*dev_alloc_skb(unsigned int length
);
1597 extern struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
1598 unsigned int length
, gfp_t gfp_mask
);
1601 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1602 * @dev: network device to receive on
1603 * @length: length to allocate
1605 * Allocate a new &sk_buff and assign it a usage count of one. The
1606 * buffer has unspecified headroom built in. Users should allocate
1607 * the headroom they think they need without accounting for the
1608 * built in space. The built in space is used for optimisations.
1610 * %NULL is returned if there is no free memory. Although this function
1611 * allocates memory it can be called from an interrupt.
1613 static inline struct sk_buff
*netdev_alloc_skb(struct net_device
*dev
,
1614 unsigned int length
)
1616 return __netdev_alloc_skb(dev
, length
, GFP_ATOMIC
);
1619 static inline struct sk_buff
*__netdev_alloc_skb_ip_align(struct net_device
*dev
,
1620 unsigned int length
, gfp_t gfp
)
1622 struct sk_buff
*skb
= __netdev_alloc_skb(dev
, length
+ NET_IP_ALIGN
, gfp
);
1624 if (NET_IP_ALIGN
&& skb
)
1625 skb_reserve(skb
, NET_IP_ALIGN
);
1629 static inline struct sk_buff
*netdev_alloc_skb_ip_align(struct net_device
*dev
,
1630 unsigned int length
)
1632 return __netdev_alloc_skb_ip_align(dev
, length
, GFP_ATOMIC
);
1636 * __netdev_alloc_page - allocate a page for ps-rx on a specific device
1637 * @dev: network device to receive on
1638 * @gfp_mask: alloc_pages_node mask
1640 * Allocate a new page. dev currently unused.
1642 * %NULL is returned if there is no free memory.
1644 static inline struct page
*__netdev_alloc_page(struct net_device
*dev
, gfp_t gfp_mask
)
1646 return alloc_pages_node(NUMA_NO_NODE
, gfp_mask
, 0);
1650 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1651 * @dev: network device to receive on
1653 * Allocate a new page. dev currently unused.
1655 * %NULL is returned if there is no free memory.
1657 static inline struct page
*netdev_alloc_page(struct net_device
*dev
)
1659 return __netdev_alloc_page(dev
, GFP_ATOMIC
);
1662 static inline void netdev_free_page(struct net_device
*dev
, struct page
*page
)
1668 * skb_frag_page - retrieve the page refered to by a paged fragment
1669 * @frag: the paged fragment
1671 * Returns the &struct page associated with @frag.
1673 static inline struct page
*skb_frag_page(const skb_frag_t
*frag
)
1679 * __skb_frag_ref - take an addition reference on a paged fragment.
1680 * @frag: the paged fragment
1682 * Takes an additional reference on the paged fragment @frag.
1684 static inline void __skb_frag_ref(skb_frag_t
*frag
)
1686 get_page(skb_frag_page(frag
));
1690 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1692 * @f: the fragment offset.
1694 * Takes an additional reference on the @f'th paged fragment of @skb.
1696 static inline void skb_frag_ref(struct sk_buff
*skb
, int f
)
1698 __skb_frag_ref(&skb_shinfo(skb
)->frags
[f
]);
1702 * __skb_frag_unref - release a reference on a paged fragment.
1703 * @frag: the paged fragment
1705 * Releases a reference on the paged fragment @frag.
1707 static inline void __skb_frag_unref(skb_frag_t
*frag
)
1709 put_page(skb_frag_page(frag
));
1713 * skb_frag_unref - release a reference on a paged fragment of an skb.
1715 * @f: the fragment offset
1717 * Releases a reference on the @f'th paged fragment of @skb.
1719 static inline void skb_frag_unref(struct sk_buff
*skb
, int f
)
1721 __skb_frag_unref(&skb_shinfo(skb
)->frags
[f
]);
1725 * skb_frag_address - gets the address of the data contained in a paged fragment
1726 * @frag: the paged fragment buffer
1728 * Returns the address of the data within @frag. The page must already
1731 static inline void *skb_frag_address(const skb_frag_t
*frag
)
1733 return page_address(skb_frag_page(frag
)) + frag
->page_offset
;
1737 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1738 * @frag: the paged fragment buffer
1740 * Returns the address of the data within @frag. Checks that the page
1741 * is mapped and returns %NULL otherwise.
1743 static inline void *skb_frag_address_safe(const skb_frag_t
*frag
)
1745 void *ptr
= page_address(skb_frag_page(frag
));
1749 return ptr
+ frag
->page_offset
;
1753 * __skb_frag_set_page - sets the page contained in a paged fragment
1754 * @frag: the paged fragment
1755 * @page: the page to set
1757 * Sets the fragment @frag to contain @page.
1759 static inline void __skb_frag_set_page(skb_frag_t
*frag
, struct page
*page
)
1762 __skb_frag_ref(frag
);
1766 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1768 * @f: the fragment offset
1769 * @page: the page to set
1771 * Sets the @f'th fragment of @skb to contain @page.
1773 static inline void skb_frag_set_page(struct sk_buff
*skb
, int f
,
1776 __skb_frag_set_page(&skb_shinfo(skb
)->frags
[f
], page
);
1780 * skb_frag_dma_map - maps a paged fragment via the DMA API
1781 * @device: the device to map the fragment to
1782 * @frag: the paged fragment to map
1783 * @offset: the offset within the fragment (starting at the
1784 * fragment's own offset)
1785 * @size: the number of bytes to map
1786 * @direction: the direction of the mapping (%PCI_DMA_*)
1788 * Maps the page associated with @frag to @device.
1790 static inline dma_addr_t
skb_frag_dma_map(struct device
*dev
,
1791 const skb_frag_t
*frag
,
1792 size_t offset
, size_t size
,
1793 enum dma_data_direction dir
)
1795 return dma_map_page(dev
, skb_frag_page(frag
),
1796 frag
->page_offset
+ offset
, size
, dir
);
1800 * skb_clone_writable - is the header of a clone writable
1801 * @skb: buffer to check
1802 * @len: length up to which to write
1804 * Returns true if modifying the header part of the cloned buffer
1805 * does not requires the data to be copied.
1807 static inline int skb_clone_writable(struct sk_buff
*skb
, unsigned int len
)
1809 return !skb_header_cloned(skb
) &&
1810 skb_headroom(skb
) + len
<= skb
->hdr_len
;
1813 static inline int __skb_cow(struct sk_buff
*skb
, unsigned int headroom
,
1818 if (headroom
< NET_SKB_PAD
)
1819 headroom
= NET_SKB_PAD
;
1820 if (headroom
> skb_headroom(skb
))
1821 delta
= headroom
- skb_headroom(skb
);
1823 if (delta
|| cloned
)
1824 return pskb_expand_head(skb
, ALIGN(delta
, NET_SKB_PAD
), 0,
1830 * skb_cow - copy header of skb when it is required
1831 * @skb: buffer to cow
1832 * @headroom: needed headroom
1834 * If the skb passed lacks sufficient headroom or its data part
1835 * is shared, data is reallocated. If reallocation fails, an error
1836 * is returned and original skb is not changed.
1838 * The result is skb with writable area skb->head...skb->tail
1839 * and at least @headroom of space at head.
1841 static inline int skb_cow(struct sk_buff
*skb
, unsigned int headroom
)
1843 return __skb_cow(skb
, headroom
, skb_cloned(skb
));
1847 * skb_cow_head - skb_cow but only making the head writable
1848 * @skb: buffer to cow
1849 * @headroom: needed headroom
1851 * This function is identical to skb_cow except that we replace the
1852 * skb_cloned check by skb_header_cloned. It should be used when
1853 * you only need to push on some header and do not need to modify
1856 static inline int skb_cow_head(struct sk_buff
*skb
, unsigned int headroom
)
1858 return __skb_cow(skb
, headroom
, skb_header_cloned(skb
));
1862 * skb_padto - pad an skbuff up to a minimal size
1863 * @skb: buffer to pad
1864 * @len: minimal length
1866 * Pads up a buffer to ensure the trailing bytes exist and are
1867 * blanked. If the buffer already contains sufficient data it
1868 * is untouched. Otherwise it is extended. Returns zero on
1869 * success. The skb is freed on error.
1872 static inline int skb_padto(struct sk_buff
*skb
, unsigned int len
)
1874 unsigned int size
= skb
->len
;
1875 if (likely(size
>= len
))
1877 return skb_pad(skb
, len
- size
);
1880 static inline int skb_add_data(struct sk_buff
*skb
,
1881 char __user
*from
, int copy
)
1883 const int off
= skb
->len
;
1885 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1887 __wsum csum
= csum_and_copy_from_user(from
, skb_put(skb
, copy
),
1890 skb
->csum
= csum_block_add(skb
->csum
, csum
, off
);
1893 } else if (!copy_from_user(skb_put(skb
, copy
), from
, copy
))
1896 __skb_trim(skb
, off
);
1900 static inline int skb_can_coalesce(struct sk_buff
*skb
, int i
,
1901 const struct page
*page
, int off
)
1904 struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
1906 return page
== skb_frag_page(frag
) &&
1907 off
== frag
->page_offset
+ frag
->size
;
1912 static inline int __skb_linearize(struct sk_buff
*skb
)
1914 return __pskb_pull_tail(skb
, skb
->data_len
) ? 0 : -ENOMEM
;
1918 * skb_linearize - convert paged skb to linear one
1919 * @skb: buffer to linarize
1921 * If there is no free memory -ENOMEM is returned, otherwise zero
1922 * is returned and the old skb data released.
1924 static inline int skb_linearize(struct sk_buff
*skb
)
1926 return skb_is_nonlinear(skb
) ? __skb_linearize(skb
) : 0;
1930 * skb_linearize_cow - make sure skb is linear and writable
1931 * @skb: buffer to process
1933 * If there is no free memory -ENOMEM is returned, otherwise zero
1934 * is returned and the old skb data released.
1936 static inline int skb_linearize_cow(struct sk_buff
*skb
)
1938 return skb_is_nonlinear(skb
) || skb_cloned(skb
) ?
1939 __skb_linearize(skb
) : 0;
1943 * skb_postpull_rcsum - update checksum for received skb after pull
1944 * @skb: buffer to update
1945 * @start: start of data before pull
1946 * @len: length of data pulled
1948 * After doing a pull on a received packet, you need to call this to
1949 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1950 * CHECKSUM_NONE so that it can be recomputed from scratch.
1953 static inline void skb_postpull_rcsum(struct sk_buff
*skb
,
1954 const void *start
, unsigned int len
)
1956 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1957 skb
->csum
= csum_sub(skb
->csum
, csum_partial(start
, len
, 0));
1960 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
);
1963 * pskb_trim_rcsum - trim received skb and update checksum
1964 * @skb: buffer to trim
1967 * This is exactly the same as pskb_trim except that it ensures the
1968 * checksum of received packets are still valid after the operation.
1971 static inline int pskb_trim_rcsum(struct sk_buff
*skb
, unsigned int len
)
1973 if (likely(len
>= skb
->len
))
1975 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1976 skb
->ip_summed
= CHECKSUM_NONE
;
1977 return __pskb_trim(skb
, len
);
1980 #define skb_queue_walk(queue, skb) \
1981 for (skb = (queue)->next; \
1982 skb != (struct sk_buff *)(queue); \
1985 #define skb_queue_walk_safe(queue, skb, tmp) \
1986 for (skb = (queue)->next, tmp = skb->next; \
1987 skb != (struct sk_buff *)(queue); \
1988 skb = tmp, tmp = skb->next)
1990 #define skb_queue_walk_from(queue, skb) \
1991 for (; skb != (struct sk_buff *)(queue); \
1994 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1995 for (tmp = skb->next; \
1996 skb != (struct sk_buff *)(queue); \
1997 skb = tmp, tmp = skb->next)
1999 #define skb_queue_reverse_walk(queue, skb) \
2000 for (skb = (queue)->prev; \
2001 skb != (struct sk_buff *)(queue); \
2004 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2005 for (skb = (queue)->prev, tmp = skb->prev; \
2006 skb != (struct sk_buff *)(queue); \
2007 skb = tmp, tmp = skb->prev)
2009 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2010 for (tmp = skb->prev; \
2011 skb != (struct sk_buff *)(queue); \
2012 skb = tmp, tmp = skb->prev)
2014 static inline bool skb_has_frag_list(const struct sk_buff
*skb
)
2016 return skb_shinfo(skb
)->frag_list
!= NULL
;
2019 static inline void skb_frag_list_init(struct sk_buff
*skb
)
2021 skb_shinfo(skb
)->frag_list
= NULL
;
2024 static inline void skb_frag_add_head(struct sk_buff
*skb
, struct sk_buff
*frag
)
2026 frag
->next
= skb_shinfo(skb
)->frag_list
;
2027 skb_shinfo(skb
)->frag_list
= frag
;
2030 #define skb_walk_frags(skb, iter) \
2031 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2033 extern struct sk_buff
*__skb_recv_datagram(struct sock
*sk
, unsigned flags
,
2034 int *peeked
, int *err
);
2035 extern struct sk_buff
*skb_recv_datagram(struct sock
*sk
, unsigned flags
,
2036 int noblock
, int *err
);
2037 extern unsigned int datagram_poll(struct file
*file
, struct socket
*sock
,
2038 struct poll_table_struct
*wait
);
2039 extern int skb_copy_datagram_iovec(const struct sk_buff
*from
,
2040 int offset
, struct iovec
*to
,
2042 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff
*skb
,
2045 extern int skb_copy_datagram_from_iovec(struct sk_buff
*skb
,
2047 const struct iovec
*from
,
2050 extern int skb_copy_datagram_const_iovec(const struct sk_buff
*from
,
2052 const struct iovec
*to
,
2055 extern void skb_free_datagram(struct sock
*sk
, struct sk_buff
*skb
);
2056 extern void skb_free_datagram_locked(struct sock
*sk
,
2057 struct sk_buff
*skb
);
2058 extern int skb_kill_datagram(struct sock
*sk
, struct sk_buff
*skb
,
2059 unsigned int flags
);
2060 extern __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
2061 int len
, __wsum csum
);
2062 extern int skb_copy_bits(const struct sk_buff
*skb
, int offset
,
2064 extern int skb_store_bits(struct sk_buff
*skb
, int offset
,
2065 const void *from
, int len
);
2066 extern __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
,
2067 int offset
, u8
*to
, int len
,
2069 extern int skb_splice_bits(struct sk_buff
*skb
,
2070 unsigned int offset
,
2071 struct pipe_inode_info
*pipe
,
2073 unsigned int flags
);
2074 extern void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
);
2075 extern void skb_split(struct sk_buff
*skb
,
2076 struct sk_buff
*skb1
, const u32 len
);
2077 extern int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
,
2080 extern struct sk_buff
*skb_segment(struct sk_buff
*skb
, u32 features
);
2082 static inline void *skb_header_pointer(const struct sk_buff
*skb
, int offset
,
2083 int len
, void *buffer
)
2085 int hlen
= skb_headlen(skb
);
2087 if (hlen
- offset
>= len
)
2088 return skb
->data
+ offset
;
2090 if (skb_copy_bits(skb
, offset
, buffer
, len
) < 0)
2096 static inline void skb_copy_from_linear_data(const struct sk_buff
*skb
,
2098 const unsigned int len
)
2100 memcpy(to
, skb
->data
, len
);
2103 static inline void skb_copy_from_linear_data_offset(const struct sk_buff
*skb
,
2104 const int offset
, void *to
,
2105 const unsigned int len
)
2107 memcpy(to
, skb
->data
+ offset
, len
);
2110 static inline void skb_copy_to_linear_data(struct sk_buff
*skb
,
2112 const unsigned int len
)
2114 memcpy(skb
->data
, from
, len
);
2117 static inline void skb_copy_to_linear_data_offset(struct sk_buff
*skb
,
2120 const unsigned int len
)
2122 memcpy(skb
->data
+ offset
, from
, len
);
2125 extern void skb_init(void);
2127 static inline ktime_t
skb_get_ktime(const struct sk_buff
*skb
)
2133 * skb_get_timestamp - get timestamp from a skb
2134 * @skb: skb to get stamp from
2135 * @stamp: pointer to struct timeval to store stamp in
2137 * Timestamps are stored in the skb as offsets to a base timestamp.
2138 * This function converts the offset back to a struct timeval and stores
2141 static inline void skb_get_timestamp(const struct sk_buff
*skb
,
2142 struct timeval
*stamp
)
2144 *stamp
= ktime_to_timeval(skb
->tstamp
);
2147 static inline void skb_get_timestampns(const struct sk_buff
*skb
,
2148 struct timespec
*stamp
)
2150 *stamp
= ktime_to_timespec(skb
->tstamp
);
2153 static inline void __net_timestamp(struct sk_buff
*skb
)
2155 skb
->tstamp
= ktime_get_real();
2158 static inline ktime_t
net_timedelta(ktime_t t
)
2160 return ktime_sub(ktime_get_real(), t
);
2163 static inline ktime_t
net_invalid_timestamp(void)
2165 return ktime_set(0, 0);
2168 extern void skb_timestamping_init(void);
2170 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2172 extern void skb_clone_tx_timestamp(struct sk_buff
*skb
);
2173 extern bool skb_defer_rx_timestamp(struct sk_buff
*skb
);
2175 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2177 static inline void skb_clone_tx_timestamp(struct sk_buff
*skb
)
2181 static inline bool skb_defer_rx_timestamp(struct sk_buff
*skb
)
2186 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2189 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2191 * @skb: clone of the the original outgoing packet
2192 * @hwtstamps: hardware time stamps
2195 void skb_complete_tx_timestamp(struct sk_buff
*skb
,
2196 struct skb_shared_hwtstamps
*hwtstamps
);
2199 * skb_tstamp_tx - queue clone of skb with send time stamps
2200 * @orig_skb: the original outgoing packet
2201 * @hwtstamps: hardware time stamps, may be NULL if not available
2203 * If the skb has a socket associated, then this function clones the
2204 * skb (thus sharing the actual data and optional structures), stores
2205 * the optional hardware time stamping information (if non NULL) or
2206 * generates a software time stamp (otherwise), then queues the clone
2207 * to the error queue of the socket. Errors are silently ignored.
2209 extern void skb_tstamp_tx(struct sk_buff
*orig_skb
,
2210 struct skb_shared_hwtstamps
*hwtstamps
);
2212 static inline void sw_tx_timestamp(struct sk_buff
*skb
)
2214 if (skb_shinfo(skb
)->tx_flags
& SKBTX_SW_TSTAMP
&&
2215 !(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
))
2216 skb_tstamp_tx(skb
, NULL
);
2220 * skb_tx_timestamp() - Driver hook for transmit timestamping
2222 * Ethernet MAC Drivers should call this function in their hard_xmit()
2223 * function immediately before giving the sk_buff to the MAC hardware.
2225 * @skb: A socket buffer.
2227 static inline void skb_tx_timestamp(struct sk_buff
*skb
)
2229 skb_clone_tx_timestamp(skb
);
2230 sw_tx_timestamp(skb
);
2233 extern __sum16
__skb_checksum_complete_head(struct sk_buff
*skb
, int len
);
2234 extern __sum16
__skb_checksum_complete(struct sk_buff
*skb
);
2236 static inline int skb_csum_unnecessary(const struct sk_buff
*skb
)
2238 return skb
->ip_summed
& CHECKSUM_UNNECESSARY
;
2242 * skb_checksum_complete - Calculate checksum of an entire packet
2243 * @skb: packet to process
2245 * This function calculates the checksum over the entire packet plus
2246 * the value of skb->csum. The latter can be used to supply the
2247 * checksum of a pseudo header as used by TCP/UDP. It returns the
2250 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2251 * this function can be used to verify that checksum on received
2252 * packets. In that case the function should return zero if the
2253 * checksum is correct. In particular, this function will return zero
2254 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2255 * hardware has already verified the correctness of the checksum.
2257 static inline __sum16
skb_checksum_complete(struct sk_buff
*skb
)
2259 return skb_csum_unnecessary(skb
) ?
2260 0 : __skb_checksum_complete(skb
);
2263 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2264 extern void nf_conntrack_destroy(struct nf_conntrack
*nfct
);
2265 static inline void nf_conntrack_put(struct nf_conntrack
*nfct
)
2267 if (nfct
&& atomic_dec_and_test(&nfct
->use
))
2268 nf_conntrack_destroy(nfct
);
2270 static inline void nf_conntrack_get(struct nf_conntrack
*nfct
)
2273 atomic_inc(&nfct
->use
);
2276 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2277 static inline void nf_conntrack_get_reasm(struct sk_buff
*skb
)
2280 atomic_inc(&skb
->users
);
2282 static inline void nf_conntrack_put_reasm(struct sk_buff
*skb
)
2288 #ifdef CONFIG_BRIDGE_NETFILTER
2289 static inline void nf_bridge_put(struct nf_bridge_info
*nf_bridge
)
2291 if (nf_bridge
&& atomic_dec_and_test(&nf_bridge
->use
))
2294 static inline void nf_bridge_get(struct nf_bridge_info
*nf_bridge
)
2297 atomic_inc(&nf_bridge
->use
);
2299 #endif /* CONFIG_BRIDGE_NETFILTER */
2300 static inline void nf_reset(struct sk_buff
*skb
)
2302 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2303 nf_conntrack_put(skb
->nfct
);
2306 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2307 nf_conntrack_put_reasm(skb
->nfct_reasm
);
2308 skb
->nfct_reasm
= NULL
;
2310 #ifdef CONFIG_BRIDGE_NETFILTER
2311 nf_bridge_put(skb
->nf_bridge
);
2312 skb
->nf_bridge
= NULL
;
2316 /* Note: This doesn't put any conntrack and bridge info in dst. */
2317 static inline void __nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
2319 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2320 dst
->nfct
= src
->nfct
;
2321 nf_conntrack_get(src
->nfct
);
2322 dst
->nfctinfo
= src
->nfctinfo
;
2324 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2325 dst
->nfct_reasm
= src
->nfct_reasm
;
2326 nf_conntrack_get_reasm(src
->nfct_reasm
);
2328 #ifdef CONFIG_BRIDGE_NETFILTER
2329 dst
->nf_bridge
= src
->nf_bridge
;
2330 nf_bridge_get(src
->nf_bridge
);
2334 static inline void nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
2336 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2337 nf_conntrack_put(dst
->nfct
);
2339 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2340 nf_conntrack_put_reasm(dst
->nfct_reasm
);
2342 #ifdef CONFIG_BRIDGE_NETFILTER
2343 nf_bridge_put(dst
->nf_bridge
);
2345 __nf_copy(dst
, src
);
2348 #ifdef CONFIG_NETWORK_SECMARK
2349 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
2351 to
->secmark
= from
->secmark
;
2354 static inline void skb_init_secmark(struct sk_buff
*skb
)
2359 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
2362 static inline void skb_init_secmark(struct sk_buff
*skb
)
2366 static inline void skb_set_queue_mapping(struct sk_buff
*skb
, u16 queue_mapping
)
2368 skb
->queue_mapping
= queue_mapping
;
2371 static inline u16
skb_get_queue_mapping(const struct sk_buff
*skb
)
2373 return skb
->queue_mapping
;
2376 static inline void skb_copy_queue_mapping(struct sk_buff
*to
, const struct sk_buff
*from
)
2378 to
->queue_mapping
= from
->queue_mapping
;
2381 static inline void skb_record_rx_queue(struct sk_buff
*skb
, u16 rx_queue
)
2383 skb
->queue_mapping
= rx_queue
+ 1;
2386 static inline u16
skb_get_rx_queue(const struct sk_buff
*skb
)
2388 return skb
->queue_mapping
- 1;
2391 static inline bool skb_rx_queue_recorded(const struct sk_buff
*skb
)
2393 return skb
->queue_mapping
!= 0;
2396 extern u16
__skb_tx_hash(const struct net_device
*dev
,
2397 const struct sk_buff
*skb
,
2398 unsigned int num_tx_queues
);
2401 static inline struct sec_path
*skb_sec_path(struct sk_buff
*skb
)
2406 static inline struct sec_path
*skb_sec_path(struct sk_buff
*skb
)
2412 static inline int skb_is_gso(const struct sk_buff
*skb
)
2414 return skb_shinfo(skb
)->gso_size
;
2417 static inline int skb_is_gso_v6(const struct sk_buff
*skb
)
2419 return skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
;
2422 extern void __skb_warn_lro_forwarding(const struct sk_buff
*skb
);
2424 static inline bool skb_warn_if_lro(const struct sk_buff
*skb
)
2426 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2427 * wanted then gso_type will be set. */
2428 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
2429 if (skb_is_nonlinear(skb
) && shinfo
->gso_size
!= 0 &&
2430 unlikely(shinfo
->gso_type
== 0)) {
2431 __skb_warn_lro_forwarding(skb
);
2437 static inline void skb_forward_csum(struct sk_buff
*skb
)
2439 /* Unfortunately we don't support this one. Any brave souls? */
2440 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
2441 skb
->ip_summed
= CHECKSUM_NONE
;
2445 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2446 * @skb: skb to check
2448 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2449 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2450 * use this helper, to document places where we make this assertion.
2452 static inline void skb_checksum_none_assert(struct sk_buff
*skb
)
2455 BUG_ON(skb
->ip_summed
!= CHECKSUM_NONE
);
2459 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
);
2461 #endif /* __KERNEL__ */
2462 #endif /* _LINUX_SKBUFF_H */