Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / kernel / sched.c
blob7c0c81b39cc31458a3393d843b46398324a0a469
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/export.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78 #ifdef CONFIG_PARAVIRT
79 #include <asm/paravirt.h>
80 #endif
82 #include "sched_cpupri.h"
83 #include "workqueue_sched.h"
84 #include "sched_autogroup.h"
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/sched.h>
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 * and back.
94 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
103 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
108 * Helpers for converting nanosecond timing to jiffy resolution
110 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
112 #define NICE_0_LOAD SCHED_LOAD_SCALE
113 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
116 * These are the 'tuning knobs' of the scheduler:
118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
119 * Timeslices get refilled after they expire.
121 #define DEF_TIMESLICE (100 * HZ / 1000)
124 * single value that denotes runtime == period, ie unlimited time.
126 #define RUNTIME_INF ((u64)~0ULL)
128 static inline int rt_policy(int policy)
130 if (policy == SCHED_FIFO || policy == SCHED_RR)
131 return 1;
132 return 0;
135 static inline int task_has_rt_policy(struct task_struct *p)
137 return rt_policy(p->policy);
141 * This is the priority-queue data structure of the RT scheduling class:
143 struct rt_prio_array {
144 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
145 struct list_head queue[MAX_RT_PRIO];
148 struct rt_bandwidth {
149 /* nests inside the rq lock: */
150 raw_spinlock_t rt_runtime_lock;
151 ktime_t rt_period;
152 u64 rt_runtime;
153 struct hrtimer rt_period_timer;
156 static struct rt_bandwidth def_rt_bandwidth;
158 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
160 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
162 struct rt_bandwidth *rt_b =
163 container_of(timer, struct rt_bandwidth, rt_period_timer);
164 ktime_t now;
165 int overrun;
166 int idle = 0;
168 for (;;) {
169 now = hrtimer_cb_get_time(timer);
170 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
172 if (!overrun)
173 break;
175 idle = do_sched_rt_period_timer(rt_b, overrun);
178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
181 static
182 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
184 rt_b->rt_period = ns_to_ktime(period);
185 rt_b->rt_runtime = runtime;
187 raw_spin_lock_init(&rt_b->rt_runtime_lock);
189 hrtimer_init(&rt_b->rt_period_timer,
190 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
191 rt_b->rt_period_timer.function = sched_rt_period_timer;
194 static inline int rt_bandwidth_enabled(void)
196 return sysctl_sched_rt_runtime >= 0;
199 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
201 ktime_t now;
203 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
204 return;
206 if (hrtimer_active(&rt_b->rt_period_timer))
207 return;
209 raw_spin_lock(&rt_b->rt_runtime_lock);
210 for (;;) {
211 unsigned long delta;
212 ktime_t soft, hard;
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 break;
217 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
218 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
220 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
221 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
222 delta = ktime_to_ns(ktime_sub(hard, soft));
223 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
224 HRTIMER_MODE_ABS_PINNED, 0);
226 raw_spin_unlock(&rt_b->rt_runtime_lock);
229 #ifdef CONFIG_RT_GROUP_SCHED
230 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
232 hrtimer_cancel(&rt_b->rt_period_timer);
234 #endif
237 * sched_domains_mutex serializes calls to init_sched_domains,
238 * detach_destroy_domains and partition_sched_domains.
240 static DEFINE_MUTEX(sched_domains_mutex);
242 #ifdef CONFIG_CGROUP_SCHED
244 #include <linux/cgroup.h>
246 struct cfs_rq;
248 static LIST_HEAD(task_groups);
250 /* task group related information */
251 struct task_group {
252 struct cgroup_subsys_state css;
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
261 atomic_t load_weight;
262 #endif
264 #ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
268 struct rt_bandwidth rt_bandwidth;
269 #endif
271 struct rcu_head rcu;
272 struct list_head list;
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
278 #ifdef CONFIG_SCHED_AUTOGROUP
279 struct autogroup *autogroup;
280 #endif
283 /* task_group_lock serializes the addition/removal of task groups */
284 static DEFINE_SPINLOCK(task_group_lock);
286 #ifdef CONFIG_FAIR_GROUP_SCHED
288 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
298 #define MIN_SHARES (1UL << 1)
299 #define MAX_SHARES (1UL << 18)
301 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
302 #endif
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
307 struct task_group root_task_group;
309 #endif /* CONFIG_CGROUP_SCHED */
311 /* CFS-related fields in a runqueue */
312 struct cfs_rq {
313 struct load_weight load;
314 unsigned long nr_running;
316 u64 exec_clock;
317 u64 min_vruntime;
318 #ifndef CONFIG_64BIT
319 u64 min_vruntime_copy;
320 #endif
322 struct rb_root tasks_timeline;
323 struct rb_node *rb_leftmost;
325 struct list_head tasks;
326 struct list_head *balance_iterator;
329 * 'curr' points to currently running entity on this cfs_rq.
330 * It is set to NULL otherwise (i.e when none are currently running).
332 struct sched_entity *curr, *next, *last, *skip;
334 #ifdef CONFIG_SCHED_DEBUG
335 unsigned int nr_spread_over;
336 #endif
338 #ifdef CONFIG_FAIR_GROUP_SCHED
339 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
342 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
343 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
344 * (like users, containers etc.)
346 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
347 * list is used during load balance.
349 int on_list;
350 struct list_head leaf_cfs_rq_list;
351 struct task_group *tg; /* group that "owns" this runqueue */
353 #ifdef CONFIG_SMP
355 * the part of load.weight contributed by tasks
357 unsigned long task_weight;
360 * h_load = weight * f(tg)
362 * Where f(tg) is the recursive weight fraction assigned to
363 * this group.
365 unsigned long h_load;
368 * Maintaining per-cpu shares distribution for group scheduling
370 * load_stamp is the last time we updated the load average
371 * load_last is the last time we updated the load average and saw load
372 * load_unacc_exec_time is currently unaccounted execution time
374 u64 load_avg;
375 u64 load_period;
376 u64 load_stamp, load_last, load_unacc_exec_time;
378 unsigned long load_contribution;
379 #endif
380 #endif
383 /* Real-Time classes' related field in a runqueue: */
384 struct rt_rq {
385 struct rt_prio_array active;
386 unsigned long rt_nr_running;
387 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
388 struct {
389 int curr; /* highest queued rt task prio */
390 #ifdef CONFIG_SMP
391 int next; /* next highest */
392 #endif
393 } highest_prio;
394 #endif
395 #ifdef CONFIG_SMP
396 unsigned long rt_nr_migratory;
397 unsigned long rt_nr_total;
398 int overloaded;
399 struct plist_head pushable_tasks;
400 #endif
401 int rt_throttled;
402 u64 rt_time;
403 u64 rt_runtime;
404 /* Nests inside the rq lock: */
405 raw_spinlock_t rt_runtime_lock;
407 #ifdef CONFIG_RT_GROUP_SCHED
408 unsigned long rt_nr_boosted;
410 struct rq *rq;
411 struct list_head leaf_rt_rq_list;
412 struct task_group *tg;
413 #endif
416 #ifdef CONFIG_SMP
419 * We add the notion of a root-domain which will be used to define per-domain
420 * variables. Each exclusive cpuset essentially defines an island domain by
421 * fully partitioning the member cpus from any other cpuset. Whenever a new
422 * exclusive cpuset is created, we also create and attach a new root-domain
423 * object.
426 struct root_domain {
427 atomic_t refcount;
428 atomic_t rto_count;
429 struct rcu_head rcu;
430 cpumask_var_t span;
431 cpumask_var_t online;
434 * The "RT overload" flag: it gets set if a CPU has more than
435 * one runnable RT task.
437 cpumask_var_t rto_mask;
438 struct cpupri cpupri;
442 * By default the system creates a single root-domain with all cpus as
443 * members (mimicking the global state we have today).
445 static struct root_domain def_root_domain;
447 #endif /* CONFIG_SMP */
450 * This is the main, per-CPU runqueue data structure.
452 * Locking rule: those places that want to lock multiple runqueues
453 * (such as the load balancing or the thread migration code), lock
454 * acquire operations must be ordered by ascending &runqueue.
456 struct rq {
457 /* runqueue lock: */
458 raw_spinlock_t lock;
461 * nr_running and cpu_load should be in the same cacheline because
462 * remote CPUs use both these fields when doing load calculation.
464 unsigned long nr_running;
465 #define CPU_LOAD_IDX_MAX 5
466 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
467 unsigned long last_load_update_tick;
468 #ifdef CONFIG_NO_HZ
469 u64 nohz_stamp;
470 unsigned char nohz_balance_kick;
471 #endif
472 int skip_clock_update;
474 /* capture load from *all* tasks on this cpu: */
475 struct load_weight load;
476 unsigned long nr_load_updates;
477 u64 nr_switches;
479 struct cfs_rq cfs;
480 struct rt_rq rt;
482 #ifdef CONFIG_FAIR_GROUP_SCHED
483 /* list of leaf cfs_rq on this cpu: */
484 struct list_head leaf_cfs_rq_list;
485 #endif
486 #ifdef CONFIG_RT_GROUP_SCHED
487 struct list_head leaf_rt_rq_list;
488 #endif
491 * This is part of a global counter where only the total sum
492 * over all CPUs matters. A task can increase this counter on
493 * one CPU and if it got migrated afterwards it may decrease
494 * it on another CPU. Always updated under the runqueue lock:
496 unsigned long nr_uninterruptible;
498 struct task_struct *curr, *idle, *stop;
499 unsigned long next_balance;
500 struct mm_struct *prev_mm;
502 u64 clock;
503 u64 clock_task;
505 atomic_t nr_iowait;
507 #ifdef CONFIG_SMP
508 struct root_domain *rd;
509 struct sched_domain *sd;
511 unsigned long cpu_power;
513 unsigned char idle_at_tick;
514 /* For active balancing */
515 int post_schedule;
516 int active_balance;
517 int push_cpu;
518 struct cpu_stop_work active_balance_work;
519 /* cpu of this runqueue: */
520 int cpu;
521 int online;
523 unsigned long avg_load_per_task;
525 u64 rt_avg;
526 u64 age_stamp;
527 u64 idle_stamp;
528 u64 avg_idle;
529 #endif
531 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
532 u64 prev_irq_time;
533 #endif
534 #ifdef CONFIG_PARAVIRT
535 u64 prev_steal_time;
536 #endif
537 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
538 u64 prev_steal_time_rq;
539 #endif
541 /* calc_load related fields */
542 unsigned long calc_load_update;
543 long calc_load_active;
545 #ifdef CONFIG_SCHED_HRTICK
546 #ifdef CONFIG_SMP
547 int hrtick_csd_pending;
548 struct call_single_data hrtick_csd;
549 #endif
550 struct hrtimer hrtick_timer;
551 #endif
553 #ifdef CONFIG_SCHEDSTATS
554 /* latency stats */
555 struct sched_info rq_sched_info;
556 unsigned long long rq_cpu_time;
557 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
559 /* sys_sched_yield() stats */
560 unsigned int yld_count;
562 /* schedule() stats */
563 unsigned int sched_switch;
564 unsigned int sched_count;
565 unsigned int sched_goidle;
567 /* try_to_wake_up() stats */
568 unsigned int ttwu_count;
569 unsigned int ttwu_local;
570 #endif
572 #ifdef CONFIG_SMP
573 struct task_struct *wake_list;
574 #endif
577 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
580 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
582 static inline int cpu_of(struct rq *rq)
584 #ifdef CONFIG_SMP
585 return rq->cpu;
586 #else
587 return 0;
588 #endif
591 #define rcu_dereference_check_sched_domain(p) \
592 rcu_dereference_check((p), \
593 lockdep_is_held(&sched_domains_mutex))
596 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
597 * See detach_destroy_domains: synchronize_sched for details.
599 * The domain tree of any CPU may only be accessed from within
600 * preempt-disabled sections.
602 #define for_each_domain(cpu, __sd) \
603 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
605 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
606 #define this_rq() (&__get_cpu_var(runqueues))
607 #define task_rq(p) cpu_rq(task_cpu(p))
608 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
609 #define raw_rq() (&__raw_get_cpu_var(runqueues))
611 #ifdef CONFIG_CGROUP_SCHED
614 * Return the group to which this tasks belongs.
616 * We use task_subsys_state_check() and extend the RCU verification with
617 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
618 * task it moves into the cgroup. Therefore by holding either of those locks,
619 * we pin the task to the current cgroup.
621 static inline struct task_group *task_group(struct task_struct *p)
623 struct task_group *tg;
624 struct cgroup_subsys_state *css;
626 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
627 lockdep_is_held(&p->pi_lock) ||
628 lockdep_is_held(&task_rq(p)->lock));
629 tg = container_of(css, struct task_group, css);
631 return autogroup_task_group(p, tg);
634 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
635 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
637 #ifdef CONFIG_FAIR_GROUP_SCHED
638 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
639 p->se.parent = task_group(p)->se[cpu];
640 #endif
642 #ifdef CONFIG_RT_GROUP_SCHED
643 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
644 p->rt.parent = task_group(p)->rt_se[cpu];
645 #endif
648 #else /* CONFIG_CGROUP_SCHED */
650 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
651 static inline struct task_group *task_group(struct task_struct *p)
653 return NULL;
656 #endif /* CONFIG_CGROUP_SCHED */
658 static void update_rq_clock_task(struct rq *rq, s64 delta);
660 static void update_rq_clock(struct rq *rq)
662 s64 delta;
664 if (rq->skip_clock_update > 0)
665 return;
667 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
668 rq->clock += delta;
669 update_rq_clock_task(rq, delta);
673 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
675 #ifdef CONFIG_SCHED_DEBUG
676 # define const_debug __read_mostly
677 #else
678 # define const_debug static const
679 #endif
682 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
683 * @cpu: the processor in question.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
688 int runqueue_is_locked(int cpu)
690 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
694 * Debugging: various feature bits
697 #define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
700 enum {
701 #include "sched_features.h"
704 #undef SCHED_FEAT
706 #define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
709 const_debug unsigned int sysctl_sched_features =
710 #include "sched_features.h"
713 #undef SCHED_FEAT
715 #ifdef CONFIG_SCHED_DEBUG
716 #define SCHED_FEAT(name, enabled) \
717 #name ,
719 static __read_mostly char *sched_feat_names[] = {
720 #include "sched_features.h"
721 NULL
724 #undef SCHED_FEAT
726 static int sched_feat_show(struct seq_file *m, void *v)
728 int i;
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
735 seq_puts(m, "\n");
737 return 0;
740 static ssize_t
741 sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
744 char buf[64];
745 char *cmp;
746 int neg = 0;
747 int i;
749 if (cnt > 63)
750 cnt = 63;
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
755 buf[cnt] = 0;
756 cmp = strstrip(buf);
758 if (strncmp(cmp, "NO_", 3) == 0) {
759 neg = 1;
760 cmp += 3;
763 for (i = 0; sched_feat_names[i]; i++) {
764 if (strcmp(cmp, sched_feat_names[i]) == 0) {
765 if (neg)
766 sysctl_sched_features &= ~(1UL << i);
767 else
768 sysctl_sched_features |= (1UL << i);
769 break;
773 if (!sched_feat_names[i])
774 return -EINVAL;
776 *ppos += cnt;
778 return cnt;
781 static int sched_feat_open(struct inode *inode, struct file *filp)
783 return single_open(filp, sched_feat_show, NULL);
786 static const struct file_operations sched_feat_fops = {
787 .open = sched_feat_open,
788 .write = sched_feat_write,
789 .read = seq_read,
790 .llseek = seq_lseek,
791 .release = single_release,
794 static __init int sched_init_debug(void)
796 debugfs_create_file("sched_features", 0644, NULL, NULL,
797 &sched_feat_fops);
799 return 0;
801 late_initcall(sched_init_debug);
803 #endif
805 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
808 * Number of tasks to iterate in a single balance run.
809 * Limited because this is done with IRQs disabled.
811 const_debug unsigned int sysctl_sched_nr_migrate = 32;
814 * period over which we average the RT time consumption, measured
815 * in ms.
817 * default: 1s
819 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
822 * period over which we measure -rt task cpu usage in us.
823 * default: 1s
825 unsigned int sysctl_sched_rt_period = 1000000;
827 static __read_mostly int scheduler_running;
830 * part of the period that we allow rt tasks to run in us.
831 * default: 0.95s
833 int sysctl_sched_rt_runtime = 950000;
835 static inline u64 global_rt_period(void)
837 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
840 static inline u64 global_rt_runtime(void)
842 if (sysctl_sched_rt_runtime < 0)
843 return RUNTIME_INF;
845 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
848 #ifndef prepare_arch_switch
849 # define prepare_arch_switch(next) do { } while (0)
850 #endif
851 #ifndef finish_arch_switch
852 # define finish_arch_switch(prev) do { } while (0)
853 #endif
855 static inline int task_current(struct rq *rq, struct task_struct *p)
857 return rq->curr == p;
860 static inline int task_running(struct rq *rq, struct task_struct *p)
862 #ifdef CONFIG_SMP
863 return p->on_cpu;
864 #else
865 return task_current(rq, p);
866 #endif
869 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
870 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
872 #ifdef CONFIG_SMP
874 * We can optimise this out completely for !SMP, because the
875 * SMP rebalancing from interrupt is the only thing that cares
876 * here.
878 next->on_cpu = 1;
879 #endif
882 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884 #ifdef CONFIG_SMP
886 * After ->on_cpu is cleared, the task can be moved to a different CPU.
887 * We must ensure this doesn't happen until the switch is completely
888 * finished.
890 smp_wmb();
891 prev->on_cpu = 0;
892 #endif
893 #ifdef CONFIG_DEBUG_SPINLOCK
894 /* this is a valid case when another task releases the spinlock */
895 rq->lock.owner = current;
896 #endif
898 * If we are tracking spinlock dependencies then we have to
899 * fix up the runqueue lock - which gets 'carried over' from
900 * prev into current:
902 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
904 raw_spin_unlock_irq(&rq->lock);
907 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
908 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 #ifdef CONFIG_SMP
912 * We can optimise this out completely for !SMP, because the
913 * SMP rebalancing from interrupt is the only thing that cares
914 * here.
916 next->on_cpu = 1;
917 #endif
918 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 raw_spin_unlock_irq(&rq->lock);
920 #else
921 raw_spin_unlock(&rq->lock);
922 #endif
925 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 #ifdef CONFIG_SMP
929 * After ->on_cpu is cleared, the task can be moved to a different CPU.
930 * We must ensure this doesn't happen until the switch is completely
931 * finished.
933 smp_wmb();
934 prev->on_cpu = 0;
935 #endif
936 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 local_irq_enable();
938 #endif
940 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
943 * __task_rq_lock - lock the rq @p resides on.
945 static inline struct rq *__task_rq_lock(struct task_struct *p)
946 __acquires(rq->lock)
948 struct rq *rq;
950 lockdep_assert_held(&p->pi_lock);
952 for (;;) {
953 rq = task_rq(p);
954 raw_spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p)))
956 return rq;
957 raw_spin_unlock(&rq->lock);
962 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
964 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
965 __acquires(p->pi_lock)
966 __acquires(rq->lock)
968 struct rq *rq;
970 for (;;) {
971 raw_spin_lock_irqsave(&p->pi_lock, *flags);
972 rq = task_rq(p);
973 raw_spin_lock(&rq->lock);
974 if (likely(rq == task_rq(p)))
975 return rq;
976 raw_spin_unlock(&rq->lock);
977 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
981 static void __task_rq_unlock(struct rq *rq)
982 __releases(rq->lock)
984 raw_spin_unlock(&rq->lock);
987 static inline void
988 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
989 __releases(rq->lock)
990 __releases(p->pi_lock)
992 raw_spin_unlock(&rq->lock);
993 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
997 * this_rq_lock - lock this runqueue and disable interrupts.
999 static struct rq *this_rq_lock(void)
1000 __acquires(rq->lock)
1002 struct rq *rq;
1004 local_irq_disable();
1005 rq = this_rq();
1006 raw_spin_lock(&rq->lock);
1008 return rq;
1011 #ifdef CONFIG_SCHED_HRTICK
1013 * Use HR-timers to deliver accurate preemption points.
1015 * Its all a bit involved since we cannot program an hrt while holding the
1016 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1017 * reschedule event.
1019 * When we get rescheduled we reprogram the hrtick_timer outside of the
1020 * rq->lock.
1024 * Use hrtick when:
1025 * - enabled by features
1026 * - hrtimer is actually high res
1028 static inline int hrtick_enabled(struct rq *rq)
1030 if (!sched_feat(HRTICK))
1031 return 0;
1032 if (!cpu_active(cpu_of(rq)))
1033 return 0;
1034 return hrtimer_is_hres_active(&rq->hrtick_timer);
1037 static void hrtick_clear(struct rq *rq)
1039 if (hrtimer_active(&rq->hrtick_timer))
1040 hrtimer_cancel(&rq->hrtick_timer);
1044 * High-resolution timer tick.
1045 * Runs from hardirq context with interrupts disabled.
1047 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1049 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1051 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1053 raw_spin_lock(&rq->lock);
1054 update_rq_clock(rq);
1055 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1056 raw_spin_unlock(&rq->lock);
1058 return HRTIMER_NORESTART;
1061 #ifdef CONFIG_SMP
1063 * called from hardirq (IPI) context
1065 static void __hrtick_start(void *arg)
1067 struct rq *rq = arg;
1069 raw_spin_lock(&rq->lock);
1070 hrtimer_restart(&rq->hrtick_timer);
1071 rq->hrtick_csd_pending = 0;
1072 raw_spin_unlock(&rq->lock);
1076 * Called to set the hrtick timer state.
1078 * called with rq->lock held and irqs disabled
1080 static void hrtick_start(struct rq *rq, u64 delay)
1082 struct hrtimer *timer = &rq->hrtick_timer;
1083 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1085 hrtimer_set_expires(timer, time);
1087 if (rq == this_rq()) {
1088 hrtimer_restart(timer);
1089 } else if (!rq->hrtick_csd_pending) {
1090 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1091 rq->hrtick_csd_pending = 1;
1095 static int
1096 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1098 int cpu = (int)(long)hcpu;
1100 switch (action) {
1101 case CPU_UP_CANCELED:
1102 case CPU_UP_CANCELED_FROZEN:
1103 case CPU_DOWN_PREPARE:
1104 case CPU_DOWN_PREPARE_FROZEN:
1105 case CPU_DEAD:
1106 case CPU_DEAD_FROZEN:
1107 hrtick_clear(cpu_rq(cpu));
1108 return NOTIFY_OK;
1111 return NOTIFY_DONE;
1114 static __init void init_hrtick(void)
1116 hotcpu_notifier(hotplug_hrtick, 0);
1118 #else
1120 * Called to set the hrtick timer state.
1122 * called with rq->lock held and irqs disabled
1124 static void hrtick_start(struct rq *rq, u64 delay)
1126 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1127 HRTIMER_MODE_REL_PINNED, 0);
1130 static inline void init_hrtick(void)
1133 #endif /* CONFIG_SMP */
1135 static void init_rq_hrtick(struct rq *rq)
1137 #ifdef CONFIG_SMP
1138 rq->hrtick_csd_pending = 0;
1140 rq->hrtick_csd.flags = 0;
1141 rq->hrtick_csd.func = __hrtick_start;
1142 rq->hrtick_csd.info = rq;
1143 #endif
1145 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1146 rq->hrtick_timer.function = hrtick;
1148 #else /* CONFIG_SCHED_HRTICK */
1149 static inline void hrtick_clear(struct rq *rq)
1153 static inline void init_rq_hrtick(struct rq *rq)
1157 static inline void init_hrtick(void)
1160 #endif /* CONFIG_SCHED_HRTICK */
1163 * resched_task - mark a task 'to be rescheduled now'.
1165 * On UP this means the setting of the need_resched flag, on SMP it
1166 * might also involve a cross-CPU call to trigger the scheduler on
1167 * the target CPU.
1169 #ifdef CONFIG_SMP
1171 #ifndef tsk_is_polling
1172 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1173 #endif
1175 static void resched_task(struct task_struct *p)
1177 int cpu;
1179 assert_raw_spin_locked(&task_rq(p)->lock);
1181 if (test_tsk_need_resched(p))
1182 return;
1184 set_tsk_need_resched(p);
1186 cpu = task_cpu(p);
1187 if (cpu == smp_processor_id())
1188 return;
1190 /* NEED_RESCHED must be visible before we test polling */
1191 smp_mb();
1192 if (!tsk_is_polling(p))
1193 smp_send_reschedule(cpu);
1196 static void resched_cpu(int cpu)
1198 struct rq *rq = cpu_rq(cpu);
1199 unsigned long flags;
1201 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1202 return;
1203 resched_task(cpu_curr(cpu));
1204 raw_spin_unlock_irqrestore(&rq->lock, flags);
1207 #ifdef CONFIG_NO_HZ
1209 * In the semi idle case, use the nearest busy cpu for migrating timers
1210 * from an idle cpu. This is good for power-savings.
1212 * We don't do similar optimization for completely idle system, as
1213 * selecting an idle cpu will add more delays to the timers than intended
1214 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1216 int get_nohz_timer_target(void)
1218 int cpu = smp_processor_id();
1219 int i;
1220 struct sched_domain *sd;
1222 rcu_read_lock();
1223 for_each_domain(cpu, sd) {
1224 for_each_cpu(i, sched_domain_span(sd)) {
1225 if (!idle_cpu(i)) {
1226 cpu = i;
1227 goto unlock;
1231 unlock:
1232 rcu_read_unlock();
1233 return cpu;
1236 * When add_timer_on() enqueues a timer into the timer wheel of an
1237 * idle CPU then this timer might expire before the next timer event
1238 * which is scheduled to wake up that CPU. In case of a completely
1239 * idle system the next event might even be infinite time into the
1240 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1241 * leaves the inner idle loop so the newly added timer is taken into
1242 * account when the CPU goes back to idle and evaluates the timer
1243 * wheel for the next timer event.
1245 void wake_up_idle_cpu(int cpu)
1247 struct rq *rq = cpu_rq(cpu);
1249 if (cpu == smp_processor_id())
1250 return;
1253 * This is safe, as this function is called with the timer
1254 * wheel base lock of (cpu) held. When the CPU is on the way
1255 * to idle and has not yet set rq->curr to idle then it will
1256 * be serialized on the timer wheel base lock and take the new
1257 * timer into account automatically.
1259 if (rq->curr != rq->idle)
1260 return;
1263 * We can set TIF_RESCHED on the idle task of the other CPU
1264 * lockless. The worst case is that the other CPU runs the
1265 * idle task through an additional NOOP schedule()
1267 set_tsk_need_resched(rq->idle);
1269 /* NEED_RESCHED must be visible before we test polling */
1270 smp_mb();
1271 if (!tsk_is_polling(rq->idle))
1272 smp_send_reschedule(cpu);
1275 #endif /* CONFIG_NO_HZ */
1277 static u64 sched_avg_period(void)
1279 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1282 static void sched_avg_update(struct rq *rq)
1284 s64 period = sched_avg_period();
1286 while ((s64)(rq->clock - rq->age_stamp) > period) {
1288 * Inline assembly required to prevent the compiler
1289 * optimising this loop into a divmod call.
1290 * See __iter_div_u64_rem() for another example of this.
1292 asm("" : "+rm" (rq->age_stamp));
1293 rq->age_stamp += period;
1294 rq->rt_avg /= 2;
1298 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1300 rq->rt_avg += rt_delta;
1301 sched_avg_update(rq);
1304 #else /* !CONFIG_SMP */
1305 static void resched_task(struct task_struct *p)
1307 assert_raw_spin_locked(&task_rq(p)->lock);
1308 set_tsk_need_resched(p);
1311 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1315 static void sched_avg_update(struct rq *rq)
1318 #endif /* CONFIG_SMP */
1320 #if BITS_PER_LONG == 32
1321 # define WMULT_CONST (~0UL)
1322 #else
1323 # define WMULT_CONST (1UL << 32)
1324 #endif
1326 #define WMULT_SHIFT 32
1329 * Shift right and round:
1331 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1334 * delta *= weight / lw
1336 static unsigned long
1337 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1338 struct load_weight *lw)
1340 u64 tmp;
1343 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1344 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1345 * 2^SCHED_LOAD_RESOLUTION.
1347 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1348 tmp = (u64)delta_exec * scale_load_down(weight);
1349 else
1350 tmp = (u64)delta_exec;
1352 if (!lw->inv_weight) {
1353 unsigned long w = scale_load_down(lw->weight);
1355 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1356 lw->inv_weight = 1;
1357 else if (unlikely(!w))
1358 lw->inv_weight = WMULT_CONST;
1359 else
1360 lw->inv_weight = WMULT_CONST / w;
1364 * Check whether we'd overflow the 64-bit multiplication:
1366 if (unlikely(tmp > WMULT_CONST))
1367 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1368 WMULT_SHIFT/2);
1369 else
1370 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1372 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1375 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1377 lw->weight += inc;
1378 lw->inv_weight = 0;
1381 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1383 lw->weight -= dec;
1384 lw->inv_weight = 0;
1387 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1389 lw->weight = w;
1390 lw->inv_weight = 0;
1394 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1395 * of tasks with abnormal "nice" values across CPUs the contribution that
1396 * each task makes to its run queue's load is weighted according to its
1397 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1398 * scaled version of the new time slice allocation that they receive on time
1399 * slice expiry etc.
1402 #define WEIGHT_IDLEPRIO 3
1403 #define WMULT_IDLEPRIO 1431655765
1406 * Nice levels are multiplicative, with a gentle 10% change for every
1407 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1408 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1409 * that remained on nice 0.
1411 * The "10% effect" is relative and cumulative: from _any_ nice level,
1412 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1413 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1414 * If a task goes up by ~10% and another task goes down by ~10% then
1415 * the relative distance between them is ~25%.)
1417 static const int prio_to_weight[40] = {
1418 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1419 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1420 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1421 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1422 /* 0 */ 1024, 820, 655, 526, 423,
1423 /* 5 */ 335, 272, 215, 172, 137,
1424 /* 10 */ 110, 87, 70, 56, 45,
1425 /* 15 */ 36, 29, 23, 18, 15,
1429 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1431 * In cases where the weight does not change often, we can use the
1432 * precalculated inverse to speed up arithmetics by turning divisions
1433 * into multiplications:
1435 static const u32 prio_to_wmult[40] = {
1436 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1437 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1438 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1439 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1440 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1441 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1442 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1443 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1446 /* Time spent by the tasks of the cpu accounting group executing in ... */
1447 enum cpuacct_stat_index {
1448 CPUACCT_STAT_USER, /* ... user mode */
1449 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1451 CPUACCT_STAT_NSTATS,
1454 #ifdef CONFIG_CGROUP_CPUACCT
1455 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1456 static void cpuacct_update_stats(struct task_struct *tsk,
1457 enum cpuacct_stat_index idx, cputime_t val);
1458 #else
1459 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1460 static inline void cpuacct_update_stats(struct task_struct *tsk,
1461 enum cpuacct_stat_index idx, cputime_t val) {}
1462 #endif
1464 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1466 update_load_add(&rq->load, load);
1469 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1471 update_load_sub(&rq->load, load);
1474 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1475 typedef int (*tg_visitor)(struct task_group *, void *);
1478 * Iterate the full tree, calling @down when first entering a node and @up when
1479 * leaving it for the final time.
1481 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1483 struct task_group *parent, *child;
1484 int ret;
1486 rcu_read_lock();
1487 parent = &root_task_group;
1488 down:
1489 ret = (*down)(parent, data);
1490 if (ret)
1491 goto out_unlock;
1492 list_for_each_entry_rcu(child, &parent->children, siblings) {
1493 parent = child;
1494 goto down;
1497 continue;
1499 ret = (*up)(parent, data);
1500 if (ret)
1501 goto out_unlock;
1503 child = parent;
1504 parent = parent->parent;
1505 if (parent)
1506 goto up;
1507 out_unlock:
1508 rcu_read_unlock();
1510 return ret;
1513 static int tg_nop(struct task_group *tg, void *data)
1515 return 0;
1517 #endif
1519 #ifdef CONFIG_SMP
1520 /* Used instead of source_load when we know the type == 0 */
1521 static unsigned long weighted_cpuload(const int cpu)
1523 return cpu_rq(cpu)->load.weight;
1527 * Return a low guess at the load of a migration-source cpu weighted
1528 * according to the scheduling class and "nice" value.
1530 * We want to under-estimate the load of migration sources, to
1531 * balance conservatively.
1533 static unsigned long source_load(int cpu, int type)
1535 struct rq *rq = cpu_rq(cpu);
1536 unsigned long total = weighted_cpuload(cpu);
1538 if (type == 0 || !sched_feat(LB_BIAS))
1539 return total;
1541 return min(rq->cpu_load[type-1], total);
1545 * Return a high guess at the load of a migration-target cpu weighted
1546 * according to the scheduling class and "nice" value.
1548 static unsigned long target_load(int cpu, int type)
1550 struct rq *rq = cpu_rq(cpu);
1551 unsigned long total = weighted_cpuload(cpu);
1553 if (type == 0 || !sched_feat(LB_BIAS))
1554 return total;
1556 return max(rq->cpu_load[type-1], total);
1559 static unsigned long power_of(int cpu)
1561 return cpu_rq(cpu)->cpu_power;
1564 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1566 static unsigned long cpu_avg_load_per_task(int cpu)
1568 struct rq *rq = cpu_rq(cpu);
1569 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1571 if (nr_running)
1572 rq->avg_load_per_task = rq->load.weight / nr_running;
1573 else
1574 rq->avg_load_per_task = 0;
1576 return rq->avg_load_per_task;
1579 #ifdef CONFIG_PREEMPT
1581 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1584 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1585 * way at the expense of forcing extra atomic operations in all
1586 * invocations. This assures that the double_lock is acquired using the
1587 * same underlying policy as the spinlock_t on this architecture, which
1588 * reduces latency compared to the unfair variant below. However, it
1589 * also adds more overhead and therefore may reduce throughput.
1591 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1592 __releases(this_rq->lock)
1593 __acquires(busiest->lock)
1594 __acquires(this_rq->lock)
1596 raw_spin_unlock(&this_rq->lock);
1597 double_rq_lock(this_rq, busiest);
1599 return 1;
1602 #else
1604 * Unfair double_lock_balance: Optimizes throughput at the expense of
1605 * latency by eliminating extra atomic operations when the locks are
1606 * already in proper order on entry. This favors lower cpu-ids and will
1607 * grant the double lock to lower cpus over higher ids under contention,
1608 * regardless of entry order into the function.
1610 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1611 __releases(this_rq->lock)
1612 __acquires(busiest->lock)
1613 __acquires(this_rq->lock)
1615 int ret = 0;
1617 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1618 if (busiest < this_rq) {
1619 raw_spin_unlock(&this_rq->lock);
1620 raw_spin_lock(&busiest->lock);
1621 raw_spin_lock_nested(&this_rq->lock,
1622 SINGLE_DEPTH_NESTING);
1623 ret = 1;
1624 } else
1625 raw_spin_lock_nested(&busiest->lock,
1626 SINGLE_DEPTH_NESTING);
1628 return ret;
1631 #endif /* CONFIG_PREEMPT */
1634 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1636 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1638 if (unlikely(!irqs_disabled())) {
1639 /* printk() doesn't work good under rq->lock */
1640 raw_spin_unlock(&this_rq->lock);
1641 BUG_ON(1);
1644 return _double_lock_balance(this_rq, busiest);
1647 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1648 __releases(busiest->lock)
1650 raw_spin_unlock(&busiest->lock);
1651 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1655 * double_rq_lock - safely lock two runqueues
1657 * Note this does not disable interrupts like task_rq_lock,
1658 * you need to do so manually before calling.
1660 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1661 __acquires(rq1->lock)
1662 __acquires(rq2->lock)
1664 BUG_ON(!irqs_disabled());
1665 if (rq1 == rq2) {
1666 raw_spin_lock(&rq1->lock);
1667 __acquire(rq2->lock); /* Fake it out ;) */
1668 } else {
1669 if (rq1 < rq2) {
1670 raw_spin_lock(&rq1->lock);
1671 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1672 } else {
1673 raw_spin_lock(&rq2->lock);
1674 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1680 * double_rq_unlock - safely unlock two runqueues
1682 * Note this does not restore interrupts like task_rq_unlock,
1683 * you need to do so manually after calling.
1685 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1686 __releases(rq1->lock)
1687 __releases(rq2->lock)
1689 raw_spin_unlock(&rq1->lock);
1690 if (rq1 != rq2)
1691 raw_spin_unlock(&rq2->lock);
1692 else
1693 __release(rq2->lock);
1696 #else /* CONFIG_SMP */
1699 * double_rq_lock - safely lock two runqueues
1701 * Note this does not disable interrupts like task_rq_lock,
1702 * you need to do so manually before calling.
1704 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1705 __acquires(rq1->lock)
1706 __acquires(rq2->lock)
1708 BUG_ON(!irqs_disabled());
1709 BUG_ON(rq1 != rq2);
1710 raw_spin_lock(&rq1->lock);
1711 __acquire(rq2->lock); /* Fake it out ;) */
1715 * double_rq_unlock - safely unlock two runqueues
1717 * Note this does not restore interrupts like task_rq_unlock,
1718 * you need to do so manually after calling.
1720 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1721 __releases(rq1->lock)
1722 __releases(rq2->lock)
1724 BUG_ON(rq1 != rq2);
1725 raw_spin_unlock(&rq1->lock);
1726 __release(rq2->lock);
1729 #endif
1731 static void calc_load_account_idle(struct rq *this_rq);
1732 static void update_sysctl(void);
1733 static int get_update_sysctl_factor(void);
1734 static void update_cpu_load(struct rq *this_rq);
1736 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1738 set_task_rq(p, cpu);
1739 #ifdef CONFIG_SMP
1741 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1742 * successfuly executed on another CPU. We must ensure that updates of
1743 * per-task data have been completed by this moment.
1745 smp_wmb();
1746 task_thread_info(p)->cpu = cpu;
1747 #endif
1750 static const struct sched_class rt_sched_class;
1752 #define sched_class_highest (&stop_sched_class)
1753 #define for_each_class(class) \
1754 for (class = sched_class_highest; class; class = class->next)
1756 #include "sched_stats.h"
1758 static void inc_nr_running(struct rq *rq)
1760 rq->nr_running++;
1763 static void dec_nr_running(struct rq *rq)
1765 rq->nr_running--;
1768 static void set_load_weight(struct task_struct *p)
1770 int prio = p->static_prio - MAX_RT_PRIO;
1771 struct load_weight *load = &p->se.load;
1774 * SCHED_IDLE tasks get minimal weight:
1776 if (p->policy == SCHED_IDLE) {
1777 load->weight = scale_load(WEIGHT_IDLEPRIO);
1778 load->inv_weight = WMULT_IDLEPRIO;
1779 return;
1782 load->weight = scale_load(prio_to_weight[prio]);
1783 load->inv_weight = prio_to_wmult[prio];
1786 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1788 update_rq_clock(rq);
1789 sched_info_queued(p);
1790 p->sched_class->enqueue_task(rq, p, flags);
1793 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1795 update_rq_clock(rq);
1796 sched_info_dequeued(p);
1797 p->sched_class->dequeue_task(rq, p, flags);
1801 * activate_task - move a task to the runqueue.
1803 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1805 if (task_contributes_to_load(p))
1806 rq->nr_uninterruptible--;
1808 enqueue_task(rq, p, flags);
1809 inc_nr_running(rq);
1813 * deactivate_task - remove a task from the runqueue.
1815 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1817 if (task_contributes_to_load(p))
1818 rq->nr_uninterruptible++;
1820 dequeue_task(rq, p, flags);
1821 dec_nr_running(rq);
1824 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1827 * There are no locks covering percpu hardirq/softirq time.
1828 * They are only modified in account_system_vtime, on corresponding CPU
1829 * with interrupts disabled. So, writes are safe.
1830 * They are read and saved off onto struct rq in update_rq_clock().
1831 * This may result in other CPU reading this CPU's irq time and can
1832 * race with irq/account_system_vtime on this CPU. We would either get old
1833 * or new value with a side effect of accounting a slice of irq time to wrong
1834 * task when irq is in progress while we read rq->clock. That is a worthy
1835 * compromise in place of having locks on each irq in account_system_time.
1837 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1838 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1840 static DEFINE_PER_CPU(u64, irq_start_time);
1841 static int sched_clock_irqtime;
1843 void enable_sched_clock_irqtime(void)
1845 sched_clock_irqtime = 1;
1848 void disable_sched_clock_irqtime(void)
1850 sched_clock_irqtime = 0;
1853 #ifndef CONFIG_64BIT
1854 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1856 static inline void irq_time_write_begin(void)
1858 __this_cpu_inc(irq_time_seq.sequence);
1859 smp_wmb();
1862 static inline void irq_time_write_end(void)
1864 smp_wmb();
1865 __this_cpu_inc(irq_time_seq.sequence);
1868 static inline u64 irq_time_read(int cpu)
1870 u64 irq_time;
1871 unsigned seq;
1873 do {
1874 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1875 irq_time = per_cpu(cpu_softirq_time, cpu) +
1876 per_cpu(cpu_hardirq_time, cpu);
1877 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1879 return irq_time;
1881 #else /* CONFIG_64BIT */
1882 static inline void irq_time_write_begin(void)
1886 static inline void irq_time_write_end(void)
1890 static inline u64 irq_time_read(int cpu)
1892 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1894 #endif /* CONFIG_64BIT */
1897 * Called before incrementing preempt_count on {soft,}irq_enter
1898 * and before decrementing preempt_count on {soft,}irq_exit.
1900 void account_system_vtime(struct task_struct *curr)
1902 unsigned long flags;
1903 s64 delta;
1904 int cpu;
1906 if (!sched_clock_irqtime)
1907 return;
1909 local_irq_save(flags);
1911 cpu = smp_processor_id();
1912 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1913 __this_cpu_add(irq_start_time, delta);
1915 irq_time_write_begin();
1917 * We do not account for softirq time from ksoftirqd here.
1918 * We want to continue accounting softirq time to ksoftirqd thread
1919 * in that case, so as not to confuse scheduler with a special task
1920 * that do not consume any time, but still wants to run.
1922 if (hardirq_count())
1923 __this_cpu_add(cpu_hardirq_time, delta);
1924 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1925 __this_cpu_add(cpu_softirq_time, delta);
1927 irq_time_write_end();
1928 local_irq_restore(flags);
1930 EXPORT_SYMBOL_GPL(account_system_vtime);
1932 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1934 #ifdef CONFIG_PARAVIRT
1935 static inline u64 steal_ticks(u64 steal)
1937 if (unlikely(steal > NSEC_PER_SEC))
1938 return div_u64(steal, TICK_NSEC);
1940 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1942 #endif
1944 static void update_rq_clock_task(struct rq *rq, s64 delta)
1947 * In theory, the compile should just see 0 here, and optimize out the call
1948 * to sched_rt_avg_update. But I don't trust it...
1950 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
1951 s64 steal = 0, irq_delta = 0;
1952 #endif
1953 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1954 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1957 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1958 * this case when a previous update_rq_clock() happened inside a
1959 * {soft,}irq region.
1961 * When this happens, we stop ->clock_task and only update the
1962 * prev_irq_time stamp to account for the part that fit, so that a next
1963 * update will consume the rest. This ensures ->clock_task is
1964 * monotonic.
1966 * It does however cause some slight miss-attribution of {soft,}irq
1967 * time, a more accurate solution would be to update the irq_time using
1968 * the current rq->clock timestamp, except that would require using
1969 * atomic ops.
1971 if (irq_delta > delta)
1972 irq_delta = delta;
1974 rq->prev_irq_time += irq_delta;
1975 delta -= irq_delta;
1976 #endif
1977 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1978 if (static_branch((&paravirt_steal_rq_enabled))) {
1979 u64 st;
1981 steal = paravirt_steal_clock(cpu_of(rq));
1982 steal -= rq->prev_steal_time_rq;
1984 if (unlikely(steal > delta))
1985 steal = delta;
1987 st = steal_ticks(steal);
1988 steal = st * TICK_NSEC;
1990 rq->prev_steal_time_rq += steal;
1992 delta -= steal;
1994 #endif
1996 rq->clock_task += delta;
1998 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
1999 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2000 sched_rt_avg_update(rq, irq_delta + steal);
2001 #endif
2004 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2005 static int irqtime_account_hi_update(void)
2007 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2008 unsigned long flags;
2009 u64 latest_ns;
2010 int ret = 0;
2012 local_irq_save(flags);
2013 latest_ns = this_cpu_read(cpu_hardirq_time);
2014 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2015 ret = 1;
2016 local_irq_restore(flags);
2017 return ret;
2020 static int irqtime_account_si_update(void)
2022 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2023 unsigned long flags;
2024 u64 latest_ns;
2025 int ret = 0;
2027 local_irq_save(flags);
2028 latest_ns = this_cpu_read(cpu_softirq_time);
2029 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2030 ret = 1;
2031 local_irq_restore(flags);
2032 return ret;
2035 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2037 #define sched_clock_irqtime (0)
2039 #endif
2041 #include "sched_idletask.c"
2042 #include "sched_fair.c"
2043 #include "sched_rt.c"
2044 #include "sched_autogroup.c"
2045 #include "sched_stoptask.c"
2046 #ifdef CONFIG_SCHED_DEBUG
2047 # include "sched_debug.c"
2048 #endif
2050 void sched_set_stop_task(int cpu, struct task_struct *stop)
2052 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2053 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2055 if (stop) {
2057 * Make it appear like a SCHED_FIFO task, its something
2058 * userspace knows about and won't get confused about.
2060 * Also, it will make PI more or less work without too
2061 * much confusion -- but then, stop work should not
2062 * rely on PI working anyway.
2064 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2066 stop->sched_class = &stop_sched_class;
2069 cpu_rq(cpu)->stop = stop;
2071 if (old_stop) {
2073 * Reset it back to a normal scheduling class so that
2074 * it can die in pieces.
2076 old_stop->sched_class = &rt_sched_class;
2081 * __normal_prio - return the priority that is based on the static prio
2083 static inline int __normal_prio(struct task_struct *p)
2085 return p->static_prio;
2089 * Calculate the expected normal priority: i.e. priority
2090 * without taking RT-inheritance into account. Might be
2091 * boosted by interactivity modifiers. Changes upon fork,
2092 * setprio syscalls, and whenever the interactivity
2093 * estimator recalculates.
2095 static inline int normal_prio(struct task_struct *p)
2097 int prio;
2099 if (task_has_rt_policy(p))
2100 prio = MAX_RT_PRIO-1 - p->rt_priority;
2101 else
2102 prio = __normal_prio(p);
2103 return prio;
2107 * Calculate the current priority, i.e. the priority
2108 * taken into account by the scheduler. This value might
2109 * be boosted by RT tasks, or might be boosted by
2110 * interactivity modifiers. Will be RT if the task got
2111 * RT-boosted. If not then it returns p->normal_prio.
2113 static int effective_prio(struct task_struct *p)
2115 p->normal_prio = normal_prio(p);
2117 * If we are RT tasks or we were boosted to RT priority,
2118 * keep the priority unchanged. Otherwise, update priority
2119 * to the normal priority:
2121 if (!rt_prio(p->prio))
2122 return p->normal_prio;
2123 return p->prio;
2127 * task_curr - is this task currently executing on a CPU?
2128 * @p: the task in question.
2130 inline int task_curr(const struct task_struct *p)
2132 return cpu_curr(task_cpu(p)) == p;
2135 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2136 const struct sched_class *prev_class,
2137 int oldprio)
2139 if (prev_class != p->sched_class) {
2140 if (prev_class->switched_from)
2141 prev_class->switched_from(rq, p);
2142 p->sched_class->switched_to(rq, p);
2143 } else if (oldprio != p->prio)
2144 p->sched_class->prio_changed(rq, p, oldprio);
2147 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2149 const struct sched_class *class;
2151 if (p->sched_class == rq->curr->sched_class) {
2152 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2153 } else {
2154 for_each_class(class) {
2155 if (class == rq->curr->sched_class)
2156 break;
2157 if (class == p->sched_class) {
2158 resched_task(rq->curr);
2159 break;
2165 * A queue event has occurred, and we're going to schedule. In
2166 * this case, we can save a useless back to back clock update.
2168 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2169 rq->skip_clock_update = 1;
2172 #ifdef CONFIG_SMP
2174 * Is this task likely cache-hot:
2176 static int
2177 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2179 s64 delta;
2181 if (p->sched_class != &fair_sched_class)
2182 return 0;
2184 if (unlikely(p->policy == SCHED_IDLE))
2185 return 0;
2188 * Buddy candidates are cache hot:
2190 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2191 (&p->se == cfs_rq_of(&p->se)->next ||
2192 &p->se == cfs_rq_of(&p->se)->last))
2193 return 1;
2195 if (sysctl_sched_migration_cost == -1)
2196 return 1;
2197 if (sysctl_sched_migration_cost == 0)
2198 return 0;
2200 delta = now - p->se.exec_start;
2202 return delta < (s64)sysctl_sched_migration_cost;
2205 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2207 #ifdef CONFIG_SCHED_DEBUG
2209 * We should never call set_task_cpu() on a blocked task,
2210 * ttwu() will sort out the placement.
2212 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2213 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2215 #ifdef CONFIG_LOCKDEP
2217 * The caller should hold either p->pi_lock or rq->lock, when changing
2218 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2220 * sched_move_task() holds both and thus holding either pins the cgroup,
2221 * see set_task_rq().
2223 * Furthermore, all task_rq users should acquire both locks, see
2224 * task_rq_lock().
2226 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2227 lockdep_is_held(&task_rq(p)->lock)));
2228 #endif
2229 #endif
2231 trace_sched_migrate_task(p, new_cpu);
2233 if (task_cpu(p) != new_cpu) {
2234 p->se.nr_migrations++;
2235 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
2238 __set_task_cpu(p, new_cpu);
2241 struct migration_arg {
2242 struct task_struct *task;
2243 int dest_cpu;
2246 static int migration_cpu_stop(void *data);
2249 * wait_task_inactive - wait for a thread to unschedule.
2251 * If @match_state is nonzero, it's the @p->state value just checked and
2252 * not expected to change. If it changes, i.e. @p might have woken up,
2253 * then return zero. When we succeed in waiting for @p to be off its CPU,
2254 * we return a positive number (its total switch count). If a second call
2255 * a short while later returns the same number, the caller can be sure that
2256 * @p has remained unscheduled the whole time.
2258 * The caller must ensure that the task *will* unschedule sometime soon,
2259 * else this function might spin for a *long* time. This function can't
2260 * be called with interrupts off, or it may introduce deadlock with
2261 * smp_call_function() if an IPI is sent by the same process we are
2262 * waiting to become inactive.
2264 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2266 unsigned long flags;
2267 int running, on_rq;
2268 unsigned long ncsw;
2269 struct rq *rq;
2271 for (;;) {
2273 * We do the initial early heuristics without holding
2274 * any task-queue locks at all. We'll only try to get
2275 * the runqueue lock when things look like they will
2276 * work out!
2278 rq = task_rq(p);
2281 * If the task is actively running on another CPU
2282 * still, just relax and busy-wait without holding
2283 * any locks.
2285 * NOTE! Since we don't hold any locks, it's not
2286 * even sure that "rq" stays as the right runqueue!
2287 * But we don't care, since "task_running()" will
2288 * return false if the runqueue has changed and p
2289 * is actually now running somewhere else!
2291 while (task_running(rq, p)) {
2292 if (match_state && unlikely(p->state != match_state))
2293 return 0;
2294 cpu_relax();
2298 * Ok, time to look more closely! We need the rq
2299 * lock now, to be *sure*. If we're wrong, we'll
2300 * just go back and repeat.
2302 rq = task_rq_lock(p, &flags);
2303 trace_sched_wait_task(p);
2304 running = task_running(rq, p);
2305 on_rq = p->on_rq;
2306 ncsw = 0;
2307 if (!match_state || p->state == match_state)
2308 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2309 task_rq_unlock(rq, p, &flags);
2312 * If it changed from the expected state, bail out now.
2314 if (unlikely(!ncsw))
2315 break;
2318 * Was it really running after all now that we
2319 * checked with the proper locks actually held?
2321 * Oops. Go back and try again..
2323 if (unlikely(running)) {
2324 cpu_relax();
2325 continue;
2329 * It's not enough that it's not actively running,
2330 * it must be off the runqueue _entirely_, and not
2331 * preempted!
2333 * So if it was still runnable (but just not actively
2334 * running right now), it's preempted, and we should
2335 * yield - it could be a while.
2337 if (unlikely(on_rq)) {
2338 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2340 set_current_state(TASK_UNINTERRUPTIBLE);
2341 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2342 continue;
2346 * Ahh, all good. It wasn't running, and it wasn't
2347 * runnable, which means that it will never become
2348 * running in the future either. We're all done!
2350 break;
2353 return ncsw;
2356 /***
2357 * kick_process - kick a running thread to enter/exit the kernel
2358 * @p: the to-be-kicked thread
2360 * Cause a process which is running on another CPU to enter
2361 * kernel-mode, without any delay. (to get signals handled.)
2363 * NOTE: this function doesn't have to take the runqueue lock,
2364 * because all it wants to ensure is that the remote task enters
2365 * the kernel. If the IPI races and the task has been migrated
2366 * to another CPU then no harm is done and the purpose has been
2367 * achieved as well.
2369 void kick_process(struct task_struct *p)
2371 int cpu;
2373 preempt_disable();
2374 cpu = task_cpu(p);
2375 if ((cpu != smp_processor_id()) && task_curr(p))
2376 smp_send_reschedule(cpu);
2377 preempt_enable();
2379 EXPORT_SYMBOL_GPL(kick_process);
2380 #endif /* CONFIG_SMP */
2382 #ifdef CONFIG_SMP
2384 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2386 static int select_fallback_rq(int cpu, struct task_struct *p)
2388 int dest_cpu;
2389 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2391 /* Look for allowed, online CPU in same node. */
2392 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2393 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2394 return dest_cpu;
2396 /* Any allowed, online CPU? */
2397 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2398 if (dest_cpu < nr_cpu_ids)
2399 return dest_cpu;
2401 /* No more Mr. Nice Guy. */
2402 dest_cpu = cpuset_cpus_allowed_fallback(p);
2404 * Don't tell them about moving exiting tasks or
2405 * kernel threads (both mm NULL), since they never
2406 * leave kernel.
2408 if (p->mm && printk_ratelimit()) {
2409 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2410 task_pid_nr(p), p->comm, cpu);
2413 return dest_cpu;
2417 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2419 static inline
2420 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2422 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2425 * In order not to call set_task_cpu() on a blocking task we need
2426 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2427 * cpu.
2429 * Since this is common to all placement strategies, this lives here.
2431 * [ this allows ->select_task() to simply return task_cpu(p) and
2432 * not worry about this generic constraint ]
2434 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2435 !cpu_online(cpu)))
2436 cpu = select_fallback_rq(task_cpu(p), p);
2438 return cpu;
2441 static void update_avg(u64 *avg, u64 sample)
2443 s64 diff = sample - *avg;
2444 *avg += diff >> 3;
2446 #endif
2448 static void
2449 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2451 #ifdef CONFIG_SCHEDSTATS
2452 struct rq *rq = this_rq();
2454 #ifdef CONFIG_SMP
2455 int this_cpu = smp_processor_id();
2457 if (cpu == this_cpu) {
2458 schedstat_inc(rq, ttwu_local);
2459 schedstat_inc(p, se.statistics.nr_wakeups_local);
2460 } else {
2461 struct sched_domain *sd;
2463 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2464 rcu_read_lock();
2465 for_each_domain(this_cpu, sd) {
2466 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2467 schedstat_inc(sd, ttwu_wake_remote);
2468 break;
2471 rcu_read_unlock();
2474 if (wake_flags & WF_MIGRATED)
2475 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2477 #endif /* CONFIG_SMP */
2479 schedstat_inc(rq, ttwu_count);
2480 schedstat_inc(p, se.statistics.nr_wakeups);
2482 if (wake_flags & WF_SYNC)
2483 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2485 #endif /* CONFIG_SCHEDSTATS */
2488 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2490 activate_task(rq, p, en_flags);
2491 p->on_rq = 1;
2493 /* if a worker is waking up, notify workqueue */
2494 if (p->flags & PF_WQ_WORKER)
2495 wq_worker_waking_up(p, cpu_of(rq));
2499 * Mark the task runnable and perform wakeup-preemption.
2501 static void
2502 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2504 trace_sched_wakeup(p, true);
2505 check_preempt_curr(rq, p, wake_flags);
2507 p->state = TASK_RUNNING;
2508 #ifdef CONFIG_SMP
2509 if (p->sched_class->task_woken)
2510 p->sched_class->task_woken(rq, p);
2512 if (rq->idle_stamp) {
2513 u64 delta = rq->clock - rq->idle_stamp;
2514 u64 max = 2*sysctl_sched_migration_cost;
2516 if (delta > max)
2517 rq->avg_idle = max;
2518 else
2519 update_avg(&rq->avg_idle, delta);
2520 rq->idle_stamp = 0;
2522 #endif
2525 static void
2526 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2528 #ifdef CONFIG_SMP
2529 if (p->sched_contributes_to_load)
2530 rq->nr_uninterruptible--;
2531 #endif
2533 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2534 ttwu_do_wakeup(rq, p, wake_flags);
2538 * Called in case the task @p isn't fully descheduled from its runqueue,
2539 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2540 * since all we need to do is flip p->state to TASK_RUNNING, since
2541 * the task is still ->on_rq.
2543 static int ttwu_remote(struct task_struct *p, int wake_flags)
2545 struct rq *rq;
2546 int ret = 0;
2548 rq = __task_rq_lock(p);
2549 if (p->on_rq) {
2550 ttwu_do_wakeup(rq, p, wake_flags);
2551 ret = 1;
2553 __task_rq_unlock(rq);
2555 return ret;
2558 #ifdef CONFIG_SMP
2559 static void sched_ttwu_do_pending(struct task_struct *list)
2561 struct rq *rq = this_rq();
2563 raw_spin_lock(&rq->lock);
2565 while (list) {
2566 struct task_struct *p = list;
2567 list = list->wake_entry;
2568 ttwu_do_activate(rq, p, 0);
2571 raw_spin_unlock(&rq->lock);
2574 #ifdef CONFIG_HOTPLUG_CPU
2576 static void sched_ttwu_pending(void)
2578 struct rq *rq = this_rq();
2579 struct task_struct *list = xchg(&rq->wake_list, NULL);
2581 if (!list)
2582 return;
2584 sched_ttwu_do_pending(list);
2587 #endif /* CONFIG_HOTPLUG_CPU */
2589 void scheduler_ipi(void)
2591 struct rq *rq = this_rq();
2592 struct task_struct *list = xchg(&rq->wake_list, NULL);
2594 if (!list)
2595 return;
2598 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2599 * traditionally all their work was done from the interrupt return
2600 * path. Now that we actually do some work, we need to make sure
2601 * we do call them.
2603 * Some archs already do call them, luckily irq_enter/exit nest
2604 * properly.
2606 * Arguably we should visit all archs and update all handlers,
2607 * however a fair share of IPIs are still resched only so this would
2608 * somewhat pessimize the simple resched case.
2610 irq_enter();
2611 sched_ttwu_do_pending(list);
2612 irq_exit();
2615 static void ttwu_queue_remote(struct task_struct *p, int cpu)
2617 struct rq *rq = cpu_rq(cpu);
2618 struct task_struct *next = rq->wake_list;
2620 for (;;) {
2621 struct task_struct *old = next;
2623 p->wake_entry = next;
2624 next = cmpxchg(&rq->wake_list, old, p);
2625 if (next == old)
2626 break;
2629 if (!next)
2630 smp_send_reschedule(cpu);
2633 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2634 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2636 struct rq *rq;
2637 int ret = 0;
2639 rq = __task_rq_lock(p);
2640 if (p->on_cpu) {
2641 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2642 ttwu_do_wakeup(rq, p, wake_flags);
2643 ret = 1;
2645 __task_rq_unlock(rq);
2647 return ret;
2650 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2651 #endif /* CONFIG_SMP */
2653 static void ttwu_queue(struct task_struct *p, int cpu)
2655 struct rq *rq = cpu_rq(cpu);
2657 #if defined(CONFIG_SMP)
2658 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2659 sched_clock_cpu(cpu); /* sync clocks x-cpu */
2660 ttwu_queue_remote(p, cpu);
2661 return;
2663 #endif
2665 raw_spin_lock(&rq->lock);
2666 ttwu_do_activate(rq, p, 0);
2667 raw_spin_unlock(&rq->lock);
2671 * try_to_wake_up - wake up a thread
2672 * @p: the thread to be awakened
2673 * @state: the mask of task states that can be woken
2674 * @wake_flags: wake modifier flags (WF_*)
2676 * Put it on the run-queue if it's not already there. The "current"
2677 * thread is always on the run-queue (except when the actual
2678 * re-schedule is in progress), and as such you're allowed to do
2679 * the simpler "current->state = TASK_RUNNING" to mark yourself
2680 * runnable without the overhead of this.
2682 * Returns %true if @p was woken up, %false if it was already running
2683 * or @state didn't match @p's state.
2685 static int
2686 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2688 unsigned long flags;
2689 int cpu, success = 0;
2691 smp_wmb();
2692 raw_spin_lock_irqsave(&p->pi_lock, flags);
2693 if (!(p->state & state))
2694 goto out;
2696 success = 1; /* we're going to change ->state */
2697 cpu = task_cpu(p);
2699 if (p->on_rq && ttwu_remote(p, wake_flags))
2700 goto stat;
2702 #ifdef CONFIG_SMP
2704 * If the owning (remote) cpu is still in the middle of schedule() with
2705 * this task as prev, wait until its done referencing the task.
2707 while (p->on_cpu) {
2708 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2710 * In case the architecture enables interrupts in
2711 * context_switch(), we cannot busy wait, since that
2712 * would lead to deadlocks when an interrupt hits and
2713 * tries to wake up @prev. So bail and do a complete
2714 * remote wakeup.
2716 if (ttwu_activate_remote(p, wake_flags))
2717 goto stat;
2718 #else
2719 cpu_relax();
2720 #endif
2723 * Pairs with the smp_wmb() in finish_lock_switch().
2725 smp_rmb();
2727 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2728 p->state = TASK_WAKING;
2730 if (p->sched_class->task_waking)
2731 p->sched_class->task_waking(p);
2733 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2734 if (task_cpu(p) != cpu) {
2735 wake_flags |= WF_MIGRATED;
2736 set_task_cpu(p, cpu);
2738 #endif /* CONFIG_SMP */
2740 ttwu_queue(p, cpu);
2741 stat:
2742 ttwu_stat(p, cpu, wake_flags);
2743 out:
2744 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2746 return success;
2750 * try_to_wake_up_local - try to wake up a local task with rq lock held
2751 * @p: the thread to be awakened
2753 * Put @p on the run-queue if it's not already there. The caller must
2754 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2755 * the current task.
2757 static void try_to_wake_up_local(struct task_struct *p)
2759 struct rq *rq = task_rq(p);
2761 BUG_ON(rq != this_rq());
2762 BUG_ON(p == current);
2763 lockdep_assert_held(&rq->lock);
2765 if (!raw_spin_trylock(&p->pi_lock)) {
2766 raw_spin_unlock(&rq->lock);
2767 raw_spin_lock(&p->pi_lock);
2768 raw_spin_lock(&rq->lock);
2771 if (!(p->state & TASK_NORMAL))
2772 goto out;
2774 if (!p->on_rq)
2775 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2777 ttwu_do_wakeup(rq, p, 0);
2778 ttwu_stat(p, smp_processor_id(), 0);
2779 out:
2780 raw_spin_unlock(&p->pi_lock);
2784 * wake_up_process - Wake up a specific process
2785 * @p: The process to be woken up.
2787 * Attempt to wake up the nominated process and move it to the set of runnable
2788 * processes. Returns 1 if the process was woken up, 0 if it was already
2789 * running.
2791 * It may be assumed that this function implies a write memory barrier before
2792 * changing the task state if and only if any tasks are woken up.
2794 int wake_up_process(struct task_struct *p)
2796 return try_to_wake_up(p, TASK_ALL, 0);
2798 EXPORT_SYMBOL(wake_up_process);
2800 int wake_up_state(struct task_struct *p, unsigned int state)
2802 return try_to_wake_up(p, state, 0);
2806 * Perform scheduler related setup for a newly forked process p.
2807 * p is forked by current.
2809 * __sched_fork() is basic setup used by init_idle() too:
2811 static void __sched_fork(struct task_struct *p)
2813 p->on_rq = 0;
2815 p->se.on_rq = 0;
2816 p->se.exec_start = 0;
2817 p->se.sum_exec_runtime = 0;
2818 p->se.prev_sum_exec_runtime = 0;
2819 p->se.nr_migrations = 0;
2820 p->se.vruntime = 0;
2821 INIT_LIST_HEAD(&p->se.group_node);
2823 #ifdef CONFIG_SCHEDSTATS
2824 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2825 #endif
2827 INIT_LIST_HEAD(&p->rt.run_list);
2829 #ifdef CONFIG_PREEMPT_NOTIFIERS
2830 INIT_HLIST_HEAD(&p->preempt_notifiers);
2831 #endif
2835 * fork()/clone()-time setup:
2837 void sched_fork(struct task_struct *p)
2839 unsigned long flags;
2840 int cpu = get_cpu();
2842 __sched_fork(p);
2844 * We mark the process as running here. This guarantees that
2845 * nobody will actually run it, and a signal or other external
2846 * event cannot wake it up and insert it on the runqueue either.
2848 p->state = TASK_RUNNING;
2851 * Revert to default priority/policy on fork if requested.
2853 if (unlikely(p->sched_reset_on_fork)) {
2854 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2855 p->policy = SCHED_NORMAL;
2856 p->normal_prio = p->static_prio;
2859 if (PRIO_TO_NICE(p->static_prio) < 0) {
2860 p->static_prio = NICE_TO_PRIO(0);
2861 p->normal_prio = p->static_prio;
2862 set_load_weight(p);
2866 * We don't need the reset flag anymore after the fork. It has
2867 * fulfilled its duty:
2869 p->sched_reset_on_fork = 0;
2873 * Make sure we do not leak PI boosting priority to the child.
2875 p->prio = current->normal_prio;
2877 if (!rt_prio(p->prio))
2878 p->sched_class = &fair_sched_class;
2880 if (p->sched_class->task_fork)
2881 p->sched_class->task_fork(p);
2884 * The child is not yet in the pid-hash so no cgroup attach races,
2885 * and the cgroup is pinned to this child due to cgroup_fork()
2886 * is ran before sched_fork().
2888 * Silence PROVE_RCU.
2890 raw_spin_lock_irqsave(&p->pi_lock, flags);
2891 set_task_cpu(p, cpu);
2892 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2894 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2895 if (likely(sched_info_on()))
2896 memset(&p->sched_info, 0, sizeof(p->sched_info));
2897 #endif
2898 #if defined(CONFIG_SMP)
2899 p->on_cpu = 0;
2900 #endif
2901 #ifdef CONFIG_PREEMPT_COUNT
2902 /* Want to start with kernel preemption disabled. */
2903 task_thread_info(p)->preempt_count = 1;
2904 #endif
2905 #ifdef CONFIG_SMP
2906 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2907 #endif
2909 put_cpu();
2913 * wake_up_new_task - wake up a newly created task for the first time.
2915 * This function will do some initial scheduler statistics housekeeping
2916 * that must be done for every newly created context, then puts the task
2917 * on the runqueue and wakes it.
2919 void wake_up_new_task(struct task_struct *p)
2921 unsigned long flags;
2922 struct rq *rq;
2924 raw_spin_lock_irqsave(&p->pi_lock, flags);
2925 #ifdef CONFIG_SMP
2927 * Fork balancing, do it here and not earlier because:
2928 * - cpus_allowed can change in the fork path
2929 * - any previously selected cpu might disappear through hotplug
2931 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
2932 #endif
2934 rq = __task_rq_lock(p);
2935 activate_task(rq, p, 0);
2936 p->on_rq = 1;
2937 trace_sched_wakeup_new(p, true);
2938 check_preempt_curr(rq, p, WF_FORK);
2939 #ifdef CONFIG_SMP
2940 if (p->sched_class->task_woken)
2941 p->sched_class->task_woken(rq, p);
2942 #endif
2943 task_rq_unlock(rq, p, &flags);
2946 #ifdef CONFIG_PREEMPT_NOTIFIERS
2949 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2950 * @notifier: notifier struct to register
2952 void preempt_notifier_register(struct preempt_notifier *notifier)
2954 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2956 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2959 * preempt_notifier_unregister - no longer interested in preemption notifications
2960 * @notifier: notifier struct to unregister
2962 * This is safe to call from within a preemption notifier.
2964 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2966 hlist_del(&notifier->link);
2968 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2970 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2972 struct preempt_notifier *notifier;
2973 struct hlist_node *node;
2975 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2976 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2979 static void
2980 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2981 struct task_struct *next)
2983 struct preempt_notifier *notifier;
2984 struct hlist_node *node;
2986 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2987 notifier->ops->sched_out(notifier, next);
2990 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2992 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2996 static void
2997 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2998 struct task_struct *next)
3002 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3005 * prepare_task_switch - prepare to switch tasks
3006 * @rq: the runqueue preparing to switch
3007 * @prev: the current task that is being switched out
3008 * @next: the task we are going to switch to.
3010 * This is called with the rq lock held and interrupts off. It must
3011 * be paired with a subsequent finish_task_switch after the context
3012 * switch.
3014 * prepare_task_switch sets up locking and calls architecture specific
3015 * hooks.
3017 static inline void
3018 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3019 struct task_struct *next)
3021 sched_info_switch(prev, next);
3022 perf_event_task_sched_out(prev, next);
3023 fire_sched_out_preempt_notifiers(prev, next);
3024 prepare_lock_switch(rq, next);
3025 prepare_arch_switch(next);
3026 trace_sched_switch(prev, next);
3030 * finish_task_switch - clean up after a task-switch
3031 * @rq: runqueue associated with task-switch
3032 * @prev: the thread we just switched away from.
3034 * finish_task_switch must be called after the context switch, paired
3035 * with a prepare_task_switch call before the context switch.
3036 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3037 * and do any other architecture-specific cleanup actions.
3039 * Note that we may have delayed dropping an mm in context_switch(). If
3040 * so, we finish that here outside of the runqueue lock. (Doing it
3041 * with the lock held can cause deadlocks; see schedule() for
3042 * details.)
3044 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
3045 __releases(rq->lock)
3047 struct mm_struct *mm = rq->prev_mm;
3048 long prev_state;
3050 rq->prev_mm = NULL;
3053 * A task struct has one reference for the use as "current".
3054 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3055 * schedule one last time. The schedule call will never return, and
3056 * the scheduled task must drop that reference.
3057 * The test for TASK_DEAD must occur while the runqueue locks are
3058 * still held, otherwise prev could be scheduled on another cpu, die
3059 * there before we look at prev->state, and then the reference would
3060 * be dropped twice.
3061 * Manfred Spraul <manfred@colorfullife.com>
3063 prev_state = prev->state;
3064 finish_arch_switch(prev);
3065 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3066 local_irq_disable();
3067 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3068 perf_event_task_sched_in(current);
3069 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3070 local_irq_enable();
3071 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3072 finish_lock_switch(rq, prev);
3074 fire_sched_in_preempt_notifiers(current);
3075 if (mm)
3076 mmdrop(mm);
3077 if (unlikely(prev_state == TASK_DEAD)) {
3079 * Remove function-return probe instances associated with this
3080 * task and put them back on the free list.
3082 kprobe_flush_task(prev);
3083 put_task_struct(prev);
3087 #ifdef CONFIG_SMP
3089 /* assumes rq->lock is held */
3090 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3092 if (prev->sched_class->pre_schedule)
3093 prev->sched_class->pre_schedule(rq, prev);
3096 /* rq->lock is NOT held, but preemption is disabled */
3097 static inline void post_schedule(struct rq *rq)
3099 if (rq->post_schedule) {
3100 unsigned long flags;
3102 raw_spin_lock_irqsave(&rq->lock, flags);
3103 if (rq->curr->sched_class->post_schedule)
3104 rq->curr->sched_class->post_schedule(rq);
3105 raw_spin_unlock_irqrestore(&rq->lock, flags);
3107 rq->post_schedule = 0;
3111 #else
3113 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3117 static inline void post_schedule(struct rq *rq)
3121 #endif
3124 * schedule_tail - first thing a freshly forked thread must call.
3125 * @prev: the thread we just switched away from.
3127 asmlinkage void schedule_tail(struct task_struct *prev)
3128 __releases(rq->lock)
3130 struct rq *rq = this_rq();
3132 finish_task_switch(rq, prev);
3135 * FIXME: do we need to worry about rq being invalidated by the
3136 * task_switch?
3138 post_schedule(rq);
3140 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3141 /* In this case, finish_task_switch does not reenable preemption */
3142 preempt_enable();
3143 #endif
3144 if (current->set_child_tid)
3145 put_user(task_pid_vnr(current), current->set_child_tid);
3149 * context_switch - switch to the new MM and the new
3150 * thread's register state.
3152 static inline void
3153 context_switch(struct rq *rq, struct task_struct *prev,
3154 struct task_struct *next)
3156 struct mm_struct *mm, *oldmm;
3158 prepare_task_switch(rq, prev, next);
3160 mm = next->mm;
3161 oldmm = prev->active_mm;
3163 * For paravirt, this is coupled with an exit in switch_to to
3164 * combine the page table reload and the switch backend into
3165 * one hypercall.
3167 arch_start_context_switch(prev);
3169 if (!mm) {
3170 next->active_mm = oldmm;
3171 atomic_inc(&oldmm->mm_count);
3172 enter_lazy_tlb(oldmm, next);
3173 } else
3174 switch_mm(oldmm, mm, next);
3176 if (!prev->mm) {
3177 prev->active_mm = NULL;
3178 rq->prev_mm = oldmm;
3181 * Since the runqueue lock will be released by the next
3182 * task (which is an invalid locking op but in the case
3183 * of the scheduler it's an obvious special-case), so we
3184 * do an early lockdep release here:
3186 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3187 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3188 #endif
3190 /* Here we just switch the register state and the stack. */
3191 switch_to(prev, next, prev);
3193 barrier();
3195 * this_rq must be evaluated again because prev may have moved
3196 * CPUs since it called schedule(), thus the 'rq' on its stack
3197 * frame will be invalid.
3199 finish_task_switch(this_rq(), prev);
3203 * nr_running, nr_uninterruptible and nr_context_switches:
3205 * externally visible scheduler statistics: current number of runnable
3206 * threads, current number of uninterruptible-sleeping threads, total
3207 * number of context switches performed since bootup.
3209 unsigned long nr_running(void)
3211 unsigned long i, sum = 0;
3213 for_each_online_cpu(i)
3214 sum += cpu_rq(i)->nr_running;
3216 return sum;
3219 unsigned long nr_uninterruptible(void)
3221 unsigned long i, sum = 0;
3223 for_each_possible_cpu(i)
3224 sum += cpu_rq(i)->nr_uninterruptible;
3227 * Since we read the counters lockless, it might be slightly
3228 * inaccurate. Do not allow it to go below zero though:
3230 if (unlikely((long)sum < 0))
3231 sum = 0;
3233 return sum;
3236 unsigned long long nr_context_switches(void)
3238 int i;
3239 unsigned long long sum = 0;
3241 for_each_possible_cpu(i)
3242 sum += cpu_rq(i)->nr_switches;
3244 return sum;
3247 unsigned long nr_iowait(void)
3249 unsigned long i, sum = 0;
3251 for_each_possible_cpu(i)
3252 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3254 return sum;
3257 unsigned long nr_iowait_cpu(int cpu)
3259 struct rq *this = cpu_rq(cpu);
3260 return atomic_read(&this->nr_iowait);
3263 unsigned long this_cpu_load(void)
3265 struct rq *this = this_rq();
3266 return this->cpu_load[0];
3270 /* Variables and functions for calc_load */
3271 static atomic_long_t calc_load_tasks;
3272 static unsigned long calc_load_update;
3273 unsigned long avenrun[3];
3274 EXPORT_SYMBOL(avenrun);
3276 static long calc_load_fold_active(struct rq *this_rq)
3278 long nr_active, delta = 0;
3280 nr_active = this_rq->nr_running;
3281 nr_active += (long) this_rq->nr_uninterruptible;
3283 if (nr_active != this_rq->calc_load_active) {
3284 delta = nr_active - this_rq->calc_load_active;
3285 this_rq->calc_load_active = nr_active;
3288 return delta;
3291 static unsigned long
3292 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3294 load *= exp;
3295 load += active * (FIXED_1 - exp);
3296 load += 1UL << (FSHIFT - 1);
3297 return load >> FSHIFT;
3300 #ifdef CONFIG_NO_HZ
3302 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3304 * When making the ILB scale, we should try to pull this in as well.
3306 static atomic_long_t calc_load_tasks_idle;
3308 static void calc_load_account_idle(struct rq *this_rq)
3310 long delta;
3312 delta = calc_load_fold_active(this_rq);
3313 if (delta)
3314 atomic_long_add(delta, &calc_load_tasks_idle);
3317 static long calc_load_fold_idle(void)
3319 long delta = 0;
3322 * Its got a race, we don't care...
3324 if (atomic_long_read(&calc_load_tasks_idle))
3325 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3327 return delta;
3331 * fixed_power_int - compute: x^n, in O(log n) time
3333 * @x: base of the power
3334 * @frac_bits: fractional bits of @x
3335 * @n: power to raise @x to.
3337 * By exploiting the relation between the definition of the natural power
3338 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3339 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3340 * (where: n_i \elem {0, 1}, the binary vector representing n),
3341 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3342 * of course trivially computable in O(log_2 n), the length of our binary
3343 * vector.
3345 static unsigned long
3346 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3348 unsigned long result = 1UL << frac_bits;
3350 if (n) for (;;) {
3351 if (n & 1) {
3352 result *= x;
3353 result += 1UL << (frac_bits - 1);
3354 result >>= frac_bits;
3356 n >>= 1;
3357 if (!n)
3358 break;
3359 x *= x;
3360 x += 1UL << (frac_bits - 1);
3361 x >>= frac_bits;
3364 return result;
3368 * a1 = a0 * e + a * (1 - e)
3370 * a2 = a1 * e + a * (1 - e)
3371 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3372 * = a0 * e^2 + a * (1 - e) * (1 + e)
3374 * a3 = a2 * e + a * (1 - e)
3375 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3376 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3378 * ...
3380 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3381 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3382 * = a0 * e^n + a * (1 - e^n)
3384 * [1] application of the geometric series:
3386 * n 1 - x^(n+1)
3387 * S_n := \Sum x^i = -------------
3388 * i=0 1 - x
3390 static unsigned long
3391 calc_load_n(unsigned long load, unsigned long exp,
3392 unsigned long active, unsigned int n)
3395 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3399 * NO_HZ can leave us missing all per-cpu ticks calling
3400 * calc_load_account_active(), but since an idle CPU folds its delta into
3401 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3402 * in the pending idle delta if our idle period crossed a load cycle boundary.
3404 * Once we've updated the global active value, we need to apply the exponential
3405 * weights adjusted to the number of cycles missed.
3407 static void calc_global_nohz(unsigned long ticks)
3409 long delta, active, n;
3411 if (time_before(jiffies, calc_load_update))
3412 return;
3415 * If we crossed a calc_load_update boundary, make sure to fold
3416 * any pending idle changes, the respective CPUs might have
3417 * missed the tick driven calc_load_account_active() update
3418 * due to NO_HZ.
3420 delta = calc_load_fold_idle();
3421 if (delta)
3422 atomic_long_add(delta, &calc_load_tasks);
3425 * If we were idle for multiple load cycles, apply them.
3427 if (ticks >= LOAD_FREQ) {
3428 n = ticks / LOAD_FREQ;
3430 active = atomic_long_read(&calc_load_tasks);
3431 active = active > 0 ? active * FIXED_1 : 0;
3433 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3434 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3435 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3437 calc_load_update += n * LOAD_FREQ;
3441 * Its possible the remainder of the above division also crosses
3442 * a LOAD_FREQ period, the regular check in calc_global_load()
3443 * which comes after this will take care of that.
3445 * Consider us being 11 ticks before a cycle completion, and us
3446 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3447 * age us 4 cycles, and the test in calc_global_load() will
3448 * pick up the final one.
3451 #else
3452 static void calc_load_account_idle(struct rq *this_rq)
3456 static inline long calc_load_fold_idle(void)
3458 return 0;
3461 static void calc_global_nohz(unsigned long ticks)
3464 #endif
3467 * get_avenrun - get the load average array
3468 * @loads: pointer to dest load array
3469 * @offset: offset to add
3470 * @shift: shift count to shift the result left
3472 * These values are estimates at best, so no need for locking.
3474 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3476 loads[0] = (avenrun[0] + offset) << shift;
3477 loads[1] = (avenrun[1] + offset) << shift;
3478 loads[2] = (avenrun[2] + offset) << shift;
3482 * calc_load - update the avenrun load estimates 10 ticks after the
3483 * CPUs have updated calc_load_tasks.
3485 void calc_global_load(unsigned long ticks)
3487 long active;
3489 calc_global_nohz(ticks);
3491 if (time_before(jiffies, calc_load_update + 10))
3492 return;
3494 active = atomic_long_read(&calc_load_tasks);
3495 active = active > 0 ? active * FIXED_1 : 0;
3497 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3498 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3499 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3501 calc_load_update += LOAD_FREQ;
3505 * Called from update_cpu_load() to periodically update this CPU's
3506 * active count.
3508 static void calc_load_account_active(struct rq *this_rq)
3510 long delta;
3512 if (time_before(jiffies, this_rq->calc_load_update))
3513 return;
3515 delta = calc_load_fold_active(this_rq);
3516 delta += calc_load_fold_idle();
3517 if (delta)
3518 atomic_long_add(delta, &calc_load_tasks);
3520 this_rq->calc_load_update += LOAD_FREQ;
3524 * The exact cpuload at various idx values, calculated at every tick would be
3525 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3527 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3528 * on nth tick when cpu may be busy, then we have:
3529 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3530 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3532 * decay_load_missed() below does efficient calculation of
3533 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3534 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3536 * The calculation is approximated on a 128 point scale.
3537 * degrade_zero_ticks is the number of ticks after which load at any
3538 * particular idx is approximated to be zero.
3539 * degrade_factor is a precomputed table, a row for each load idx.
3540 * Each column corresponds to degradation factor for a power of two ticks,
3541 * based on 128 point scale.
3542 * Example:
3543 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3544 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3546 * With this power of 2 load factors, we can degrade the load n times
3547 * by looking at 1 bits in n and doing as many mult/shift instead of
3548 * n mult/shifts needed by the exact degradation.
3550 #define DEGRADE_SHIFT 7
3551 static const unsigned char
3552 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3553 static const unsigned char
3554 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3555 {0, 0, 0, 0, 0, 0, 0, 0},
3556 {64, 32, 8, 0, 0, 0, 0, 0},
3557 {96, 72, 40, 12, 1, 0, 0},
3558 {112, 98, 75, 43, 15, 1, 0},
3559 {120, 112, 98, 76, 45, 16, 2} };
3562 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3563 * would be when CPU is idle and so we just decay the old load without
3564 * adding any new load.
3566 static unsigned long
3567 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3569 int j = 0;
3571 if (!missed_updates)
3572 return load;
3574 if (missed_updates >= degrade_zero_ticks[idx])
3575 return 0;
3577 if (idx == 1)
3578 return load >> missed_updates;
3580 while (missed_updates) {
3581 if (missed_updates % 2)
3582 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3584 missed_updates >>= 1;
3585 j++;
3587 return load;
3591 * Update rq->cpu_load[] statistics. This function is usually called every
3592 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3593 * every tick. We fix it up based on jiffies.
3595 static void update_cpu_load(struct rq *this_rq)
3597 unsigned long this_load = this_rq->load.weight;
3598 unsigned long curr_jiffies = jiffies;
3599 unsigned long pending_updates;
3600 int i, scale;
3602 this_rq->nr_load_updates++;
3604 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3605 if (curr_jiffies == this_rq->last_load_update_tick)
3606 return;
3608 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3609 this_rq->last_load_update_tick = curr_jiffies;
3611 /* Update our load: */
3612 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3613 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3614 unsigned long old_load, new_load;
3616 /* scale is effectively 1 << i now, and >> i divides by scale */
3618 old_load = this_rq->cpu_load[i];
3619 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3620 new_load = this_load;
3622 * Round up the averaging division if load is increasing. This
3623 * prevents us from getting stuck on 9 if the load is 10, for
3624 * example.
3626 if (new_load > old_load)
3627 new_load += scale - 1;
3629 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3632 sched_avg_update(this_rq);
3635 static void update_cpu_load_active(struct rq *this_rq)
3637 update_cpu_load(this_rq);
3639 calc_load_account_active(this_rq);
3642 #ifdef CONFIG_SMP
3645 * sched_exec - execve() is a valuable balancing opportunity, because at
3646 * this point the task has the smallest effective memory and cache footprint.
3648 void sched_exec(void)
3650 struct task_struct *p = current;
3651 unsigned long flags;
3652 int dest_cpu;
3654 raw_spin_lock_irqsave(&p->pi_lock, flags);
3655 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3656 if (dest_cpu == smp_processor_id())
3657 goto unlock;
3659 if (likely(cpu_active(dest_cpu))) {
3660 struct migration_arg arg = { p, dest_cpu };
3662 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3663 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3664 return;
3666 unlock:
3667 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3670 #endif
3672 DEFINE_PER_CPU(struct kernel_stat, kstat);
3674 EXPORT_PER_CPU_SYMBOL(kstat);
3677 * Return any ns on the sched_clock that have not yet been accounted in
3678 * @p in case that task is currently running.
3680 * Called with task_rq_lock() held on @rq.
3682 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3684 u64 ns = 0;
3686 if (task_current(rq, p)) {
3687 update_rq_clock(rq);
3688 ns = rq->clock_task - p->se.exec_start;
3689 if ((s64)ns < 0)
3690 ns = 0;
3693 return ns;
3696 unsigned long long task_delta_exec(struct task_struct *p)
3698 unsigned long flags;
3699 struct rq *rq;
3700 u64 ns = 0;
3702 rq = task_rq_lock(p, &flags);
3703 ns = do_task_delta_exec(p, rq);
3704 task_rq_unlock(rq, p, &flags);
3706 return ns;
3710 * Return accounted runtime for the task.
3711 * In case the task is currently running, return the runtime plus current's
3712 * pending runtime that have not been accounted yet.
3714 unsigned long long task_sched_runtime(struct task_struct *p)
3716 unsigned long flags;
3717 struct rq *rq;
3718 u64 ns = 0;
3720 rq = task_rq_lock(p, &flags);
3721 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3722 task_rq_unlock(rq, p, &flags);
3724 return ns;
3728 * Return sum_exec_runtime for the thread group.
3729 * In case the task is currently running, return the sum plus current's
3730 * pending runtime that have not been accounted yet.
3732 * Note that the thread group might have other running tasks as well,
3733 * so the return value not includes other pending runtime that other
3734 * running tasks might have.
3736 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3738 struct task_cputime totals;
3739 unsigned long flags;
3740 struct rq *rq;
3741 u64 ns;
3743 rq = task_rq_lock(p, &flags);
3744 thread_group_cputime(p, &totals);
3745 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3746 task_rq_unlock(rq, p, &flags);
3748 return ns;
3752 * Account user cpu time to a process.
3753 * @p: the process that the cpu time gets accounted to
3754 * @cputime: the cpu time spent in user space since the last update
3755 * @cputime_scaled: cputime scaled by cpu frequency
3757 void account_user_time(struct task_struct *p, cputime_t cputime,
3758 cputime_t cputime_scaled)
3760 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3761 cputime64_t tmp;
3763 /* Add user time to process. */
3764 p->utime = cputime_add(p->utime, cputime);
3765 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3766 account_group_user_time(p, cputime);
3768 /* Add user time to cpustat. */
3769 tmp = cputime_to_cputime64(cputime);
3770 if (TASK_NICE(p) > 0)
3771 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3772 else
3773 cpustat->user = cputime64_add(cpustat->user, tmp);
3775 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3776 /* Account for user time used */
3777 acct_update_integrals(p);
3781 * Account guest cpu time to a process.
3782 * @p: the process that the cpu time gets accounted to
3783 * @cputime: the cpu time spent in virtual machine since the last update
3784 * @cputime_scaled: cputime scaled by cpu frequency
3786 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3787 cputime_t cputime_scaled)
3789 cputime64_t tmp;
3790 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3792 tmp = cputime_to_cputime64(cputime);
3794 /* Add guest time to process. */
3795 p->utime = cputime_add(p->utime, cputime);
3796 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3797 account_group_user_time(p, cputime);
3798 p->gtime = cputime_add(p->gtime, cputime);
3800 /* Add guest time to cpustat. */
3801 if (TASK_NICE(p) > 0) {
3802 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3803 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3804 } else {
3805 cpustat->user = cputime64_add(cpustat->user, tmp);
3806 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3811 * Account system cpu time to a process and desired cpustat field
3812 * @p: the process that the cpu time gets accounted to
3813 * @cputime: the cpu time spent in kernel space since the last update
3814 * @cputime_scaled: cputime scaled by cpu frequency
3815 * @target_cputime64: pointer to cpustat field that has to be updated
3817 static inline
3818 void __account_system_time(struct task_struct *p, cputime_t cputime,
3819 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3821 cputime64_t tmp = cputime_to_cputime64(cputime);
3823 /* Add system time to process. */
3824 p->stime = cputime_add(p->stime, cputime);
3825 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3826 account_group_system_time(p, cputime);
3828 /* Add system time to cpustat. */
3829 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3830 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3832 /* Account for system time used */
3833 acct_update_integrals(p);
3837 * Account system cpu time to a process.
3838 * @p: the process that the cpu time gets accounted to
3839 * @hardirq_offset: the offset to subtract from hardirq_count()
3840 * @cputime: the cpu time spent in kernel space since the last update
3841 * @cputime_scaled: cputime scaled by cpu frequency
3843 void account_system_time(struct task_struct *p, int hardirq_offset,
3844 cputime_t cputime, cputime_t cputime_scaled)
3846 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3847 cputime64_t *target_cputime64;
3849 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3850 account_guest_time(p, cputime, cputime_scaled);
3851 return;
3854 if (hardirq_count() - hardirq_offset)
3855 target_cputime64 = &cpustat->irq;
3856 else if (in_serving_softirq())
3857 target_cputime64 = &cpustat->softirq;
3858 else
3859 target_cputime64 = &cpustat->system;
3861 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3865 * Account for involuntary wait time.
3866 * @cputime: the cpu time spent in involuntary wait
3868 void account_steal_time(cputime_t cputime)
3870 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3871 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3873 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3877 * Account for idle time.
3878 * @cputime: the cpu time spent in idle wait
3880 void account_idle_time(cputime_t cputime)
3882 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3883 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3884 struct rq *rq = this_rq();
3886 if (atomic_read(&rq->nr_iowait) > 0)
3887 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3888 else
3889 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3892 static __always_inline bool steal_account_process_tick(void)
3894 #ifdef CONFIG_PARAVIRT
3895 if (static_branch(&paravirt_steal_enabled)) {
3896 u64 steal, st = 0;
3898 steal = paravirt_steal_clock(smp_processor_id());
3899 steal -= this_rq()->prev_steal_time;
3901 st = steal_ticks(steal);
3902 this_rq()->prev_steal_time += st * TICK_NSEC;
3904 account_steal_time(st);
3905 return st;
3907 #endif
3908 return false;
3911 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3913 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3915 * Account a tick to a process and cpustat
3916 * @p: the process that the cpu time gets accounted to
3917 * @user_tick: is the tick from userspace
3918 * @rq: the pointer to rq
3920 * Tick demultiplexing follows the order
3921 * - pending hardirq update
3922 * - pending softirq update
3923 * - user_time
3924 * - idle_time
3925 * - system time
3926 * - check for guest_time
3927 * - else account as system_time
3929 * Check for hardirq is done both for system and user time as there is
3930 * no timer going off while we are on hardirq and hence we may never get an
3931 * opportunity to update it solely in system time.
3932 * p->stime and friends are only updated on system time and not on irq
3933 * softirq as those do not count in task exec_runtime any more.
3935 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3936 struct rq *rq)
3938 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3939 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3940 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3942 if (steal_account_process_tick())
3943 return;
3945 if (irqtime_account_hi_update()) {
3946 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3947 } else if (irqtime_account_si_update()) {
3948 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3949 } else if (this_cpu_ksoftirqd() == p) {
3951 * ksoftirqd time do not get accounted in cpu_softirq_time.
3952 * So, we have to handle it separately here.
3953 * Also, p->stime needs to be updated for ksoftirqd.
3955 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3956 &cpustat->softirq);
3957 } else if (user_tick) {
3958 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3959 } else if (p == rq->idle) {
3960 account_idle_time(cputime_one_jiffy);
3961 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3962 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3963 } else {
3964 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3965 &cpustat->system);
3969 static void irqtime_account_idle_ticks(int ticks)
3971 int i;
3972 struct rq *rq = this_rq();
3974 for (i = 0; i < ticks; i++)
3975 irqtime_account_process_tick(current, 0, rq);
3977 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3978 static void irqtime_account_idle_ticks(int ticks) {}
3979 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3980 struct rq *rq) {}
3981 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3984 * Account a single tick of cpu time.
3985 * @p: the process that the cpu time gets accounted to
3986 * @user_tick: indicates if the tick is a user or a system tick
3988 void account_process_tick(struct task_struct *p, int user_tick)
3990 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3991 struct rq *rq = this_rq();
3993 if (sched_clock_irqtime) {
3994 irqtime_account_process_tick(p, user_tick, rq);
3995 return;
3998 if (steal_account_process_tick())
3999 return;
4001 if (user_tick)
4002 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4003 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4004 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
4005 one_jiffy_scaled);
4006 else
4007 account_idle_time(cputime_one_jiffy);
4011 * Account multiple ticks of steal time.
4012 * @p: the process from which the cpu time has been stolen
4013 * @ticks: number of stolen ticks
4015 void account_steal_ticks(unsigned long ticks)
4017 account_steal_time(jiffies_to_cputime(ticks));
4021 * Account multiple ticks of idle time.
4022 * @ticks: number of stolen ticks
4024 void account_idle_ticks(unsigned long ticks)
4027 if (sched_clock_irqtime) {
4028 irqtime_account_idle_ticks(ticks);
4029 return;
4032 account_idle_time(jiffies_to_cputime(ticks));
4035 #endif
4038 * Use precise platform statistics if available:
4040 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4041 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4043 *ut = p->utime;
4044 *st = p->stime;
4047 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4049 struct task_cputime cputime;
4051 thread_group_cputime(p, &cputime);
4053 *ut = cputime.utime;
4054 *st = cputime.stime;
4056 #else
4058 #ifndef nsecs_to_cputime
4059 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
4060 #endif
4062 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4064 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
4067 * Use CFS's precise accounting:
4069 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
4071 if (total) {
4072 u64 temp = rtime;
4074 temp *= utime;
4075 do_div(temp, total);
4076 utime = (cputime_t)temp;
4077 } else
4078 utime = rtime;
4081 * Compare with previous values, to keep monotonicity:
4083 p->prev_utime = max(p->prev_utime, utime);
4084 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4086 *ut = p->prev_utime;
4087 *st = p->prev_stime;
4091 * Must be called with siglock held.
4093 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4095 struct signal_struct *sig = p->signal;
4096 struct task_cputime cputime;
4097 cputime_t rtime, utime, total;
4099 thread_group_cputime(p, &cputime);
4101 total = cputime_add(cputime.utime, cputime.stime);
4102 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4104 if (total) {
4105 u64 temp = rtime;
4107 temp *= cputime.utime;
4108 do_div(temp, total);
4109 utime = (cputime_t)temp;
4110 } else
4111 utime = rtime;
4113 sig->prev_utime = max(sig->prev_utime, utime);
4114 sig->prev_stime = max(sig->prev_stime,
4115 cputime_sub(rtime, sig->prev_utime));
4117 *ut = sig->prev_utime;
4118 *st = sig->prev_stime;
4120 #endif
4123 * This function gets called by the timer code, with HZ frequency.
4124 * We call it with interrupts disabled.
4126 void scheduler_tick(void)
4128 int cpu = smp_processor_id();
4129 struct rq *rq = cpu_rq(cpu);
4130 struct task_struct *curr = rq->curr;
4132 sched_clock_tick();
4134 raw_spin_lock(&rq->lock);
4135 update_rq_clock(rq);
4136 update_cpu_load_active(rq);
4137 curr->sched_class->task_tick(rq, curr, 0);
4138 raw_spin_unlock(&rq->lock);
4140 perf_event_task_tick();
4142 #ifdef CONFIG_SMP
4143 rq->idle_at_tick = idle_cpu(cpu);
4144 trigger_load_balance(rq, cpu);
4145 #endif
4148 notrace unsigned long get_parent_ip(unsigned long addr)
4150 if (in_lock_functions(addr)) {
4151 addr = CALLER_ADDR2;
4152 if (in_lock_functions(addr))
4153 addr = CALLER_ADDR3;
4155 return addr;
4158 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4159 defined(CONFIG_PREEMPT_TRACER))
4161 void __kprobes add_preempt_count(int val)
4163 #ifdef CONFIG_DEBUG_PREEMPT
4165 * Underflow?
4167 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4168 return;
4169 #endif
4170 preempt_count() += val;
4171 #ifdef CONFIG_DEBUG_PREEMPT
4173 * Spinlock count overflowing soon?
4175 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4176 PREEMPT_MASK - 10);
4177 #endif
4178 if (preempt_count() == val)
4179 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4181 EXPORT_SYMBOL(add_preempt_count);
4183 void __kprobes sub_preempt_count(int val)
4185 #ifdef CONFIG_DEBUG_PREEMPT
4187 * Underflow?
4189 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4190 return;
4192 * Is the spinlock portion underflowing?
4194 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4195 !(preempt_count() & PREEMPT_MASK)))
4196 return;
4197 #endif
4199 if (preempt_count() == val)
4200 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4201 preempt_count() -= val;
4203 EXPORT_SYMBOL(sub_preempt_count);
4205 #endif
4208 * Print scheduling while atomic bug:
4210 static noinline void __schedule_bug(struct task_struct *prev)
4212 struct pt_regs *regs = get_irq_regs();
4214 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4215 prev->comm, prev->pid, preempt_count());
4217 debug_show_held_locks(prev);
4218 print_modules();
4219 if (irqs_disabled())
4220 print_irqtrace_events(prev);
4222 if (regs)
4223 show_regs(regs);
4224 else
4225 dump_stack();
4229 * Various schedule()-time debugging checks and statistics:
4231 static inline void schedule_debug(struct task_struct *prev)
4234 * Test if we are atomic. Since do_exit() needs to call into
4235 * schedule() atomically, we ignore that path for now.
4236 * Otherwise, whine if we are scheduling when we should not be.
4238 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4239 __schedule_bug(prev);
4240 rcu_sleep_check();
4242 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4244 schedstat_inc(this_rq(), sched_count);
4247 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4249 if (prev->on_rq || rq->skip_clock_update < 0)
4250 update_rq_clock(rq);
4251 prev->sched_class->put_prev_task(rq, prev);
4255 * Pick up the highest-prio task:
4257 static inline struct task_struct *
4258 pick_next_task(struct rq *rq)
4260 const struct sched_class *class;
4261 struct task_struct *p;
4264 * Optimization: we know that if all tasks are in
4265 * the fair class we can call that function directly:
4267 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4268 p = fair_sched_class.pick_next_task(rq);
4269 if (likely(p))
4270 return p;
4273 for_each_class(class) {
4274 p = class->pick_next_task(rq);
4275 if (p)
4276 return p;
4279 BUG(); /* the idle class will always have a runnable task */
4283 * schedule() is the main scheduler function.
4285 asmlinkage void __sched schedule(void)
4287 struct task_struct *prev, *next;
4288 unsigned long *switch_count;
4289 struct rq *rq;
4290 int cpu;
4292 need_resched:
4293 preempt_disable();
4294 cpu = smp_processor_id();
4295 rq = cpu_rq(cpu);
4296 rcu_note_context_switch(cpu);
4297 prev = rq->curr;
4299 schedule_debug(prev);
4301 if (sched_feat(HRTICK))
4302 hrtick_clear(rq);
4304 raw_spin_lock_irq(&rq->lock);
4306 switch_count = &prev->nivcsw;
4307 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4308 if (unlikely(signal_pending_state(prev->state, prev))) {
4309 prev->state = TASK_RUNNING;
4310 } else {
4311 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4312 prev->on_rq = 0;
4315 * If a worker went to sleep, notify and ask workqueue
4316 * whether it wants to wake up a task to maintain
4317 * concurrency.
4319 if (prev->flags & PF_WQ_WORKER) {
4320 struct task_struct *to_wakeup;
4322 to_wakeup = wq_worker_sleeping(prev, cpu);
4323 if (to_wakeup)
4324 try_to_wake_up_local(to_wakeup);
4328 * If we are going to sleep and we have plugged IO
4329 * queued, make sure to submit it to avoid deadlocks.
4331 if (blk_needs_flush_plug(prev)) {
4332 raw_spin_unlock(&rq->lock);
4333 blk_schedule_flush_plug(prev);
4334 raw_spin_lock(&rq->lock);
4337 switch_count = &prev->nvcsw;
4340 pre_schedule(rq, prev);
4342 if (unlikely(!rq->nr_running))
4343 idle_balance(cpu, rq);
4345 put_prev_task(rq, prev);
4346 next = pick_next_task(rq);
4347 clear_tsk_need_resched(prev);
4348 rq->skip_clock_update = 0;
4350 if (likely(prev != next)) {
4351 rq->nr_switches++;
4352 rq->curr = next;
4353 ++*switch_count;
4355 context_switch(rq, prev, next); /* unlocks the rq */
4357 * The context switch have flipped the stack from under us
4358 * and restored the local variables which were saved when
4359 * this task called schedule() in the past. prev == current
4360 * is still correct, but it can be moved to another cpu/rq.
4362 cpu = smp_processor_id();
4363 rq = cpu_rq(cpu);
4364 } else
4365 raw_spin_unlock_irq(&rq->lock);
4367 post_schedule(rq);
4369 preempt_enable_no_resched();
4370 if (need_resched())
4371 goto need_resched;
4373 EXPORT_SYMBOL(schedule);
4375 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4377 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4379 if (lock->owner != owner)
4380 return false;
4383 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4384 * lock->owner still matches owner, if that fails, owner might
4385 * point to free()d memory, if it still matches, the rcu_read_lock()
4386 * ensures the memory stays valid.
4388 barrier();
4390 return owner->on_cpu;
4394 * Look out! "owner" is an entirely speculative pointer
4395 * access and not reliable.
4397 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4399 if (!sched_feat(OWNER_SPIN))
4400 return 0;
4402 rcu_read_lock();
4403 while (owner_running(lock, owner)) {
4404 if (need_resched())
4405 break;
4407 arch_mutex_cpu_relax();
4409 rcu_read_unlock();
4412 * We break out the loop above on need_resched() and when the
4413 * owner changed, which is a sign for heavy contention. Return
4414 * success only when lock->owner is NULL.
4416 return lock->owner == NULL;
4418 #endif
4420 #ifdef CONFIG_PREEMPT
4422 * this is the entry point to schedule() from in-kernel preemption
4423 * off of preempt_enable. Kernel preemptions off return from interrupt
4424 * occur there and call schedule directly.
4426 asmlinkage void __sched notrace preempt_schedule(void)
4428 struct thread_info *ti = current_thread_info();
4431 * If there is a non-zero preempt_count or interrupts are disabled,
4432 * we do not want to preempt the current task. Just return..
4434 if (likely(ti->preempt_count || irqs_disabled()))
4435 return;
4437 do {
4438 add_preempt_count_notrace(PREEMPT_ACTIVE);
4439 schedule();
4440 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4443 * Check again in case we missed a preemption opportunity
4444 * between schedule and now.
4446 barrier();
4447 } while (need_resched());
4449 EXPORT_SYMBOL(preempt_schedule);
4452 * this is the entry point to schedule() from kernel preemption
4453 * off of irq context.
4454 * Note, that this is called and return with irqs disabled. This will
4455 * protect us against recursive calling from irq.
4457 asmlinkage void __sched preempt_schedule_irq(void)
4459 struct thread_info *ti = current_thread_info();
4461 /* Catch callers which need to be fixed */
4462 BUG_ON(ti->preempt_count || !irqs_disabled());
4464 do {
4465 add_preempt_count(PREEMPT_ACTIVE);
4466 local_irq_enable();
4467 schedule();
4468 local_irq_disable();
4469 sub_preempt_count(PREEMPT_ACTIVE);
4472 * Check again in case we missed a preemption opportunity
4473 * between schedule and now.
4475 barrier();
4476 } while (need_resched());
4479 #endif /* CONFIG_PREEMPT */
4481 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4482 void *key)
4484 return try_to_wake_up(curr->private, mode, wake_flags);
4486 EXPORT_SYMBOL(default_wake_function);
4489 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4490 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4491 * number) then we wake all the non-exclusive tasks and one exclusive task.
4493 * There are circumstances in which we can try to wake a task which has already
4494 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4495 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4497 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4498 int nr_exclusive, int wake_flags, void *key)
4500 wait_queue_t *curr, *next;
4502 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4503 unsigned flags = curr->flags;
4505 if (curr->func(curr, mode, wake_flags, key) &&
4506 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4507 break;
4512 * __wake_up - wake up threads blocked on a waitqueue.
4513 * @q: the waitqueue
4514 * @mode: which threads
4515 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4516 * @key: is directly passed to the wakeup function
4518 * It may be assumed that this function implies a write memory barrier before
4519 * changing the task state if and only if any tasks are woken up.
4521 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4522 int nr_exclusive, void *key)
4524 unsigned long flags;
4526 spin_lock_irqsave(&q->lock, flags);
4527 __wake_up_common(q, mode, nr_exclusive, 0, key);
4528 spin_unlock_irqrestore(&q->lock, flags);
4530 EXPORT_SYMBOL(__wake_up);
4533 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4535 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4537 __wake_up_common(q, mode, 1, 0, NULL);
4539 EXPORT_SYMBOL_GPL(__wake_up_locked);
4541 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4543 __wake_up_common(q, mode, 1, 0, key);
4545 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4548 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4549 * @q: the waitqueue
4550 * @mode: which threads
4551 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4552 * @key: opaque value to be passed to wakeup targets
4554 * The sync wakeup differs that the waker knows that it will schedule
4555 * away soon, so while the target thread will be woken up, it will not
4556 * be migrated to another CPU - ie. the two threads are 'synchronized'
4557 * with each other. This can prevent needless bouncing between CPUs.
4559 * On UP it can prevent extra preemption.
4561 * It may be assumed that this function implies a write memory barrier before
4562 * changing the task state if and only if any tasks are woken up.
4564 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4565 int nr_exclusive, void *key)
4567 unsigned long flags;
4568 int wake_flags = WF_SYNC;
4570 if (unlikely(!q))
4571 return;
4573 if (unlikely(!nr_exclusive))
4574 wake_flags = 0;
4576 spin_lock_irqsave(&q->lock, flags);
4577 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4578 spin_unlock_irqrestore(&q->lock, flags);
4580 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4583 * __wake_up_sync - see __wake_up_sync_key()
4585 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4587 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4589 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4592 * complete: - signals a single thread waiting on this completion
4593 * @x: holds the state of this particular completion
4595 * This will wake up a single thread waiting on this completion. Threads will be
4596 * awakened in the same order in which they were queued.
4598 * See also complete_all(), wait_for_completion() and related routines.
4600 * It may be assumed that this function implies a write memory barrier before
4601 * changing the task state if and only if any tasks are woken up.
4603 void complete(struct completion *x)
4605 unsigned long flags;
4607 spin_lock_irqsave(&x->wait.lock, flags);
4608 x->done++;
4609 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4610 spin_unlock_irqrestore(&x->wait.lock, flags);
4612 EXPORT_SYMBOL(complete);
4615 * complete_all: - signals all threads waiting on this completion
4616 * @x: holds the state of this particular completion
4618 * This will wake up all threads waiting on this particular completion event.
4620 * It may be assumed that this function implies a write memory barrier before
4621 * changing the task state if and only if any tasks are woken up.
4623 void complete_all(struct completion *x)
4625 unsigned long flags;
4627 spin_lock_irqsave(&x->wait.lock, flags);
4628 x->done += UINT_MAX/2;
4629 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4630 spin_unlock_irqrestore(&x->wait.lock, flags);
4632 EXPORT_SYMBOL(complete_all);
4634 static inline long __sched
4635 do_wait_for_common(struct completion *x, long timeout, int state)
4637 if (!x->done) {
4638 DECLARE_WAITQUEUE(wait, current);
4640 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4641 do {
4642 if (signal_pending_state(state, current)) {
4643 timeout = -ERESTARTSYS;
4644 break;
4646 __set_current_state(state);
4647 spin_unlock_irq(&x->wait.lock);
4648 timeout = schedule_timeout(timeout);
4649 spin_lock_irq(&x->wait.lock);
4650 } while (!x->done && timeout);
4651 __remove_wait_queue(&x->wait, &wait);
4652 if (!x->done)
4653 return timeout;
4655 x->done--;
4656 return timeout ?: 1;
4659 static long __sched
4660 wait_for_common(struct completion *x, long timeout, int state)
4662 might_sleep();
4664 spin_lock_irq(&x->wait.lock);
4665 timeout = do_wait_for_common(x, timeout, state);
4666 spin_unlock_irq(&x->wait.lock);
4667 return timeout;
4671 * wait_for_completion: - waits for completion of a task
4672 * @x: holds the state of this particular completion
4674 * This waits to be signaled for completion of a specific task. It is NOT
4675 * interruptible and there is no timeout.
4677 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4678 * and interrupt capability. Also see complete().
4680 void __sched wait_for_completion(struct completion *x)
4682 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4684 EXPORT_SYMBOL(wait_for_completion);
4687 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4688 * @x: holds the state of this particular completion
4689 * @timeout: timeout value in jiffies
4691 * This waits for either a completion of a specific task to be signaled or for a
4692 * specified timeout to expire. The timeout is in jiffies. It is not
4693 * interruptible.
4695 unsigned long __sched
4696 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4698 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4700 EXPORT_SYMBOL(wait_for_completion_timeout);
4703 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4704 * @x: holds the state of this particular completion
4706 * This waits for completion of a specific task to be signaled. It is
4707 * interruptible.
4709 int __sched wait_for_completion_interruptible(struct completion *x)
4711 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4712 if (t == -ERESTARTSYS)
4713 return t;
4714 return 0;
4716 EXPORT_SYMBOL(wait_for_completion_interruptible);
4719 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4720 * @x: holds the state of this particular completion
4721 * @timeout: timeout value in jiffies
4723 * This waits for either a completion of a specific task to be signaled or for a
4724 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4726 long __sched
4727 wait_for_completion_interruptible_timeout(struct completion *x,
4728 unsigned long timeout)
4730 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4732 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4735 * wait_for_completion_killable: - waits for completion of a task (killable)
4736 * @x: holds the state of this particular completion
4738 * This waits to be signaled for completion of a specific task. It can be
4739 * interrupted by a kill signal.
4741 int __sched wait_for_completion_killable(struct completion *x)
4743 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4744 if (t == -ERESTARTSYS)
4745 return t;
4746 return 0;
4748 EXPORT_SYMBOL(wait_for_completion_killable);
4751 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4752 * @x: holds the state of this particular completion
4753 * @timeout: timeout value in jiffies
4755 * This waits for either a completion of a specific task to be
4756 * signaled or for a specified timeout to expire. It can be
4757 * interrupted by a kill signal. The timeout is in jiffies.
4759 long __sched
4760 wait_for_completion_killable_timeout(struct completion *x,
4761 unsigned long timeout)
4763 return wait_for_common(x, timeout, TASK_KILLABLE);
4765 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4768 * try_wait_for_completion - try to decrement a completion without blocking
4769 * @x: completion structure
4771 * Returns: 0 if a decrement cannot be done without blocking
4772 * 1 if a decrement succeeded.
4774 * If a completion is being used as a counting completion,
4775 * attempt to decrement the counter without blocking. This
4776 * enables us to avoid waiting if the resource the completion
4777 * is protecting is not available.
4779 bool try_wait_for_completion(struct completion *x)
4781 unsigned long flags;
4782 int ret = 1;
4784 spin_lock_irqsave(&x->wait.lock, flags);
4785 if (!x->done)
4786 ret = 0;
4787 else
4788 x->done--;
4789 spin_unlock_irqrestore(&x->wait.lock, flags);
4790 return ret;
4792 EXPORT_SYMBOL(try_wait_for_completion);
4795 * completion_done - Test to see if a completion has any waiters
4796 * @x: completion structure
4798 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4799 * 1 if there are no waiters.
4802 bool completion_done(struct completion *x)
4804 unsigned long flags;
4805 int ret = 1;
4807 spin_lock_irqsave(&x->wait.lock, flags);
4808 if (!x->done)
4809 ret = 0;
4810 spin_unlock_irqrestore(&x->wait.lock, flags);
4811 return ret;
4813 EXPORT_SYMBOL(completion_done);
4815 static long __sched
4816 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4818 unsigned long flags;
4819 wait_queue_t wait;
4821 init_waitqueue_entry(&wait, current);
4823 __set_current_state(state);
4825 spin_lock_irqsave(&q->lock, flags);
4826 __add_wait_queue(q, &wait);
4827 spin_unlock(&q->lock);
4828 timeout = schedule_timeout(timeout);
4829 spin_lock_irq(&q->lock);
4830 __remove_wait_queue(q, &wait);
4831 spin_unlock_irqrestore(&q->lock, flags);
4833 return timeout;
4836 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4838 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4840 EXPORT_SYMBOL(interruptible_sleep_on);
4842 long __sched
4843 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4845 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4847 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4849 void __sched sleep_on(wait_queue_head_t *q)
4851 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4853 EXPORT_SYMBOL(sleep_on);
4855 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4857 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4859 EXPORT_SYMBOL(sleep_on_timeout);
4861 #ifdef CONFIG_RT_MUTEXES
4864 * rt_mutex_setprio - set the current priority of a task
4865 * @p: task
4866 * @prio: prio value (kernel-internal form)
4868 * This function changes the 'effective' priority of a task. It does
4869 * not touch ->normal_prio like __setscheduler().
4871 * Used by the rt_mutex code to implement priority inheritance logic.
4873 void rt_mutex_setprio(struct task_struct *p, int prio)
4875 int oldprio, on_rq, running;
4876 struct rq *rq;
4877 const struct sched_class *prev_class;
4879 BUG_ON(prio < 0 || prio > MAX_PRIO);
4881 rq = __task_rq_lock(p);
4883 trace_sched_pi_setprio(p, prio);
4884 oldprio = p->prio;
4885 prev_class = p->sched_class;
4886 on_rq = p->on_rq;
4887 running = task_current(rq, p);
4888 if (on_rq)
4889 dequeue_task(rq, p, 0);
4890 if (running)
4891 p->sched_class->put_prev_task(rq, p);
4893 if (rt_prio(prio))
4894 p->sched_class = &rt_sched_class;
4895 else
4896 p->sched_class = &fair_sched_class;
4898 p->prio = prio;
4900 if (running)
4901 p->sched_class->set_curr_task(rq);
4902 if (on_rq)
4903 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4905 check_class_changed(rq, p, prev_class, oldprio);
4906 __task_rq_unlock(rq);
4909 #endif
4911 void set_user_nice(struct task_struct *p, long nice)
4913 int old_prio, delta, on_rq;
4914 unsigned long flags;
4915 struct rq *rq;
4917 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4918 return;
4920 * We have to be careful, if called from sys_setpriority(),
4921 * the task might be in the middle of scheduling on another CPU.
4923 rq = task_rq_lock(p, &flags);
4925 * The RT priorities are set via sched_setscheduler(), but we still
4926 * allow the 'normal' nice value to be set - but as expected
4927 * it wont have any effect on scheduling until the task is
4928 * SCHED_FIFO/SCHED_RR:
4930 if (task_has_rt_policy(p)) {
4931 p->static_prio = NICE_TO_PRIO(nice);
4932 goto out_unlock;
4934 on_rq = p->on_rq;
4935 if (on_rq)
4936 dequeue_task(rq, p, 0);
4938 p->static_prio = NICE_TO_PRIO(nice);
4939 set_load_weight(p);
4940 old_prio = p->prio;
4941 p->prio = effective_prio(p);
4942 delta = p->prio - old_prio;
4944 if (on_rq) {
4945 enqueue_task(rq, p, 0);
4947 * If the task increased its priority or is running and
4948 * lowered its priority, then reschedule its CPU:
4950 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4951 resched_task(rq->curr);
4953 out_unlock:
4954 task_rq_unlock(rq, p, &flags);
4956 EXPORT_SYMBOL(set_user_nice);
4959 * can_nice - check if a task can reduce its nice value
4960 * @p: task
4961 * @nice: nice value
4963 int can_nice(const struct task_struct *p, const int nice)
4965 /* convert nice value [19,-20] to rlimit style value [1,40] */
4966 int nice_rlim = 20 - nice;
4968 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4969 capable(CAP_SYS_NICE));
4972 #ifdef __ARCH_WANT_SYS_NICE
4975 * sys_nice - change the priority of the current process.
4976 * @increment: priority increment
4978 * sys_setpriority is a more generic, but much slower function that
4979 * does similar things.
4981 SYSCALL_DEFINE1(nice, int, increment)
4983 long nice, retval;
4986 * Setpriority might change our priority at the same moment.
4987 * We don't have to worry. Conceptually one call occurs first
4988 * and we have a single winner.
4990 if (increment < -40)
4991 increment = -40;
4992 if (increment > 40)
4993 increment = 40;
4995 nice = TASK_NICE(current) + increment;
4996 if (nice < -20)
4997 nice = -20;
4998 if (nice > 19)
4999 nice = 19;
5001 if (increment < 0 && !can_nice(current, nice))
5002 return -EPERM;
5004 retval = security_task_setnice(current, nice);
5005 if (retval)
5006 return retval;
5008 set_user_nice(current, nice);
5009 return 0;
5012 #endif
5015 * task_prio - return the priority value of a given task.
5016 * @p: the task in question.
5018 * This is the priority value as seen by users in /proc.
5019 * RT tasks are offset by -200. Normal tasks are centered
5020 * around 0, value goes from -16 to +15.
5022 int task_prio(const struct task_struct *p)
5024 return p->prio - MAX_RT_PRIO;
5028 * task_nice - return the nice value of a given task.
5029 * @p: the task in question.
5031 int task_nice(const struct task_struct *p)
5033 return TASK_NICE(p);
5035 EXPORT_SYMBOL(task_nice);
5038 * idle_cpu - is a given cpu idle currently?
5039 * @cpu: the processor in question.
5041 int idle_cpu(int cpu)
5043 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5047 * idle_task - return the idle task for a given cpu.
5048 * @cpu: the processor in question.
5050 struct task_struct *idle_task(int cpu)
5052 return cpu_rq(cpu)->idle;
5056 * find_process_by_pid - find a process with a matching PID value.
5057 * @pid: the pid in question.
5059 static struct task_struct *find_process_by_pid(pid_t pid)
5061 return pid ? find_task_by_vpid(pid) : current;
5064 /* Actually do priority change: must hold rq lock. */
5065 static void
5066 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5068 p->policy = policy;
5069 p->rt_priority = prio;
5070 p->normal_prio = normal_prio(p);
5071 /* we are holding p->pi_lock already */
5072 p->prio = rt_mutex_getprio(p);
5073 if (rt_prio(p->prio))
5074 p->sched_class = &rt_sched_class;
5075 else
5076 p->sched_class = &fair_sched_class;
5077 set_load_weight(p);
5081 * check the target process has a UID that matches the current process's
5083 static bool check_same_owner(struct task_struct *p)
5085 const struct cred *cred = current_cred(), *pcred;
5086 bool match;
5088 rcu_read_lock();
5089 pcred = __task_cred(p);
5090 if (cred->user->user_ns == pcred->user->user_ns)
5091 match = (cred->euid == pcred->euid ||
5092 cred->euid == pcred->uid);
5093 else
5094 match = false;
5095 rcu_read_unlock();
5096 return match;
5099 static int __sched_setscheduler(struct task_struct *p, int policy,
5100 const struct sched_param *param, bool user)
5102 int retval, oldprio, oldpolicy = -1, on_rq, running;
5103 unsigned long flags;
5104 const struct sched_class *prev_class;
5105 struct rq *rq;
5106 int reset_on_fork;
5108 /* may grab non-irq protected spin_locks */
5109 BUG_ON(in_interrupt());
5110 recheck:
5111 /* double check policy once rq lock held */
5112 if (policy < 0) {
5113 reset_on_fork = p->sched_reset_on_fork;
5114 policy = oldpolicy = p->policy;
5115 } else {
5116 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5117 policy &= ~SCHED_RESET_ON_FORK;
5119 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5120 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5121 policy != SCHED_IDLE)
5122 return -EINVAL;
5126 * Valid priorities for SCHED_FIFO and SCHED_RR are
5127 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5128 * SCHED_BATCH and SCHED_IDLE is 0.
5130 if (param->sched_priority < 0 ||
5131 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5132 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5133 return -EINVAL;
5134 if (rt_policy(policy) != (param->sched_priority != 0))
5135 return -EINVAL;
5138 * Allow unprivileged RT tasks to decrease priority:
5140 if (user && !capable(CAP_SYS_NICE)) {
5141 if (rt_policy(policy)) {
5142 unsigned long rlim_rtprio =
5143 task_rlimit(p, RLIMIT_RTPRIO);
5145 /* can't set/change the rt policy */
5146 if (policy != p->policy && !rlim_rtprio)
5147 return -EPERM;
5149 /* can't increase priority */
5150 if (param->sched_priority > p->rt_priority &&
5151 param->sched_priority > rlim_rtprio)
5152 return -EPERM;
5156 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5157 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5159 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5160 if (!can_nice(p, TASK_NICE(p)))
5161 return -EPERM;
5164 /* can't change other user's priorities */
5165 if (!check_same_owner(p))
5166 return -EPERM;
5168 /* Normal users shall not reset the sched_reset_on_fork flag */
5169 if (p->sched_reset_on_fork && !reset_on_fork)
5170 return -EPERM;
5173 if (user) {
5174 retval = security_task_setscheduler(p);
5175 if (retval)
5176 return retval;
5180 * make sure no PI-waiters arrive (or leave) while we are
5181 * changing the priority of the task:
5183 * To be able to change p->policy safely, the appropriate
5184 * runqueue lock must be held.
5186 rq = task_rq_lock(p, &flags);
5189 * Changing the policy of the stop threads its a very bad idea
5191 if (p == rq->stop) {
5192 task_rq_unlock(rq, p, &flags);
5193 return -EINVAL;
5197 * If not changing anything there's no need to proceed further:
5199 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5200 param->sched_priority == p->rt_priority))) {
5202 __task_rq_unlock(rq);
5203 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5204 return 0;
5207 #ifdef CONFIG_RT_GROUP_SCHED
5208 if (user) {
5210 * Do not allow realtime tasks into groups that have no runtime
5211 * assigned.
5213 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5214 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5215 !task_group_is_autogroup(task_group(p))) {
5216 task_rq_unlock(rq, p, &flags);
5217 return -EPERM;
5220 #endif
5222 /* recheck policy now with rq lock held */
5223 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5224 policy = oldpolicy = -1;
5225 task_rq_unlock(rq, p, &flags);
5226 goto recheck;
5228 on_rq = p->on_rq;
5229 running = task_current(rq, p);
5230 if (on_rq)
5231 deactivate_task(rq, p, 0);
5232 if (running)
5233 p->sched_class->put_prev_task(rq, p);
5235 p->sched_reset_on_fork = reset_on_fork;
5237 oldprio = p->prio;
5238 prev_class = p->sched_class;
5239 __setscheduler(rq, p, policy, param->sched_priority);
5241 if (running)
5242 p->sched_class->set_curr_task(rq);
5243 if (on_rq)
5244 activate_task(rq, p, 0);
5246 check_class_changed(rq, p, prev_class, oldprio);
5247 task_rq_unlock(rq, p, &flags);
5249 rt_mutex_adjust_pi(p);
5251 return 0;
5255 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5256 * @p: the task in question.
5257 * @policy: new policy.
5258 * @param: structure containing the new RT priority.
5260 * NOTE that the task may be already dead.
5262 int sched_setscheduler(struct task_struct *p, int policy,
5263 const struct sched_param *param)
5265 return __sched_setscheduler(p, policy, param, true);
5267 EXPORT_SYMBOL_GPL(sched_setscheduler);
5270 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5271 * @p: the task in question.
5272 * @policy: new policy.
5273 * @param: structure containing the new RT priority.
5275 * Just like sched_setscheduler, only don't bother checking if the
5276 * current context has permission. For example, this is needed in
5277 * stop_machine(): we create temporary high priority worker threads,
5278 * but our caller might not have that capability.
5280 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5281 const struct sched_param *param)
5283 return __sched_setscheduler(p, policy, param, false);
5286 static int
5287 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5289 struct sched_param lparam;
5290 struct task_struct *p;
5291 int retval;
5293 if (!param || pid < 0)
5294 return -EINVAL;
5295 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5296 return -EFAULT;
5298 rcu_read_lock();
5299 retval = -ESRCH;
5300 p = find_process_by_pid(pid);
5301 if (p != NULL)
5302 retval = sched_setscheduler(p, policy, &lparam);
5303 rcu_read_unlock();
5305 return retval;
5309 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5310 * @pid: the pid in question.
5311 * @policy: new policy.
5312 * @param: structure containing the new RT priority.
5314 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5315 struct sched_param __user *, param)
5317 /* negative values for policy are not valid */
5318 if (policy < 0)
5319 return -EINVAL;
5321 return do_sched_setscheduler(pid, policy, param);
5325 * sys_sched_setparam - set/change the RT priority of a thread
5326 * @pid: the pid in question.
5327 * @param: structure containing the new RT priority.
5329 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5331 return do_sched_setscheduler(pid, -1, param);
5335 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5336 * @pid: the pid in question.
5338 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5340 struct task_struct *p;
5341 int retval;
5343 if (pid < 0)
5344 return -EINVAL;
5346 retval = -ESRCH;
5347 rcu_read_lock();
5348 p = find_process_by_pid(pid);
5349 if (p) {
5350 retval = security_task_getscheduler(p);
5351 if (!retval)
5352 retval = p->policy
5353 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5355 rcu_read_unlock();
5356 return retval;
5360 * sys_sched_getparam - get the RT priority of a thread
5361 * @pid: the pid in question.
5362 * @param: structure containing the RT priority.
5364 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5366 struct sched_param lp;
5367 struct task_struct *p;
5368 int retval;
5370 if (!param || pid < 0)
5371 return -EINVAL;
5373 rcu_read_lock();
5374 p = find_process_by_pid(pid);
5375 retval = -ESRCH;
5376 if (!p)
5377 goto out_unlock;
5379 retval = security_task_getscheduler(p);
5380 if (retval)
5381 goto out_unlock;
5383 lp.sched_priority = p->rt_priority;
5384 rcu_read_unlock();
5387 * This one might sleep, we cannot do it with a spinlock held ...
5389 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5391 return retval;
5393 out_unlock:
5394 rcu_read_unlock();
5395 return retval;
5398 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5400 cpumask_var_t cpus_allowed, new_mask;
5401 struct task_struct *p;
5402 int retval;
5404 get_online_cpus();
5405 rcu_read_lock();
5407 p = find_process_by_pid(pid);
5408 if (!p) {
5409 rcu_read_unlock();
5410 put_online_cpus();
5411 return -ESRCH;
5414 /* Prevent p going away */
5415 get_task_struct(p);
5416 rcu_read_unlock();
5418 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5419 retval = -ENOMEM;
5420 goto out_put_task;
5422 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5423 retval = -ENOMEM;
5424 goto out_free_cpus_allowed;
5426 retval = -EPERM;
5427 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5428 goto out_unlock;
5430 retval = security_task_setscheduler(p);
5431 if (retval)
5432 goto out_unlock;
5434 cpuset_cpus_allowed(p, cpus_allowed);
5435 cpumask_and(new_mask, in_mask, cpus_allowed);
5436 again:
5437 retval = set_cpus_allowed_ptr(p, new_mask);
5439 if (!retval) {
5440 cpuset_cpus_allowed(p, cpus_allowed);
5441 if (!cpumask_subset(new_mask, cpus_allowed)) {
5443 * We must have raced with a concurrent cpuset
5444 * update. Just reset the cpus_allowed to the
5445 * cpuset's cpus_allowed
5447 cpumask_copy(new_mask, cpus_allowed);
5448 goto again;
5451 out_unlock:
5452 free_cpumask_var(new_mask);
5453 out_free_cpus_allowed:
5454 free_cpumask_var(cpus_allowed);
5455 out_put_task:
5456 put_task_struct(p);
5457 put_online_cpus();
5458 return retval;
5461 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5462 struct cpumask *new_mask)
5464 if (len < cpumask_size())
5465 cpumask_clear(new_mask);
5466 else if (len > cpumask_size())
5467 len = cpumask_size();
5469 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5473 * sys_sched_setaffinity - set the cpu affinity of a process
5474 * @pid: pid of the process
5475 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5476 * @user_mask_ptr: user-space pointer to the new cpu mask
5478 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5479 unsigned long __user *, user_mask_ptr)
5481 cpumask_var_t new_mask;
5482 int retval;
5484 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5485 return -ENOMEM;
5487 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5488 if (retval == 0)
5489 retval = sched_setaffinity(pid, new_mask);
5490 free_cpumask_var(new_mask);
5491 return retval;
5494 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5496 struct task_struct *p;
5497 unsigned long flags;
5498 int retval;
5500 get_online_cpus();
5501 rcu_read_lock();
5503 retval = -ESRCH;
5504 p = find_process_by_pid(pid);
5505 if (!p)
5506 goto out_unlock;
5508 retval = security_task_getscheduler(p);
5509 if (retval)
5510 goto out_unlock;
5512 raw_spin_lock_irqsave(&p->pi_lock, flags);
5513 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5514 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5516 out_unlock:
5517 rcu_read_unlock();
5518 put_online_cpus();
5520 return retval;
5524 * sys_sched_getaffinity - get the cpu affinity of a process
5525 * @pid: pid of the process
5526 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5527 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5529 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5530 unsigned long __user *, user_mask_ptr)
5532 int ret;
5533 cpumask_var_t mask;
5535 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5536 return -EINVAL;
5537 if (len & (sizeof(unsigned long)-1))
5538 return -EINVAL;
5540 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5541 return -ENOMEM;
5543 ret = sched_getaffinity(pid, mask);
5544 if (ret == 0) {
5545 size_t retlen = min_t(size_t, len, cpumask_size());
5547 if (copy_to_user(user_mask_ptr, mask, retlen))
5548 ret = -EFAULT;
5549 else
5550 ret = retlen;
5552 free_cpumask_var(mask);
5554 return ret;
5558 * sys_sched_yield - yield the current processor to other threads.
5560 * This function yields the current CPU to other tasks. If there are no
5561 * other threads running on this CPU then this function will return.
5563 SYSCALL_DEFINE0(sched_yield)
5565 struct rq *rq = this_rq_lock();
5567 schedstat_inc(rq, yld_count);
5568 current->sched_class->yield_task(rq);
5571 * Since we are going to call schedule() anyway, there's
5572 * no need to preempt or enable interrupts:
5574 __release(rq->lock);
5575 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5576 do_raw_spin_unlock(&rq->lock);
5577 preempt_enable_no_resched();
5579 schedule();
5581 return 0;
5584 static inline int should_resched(void)
5586 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5589 static void __cond_resched(void)
5591 add_preempt_count(PREEMPT_ACTIVE);
5592 schedule();
5593 sub_preempt_count(PREEMPT_ACTIVE);
5596 int __sched _cond_resched(void)
5598 if (should_resched()) {
5599 __cond_resched();
5600 return 1;
5602 return 0;
5604 EXPORT_SYMBOL(_cond_resched);
5607 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5608 * call schedule, and on return reacquire the lock.
5610 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5611 * operations here to prevent schedule() from being called twice (once via
5612 * spin_unlock(), once by hand).
5614 int __cond_resched_lock(spinlock_t *lock)
5616 int resched = should_resched();
5617 int ret = 0;
5619 lockdep_assert_held(lock);
5621 if (spin_needbreak(lock) || resched) {
5622 spin_unlock(lock);
5623 if (resched)
5624 __cond_resched();
5625 else
5626 cpu_relax();
5627 ret = 1;
5628 spin_lock(lock);
5630 return ret;
5632 EXPORT_SYMBOL(__cond_resched_lock);
5634 int __sched __cond_resched_softirq(void)
5636 BUG_ON(!in_softirq());
5638 if (should_resched()) {
5639 local_bh_enable();
5640 __cond_resched();
5641 local_bh_disable();
5642 return 1;
5644 return 0;
5646 EXPORT_SYMBOL(__cond_resched_softirq);
5649 * yield - yield the current processor to other threads.
5651 * This is a shortcut for kernel-space yielding - it marks the
5652 * thread runnable and calls sys_sched_yield().
5654 void __sched yield(void)
5656 set_current_state(TASK_RUNNING);
5657 sys_sched_yield();
5659 EXPORT_SYMBOL(yield);
5662 * yield_to - yield the current processor to another thread in
5663 * your thread group, or accelerate that thread toward the
5664 * processor it's on.
5665 * @p: target task
5666 * @preempt: whether task preemption is allowed or not
5668 * It's the caller's job to ensure that the target task struct
5669 * can't go away on us before we can do any checks.
5671 * Returns true if we indeed boosted the target task.
5673 bool __sched yield_to(struct task_struct *p, bool preempt)
5675 struct task_struct *curr = current;
5676 struct rq *rq, *p_rq;
5677 unsigned long flags;
5678 bool yielded = 0;
5680 local_irq_save(flags);
5681 rq = this_rq();
5683 again:
5684 p_rq = task_rq(p);
5685 double_rq_lock(rq, p_rq);
5686 while (task_rq(p) != p_rq) {
5687 double_rq_unlock(rq, p_rq);
5688 goto again;
5691 if (!curr->sched_class->yield_to_task)
5692 goto out;
5694 if (curr->sched_class != p->sched_class)
5695 goto out;
5697 if (task_running(p_rq, p) || p->state)
5698 goto out;
5700 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5701 if (yielded) {
5702 schedstat_inc(rq, yld_count);
5704 * Make p's CPU reschedule; pick_next_entity takes care of
5705 * fairness.
5707 if (preempt && rq != p_rq)
5708 resched_task(p_rq->curr);
5711 out:
5712 double_rq_unlock(rq, p_rq);
5713 local_irq_restore(flags);
5715 if (yielded)
5716 schedule();
5718 return yielded;
5720 EXPORT_SYMBOL_GPL(yield_to);
5723 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5724 * that process accounting knows that this is a task in IO wait state.
5726 void __sched io_schedule(void)
5728 struct rq *rq = raw_rq();
5730 delayacct_blkio_start();
5731 atomic_inc(&rq->nr_iowait);
5732 blk_flush_plug(current);
5733 current->in_iowait = 1;
5734 schedule();
5735 current->in_iowait = 0;
5736 atomic_dec(&rq->nr_iowait);
5737 delayacct_blkio_end();
5739 EXPORT_SYMBOL(io_schedule);
5741 long __sched io_schedule_timeout(long timeout)
5743 struct rq *rq = raw_rq();
5744 long ret;
5746 delayacct_blkio_start();
5747 atomic_inc(&rq->nr_iowait);
5748 blk_flush_plug(current);
5749 current->in_iowait = 1;
5750 ret = schedule_timeout(timeout);
5751 current->in_iowait = 0;
5752 atomic_dec(&rq->nr_iowait);
5753 delayacct_blkio_end();
5754 return ret;
5758 * sys_sched_get_priority_max - return maximum RT priority.
5759 * @policy: scheduling class.
5761 * this syscall returns the maximum rt_priority that can be used
5762 * by a given scheduling class.
5764 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5766 int ret = -EINVAL;
5768 switch (policy) {
5769 case SCHED_FIFO:
5770 case SCHED_RR:
5771 ret = MAX_USER_RT_PRIO-1;
5772 break;
5773 case SCHED_NORMAL:
5774 case SCHED_BATCH:
5775 case SCHED_IDLE:
5776 ret = 0;
5777 break;
5779 return ret;
5783 * sys_sched_get_priority_min - return minimum RT priority.
5784 * @policy: scheduling class.
5786 * this syscall returns the minimum rt_priority that can be used
5787 * by a given scheduling class.
5789 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5791 int ret = -EINVAL;
5793 switch (policy) {
5794 case SCHED_FIFO:
5795 case SCHED_RR:
5796 ret = 1;
5797 break;
5798 case SCHED_NORMAL:
5799 case SCHED_BATCH:
5800 case SCHED_IDLE:
5801 ret = 0;
5803 return ret;
5807 * sys_sched_rr_get_interval - return the default timeslice of a process.
5808 * @pid: pid of the process.
5809 * @interval: userspace pointer to the timeslice value.
5811 * this syscall writes the default timeslice value of a given process
5812 * into the user-space timespec buffer. A value of '0' means infinity.
5814 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5815 struct timespec __user *, interval)
5817 struct task_struct *p;
5818 unsigned int time_slice;
5819 unsigned long flags;
5820 struct rq *rq;
5821 int retval;
5822 struct timespec t;
5824 if (pid < 0)
5825 return -EINVAL;
5827 retval = -ESRCH;
5828 rcu_read_lock();
5829 p = find_process_by_pid(pid);
5830 if (!p)
5831 goto out_unlock;
5833 retval = security_task_getscheduler(p);
5834 if (retval)
5835 goto out_unlock;
5837 rq = task_rq_lock(p, &flags);
5838 time_slice = p->sched_class->get_rr_interval(rq, p);
5839 task_rq_unlock(rq, p, &flags);
5841 rcu_read_unlock();
5842 jiffies_to_timespec(time_slice, &t);
5843 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5844 return retval;
5846 out_unlock:
5847 rcu_read_unlock();
5848 return retval;
5851 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5853 void sched_show_task(struct task_struct *p)
5855 unsigned long free = 0;
5856 unsigned state;
5858 state = p->state ? __ffs(p->state) + 1 : 0;
5859 printk(KERN_INFO "%-15.15s %c", p->comm,
5860 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5861 #if BITS_PER_LONG == 32
5862 if (state == TASK_RUNNING)
5863 printk(KERN_CONT " running ");
5864 else
5865 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5866 #else
5867 if (state == TASK_RUNNING)
5868 printk(KERN_CONT " running task ");
5869 else
5870 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5871 #endif
5872 #ifdef CONFIG_DEBUG_STACK_USAGE
5873 free = stack_not_used(p);
5874 #endif
5875 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5876 task_pid_nr(p), task_pid_nr(p->real_parent),
5877 (unsigned long)task_thread_info(p)->flags);
5879 show_stack(p, NULL);
5882 void show_state_filter(unsigned long state_filter)
5884 struct task_struct *g, *p;
5886 #if BITS_PER_LONG == 32
5887 printk(KERN_INFO
5888 " task PC stack pid father\n");
5889 #else
5890 printk(KERN_INFO
5891 " task PC stack pid father\n");
5892 #endif
5893 read_lock(&tasklist_lock);
5894 do_each_thread(g, p) {
5896 * reset the NMI-timeout, listing all files on a slow
5897 * console might take a lot of time:
5899 touch_nmi_watchdog();
5900 if (!state_filter || (p->state & state_filter))
5901 sched_show_task(p);
5902 } while_each_thread(g, p);
5904 touch_all_softlockup_watchdogs();
5906 #ifdef CONFIG_SCHED_DEBUG
5907 sysrq_sched_debug_show();
5908 #endif
5909 read_unlock(&tasklist_lock);
5911 * Only show locks if all tasks are dumped:
5913 if (!state_filter)
5914 debug_show_all_locks();
5917 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5919 idle->sched_class = &idle_sched_class;
5923 * init_idle - set up an idle thread for a given CPU
5924 * @idle: task in question
5925 * @cpu: cpu the idle task belongs to
5927 * NOTE: this function does not set the idle thread's NEED_RESCHED
5928 * flag, to make booting more robust.
5930 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5932 struct rq *rq = cpu_rq(cpu);
5933 unsigned long flags;
5935 raw_spin_lock_irqsave(&rq->lock, flags);
5937 __sched_fork(idle);
5938 idle->state = TASK_RUNNING;
5939 idle->se.exec_start = sched_clock();
5941 do_set_cpus_allowed(idle, cpumask_of(cpu));
5943 * We're having a chicken and egg problem, even though we are
5944 * holding rq->lock, the cpu isn't yet set to this cpu so the
5945 * lockdep check in task_group() will fail.
5947 * Similar case to sched_fork(). / Alternatively we could
5948 * use task_rq_lock() here and obtain the other rq->lock.
5950 * Silence PROVE_RCU
5952 rcu_read_lock();
5953 __set_task_cpu(idle, cpu);
5954 rcu_read_unlock();
5956 rq->curr = rq->idle = idle;
5957 #if defined(CONFIG_SMP)
5958 idle->on_cpu = 1;
5959 #endif
5960 raw_spin_unlock_irqrestore(&rq->lock, flags);
5962 /* Set the preempt count _outside_ the spinlocks! */
5963 task_thread_info(idle)->preempt_count = 0;
5966 * The idle tasks have their own, simple scheduling class:
5968 idle->sched_class = &idle_sched_class;
5969 ftrace_graph_init_idle_task(idle, cpu);
5973 * Increase the granularity value when there are more CPUs,
5974 * because with more CPUs the 'effective latency' as visible
5975 * to users decreases. But the relationship is not linear,
5976 * so pick a second-best guess by going with the log2 of the
5977 * number of CPUs.
5979 * This idea comes from the SD scheduler of Con Kolivas:
5981 static int get_update_sysctl_factor(void)
5983 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5984 unsigned int factor;
5986 switch (sysctl_sched_tunable_scaling) {
5987 case SCHED_TUNABLESCALING_NONE:
5988 factor = 1;
5989 break;
5990 case SCHED_TUNABLESCALING_LINEAR:
5991 factor = cpus;
5992 break;
5993 case SCHED_TUNABLESCALING_LOG:
5994 default:
5995 factor = 1 + ilog2(cpus);
5996 break;
5999 return factor;
6002 static void update_sysctl(void)
6004 unsigned int factor = get_update_sysctl_factor();
6006 #define SET_SYSCTL(name) \
6007 (sysctl_##name = (factor) * normalized_sysctl_##name)
6008 SET_SYSCTL(sched_min_granularity);
6009 SET_SYSCTL(sched_latency);
6010 SET_SYSCTL(sched_wakeup_granularity);
6011 #undef SET_SYSCTL
6014 static inline void sched_init_granularity(void)
6016 update_sysctl();
6019 #ifdef CONFIG_SMP
6020 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6022 if (p->sched_class && p->sched_class->set_cpus_allowed)
6023 p->sched_class->set_cpus_allowed(p, new_mask);
6024 else {
6025 cpumask_copy(&p->cpus_allowed, new_mask);
6026 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6031 * This is how migration works:
6033 * 1) we invoke migration_cpu_stop() on the target CPU using
6034 * stop_one_cpu().
6035 * 2) stopper starts to run (implicitly forcing the migrated thread
6036 * off the CPU)
6037 * 3) it checks whether the migrated task is still in the wrong runqueue.
6038 * 4) if it's in the wrong runqueue then the migration thread removes
6039 * it and puts it into the right queue.
6040 * 5) stopper completes and stop_one_cpu() returns and the migration
6041 * is done.
6045 * Change a given task's CPU affinity. Migrate the thread to a
6046 * proper CPU and schedule it away if the CPU it's executing on
6047 * is removed from the allowed bitmask.
6049 * NOTE: the caller must have a valid reference to the task, the
6050 * task must not exit() & deallocate itself prematurely. The
6051 * call is not atomic; no spinlocks may be held.
6053 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6055 unsigned long flags;
6056 struct rq *rq;
6057 unsigned int dest_cpu;
6058 int ret = 0;
6060 rq = task_rq_lock(p, &flags);
6062 if (cpumask_equal(&p->cpus_allowed, new_mask))
6063 goto out;
6065 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
6066 ret = -EINVAL;
6067 goto out;
6070 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6071 ret = -EINVAL;
6072 goto out;
6075 do_set_cpus_allowed(p, new_mask);
6077 /* Can the task run on the task's current CPU? If so, we're done */
6078 if (cpumask_test_cpu(task_cpu(p), new_mask))
6079 goto out;
6081 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6082 if (p->on_rq) {
6083 struct migration_arg arg = { p, dest_cpu };
6084 /* Need help from migration thread: drop lock and wait. */
6085 task_rq_unlock(rq, p, &flags);
6086 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
6087 tlb_migrate_finish(p->mm);
6088 return 0;
6090 out:
6091 task_rq_unlock(rq, p, &flags);
6093 return ret;
6095 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6098 * Move (not current) task off this cpu, onto dest cpu. We're doing
6099 * this because either it can't run here any more (set_cpus_allowed()
6100 * away from this CPU, or CPU going down), or because we're
6101 * attempting to rebalance this task on exec (sched_exec).
6103 * So we race with normal scheduler movements, but that's OK, as long
6104 * as the task is no longer on this CPU.
6106 * Returns non-zero if task was successfully migrated.
6108 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6110 struct rq *rq_dest, *rq_src;
6111 int ret = 0;
6113 if (unlikely(!cpu_active(dest_cpu)))
6114 return ret;
6116 rq_src = cpu_rq(src_cpu);
6117 rq_dest = cpu_rq(dest_cpu);
6119 raw_spin_lock(&p->pi_lock);
6120 double_rq_lock(rq_src, rq_dest);
6121 /* Already moved. */
6122 if (task_cpu(p) != src_cpu)
6123 goto done;
6124 /* Affinity changed (again). */
6125 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6126 goto fail;
6129 * If we're not on a rq, the next wake-up will ensure we're
6130 * placed properly.
6132 if (p->on_rq) {
6133 deactivate_task(rq_src, p, 0);
6134 set_task_cpu(p, dest_cpu);
6135 activate_task(rq_dest, p, 0);
6136 check_preempt_curr(rq_dest, p, 0);
6138 done:
6139 ret = 1;
6140 fail:
6141 double_rq_unlock(rq_src, rq_dest);
6142 raw_spin_unlock(&p->pi_lock);
6143 return ret;
6147 * migration_cpu_stop - this will be executed by a highprio stopper thread
6148 * and performs thread migration by bumping thread off CPU then
6149 * 'pushing' onto another runqueue.
6151 static int migration_cpu_stop(void *data)
6153 struct migration_arg *arg = data;
6156 * The original target cpu might have gone down and we might
6157 * be on another cpu but it doesn't matter.
6159 local_irq_disable();
6160 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6161 local_irq_enable();
6162 return 0;
6165 #ifdef CONFIG_HOTPLUG_CPU
6168 * Ensures that the idle task is using init_mm right before its cpu goes
6169 * offline.
6171 void idle_task_exit(void)
6173 struct mm_struct *mm = current->active_mm;
6175 BUG_ON(cpu_online(smp_processor_id()));
6177 if (mm != &init_mm)
6178 switch_mm(mm, &init_mm, current);
6179 mmdrop(mm);
6183 * While a dead CPU has no uninterruptible tasks queued at this point,
6184 * it might still have a nonzero ->nr_uninterruptible counter, because
6185 * for performance reasons the counter is not stricly tracking tasks to
6186 * their home CPUs. So we just add the counter to another CPU's counter,
6187 * to keep the global sum constant after CPU-down:
6189 static void migrate_nr_uninterruptible(struct rq *rq_src)
6191 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6193 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6194 rq_src->nr_uninterruptible = 0;
6198 * remove the tasks which were accounted by rq from calc_load_tasks.
6200 static void calc_global_load_remove(struct rq *rq)
6202 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6203 rq->calc_load_active = 0;
6207 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6208 * try_to_wake_up()->select_task_rq().
6210 * Called with rq->lock held even though we'er in stop_machine() and
6211 * there's no concurrency possible, we hold the required locks anyway
6212 * because of lock validation efforts.
6214 static void migrate_tasks(unsigned int dead_cpu)
6216 struct rq *rq = cpu_rq(dead_cpu);
6217 struct task_struct *next, *stop = rq->stop;
6218 int dest_cpu;
6221 * Fudge the rq selection such that the below task selection loop
6222 * doesn't get stuck on the currently eligible stop task.
6224 * We're currently inside stop_machine() and the rq is either stuck
6225 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6226 * either way we should never end up calling schedule() until we're
6227 * done here.
6229 rq->stop = NULL;
6231 for ( ; ; ) {
6233 * There's this thread running, bail when that's the only
6234 * remaining thread.
6236 if (rq->nr_running == 1)
6237 break;
6239 next = pick_next_task(rq);
6240 BUG_ON(!next);
6241 next->sched_class->put_prev_task(rq, next);
6243 /* Find suitable destination for @next, with force if needed. */
6244 dest_cpu = select_fallback_rq(dead_cpu, next);
6245 raw_spin_unlock(&rq->lock);
6247 __migrate_task(next, dead_cpu, dest_cpu);
6249 raw_spin_lock(&rq->lock);
6252 rq->stop = stop;
6255 #endif /* CONFIG_HOTPLUG_CPU */
6257 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6259 static struct ctl_table sd_ctl_dir[] = {
6261 .procname = "sched_domain",
6262 .mode = 0555,
6267 static struct ctl_table sd_ctl_root[] = {
6269 .procname = "kernel",
6270 .mode = 0555,
6271 .child = sd_ctl_dir,
6276 static struct ctl_table *sd_alloc_ctl_entry(int n)
6278 struct ctl_table *entry =
6279 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6281 return entry;
6284 static void sd_free_ctl_entry(struct ctl_table **tablep)
6286 struct ctl_table *entry;
6289 * In the intermediate directories, both the child directory and
6290 * procname are dynamically allocated and could fail but the mode
6291 * will always be set. In the lowest directory the names are
6292 * static strings and all have proc handlers.
6294 for (entry = *tablep; entry->mode; entry++) {
6295 if (entry->child)
6296 sd_free_ctl_entry(&entry->child);
6297 if (entry->proc_handler == NULL)
6298 kfree(entry->procname);
6301 kfree(*tablep);
6302 *tablep = NULL;
6305 static void
6306 set_table_entry(struct ctl_table *entry,
6307 const char *procname, void *data, int maxlen,
6308 mode_t mode, proc_handler *proc_handler)
6310 entry->procname = procname;
6311 entry->data = data;
6312 entry->maxlen = maxlen;
6313 entry->mode = mode;
6314 entry->proc_handler = proc_handler;
6317 static struct ctl_table *
6318 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6320 struct ctl_table *table = sd_alloc_ctl_entry(13);
6322 if (table == NULL)
6323 return NULL;
6325 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6326 sizeof(long), 0644, proc_doulongvec_minmax);
6327 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6328 sizeof(long), 0644, proc_doulongvec_minmax);
6329 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6330 sizeof(int), 0644, proc_dointvec_minmax);
6331 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6332 sizeof(int), 0644, proc_dointvec_minmax);
6333 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6334 sizeof(int), 0644, proc_dointvec_minmax);
6335 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6336 sizeof(int), 0644, proc_dointvec_minmax);
6337 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6338 sizeof(int), 0644, proc_dointvec_minmax);
6339 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6340 sizeof(int), 0644, proc_dointvec_minmax);
6341 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6342 sizeof(int), 0644, proc_dointvec_minmax);
6343 set_table_entry(&table[9], "cache_nice_tries",
6344 &sd->cache_nice_tries,
6345 sizeof(int), 0644, proc_dointvec_minmax);
6346 set_table_entry(&table[10], "flags", &sd->flags,
6347 sizeof(int), 0644, proc_dointvec_minmax);
6348 set_table_entry(&table[11], "name", sd->name,
6349 CORENAME_MAX_SIZE, 0444, proc_dostring);
6350 /* &table[12] is terminator */
6352 return table;
6355 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6357 struct ctl_table *entry, *table;
6358 struct sched_domain *sd;
6359 int domain_num = 0, i;
6360 char buf[32];
6362 for_each_domain(cpu, sd)
6363 domain_num++;
6364 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6365 if (table == NULL)
6366 return NULL;
6368 i = 0;
6369 for_each_domain(cpu, sd) {
6370 snprintf(buf, 32, "domain%d", i);
6371 entry->procname = kstrdup(buf, GFP_KERNEL);
6372 entry->mode = 0555;
6373 entry->child = sd_alloc_ctl_domain_table(sd);
6374 entry++;
6375 i++;
6377 return table;
6380 static struct ctl_table_header *sd_sysctl_header;
6381 static void register_sched_domain_sysctl(void)
6383 int i, cpu_num = num_possible_cpus();
6384 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6385 char buf[32];
6387 WARN_ON(sd_ctl_dir[0].child);
6388 sd_ctl_dir[0].child = entry;
6390 if (entry == NULL)
6391 return;
6393 for_each_possible_cpu(i) {
6394 snprintf(buf, 32, "cpu%d", i);
6395 entry->procname = kstrdup(buf, GFP_KERNEL);
6396 entry->mode = 0555;
6397 entry->child = sd_alloc_ctl_cpu_table(i);
6398 entry++;
6401 WARN_ON(sd_sysctl_header);
6402 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6405 /* may be called multiple times per register */
6406 static void unregister_sched_domain_sysctl(void)
6408 if (sd_sysctl_header)
6409 unregister_sysctl_table(sd_sysctl_header);
6410 sd_sysctl_header = NULL;
6411 if (sd_ctl_dir[0].child)
6412 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6414 #else
6415 static void register_sched_domain_sysctl(void)
6418 static void unregister_sched_domain_sysctl(void)
6421 #endif
6423 static void set_rq_online(struct rq *rq)
6425 if (!rq->online) {
6426 const struct sched_class *class;
6428 cpumask_set_cpu(rq->cpu, rq->rd->online);
6429 rq->online = 1;
6431 for_each_class(class) {
6432 if (class->rq_online)
6433 class->rq_online(rq);
6438 static void set_rq_offline(struct rq *rq)
6440 if (rq->online) {
6441 const struct sched_class *class;
6443 for_each_class(class) {
6444 if (class->rq_offline)
6445 class->rq_offline(rq);
6448 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6449 rq->online = 0;
6454 * migration_call - callback that gets triggered when a CPU is added.
6455 * Here we can start up the necessary migration thread for the new CPU.
6457 static int __cpuinit
6458 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6460 int cpu = (long)hcpu;
6461 unsigned long flags;
6462 struct rq *rq = cpu_rq(cpu);
6464 switch (action & ~CPU_TASKS_FROZEN) {
6466 case CPU_UP_PREPARE:
6467 rq->calc_load_update = calc_load_update;
6468 break;
6470 case CPU_ONLINE:
6471 /* Update our root-domain */
6472 raw_spin_lock_irqsave(&rq->lock, flags);
6473 if (rq->rd) {
6474 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6476 set_rq_online(rq);
6478 raw_spin_unlock_irqrestore(&rq->lock, flags);
6479 break;
6481 #ifdef CONFIG_HOTPLUG_CPU
6482 case CPU_DYING:
6483 sched_ttwu_pending();
6484 /* Update our root-domain */
6485 raw_spin_lock_irqsave(&rq->lock, flags);
6486 if (rq->rd) {
6487 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6488 set_rq_offline(rq);
6490 migrate_tasks(cpu);
6491 BUG_ON(rq->nr_running != 1); /* the migration thread */
6492 raw_spin_unlock_irqrestore(&rq->lock, flags);
6494 migrate_nr_uninterruptible(rq);
6495 calc_global_load_remove(rq);
6496 break;
6497 #endif
6500 update_max_interval();
6502 return NOTIFY_OK;
6506 * Register at high priority so that task migration (migrate_all_tasks)
6507 * happens before everything else. This has to be lower priority than
6508 * the notifier in the perf_event subsystem, though.
6510 static struct notifier_block __cpuinitdata migration_notifier = {
6511 .notifier_call = migration_call,
6512 .priority = CPU_PRI_MIGRATION,
6515 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6516 unsigned long action, void *hcpu)
6518 switch (action & ~CPU_TASKS_FROZEN) {
6519 case CPU_ONLINE:
6520 case CPU_DOWN_FAILED:
6521 set_cpu_active((long)hcpu, true);
6522 return NOTIFY_OK;
6523 default:
6524 return NOTIFY_DONE;
6528 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6529 unsigned long action, void *hcpu)
6531 switch (action & ~CPU_TASKS_FROZEN) {
6532 case CPU_DOWN_PREPARE:
6533 set_cpu_active((long)hcpu, false);
6534 return NOTIFY_OK;
6535 default:
6536 return NOTIFY_DONE;
6540 static int __init migration_init(void)
6542 void *cpu = (void *)(long)smp_processor_id();
6543 int err;
6545 /* Initialize migration for the boot CPU */
6546 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6547 BUG_ON(err == NOTIFY_BAD);
6548 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6549 register_cpu_notifier(&migration_notifier);
6551 /* Register cpu active notifiers */
6552 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6553 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6555 return 0;
6557 early_initcall(migration_init);
6558 #endif
6560 #ifdef CONFIG_SMP
6562 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6564 #ifdef CONFIG_SCHED_DEBUG
6566 static __read_mostly int sched_domain_debug_enabled;
6568 static int __init sched_domain_debug_setup(char *str)
6570 sched_domain_debug_enabled = 1;
6572 return 0;
6574 early_param("sched_debug", sched_domain_debug_setup);
6576 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6577 struct cpumask *groupmask)
6579 struct sched_group *group = sd->groups;
6580 char str[256];
6582 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6583 cpumask_clear(groupmask);
6585 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6587 if (!(sd->flags & SD_LOAD_BALANCE)) {
6588 printk("does not load-balance\n");
6589 if (sd->parent)
6590 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6591 " has parent");
6592 return -1;
6595 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6597 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6598 printk(KERN_ERR "ERROR: domain->span does not contain "
6599 "CPU%d\n", cpu);
6601 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6602 printk(KERN_ERR "ERROR: domain->groups does not contain"
6603 " CPU%d\n", cpu);
6606 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6607 do {
6608 if (!group) {
6609 printk("\n");
6610 printk(KERN_ERR "ERROR: group is NULL\n");
6611 break;
6614 if (!group->sgp->power) {
6615 printk(KERN_CONT "\n");
6616 printk(KERN_ERR "ERROR: domain->cpu_power not "
6617 "set\n");
6618 break;
6621 if (!cpumask_weight(sched_group_cpus(group))) {
6622 printk(KERN_CONT "\n");
6623 printk(KERN_ERR "ERROR: empty group\n");
6624 break;
6627 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6628 printk(KERN_CONT "\n");
6629 printk(KERN_ERR "ERROR: repeated CPUs\n");
6630 break;
6633 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6635 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6637 printk(KERN_CONT " %s", str);
6638 if (group->sgp->power != SCHED_POWER_SCALE) {
6639 printk(KERN_CONT " (cpu_power = %d)",
6640 group->sgp->power);
6643 group = group->next;
6644 } while (group != sd->groups);
6645 printk(KERN_CONT "\n");
6647 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6648 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6650 if (sd->parent &&
6651 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6652 printk(KERN_ERR "ERROR: parent span is not a superset "
6653 "of domain->span\n");
6654 return 0;
6657 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6659 int level = 0;
6661 if (!sched_domain_debug_enabled)
6662 return;
6664 if (!sd) {
6665 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6666 return;
6669 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6671 for (;;) {
6672 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
6673 break;
6674 level++;
6675 sd = sd->parent;
6676 if (!sd)
6677 break;
6680 #else /* !CONFIG_SCHED_DEBUG */
6681 # define sched_domain_debug(sd, cpu) do { } while (0)
6682 #endif /* CONFIG_SCHED_DEBUG */
6684 static int sd_degenerate(struct sched_domain *sd)
6686 if (cpumask_weight(sched_domain_span(sd)) == 1)
6687 return 1;
6689 /* Following flags need at least 2 groups */
6690 if (sd->flags & (SD_LOAD_BALANCE |
6691 SD_BALANCE_NEWIDLE |
6692 SD_BALANCE_FORK |
6693 SD_BALANCE_EXEC |
6694 SD_SHARE_CPUPOWER |
6695 SD_SHARE_PKG_RESOURCES)) {
6696 if (sd->groups != sd->groups->next)
6697 return 0;
6700 /* Following flags don't use groups */
6701 if (sd->flags & (SD_WAKE_AFFINE))
6702 return 0;
6704 return 1;
6707 static int
6708 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6710 unsigned long cflags = sd->flags, pflags = parent->flags;
6712 if (sd_degenerate(parent))
6713 return 1;
6715 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6716 return 0;
6718 /* Flags needing groups don't count if only 1 group in parent */
6719 if (parent->groups == parent->groups->next) {
6720 pflags &= ~(SD_LOAD_BALANCE |
6721 SD_BALANCE_NEWIDLE |
6722 SD_BALANCE_FORK |
6723 SD_BALANCE_EXEC |
6724 SD_SHARE_CPUPOWER |
6725 SD_SHARE_PKG_RESOURCES);
6726 if (nr_node_ids == 1)
6727 pflags &= ~SD_SERIALIZE;
6729 if (~cflags & pflags)
6730 return 0;
6732 return 1;
6735 static void free_rootdomain(struct rcu_head *rcu)
6737 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6739 cpupri_cleanup(&rd->cpupri);
6740 free_cpumask_var(rd->rto_mask);
6741 free_cpumask_var(rd->online);
6742 free_cpumask_var(rd->span);
6743 kfree(rd);
6746 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6748 struct root_domain *old_rd = NULL;
6749 unsigned long flags;
6751 raw_spin_lock_irqsave(&rq->lock, flags);
6753 if (rq->rd) {
6754 old_rd = rq->rd;
6756 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6757 set_rq_offline(rq);
6759 cpumask_clear_cpu(rq->cpu, old_rd->span);
6762 * If we dont want to free the old_rt yet then
6763 * set old_rd to NULL to skip the freeing later
6764 * in this function:
6766 if (!atomic_dec_and_test(&old_rd->refcount))
6767 old_rd = NULL;
6770 atomic_inc(&rd->refcount);
6771 rq->rd = rd;
6773 cpumask_set_cpu(rq->cpu, rd->span);
6774 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6775 set_rq_online(rq);
6777 raw_spin_unlock_irqrestore(&rq->lock, flags);
6779 if (old_rd)
6780 call_rcu_sched(&old_rd->rcu, free_rootdomain);
6783 static int init_rootdomain(struct root_domain *rd)
6785 memset(rd, 0, sizeof(*rd));
6787 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6788 goto out;
6789 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6790 goto free_span;
6791 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6792 goto free_online;
6794 if (cpupri_init(&rd->cpupri) != 0)
6795 goto free_rto_mask;
6796 return 0;
6798 free_rto_mask:
6799 free_cpumask_var(rd->rto_mask);
6800 free_online:
6801 free_cpumask_var(rd->online);
6802 free_span:
6803 free_cpumask_var(rd->span);
6804 out:
6805 return -ENOMEM;
6808 static void init_defrootdomain(void)
6810 init_rootdomain(&def_root_domain);
6812 atomic_set(&def_root_domain.refcount, 1);
6815 static struct root_domain *alloc_rootdomain(void)
6817 struct root_domain *rd;
6819 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6820 if (!rd)
6821 return NULL;
6823 if (init_rootdomain(rd) != 0) {
6824 kfree(rd);
6825 return NULL;
6828 return rd;
6831 static void free_sched_groups(struct sched_group *sg, int free_sgp)
6833 struct sched_group *tmp, *first;
6835 if (!sg)
6836 return;
6838 first = sg;
6839 do {
6840 tmp = sg->next;
6842 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
6843 kfree(sg->sgp);
6845 kfree(sg);
6846 sg = tmp;
6847 } while (sg != first);
6850 static void free_sched_domain(struct rcu_head *rcu)
6852 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6855 * If its an overlapping domain it has private groups, iterate and
6856 * nuke them all.
6858 if (sd->flags & SD_OVERLAP) {
6859 free_sched_groups(sd->groups, 1);
6860 } else if (atomic_dec_and_test(&sd->groups->ref)) {
6861 kfree(sd->groups->sgp);
6862 kfree(sd->groups);
6864 kfree(sd);
6867 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6869 call_rcu(&sd->rcu, free_sched_domain);
6872 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6874 for (; sd; sd = sd->parent)
6875 destroy_sched_domain(sd, cpu);
6879 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6880 * hold the hotplug lock.
6882 static void
6883 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6885 struct rq *rq = cpu_rq(cpu);
6886 struct sched_domain *tmp;
6888 /* Remove the sched domains which do not contribute to scheduling. */
6889 for (tmp = sd; tmp; ) {
6890 struct sched_domain *parent = tmp->parent;
6891 if (!parent)
6892 break;
6894 if (sd_parent_degenerate(tmp, parent)) {
6895 tmp->parent = parent->parent;
6896 if (parent->parent)
6897 parent->parent->child = tmp;
6898 destroy_sched_domain(parent, cpu);
6899 } else
6900 tmp = tmp->parent;
6903 if (sd && sd_degenerate(sd)) {
6904 tmp = sd;
6905 sd = sd->parent;
6906 destroy_sched_domain(tmp, cpu);
6907 if (sd)
6908 sd->child = NULL;
6911 sched_domain_debug(sd, cpu);
6913 rq_attach_root(rq, rd);
6914 tmp = rq->sd;
6915 rcu_assign_pointer(rq->sd, sd);
6916 destroy_sched_domains(tmp, cpu);
6919 /* cpus with isolated domains */
6920 static cpumask_var_t cpu_isolated_map;
6922 /* Setup the mask of cpus configured for isolated domains */
6923 static int __init isolated_cpu_setup(char *str)
6925 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6926 cpulist_parse(str, cpu_isolated_map);
6927 return 1;
6930 __setup("isolcpus=", isolated_cpu_setup);
6932 #define SD_NODES_PER_DOMAIN 16
6934 #ifdef CONFIG_NUMA
6937 * find_next_best_node - find the next node to include in a sched_domain
6938 * @node: node whose sched_domain we're building
6939 * @used_nodes: nodes already in the sched_domain
6941 * Find the next node to include in a given scheduling domain. Simply
6942 * finds the closest node not already in the @used_nodes map.
6944 * Should use nodemask_t.
6946 static int find_next_best_node(int node, nodemask_t *used_nodes)
6948 int i, n, val, min_val, best_node = -1;
6950 min_val = INT_MAX;
6952 for (i = 0; i < nr_node_ids; i++) {
6953 /* Start at @node */
6954 n = (node + i) % nr_node_ids;
6956 if (!nr_cpus_node(n))
6957 continue;
6959 /* Skip already used nodes */
6960 if (node_isset(n, *used_nodes))
6961 continue;
6963 /* Simple min distance search */
6964 val = node_distance(node, n);
6966 if (val < min_val) {
6967 min_val = val;
6968 best_node = n;
6972 if (best_node != -1)
6973 node_set(best_node, *used_nodes);
6974 return best_node;
6978 * sched_domain_node_span - get a cpumask for a node's sched_domain
6979 * @node: node whose cpumask we're constructing
6980 * @span: resulting cpumask
6982 * Given a node, construct a good cpumask for its sched_domain to span. It
6983 * should be one that prevents unnecessary balancing, but also spreads tasks
6984 * out optimally.
6986 static void sched_domain_node_span(int node, struct cpumask *span)
6988 nodemask_t used_nodes;
6989 int i;
6991 cpumask_clear(span);
6992 nodes_clear(used_nodes);
6994 cpumask_or(span, span, cpumask_of_node(node));
6995 node_set(node, used_nodes);
6997 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6998 int next_node = find_next_best_node(node, &used_nodes);
6999 if (next_node < 0)
7000 break;
7001 cpumask_or(span, span, cpumask_of_node(next_node));
7005 static const struct cpumask *cpu_node_mask(int cpu)
7007 lockdep_assert_held(&sched_domains_mutex);
7009 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7011 return sched_domains_tmpmask;
7014 static const struct cpumask *cpu_allnodes_mask(int cpu)
7016 return cpu_possible_mask;
7018 #endif /* CONFIG_NUMA */
7020 static const struct cpumask *cpu_cpu_mask(int cpu)
7022 return cpumask_of_node(cpu_to_node(cpu));
7025 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7027 struct sd_data {
7028 struct sched_domain **__percpu sd;
7029 struct sched_group **__percpu sg;
7030 struct sched_group_power **__percpu sgp;
7033 struct s_data {
7034 struct sched_domain ** __percpu sd;
7035 struct root_domain *rd;
7038 enum s_alloc {
7039 sa_rootdomain,
7040 sa_sd,
7041 sa_sd_storage,
7042 sa_none,
7045 struct sched_domain_topology_level;
7047 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
7048 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7050 #define SDTL_OVERLAP 0x01
7052 struct sched_domain_topology_level {
7053 sched_domain_init_f init;
7054 sched_domain_mask_f mask;
7055 int flags;
7056 struct sd_data data;
7059 static int
7060 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7062 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7063 const struct cpumask *span = sched_domain_span(sd);
7064 struct cpumask *covered = sched_domains_tmpmask;
7065 struct sd_data *sdd = sd->private;
7066 struct sched_domain *child;
7067 int i;
7069 cpumask_clear(covered);
7071 for_each_cpu(i, span) {
7072 struct cpumask *sg_span;
7074 if (cpumask_test_cpu(i, covered))
7075 continue;
7077 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7078 GFP_KERNEL, cpu_to_node(i));
7080 if (!sg)
7081 goto fail;
7083 sg_span = sched_group_cpus(sg);
7085 child = *per_cpu_ptr(sdd->sd, i);
7086 if (child->child) {
7087 child = child->child;
7088 cpumask_copy(sg_span, sched_domain_span(child));
7089 } else
7090 cpumask_set_cpu(i, sg_span);
7092 cpumask_or(covered, covered, sg_span);
7094 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7095 atomic_inc(&sg->sgp->ref);
7097 if (cpumask_test_cpu(cpu, sg_span))
7098 groups = sg;
7100 if (!first)
7101 first = sg;
7102 if (last)
7103 last->next = sg;
7104 last = sg;
7105 last->next = first;
7107 sd->groups = groups;
7109 return 0;
7111 fail:
7112 free_sched_groups(first, 0);
7114 return -ENOMEM;
7117 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
7119 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7120 struct sched_domain *child = sd->child;
7122 if (child)
7123 cpu = cpumask_first(sched_domain_span(child));
7125 if (sg) {
7126 *sg = *per_cpu_ptr(sdd->sg, cpu);
7127 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7128 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
7131 return cpu;
7135 * build_sched_groups will build a circular linked list of the groups
7136 * covered by the given span, and will set each group's ->cpumask correctly,
7137 * and ->cpu_power to 0.
7139 * Assumes the sched_domain tree is fully constructed
7141 static int
7142 build_sched_groups(struct sched_domain *sd, int cpu)
7144 struct sched_group *first = NULL, *last = NULL;
7145 struct sd_data *sdd = sd->private;
7146 const struct cpumask *span = sched_domain_span(sd);
7147 struct cpumask *covered;
7148 int i;
7150 get_group(cpu, sdd, &sd->groups);
7151 atomic_inc(&sd->groups->ref);
7153 if (cpu != cpumask_first(sched_domain_span(sd)))
7154 return 0;
7156 lockdep_assert_held(&sched_domains_mutex);
7157 covered = sched_domains_tmpmask;
7159 cpumask_clear(covered);
7161 for_each_cpu(i, span) {
7162 struct sched_group *sg;
7163 int group = get_group(i, sdd, &sg);
7164 int j;
7166 if (cpumask_test_cpu(i, covered))
7167 continue;
7169 cpumask_clear(sched_group_cpus(sg));
7170 sg->sgp->power = 0;
7172 for_each_cpu(j, span) {
7173 if (get_group(j, sdd, NULL) != group)
7174 continue;
7176 cpumask_set_cpu(j, covered);
7177 cpumask_set_cpu(j, sched_group_cpus(sg));
7180 if (!first)
7181 first = sg;
7182 if (last)
7183 last->next = sg;
7184 last = sg;
7186 last->next = first;
7188 return 0;
7192 * Initialize sched groups cpu_power.
7194 * cpu_power indicates the capacity of sched group, which is used while
7195 * distributing the load between different sched groups in a sched domain.
7196 * Typically cpu_power for all the groups in a sched domain will be same unless
7197 * there are asymmetries in the topology. If there are asymmetries, group
7198 * having more cpu_power will pickup more load compared to the group having
7199 * less cpu_power.
7201 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7203 struct sched_group *sg = sd->groups;
7205 WARN_ON(!sd || !sg);
7207 do {
7208 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7209 sg = sg->next;
7210 } while (sg != sd->groups);
7212 if (cpu != group_first_cpu(sg))
7213 return;
7215 update_group_power(sd, cpu);
7219 * Initializers for schedule domains
7220 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7223 #ifdef CONFIG_SCHED_DEBUG
7224 # define SD_INIT_NAME(sd, type) sd->name = #type
7225 #else
7226 # define SD_INIT_NAME(sd, type) do { } while (0)
7227 #endif
7229 #define SD_INIT_FUNC(type) \
7230 static noinline struct sched_domain * \
7231 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7233 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7234 *sd = SD_##type##_INIT; \
7235 SD_INIT_NAME(sd, type); \
7236 sd->private = &tl->data; \
7237 return sd; \
7240 SD_INIT_FUNC(CPU)
7241 #ifdef CONFIG_NUMA
7242 SD_INIT_FUNC(ALLNODES)
7243 SD_INIT_FUNC(NODE)
7244 #endif
7245 #ifdef CONFIG_SCHED_SMT
7246 SD_INIT_FUNC(SIBLING)
7247 #endif
7248 #ifdef CONFIG_SCHED_MC
7249 SD_INIT_FUNC(MC)
7250 #endif
7251 #ifdef CONFIG_SCHED_BOOK
7252 SD_INIT_FUNC(BOOK)
7253 #endif
7255 static int default_relax_domain_level = -1;
7256 int sched_domain_level_max;
7258 static int __init setup_relax_domain_level(char *str)
7260 unsigned long val;
7262 val = simple_strtoul(str, NULL, 0);
7263 if (val < sched_domain_level_max)
7264 default_relax_domain_level = val;
7266 return 1;
7268 __setup("relax_domain_level=", setup_relax_domain_level);
7270 static void set_domain_attribute(struct sched_domain *sd,
7271 struct sched_domain_attr *attr)
7273 int request;
7275 if (!attr || attr->relax_domain_level < 0) {
7276 if (default_relax_domain_level < 0)
7277 return;
7278 else
7279 request = default_relax_domain_level;
7280 } else
7281 request = attr->relax_domain_level;
7282 if (request < sd->level) {
7283 /* turn off idle balance on this domain */
7284 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7285 } else {
7286 /* turn on idle balance on this domain */
7287 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7291 static void __sdt_free(const struct cpumask *cpu_map);
7292 static int __sdt_alloc(const struct cpumask *cpu_map);
7294 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7295 const struct cpumask *cpu_map)
7297 switch (what) {
7298 case sa_rootdomain:
7299 if (!atomic_read(&d->rd->refcount))
7300 free_rootdomain(&d->rd->rcu); /* fall through */
7301 case sa_sd:
7302 free_percpu(d->sd); /* fall through */
7303 case sa_sd_storage:
7304 __sdt_free(cpu_map); /* fall through */
7305 case sa_none:
7306 break;
7310 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7311 const struct cpumask *cpu_map)
7313 memset(d, 0, sizeof(*d));
7315 if (__sdt_alloc(cpu_map))
7316 return sa_sd_storage;
7317 d->sd = alloc_percpu(struct sched_domain *);
7318 if (!d->sd)
7319 return sa_sd_storage;
7320 d->rd = alloc_rootdomain();
7321 if (!d->rd)
7322 return sa_sd;
7323 return sa_rootdomain;
7327 * NULL the sd_data elements we've used to build the sched_domain and
7328 * sched_group structure so that the subsequent __free_domain_allocs()
7329 * will not free the data we're using.
7331 static void claim_allocations(int cpu, struct sched_domain *sd)
7333 struct sd_data *sdd = sd->private;
7335 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7336 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7338 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7339 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7341 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7342 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
7345 #ifdef CONFIG_SCHED_SMT
7346 static const struct cpumask *cpu_smt_mask(int cpu)
7348 return topology_thread_cpumask(cpu);
7350 #endif
7353 * Topology list, bottom-up.
7355 static struct sched_domain_topology_level default_topology[] = {
7356 #ifdef CONFIG_SCHED_SMT
7357 { sd_init_SIBLING, cpu_smt_mask, },
7358 #endif
7359 #ifdef CONFIG_SCHED_MC
7360 { sd_init_MC, cpu_coregroup_mask, },
7361 #endif
7362 #ifdef CONFIG_SCHED_BOOK
7363 { sd_init_BOOK, cpu_book_mask, },
7364 #endif
7365 { sd_init_CPU, cpu_cpu_mask, },
7366 #ifdef CONFIG_NUMA
7367 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7368 { sd_init_ALLNODES, cpu_allnodes_mask, },
7369 #endif
7370 { NULL, },
7373 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7375 static int __sdt_alloc(const struct cpumask *cpu_map)
7377 struct sched_domain_topology_level *tl;
7378 int j;
7380 for (tl = sched_domain_topology; tl->init; tl++) {
7381 struct sd_data *sdd = &tl->data;
7383 sdd->sd = alloc_percpu(struct sched_domain *);
7384 if (!sdd->sd)
7385 return -ENOMEM;
7387 sdd->sg = alloc_percpu(struct sched_group *);
7388 if (!sdd->sg)
7389 return -ENOMEM;
7391 sdd->sgp = alloc_percpu(struct sched_group_power *);
7392 if (!sdd->sgp)
7393 return -ENOMEM;
7395 for_each_cpu(j, cpu_map) {
7396 struct sched_domain *sd;
7397 struct sched_group *sg;
7398 struct sched_group_power *sgp;
7400 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7401 GFP_KERNEL, cpu_to_node(j));
7402 if (!sd)
7403 return -ENOMEM;
7405 *per_cpu_ptr(sdd->sd, j) = sd;
7407 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7408 GFP_KERNEL, cpu_to_node(j));
7409 if (!sg)
7410 return -ENOMEM;
7412 *per_cpu_ptr(sdd->sg, j) = sg;
7414 sgp = kzalloc_node(sizeof(struct sched_group_power),
7415 GFP_KERNEL, cpu_to_node(j));
7416 if (!sgp)
7417 return -ENOMEM;
7419 *per_cpu_ptr(sdd->sgp, j) = sgp;
7423 return 0;
7426 static void __sdt_free(const struct cpumask *cpu_map)
7428 struct sched_domain_topology_level *tl;
7429 int j;
7431 for (tl = sched_domain_topology; tl->init; tl++) {
7432 struct sd_data *sdd = &tl->data;
7434 for_each_cpu(j, cpu_map) {
7435 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7436 if (sd && (sd->flags & SD_OVERLAP))
7437 free_sched_groups(sd->groups, 0);
7438 kfree(*per_cpu_ptr(sdd->sg, j));
7439 kfree(*per_cpu_ptr(sdd->sgp, j));
7441 free_percpu(sdd->sd);
7442 free_percpu(sdd->sg);
7443 free_percpu(sdd->sgp);
7447 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7448 struct s_data *d, const struct cpumask *cpu_map,
7449 struct sched_domain_attr *attr, struct sched_domain *child,
7450 int cpu)
7452 struct sched_domain *sd = tl->init(tl, cpu);
7453 if (!sd)
7454 return child;
7456 set_domain_attribute(sd, attr);
7457 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7458 if (child) {
7459 sd->level = child->level + 1;
7460 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7461 child->parent = sd;
7463 sd->child = child;
7465 return sd;
7469 * Build sched domains for a given set of cpus and attach the sched domains
7470 * to the individual cpus
7472 static int build_sched_domains(const struct cpumask *cpu_map,
7473 struct sched_domain_attr *attr)
7475 enum s_alloc alloc_state = sa_none;
7476 struct sched_domain *sd;
7477 struct s_data d;
7478 int i, ret = -ENOMEM;
7480 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7481 if (alloc_state != sa_rootdomain)
7482 goto error;
7484 /* Set up domains for cpus specified by the cpu_map. */
7485 for_each_cpu(i, cpu_map) {
7486 struct sched_domain_topology_level *tl;
7488 sd = NULL;
7489 for (tl = sched_domain_topology; tl->init; tl++) {
7490 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7491 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7492 sd->flags |= SD_OVERLAP;
7493 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7494 break;
7497 while (sd->child)
7498 sd = sd->child;
7500 *per_cpu_ptr(d.sd, i) = sd;
7503 /* Build the groups for the domains */
7504 for_each_cpu(i, cpu_map) {
7505 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7506 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7507 if (sd->flags & SD_OVERLAP) {
7508 if (build_overlap_sched_groups(sd, i))
7509 goto error;
7510 } else {
7511 if (build_sched_groups(sd, i))
7512 goto error;
7517 /* Calculate CPU power for physical packages and nodes */
7518 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7519 if (!cpumask_test_cpu(i, cpu_map))
7520 continue;
7522 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7523 claim_allocations(i, sd);
7524 init_sched_groups_power(i, sd);
7528 /* Attach the domains */
7529 rcu_read_lock();
7530 for_each_cpu(i, cpu_map) {
7531 sd = *per_cpu_ptr(d.sd, i);
7532 cpu_attach_domain(sd, d.rd, i);
7534 rcu_read_unlock();
7536 ret = 0;
7537 error:
7538 __free_domain_allocs(&d, alloc_state, cpu_map);
7539 return ret;
7542 static cpumask_var_t *doms_cur; /* current sched domains */
7543 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7544 static struct sched_domain_attr *dattr_cur;
7545 /* attribues of custom domains in 'doms_cur' */
7548 * Special case: If a kmalloc of a doms_cur partition (array of
7549 * cpumask) fails, then fallback to a single sched domain,
7550 * as determined by the single cpumask fallback_doms.
7552 static cpumask_var_t fallback_doms;
7555 * arch_update_cpu_topology lets virtualized architectures update the
7556 * cpu core maps. It is supposed to return 1 if the topology changed
7557 * or 0 if it stayed the same.
7559 int __attribute__((weak)) arch_update_cpu_topology(void)
7561 return 0;
7564 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7566 int i;
7567 cpumask_var_t *doms;
7569 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7570 if (!doms)
7571 return NULL;
7572 for (i = 0; i < ndoms; i++) {
7573 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7574 free_sched_domains(doms, i);
7575 return NULL;
7578 return doms;
7581 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7583 unsigned int i;
7584 for (i = 0; i < ndoms; i++)
7585 free_cpumask_var(doms[i]);
7586 kfree(doms);
7590 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7591 * For now this just excludes isolated cpus, but could be used to
7592 * exclude other special cases in the future.
7594 static int init_sched_domains(const struct cpumask *cpu_map)
7596 int err;
7598 arch_update_cpu_topology();
7599 ndoms_cur = 1;
7600 doms_cur = alloc_sched_domains(ndoms_cur);
7601 if (!doms_cur)
7602 doms_cur = &fallback_doms;
7603 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7604 dattr_cur = NULL;
7605 err = build_sched_domains(doms_cur[0], NULL);
7606 register_sched_domain_sysctl();
7608 return err;
7612 * Detach sched domains from a group of cpus specified in cpu_map
7613 * These cpus will now be attached to the NULL domain
7615 static void detach_destroy_domains(const struct cpumask *cpu_map)
7617 int i;
7619 rcu_read_lock();
7620 for_each_cpu(i, cpu_map)
7621 cpu_attach_domain(NULL, &def_root_domain, i);
7622 rcu_read_unlock();
7625 /* handle null as "default" */
7626 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7627 struct sched_domain_attr *new, int idx_new)
7629 struct sched_domain_attr tmp;
7631 /* fast path */
7632 if (!new && !cur)
7633 return 1;
7635 tmp = SD_ATTR_INIT;
7636 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7637 new ? (new + idx_new) : &tmp,
7638 sizeof(struct sched_domain_attr));
7642 * Partition sched domains as specified by the 'ndoms_new'
7643 * cpumasks in the array doms_new[] of cpumasks. This compares
7644 * doms_new[] to the current sched domain partitioning, doms_cur[].
7645 * It destroys each deleted domain and builds each new domain.
7647 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7648 * The masks don't intersect (don't overlap.) We should setup one
7649 * sched domain for each mask. CPUs not in any of the cpumasks will
7650 * not be load balanced. If the same cpumask appears both in the
7651 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7652 * it as it is.
7654 * The passed in 'doms_new' should be allocated using
7655 * alloc_sched_domains. This routine takes ownership of it and will
7656 * free_sched_domains it when done with it. If the caller failed the
7657 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7658 * and partition_sched_domains() will fallback to the single partition
7659 * 'fallback_doms', it also forces the domains to be rebuilt.
7661 * If doms_new == NULL it will be replaced with cpu_online_mask.
7662 * ndoms_new == 0 is a special case for destroying existing domains,
7663 * and it will not create the default domain.
7665 * Call with hotplug lock held
7667 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7668 struct sched_domain_attr *dattr_new)
7670 int i, j, n;
7671 int new_topology;
7673 mutex_lock(&sched_domains_mutex);
7675 /* always unregister in case we don't destroy any domains */
7676 unregister_sched_domain_sysctl();
7678 /* Let architecture update cpu core mappings. */
7679 new_topology = arch_update_cpu_topology();
7681 n = doms_new ? ndoms_new : 0;
7683 /* Destroy deleted domains */
7684 for (i = 0; i < ndoms_cur; i++) {
7685 for (j = 0; j < n && !new_topology; j++) {
7686 if (cpumask_equal(doms_cur[i], doms_new[j])
7687 && dattrs_equal(dattr_cur, i, dattr_new, j))
7688 goto match1;
7690 /* no match - a current sched domain not in new doms_new[] */
7691 detach_destroy_domains(doms_cur[i]);
7692 match1:
7696 if (doms_new == NULL) {
7697 ndoms_cur = 0;
7698 doms_new = &fallback_doms;
7699 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7700 WARN_ON_ONCE(dattr_new);
7703 /* Build new domains */
7704 for (i = 0; i < ndoms_new; i++) {
7705 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7706 if (cpumask_equal(doms_new[i], doms_cur[j])
7707 && dattrs_equal(dattr_new, i, dattr_cur, j))
7708 goto match2;
7710 /* no match - add a new doms_new */
7711 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7712 match2:
7716 /* Remember the new sched domains */
7717 if (doms_cur != &fallback_doms)
7718 free_sched_domains(doms_cur, ndoms_cur);
7719 kfree(dattr_cur); /* kfree(NULL) is safe */
7720 doms_cur = doms_new;
7721 dattr_cur = dattr_new;
7722 ndoms_cur = ndoms_new;
7724 register_sched_domain_sysctl();
7726 mutex_unlock(&sched_domains_mutex);
7729 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7730 static void reinit_sched_domains(void)
7732 get_online_cpus();
7734 /* Destroy domains first to force the rebuild */
7735 partition_sched_domains(0, NULL, NULL);
7737 rebuild_sched_domains();
7738 put_online_cpus();
7741 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7743 unsigned int level = 0;
7745 if (sscanf(buf, "%u", &level) != 1)
7746 return -EINVAL;
7749 * level is always be positive so don't check for
7750 * level < POWERSAVINGS_BALANCE_NONE which is 0
7751 * What happens on 0 or 1 byte write,
7752 * need to check for count as well?
7755 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7756 return -EINVAL;
7758 if (smt)
7759 sched_smt_power_savings = level;
7760 else
7761 sched_mc_power_savings = level;
7763 reinit_sched_domains();
7765 return count;
7768 #ifdef CONFIG_SCHED_MC
7769 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7770 struct sysdev_class_attribute *attr,
7771 char *page)
7773 return sprintf(page, "%u\n", sched_mc_power_savings);
7775 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7776 struct sysdev_class_attribute *attr,
7777 const char *buf, size_t count)
7779 return sched_power_savings_store(buf, count, 0);
7781 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7782 sched_mc_power_savings_show,
7783 sched_mc_power_savings_store);
7784 #endif
7786 #ifdef CONFIG_SCHED_SMT
7787 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7788 struct sysdev_class_attribute *attr,
7789 char *page)
7791 return sprintf(page, "%u\n", sched_smt_power_savings);
7793 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7794 struct sysdev_class_attribute *attr,
7795 const char *buf, size_t count)
7797 return sched_power_savings_store(buf, count, 1);
7799 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7800 sched_smt_power_savings_show,
7801 sched_smt_power_savings_store);
7802 #endif
7804 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7806 int err = 0;
7808 #ifdef CONFIG_SCHED_SMT
7809 if (smt_capable())
7810 err = sysfs_create_file(&cls->kset.kobj,
7811 &attr_sched_smt_power_savings.attr);
7812 #endif
7813 #ifdef CONFIG_SCHED_MC
7814 if (!err && mc_capable())
7815 err = sysfs_create_file(&cls->kset.kobj,
7816 &attr_sched_mc_power_savings.attr);
7817 #endif
7818 return err;
7820 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7823 * Update cpusets according to cpu_active mask. If cpusets are
7824 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7825 * around partition_sched_domains().
7827 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7828 void *hcpu)
7830 switch (action & ~CPU_TASKS_FROZEN) {
7831 case CPU_ONLINE:
7832 case CPU_DOWN_FAILED:
7833 cpuset_update_active_cpus();
7834 return NOTIFY_OK;
7835 default:
7836 return NOTIFY_DONE;
7840 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7841 void *hcpu)
7843 switch (action & ~CPU_TASKS_FROZEN) {
7844 case CPU_DOWN_PREPARE:
7845 cpuset_update_active_cpus();
7846 return NOTIFY_OK;
7847 default:
7848 return NOTIFY_DONE;
7852 static int update_runtime(struct notifier_block *nfb,
7853 unsigned long action, void *hcpu)
7855 int cpu = (int)(long)hcpu;
7857 switch (action) {
7858 case CPU_DOWN_PREPARE:
7859 case CPU_DOWN_PREPARE_FROZEN:
7860 disable_runtime(cpu_rq(cpu));
7861 return NOTIFY_OK;
7863 case CPU_DOWN_FAILED:
7864 case CPU_DOWN_FAILED_FROZEN:
7865 case CPU_ONLINE:
7866 case CPU_ONLINE_FROZEN:
7867 enable_runtime(cpu_rq(cpu));
7868 return NOTIFY_OK;
7870 default:
7871 return NOTIFY_DONE;
7875 void __init sched_init_smp(void)
7877 cpumask_var_t non_isolated_cpus;
7879 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7880 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7882 get_online_cpus();
7883 mutex_lock(&sched_domains_mutex);
7884 init_sched_domains(cpu_active_mask);
7885 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7886 if (cpumask_empty(non_isolated_cpus))
7887 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7888 mutex_unlock(&sched_domains_mutex);
7889 put_online_cpus();
7891 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7892 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7894 /* RT runtime code needs to handle some hotplug events */
7895 hotcpu_notifier(update_runtime, 0);
7897 init_hrtick();
7899 /* Move init over to a non-isolated CPU */
7900 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7901 BUG();
7902 sched_init_granularity();
7903 free_cpumask_var(non_isolated_cpus);
7905 init_sched_rt_class();
7907 #else
7908 void __init sched_init_smp(void)
7910 sched_init_granularity();
7912 #endif /* CONFIG_SMP */
7914 const_debug unsigned int sysctl_timer_migration = 1;
7916 int in_sched_functions(unsigned long addr)
7918 return in_lock_functions(addr) ||
7919 (addr >= (unsigned long)__sched_text_start
7920 && addr < (unsigned long)__sched_text_end);
7923 static void init_cfs_rq(struct cfs_rq *cfs_rq)
7925 cfs_rq->tasks_timeline = RB_ROOT;
7926 INIT_LIST_HEAD(&cfs_rq->tasks);
7927 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7928 #ifndef CONFIG_64BIT
7929 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7930 #endif
7933 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7935 struct rt_prio_array *array;
7936 int i;
7938 array = &rt_rq->active;
7939 for (i = 0; i < MAX_RT_PRIO; i++) {
7940 INIT_LIST_HEAD(array->queue + i);
7941 __clear_bit(i, array->bitmap);
7943 /* delimiter for bitsearch: */
7944 __set_bit(MAX_RT_PRIO, array->bitmap);
7946 #if defined CONFIG_SMP
7947 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7948 rt_rq->highest_prio.next = MAX_RT_PRIO;
7949 rt_rq->rt_nr_migratory = 0;
7950 rt_rq->overloaded = 0;
7951 plist_head_init(&rt_rq->pushable_tasks);
7952 #endif
7954 rt_rq->rt_time = 0;
7955 rt_rq->rt_throttled = 0;
7956 rt_rq->rt_runtime = 0;
7957 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7960 #ifdef CONFIG_FAIR_GROUP_SCHED
7961 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7962 struct sched_entity *se, int cpu,
7963 struct sched_entity *parent)
7965 struct rq *rq = cpu_rq(cpu);
7967 cfs_rq->tg = tg;
7968 cfs_rq->rq = rq;
7969 #ifdef CONFIG_SMP
7970 /* allow initial update_cfs_load() to truncate */
7971 cfs_rq->load_stamp = 1;
7972 #endif
7974 tg->cfs_rq[cpu] = cfs_rq;
7975 tg->se[cpu] = se;
7977 /* se could be NULL for root_task_group */
7978 if (!se)
7979 return;
7981 if (!parent)
7982 se->cfs_rq = &rq->cfs;
7983 else
7984 se->cfs_rq = parent->my_q;
7986 se->my_q = cfs_rq;
7987 update_load_set(&se->load, 0);
7988 se->parent = parent;
7990 #endif
7992 #ifdef CONFIG_RT_GROUP_SCHED
7993 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7994 struct sched_rt_entity *rt_se, int cpu,
7995 struct sched_rt_entity *parent)
7997 struct rq *rq = cpu_rq(cpu);
7999 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8000 rt_rq->rt_nr_boosted = 0;
8001 rt_rq->rq = rq;
8002 rt_rq->tg = tg;
8004 tg->rt_rq[cpu] = rt_rq;
8005 tg->rt_se[cpu] = rt_se;
8007 if (!rt_se)
8008 return;
8010 if (!parent)
8011 rt_se->rt_rq = &rq->rt;
8012 else
8013 rt_se->rt_rq = parent->my_q;
8015 rt_se->my_q = rt_rq;
8016 rt_se->parent = parent;
8017 INIT_LIST_HEAD(&rt_se->run_list);
8019 #endif
8021 void __init sched_init(void)
8023 int i, j;
8024 unsigned long alloc_size = 0, ptr;
8026 #ifdef CONFIG_FAIR_GROUP_SCHED
8027 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8028 #endif
8029 #ifdef CONFIG_RT_GROUP_SCHED
8030 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8031 #endif
8032 #ifdef CONFIG_CPUMASK_OFFSTACK
8033 alloc_size += num_possible_cpus() * cpumask_size();
8034 #endif
8035 if (alloc_size) {
8036 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8038 #ifdef CONFIG_FAIR_GROUP_SCHED
8039 root_task_group.se = (struct sched_entity **)ptr;
8040 ptr += nr_cpu_ids * sizeof(void **);
8042 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8043 ptr += nr_cpu_ids * sizeof(void **);
8045 #endif /* CONFIG_FAIR_GROUP_SCHED */
8046 #ifdef CONFIG_RT_GROUP_SCHED
8047 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8048 ptr += nr_cpu_ids * sizeof(void **);
8050 root_task_group.rt_rq = (struct rt_rq **)ptr;
8051 ptr += nr_cpu_ids * sizeof(void **);
8053 #endif /* CONFIG_RT_GROUP_SCHED */
8054 #ifdef CONFIG_CPUMASK_OFFSTACK
8055 for_each_possible_cpu(i) {
8056 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8057 ptr += cpumask_size();
8059 #endif /* CONFIG_CPUMASK_OFFSTACK */
8062 #ifdef CONFIG_SMP
8063 init_defrootdomain();
8064 #endif
8066 init_rt_bandwidth(&def_rt_bandwidth,
8067 global_rt_period(), global_rt_runtime());
8069 #ifdef CONFIG_RT_GROUP_SCHED
8070 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8071 global_rt_period(), global_rt_runtime());
8072 #endif /* CONFIG_RT_GROUP_SCHED */
8074 #ifdef CONFIG_CGROUP_SCHED
8075 list_add(&root_task_group.list, &task_groups);
8076 INIT_LIST_HEAD(&root_task_group.children);
8077 autogroup_init(&init_task);
8078 #endif /* CONFIG_CGROUP_SCHED */
8080 for_each_possible_cpu(i) {
8081 struct rq *rq;
8083 rq = cpu_rq(i);
8084 raw_spin_lock_init(&rq->lock);
8085 rq->nr_running = 0;
8086 rq->calc_load_active = 0;
8087 rq->calc_load_update = jiffies + LOAD_FREQ;
8088 init_cfs_rq(&rq->cfs);
8089 init_rt_rq(&rq->rt, rq);
8090 #ifdef CONFIG_FAIR_GROUP_SCHED
8091 root_task_group.shares = root_task_group_load;
8092 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8094 * How much cpu bandwidth does root_task_group get?
8096 * In case of task-groups formed thr' the cgroup filesystem, it
8097 * gets 100% of the cpu resources in the system. This overall
8098 * system cpu resource is divided among the tasks of
8099 * root_task_group and its child task-groups in a fair manner,
8100 * based on each entity's (task or task-group's) weight
8101 * (se->load.weight).
8103 * In other words, if root_task_group has 10 tasks of weight
8104 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8105 * then A0's share of the cpu resource is:
8107 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8109 * We achieve this by letting root_task_group's tasks sit
8110 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8112 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8113 #endif /* CONFIG_FAIR_GROUP_SCHED */
8115 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8116 #ifdef CONFIG_RT_GROUP_SCHED
8117 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8118 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8119 #endif
8121 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8122 rq->cpu_load[j] = 0;
8124 rq->last_load_update_tick = jiffies;
8126 #ifdef CONFIG_SMP
8127 rq->sd = NULL;
8128 rq->rd = NULL;
8129 rq->cpu_power = SCHED_POWER_SCALE;
8130 rq->post_schedule = 0;
8131 rq->active_balance = 0;
8132 rq->next_balance = jiffies;
8133 rq->push_cpu = 0;
8134 rq->cpu = i;
8135 rq->online = 0;
8136 rq->idle_stamp = 0;
8137 rq->avg_idle = 2*sysctl_sched_migration_cost;
8138 rq_attach_root(rq, &def_root_domain);
8139 #ifdef CONFIG_NO_HZ
8140 rq->nohz_balance_kick = 0;
8141 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8142 #endif
8143 #endif
8144 init_rq_hrtick(rq);
8145 atomic_set(&rq->nr_iowait, 0);
8148 set_load_weight(&init_task);
8150 #ifdef CONFIG_PREEMPT_NOTIFIERS
8151 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8152 #endif
8154 #ifdef CONFIG_SMP
8155 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8156 #endif
8158 #ifdef CONFIG_RT_MUTEXES
8159 plist_head_init(&init_task.pi_waiters);
8160 #endif
8163 * The boot idle thread does lazy MMU switching as well:
8165 atomic_inc(&init_mm.mm_count);
8166 enter_lazy_tlb(&init_mm, current);
8169 * Make us the idle thread. Technically, schedule() should not be
8170 * called from this thread, however somewhere below it might be,
8171 * but because we are the idle thread, we just pick up running again
8172 * when this runqueue becomes "idle".
8174 init_idle(current, smp_processor_id());
8176 calc_load_update = jiffies + LOAD_FREQ;
8179 * During early bootup we pretend to be a normal task:
8181 current->sched_class = &fair_sched_class;
8183 #ifdef CONFIG_SMP
8184 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8185 #ifdef CONFIG_NO_HZ
8186 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8187 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8188 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8189 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8190 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8191 #endif
8192 /* May be allocated at isolcpus cmdline parse time */
8193 if (cpu_isolated_map == NULL)
8194 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8195 #endif /* SMP */
8197 scheduler_running = 1;
8200 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8201 static inline int preempt_count_equals(int preempt_offset)
8203 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8205 return (nested == preempt_offset);
8208 void __might_sleep(const char *file, int line, int preempt_offset)
8210 static unsigned long prev_jiffy; /* ratelimiting */
8212 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
8213 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8214 system_state != SYSTEM_RUNNING || oops_in_progress)
8215 return;
8216 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8217 return;
8218 prev_jiffy = jiffies;
8220 printk(KERN_ERR
8221 "BUG: sleeping function called from invalid context at %s:%d\n",
8222 file, line);
8223 printk(KERN_ERR
8224 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8225 in_atomic(), irqs_disabled(),
8226 current->pid, current->comm);
8228 debug_show_held_locks(current);
8229 if (irqs_disabled())
8230 print_irqtrace_events(current);
8231 dump_stack();
8233 EXPORT_SYMBOL(__might_sleep);
8234 #endif
8236 #ifdef CONFIG_MAGIC_SYSRQ
8237 static void normalize_task(struct rq *rq, struct task_struct *p)
8239 const struct sched_class *prev_class = p->sched_class;
8240 int old_prio = p->prio;
8241 int on_rq;
8243 on_rq = p->on_rq;
8244 if (on_rq)
8245 deactivate_task(rq, p, 0);
8246 __setscheduler(rq, p, SCHED_NORMAL, 0);
8247 if (on_rq) {
8248 activate_task(rq, p, 0);
8249 resched_task(rq->curr);
8252 check_class_changed(rq, p, prev_class, old_prio);
8255 void normalize_rt_tasks(void)
8257 struct task_struct *g, *p;
8258 unsigned long flags;
8259 struct rq *rq;
8261 read_lock_irqsave(&tasklist_lock, flags);
8262 do_each_thread(g, p) {
8264 * Only normalize user tasks:
8266 if (!p->mm)
8267 continue;
8269 p->se.exec_start = 0;
8270 #ifdef CONFIG_SCHEDSTATS
8271 p->se.statistics.wait_start = 0;
8272 p->se.statistics.sleep_start = 0;
8273 p->se.statistics.block_start = 0;
8274 #endif
8276 if (!rt_task(p)) {
8278 * Renice negative nice level userspace
8279 * tasks back to 0:
8281 if (TASK_NICE(p) < 0 && p->mm)
8282 set_user_nice(p, 0);
8283 continue;
8286 raw_spin_lock(&p->pi_lock);
8287 rq = __task_rq_lock(p);
8289 normalize_task(rq, p);
8291 __task_rq_unlock(rq);
8292 raw_spin_unlock(&p->pi_lock);
8293 } while_each_thread(g, p);
8295 read_unlock_irqrestore(&tasklist_lock, flags);
8298 #endif /* CONFIG_MAGIC_SYSRQ */
8300 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8302 * These functions are only useful for the IA64 MCA handling, or kdb.
8304 * They can only be called when the whole system has been
8305 * stopped - every CPU needs to be quiescent, and no scheduling
8306 * activity can take place. Using them for anything else would
8307 * be a serious bug, and as a result, they aren't even visible
8308 * under any other configuration.
8312 * curr_task - return the current task for a given cpu.
8313 * @cpu: the processor in question.
8315 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8317 struct task_struct *curr_task(int cpu)
8319 return cpu_curr(cpu);
8322 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8324 #ifdef CONFIG_IA64
8326 * set_curr_task - set the current task for a given cpu.
8327 * @cpu: the processor in question.
8328 * @p: the task pointer to set.
8330 * Description: This function must only be used when non-maskable interrupts
8331 * are serviced on a separate stack. It allows the architecture to switch the
8332 * notion of the current task on a cpu in a non-blocking manner. This function
8333 * must be called with all CPU's synchronized, and interrupts disabled, the
8334 * and caller must save the original value of the current task (see
8335 * curr_task() above) and restore that value before reenabling interrupts and
8336 * re-starting the system.
8338 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8340 void set_curr_task(int cpu, struct task_struct *p)
8342 cpu_curr(cpu) = p;
8345 #endif
8347 #ifdef CONFIG_FAIR_GROUP_SCHED
8348 static void free_fair_sched_group(struct task_group *tg)
8350 int i;
8352 for_each_possible_cpu(i) {
8353 if (tg->cfs_rq)
8354 kfree(tg->cfs_rq[i]);
8355 if (tg->se)
8356 kfree(tg->se[i]);
8359 kfree(tg->cfs_rq);
8360 kfree(tg->se);
8363 static
8364 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8366 struct cfs_rq *cfs_rq;
8367 struct sched_entity *se;
8368 int i;
8370 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8371 if (!tg->cfs_rq)
8372 goto err;
8373 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8374 if (!tg->se)
8375 goto err;
8377 tg->shares = NICE_0_LOAD;
8379 for_each_possible_cpu(i) {
8380 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8381 GFP_KERNEL, cpu_to_node(i));
8382 if (!cfs_rq)
8383 goto err;
8385 se = kzalloc_node(sizeof(struct sched_entity),
8386 GFP_KERNEL, cpu_to_node(i));
8387 if (!se)
8388 goto err_free_rq;
8390 init_cfs_rq(cfs_rq);
8391 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8394 return 1;
8396 err_free_rq:
8397 kfree(cfs_rq);
8398 err:
8399 return 0;
8402 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8404 struct rq *rq = cpu_rq(cpu);
8405 unsigned long flags;
8408 * Only empty task groups can be destroyed; so we can speculatively
8409 * check on_list without danger of it being re-added.
8411 if (!tg->cfs_rq[cpu]->on_list)
8412 return;
8414 raw_spin_lock_irqsave(&rq->lock, flags);
8415 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8416 raw_spin_unlock_irqrestore(&rq->lock, flags);
8418 #else /* !CONFIG_FAIR_GROUP_SCHED */
8419 static inline void free_fair_sched_group(struct task_group *tg)
8423 static inline
8424 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8426 return 1;
8429 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8432 #endif /* CONFIG_FAIR_GROUP_SCHED */
8434 #ifdef CONFIG_RT_GROUP_SCHED
8435 static void free_rt_sched_group(struct task_group *tg)
8437 int i;
8439 if (tg->rt_se)
8440 destroy_rt_bandwidth(&tg->rt_bandwidth);
8442 for_each_possible_cpu(i) {
8443 if (tg->rt_rq)
8444 kfree(tg->rt_rq[i]);
8445 if (tg->rt_se)
8446 kfree(tg->rt_se[i]);
8449 kfree(tg->rt_rq);
8450 kfree(tg->rt_se);
8453 static
8454 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8456 struct rt_rq *rt_rq;
8457 struct sched_rt_entity *rt_se;
8458 int i;
8460 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8461 if (!tg->rt_rq)
8462 goto err;
8463 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8464 if (!tg->rt_se)
8465 goto err;
8467 init_rt_bandwidth(&tg->rt_bandwidth,
8468 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8470 for_each_possible_cpu(i) {
8471 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8472 GFP_KERNEL, cpu_to_node(i));
8473 if (!rt_rq)
8474 goto err;
8476 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8477 GFP_KERNEL, cpu_to_node(i));
8478 if (!rt_se)
8479 goto err_free_rq;
8481 init_rt_rq(rt_rq, cpu_rq(i));
8482 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8483 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8486 return 1;
8488 err_free_rq:
8489 kfree(rt_rq);
8490 err:
8491 return 0;
8493 #else /* !CONFIG_RT_GROUP_SCHED */
8494 static inline void free_rt_sched_group(struct task_group *tg)
8498 static inline
8499 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8501 return 1;
8503 #endif /* CONFIG_RT_GROUP_SCHED */
8505 #ifdef CONFIG_CGROUP_SCHED
8506 static void free_sched_group(struct task_group *tg)
8508 free_fair_sched_group(tg);
8509 free_rt_sched_group(tg);
8510 autogroup_free(tg);
8511 kfree(tg);
8514 /* allocate runqueue etc for a new task group */
8515 struct task_group *sched_create_group(struct task_group *parent)
8517 struct task_group *tg;
8518 unsigned long flags;
8520 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8521 if (!tg)
8522 return ERR_PTR(-ENOMEM);
8524 if (!alloc_fair_sched_group(tg, parent))
8525 goto err;
8527 if (!alloc_rt_sched_group(tg, parent))
8528 goto err;
8530 spin_lock_irqsave(&task_group_lock, flags);
8531 list_add_rcu(&tg->list, &task_groups);
8533 WARN_ON(!parent); /* root should already exist */
8535 tg->parent = parent;
8536 INIT_LIST_HEAD(&tg->children);
8537 list_add_rcu(&tg->siblings, &parent->children);
8538 spin_unlock_irqrestore(&task_group_lock, flags);
8540 return tg;
8542 err:
8543 free_sched_group(tg);
8544 return ERR_PTR(-ENOMEM);
8547 /* rcu callback to free various structures associated with a task group */
8548 static void free_sched_group_rcu(struct rcu_head *rhp)
8550 /* now it should be safe to free those cfs_rqs */
8551 free_sched_group(container_of(rhp, struct task_group, rcu));
8554 /* Destroy runqueue etc associated with a task group */
8555 void sched_destroy_group(struct task_group *tg)
8557 unsigned long flags;
8558 int i;
8560 /* end participation in shares distribution */
8561 for_each_possible_cpu(i)
8562 unregister_fair_sched_group(tg, i);
8564 spin_lock_irqsave(&task_group_lock, flags);
8565 list_del_rcu(&tg->list);
8566 list_del_rcu(&tg->siblings);
8567 spin_unlock_irqrestore(&task_group_lock, flags);
8569 /* wait for possible concurrent references to cfs_rqs complete */
8570 call_rcu(&tg->rcu, free_sched_group_rcu);
8573 /* change task's runqueue when it moves between groups.
8574 * The caller of this function should have put the task in its new group
8575 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8576 * reflect its new group.
8578 void sched_move_task(struct task_struct *tsk)
8580 int on_rq, running;
8581 unsigned long flags;
8582 struct rq *rq;
8584 rq = task_rq_lock(tsk, &flags);
8586 running = task_current(rq, tsk);
8587 on_rq = tsk->on_rq;
8589 if (on_rq)
8590 dequeue_task(rq, tsk, 0);
8591 if (unlikely(running))
8592 tsk->sched_class->put_prev_task(rq, tsk);
8594 #ifdef CONFIG_FAIR_GROUP_SCHED
8595 if (tsk->sched_class->task_move_group)
8596 tsk->sched_class->task_move_group(tsk, on_rq);
8597 else
8598 #endif
8599 set_task_rq(tsk, task_cpu(tsk));
8601 if (unlikely(running))
8602 tsk->sched_class->set_curr_task(rq);
8603 if (on_rq)
8604 enqueue_task(rq, tsk, 0);
8606 task_rq_unlock(rq, tsk, &flags);
8608 #endif /* CONFIG_CGROUP_SCHED */
8610 #ifdef CONFIG_FAIR_GROUP_SCHED
8611 static DEFINE_MUTEX(shares_mutex);
8613 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8615 int i;
8616 unsigned long flags;
8619 * We can't change the weight of the root cgroup.
8621 if (!tg->se[0])
8622 return -EINVAL;
8624 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8626 mutex_lock(&shares_mutex);
8627 if (tg->shares == shares)
8628 goto done;
8630 tg->shares = shares;
8631 for_each_possible_cpu(i) {
8632 struct rq *rq = cpu_rq(i);
8633 struct sched_entity *se;
8635 se = tg->se[i];
8636 /* Propagate contribution to hierarchy */
8637 raw_spin_lock_irqsave(&rq->lock, flags);
8638 for_each_sched_entity(se)
8639 update_cfs_shares(group_cfs_rq(se));
8640 raw_spin_unlock_irqrestore(&rq->lock, flags);
8643 done:
8644 mutex_unlock(&shares_mutex);
8645 return 0;
8648 unsigned long sched_group_shares(struct task_group *tg)
8650 return tg->shares;
8652 #endif
8654 #ifdef CONFIG_RT_GROUP_SCHED
8656 * Ensure that the real time constraints are schedulable.
8658 static DEFINE_MUTEX(rt_constraints_mutex);
8660 static unsigned long to_ratio(u64 period, u64 runtime)
8662 if (runtime == RUNTIME_INF)
8663 return 1ULL << 20;
8665 return div64_u64(runtime << 20, period);
8668 /* Must be called with tasklist_lock held */
8669 static inline int tg_has_rt_tasks(struct task_group *tg)
8671 struct task_struct *g, *p;
8673 do_each_thread(g, p) {
8674 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8675 return 1;
8676 } while_each_thread(g, p);
8678 return 0;
8681 struct rt_schedulable_data {
8682 struct task_group *tg;
8683 u64 rt_period;
8684 u64 rt_runtime;
8687 static int tg_schedulable(struct task_group *tg, void *data)
8689 struct rt_schedulable_data *d = data;
8690 struct task_group *child;
8691 unsigned long total, sum = 0;
8692 u64 period, runtime;
8694 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8695 runtime = tg->rt_bandwidth.rt_runtime;
8697 if (tg == d->tg) {
8698 period = d->rt_period;
8699 runtime = d->rt_runtime;
8703 * Cannot have more runtime than the period.
8705 if (runtime > period && runtime != RUNTIME_INF)
8706 return -EINVAL;
8709 * Ensure we don't starve existing RT tasks.
8711 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8712 return -EBUSY;
8714 total = to_ratio(period, runtime);
8717 * Nobody can have more than the global setting allows.
8719 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8720 return -EINVAL;
8723 * The sum of our children's runtime should not exceed our own.
8725 list_for_each_entry_rcu(child, &tg->children, siblings) {
8726 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8727 runtime = child->rt_bandwidth.rt_runtime;
8729 if (child == d->tg) {
8730 period = d->rt_period;
8731 runtime = d->rt_runtime;
8734 sum += to_ratio(period, runtime);
8737 if (sum > total)
8738 return -EINVAL;
8740 return 0;
8743 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8745 struct rt_schedulable_data data = {
8746 .tg = tg,
8747 .rt_period = period,
8748 .rt_runtime = runtime,
8751 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8754 static int tg_set_bandwidth(struct task_group *tg,
8755 u64 rt_period, u64 rt_runtime)
8757 int i, err = 0;
8759 mutex_lock(&rt_constraints_mutex);
8760 read_lock(&tasklist_lock);
8761 err = __rt_schedulable(tg, rt_period, rt_runtime);
8762 if (err)
8763 goto unlock;
8765 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8766 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8767 tg->rt_bandwidth.rt_runtime = rt_runtime;
8769 for_each_possible_cpu(i) {
8770 struct rt_rq *rt_rq = tg->rt_rq[i];
8772 raw_spin_lock(&rt_rq->rt_runtime_lock);
8773 rt_rq->rt_runtime = rt_runtime;
8774 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8776 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8777 unlock:
8778 read_unlock(&tasklist_lock);
8779 mutex_unlock(&rt_constraints_mutex);
8781 return err;
8784 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8786 u64 rt_runtime, rt_period;
8788 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8789 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8790 if (rt_runtime_us < 0)
8791 rt_runtime = RUNTIME_INF;
8793 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8796 long sched_group_rt_runtime(struct task_group *tg)
8798 u64 rt_runtime_us;
8800 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8801 return -1;
8803 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8804 do_div(rt_runtime_us, NSEC_PER_USEC);
8805 return rt_runtime_us;
8808 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8810 u64 rt_runtime, rt_period;
8812 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8813 rt_runtime = tg->rt_bandwidth.rt_runtime;
8815 if (rt_period == 0)
8816 return -EINVAL;
8818 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8821 long sched_group_rt_period(struct task_group *tg)
8823 u64 rt_period_us;
8825 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8826 do_div(rt_period_us, NSEC_PER_USEC);
8827 return rt_period_us;
8830 static int sched_rt_global_constraints(void)
8832 u64 runtime, period;
8833 int ret = 0;
8835 if (sysctl_sched_rt_period <= 0)
8836 return -EINVAL;
8838 runtime = global_rt_runtime();
8839 period = global_rt_period();
8842 * Sanity check on the sysctl variables.
8844 if (runtime > period && runtime != RUNTIME_INF)
8845 return -EINVAL;
8847 mutex_lock(&rt_constraints_mutex);
8848 read_lock(&tasklist_lock);
8849 ret = __rt_schedulable(NULL, 0, 0);
8850 read_unlock(&tasklist_lock);
8851 mutex_unlock(&rt_constraints_mutex);
8853 return ret;
8856 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8858 /* Don't accept realtime tasks when there is no way for them to run */
8859 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8860 return 0;
8862 return 1;
8865 #else /* !CONFIG_RT_GROUP_SCHED */
8866 static int sched_rt_global_constraints(void)
8868 unsigned long flags;
8869 int i;
8871 if (sysctl_sched_rt_period <= 0)
8872 return -EINVAL;
8875 * There's always some RT tasks in the root group
8876 * -- migration, kstopmachine etc..
8878 if (sysctl_sched_rt_runtime == 0)
8879 return -EBUSY;
8881 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8882 for_each_possible_cpu(i) {
8883 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8885 raw_spin_lock(&rt_rq->rt_runtime_lock);
8886 rt_rq->rt_runtime = global_rt_runtime();
8887 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8889 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8891 return 0;
8893 #endif /* CONFIG_RT_GROUP_SCHED */
8895 int sched_rt_handler(struct ctl_table *table, int write,
8896 void __user *buffer, size_t *lenp,
8897 loff_t *ppos)
8899 int ret;
8900 int old_period, old_runtime;
8901 static DEFINE_MUTEX(mutex);
8903 mutex_lock(&mutex);
8904 old_period = sysctl_sched_rt_period;
8905 old_runtime = sysctl_sched_rt_runtime;
8907 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8909 if (!ret && write) {
8910 ret = sched_rt_global_constraints();
8911 if (ret) {
8912 sysctl_sched_rt_period = old_period;
8913 sysctl_sched_rt_runtime = old_runtime;
8914 } else {
8915 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8916 def_rt_bandwidth.rt_period =
8917 ns_to_ktime(global_rt_period());
8920 mutex_unlock(&mutex);
8922 return ret;
8925 #ifdef CONFIG_CGROUP_SCHED
8927 /* return corresponding task_group object of a cgroup */
8928 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8930 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8931 struct task_group, css);
8934 static struct cgroup_subsys_state *
8935 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8937 struct task_group *tg, *parent;
8939 if (!cgrp->parent) {
8940 /* This is early initialization for the top cgroup */
8941 return &root_task_group.css;
8944 parent = cgroup_tg(cgrp->parent);
8945 tg = sched_create_group(parent);
8946 if (IS_ERR(tg))
8947 return ERR_PTR(-ENOMEM);
8949 return &tg->css;
8952 static void
8953 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8955 struct task_group *tg = cgroup_tg(cgrp);
8957 sched_destroy_group(tg);
8960 static int
8961 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8963 #ifdef CONFIG_RT_GROUP_SCHED
8964 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8965 return -EINVAL;
8966 #else
8967 /* We don't support RT-tasks being in separate groups */
8968 if (tsk->sched_class != &fair_sched_class)
8969 return -EINVAL;
8970 #endif
8971 return 0;
8974 static void
8975 cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8977 sched_move_task(tsk);
8980 static void
8981 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
8982 struct cgroup *old_cgrp, struct task_struct *task)
8985 * cgroup_exit() is called in the copy_process() failure path.
8986 * Ignore this case since the task hasn't ran yet, this avoids
8987 * trying to poke a half freed task state from generic code.
8989 if (!(task->flags & PF_EXITING))
8990 return;
8992 sched_move_task(task);
8995 #ifdef CONFIG_FAIR_GROUP_SCHED
8996 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8997 u64 shareval)
8999 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
9002 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9004 struct task_group *tg = cgroup_tg(cgrp);
9006 return (u64) scale_load_down(tg->shares);
9008 #endif /* CONFIG_FAIR_GROUP_SCHED */
9010 #ifdef CONFIG_RT_GROUP_SCHED
9011 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9012 s64 val)
9014 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9017 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9019 return sched_group_rt_runtime(cgroup_tg(cgrp));
9022 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9023 u64 rt_period_us)
9025 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9028 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9030 return sched_group_rt_period(cgroup_tg(cgrp));
9032 #endif /* CONFIG_RT_GROUP_SCHED */
9034 static struct cftype cpu_files[] = {
9035 #ifdef CONFIG_FAIR_GROUP_SCHED
9037 .name = "shares",
9038 .read_u64 = cpu_shares_read_u64,
9039 .write_u64 = cpu_shares_write_u64,
9041 #endif
9042 #ifdef CONFIG_RT_GROUP_SCHED
9044 .name = "rt_runtime_us",
9045 .read_s64 = cpu_rt_runtime_read,
9046 .write_s64 = cpu_rt_runtime_write,
9049 .name = "rt_period_us",
9050 .read_u64 = cpu_rt_period_read_uint,
9051 .write_u64 = cpu_rt_period_write_uint,
9053 #endif
9056 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9058 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9061 struct cgroup_subsys cpu_cgroup_subsys = {
9062 .name = "cpu",
9063 .create = cpu_cgroup_create,
9064 .destroy = cpu_cgroup_destroy,
9065 .can_attach_task = cpu_cgroup_can_attach_task,
9066 .attach_task = cpu_cgroup_attach_task,
9067 .exit = cpu_cgroup_exit,
9068 .populate = cpu_cgroup_populate,
9069 .subsys_id = cpu_cgroup_subsys_id,
9070 .early_init = 1,
9073 #endif /* CONFIG_CGROUP_SCHED */
9075 #ifdef CONFIG_CGROUP_CPUACCT
9078 * CPU accounting code for task groups.
9080 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9081 * (balbir@in.ibm.com).
9084 /* track cpu usage of a group of tasks and its child groups */
9085 struct cpuacct {
9086 struct cgroup_subsys_state css;
9087 /* cpuusage holds pointer to a u64-type object on every cpu */
9088 u64 __percpu *cpuusage;
9089 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9090 struct cpuacct *parent;
9093 struct cgroup_subsys cpuacct_subsys;
9095 /* return cpu accounting group corresponding to this container */
9096 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9098 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9099 struct cpuacct, css);
9102 /* return cpu accounting group to which this task belongs */
9103 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9105 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9106 struct cpuacct, css);
9109 /* create a new cpu accounting group */
9110 static struct cgroup_subsys_state *cpuacct_create(
9111 struct cgroup_subsys *ss, struct cgroup *cgrp)
9113 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9114 int i;
9116 if (!ca)
9117 goto out;
9119 ca->cpuusage = alloc_percpu(u64);
9120 if (!ca->cpuusage)
9121 goto out_free_ca;
9123 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9124 if (percpu_counter_init(&ca->cpustat[i], 0))
9125 goto out_free_counters;
9127 if (cgrp->parent)
9128 ca->parent = cgroup_ca(cgrp->parent);
9130 return &ca->css;
9132 out_free_counters:
9133 while (--i >= 0)
9134 percpu_counter_destroy(&ca->cpustat[i]);
9135 free_percpu(ca->cpuusage);
9136 out_free_ca:
9137 kfree(ca);
9138 out:
9139 return ERR_PTR(-ENOMEM);
9142 /* destroy an existing cpu accounting group */
9143 static void
9144 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9146 struct cpuacct *ca = cgroup_ca(cgrp);
9147 int i;
9149 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9150 percpu_counter_destroy(&ca->cpustat[i]);
9151 free_percpu(ca->cpuusage);
9152 kfree(ca);
9155 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9157 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9158 u64 data;
9160 #ifndef CONFIG_64BIT
9162 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9164 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9165 data = *cpuusage;
9166 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9167 #else
9168 data = *cpuusage;
9169 #endif
9171 return data;
9174 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9176 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9178 #ifndef CONFIG_64BIT
9180 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9182 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9183 *cpuusage = val;
9184 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9185 #else
9186 *cpuusage = val;
9187 #endif
9190 /* return total cpu usage (in nanoseconds) of a group */
9191 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9193 struct cpuacct *ca = cgroup_ca(cgrp);
9194 u64 totalcpuusage = 0;
9195 int i;
9197 for_each_present_cpu(i)
9198 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9200 return totalcpuusage;
9203 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9204 u64 reset)
9206 struct cpuacct *ca = cgroup_ca(cgrp);
9207 int err = 0;
9208 int i;
9210 if (reset) {
9211 err = -EINVAL;
9212 goto out;
9215 for_each_present_cpu(i)
9216 cpuacct_cpuusage_write(ca, i, 0);
9218 out:
9219 return err;
9222 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9223 struct seq_file *m)
9225 struct cpuacct *ca = cgroup_ca(cgroup);
9226 u64 percpu;
9227 int i;
9229 for_each_present_cpu(i) {
9230 percpu = cpuacct_cpuusage_read(ca, i);
9231 seq_printf(m, "%llu ", (unsigned long long) percpu);
9233 seq_printf(m, "\n");
9234 return 0;
9237 static const char *cpuacct_stat_desc[] = {
9238 [CPUACCT_STAT_USER] = "user",
9239 [CPUACCT_STAT_SYSTEM] = "system",
9242 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9243 struct cgroup_map_cb *cb)
9245 struct cpuacct *ca = cgroup_ca(cgrp);
9246 int i;
9248 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9249 s64 val = percpu_counter_read(&ca->cpustat[i]);
9250 val = cputime64_to_clock_t(val);
9251 cb->fill(cb, cpuacct_stat_desc[i], val);
9253 return 0;
9256 static struct cftype files[] = {
9258 .name = "usage",
9259 .read_u64 = cpuusage_read,
9260 .write_u64 = cpuusage_write,
9263 .name = "usage_percpu",
9264 .read_seq_string = cpuacct_percpu_seq_read,
9267 .name = "stat",
9268 .read_map = cpuacct_stats_show,
9272 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9274 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9278 * charge this task's execution time to its accounting group.
9280 * called with rq->lock held.
9282 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9284 struct cpuacct *ca;
9285 int cpu;
9287 if (unlikely(!cpuacct_subsys.active))
9288 return;
9290 cpu = task_cpu(tsk);
9292 rcu_read_lock();
9294 ca = task_ca(tsk);
9296 for (; ca; ca = ca->parent) {
9297 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9298 *cpuusage += cputime;
9301 rcu_read_unlock();
9305 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9306 * in cputime_t units. As a result, cpuacct_update_stats calls
9307 * percpu_counter_add with values large enough to always overflow the
9308 * per cpu batch limit causing bad SMP scalability.
9310 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9311 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9312 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9314 #ifdef CONFIG_SMP
9315 #define CPUACCT_BATCH \
9316 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9317 #else
9318 #define CPUACCT_BATCH 0
9319 #endif
9322 * Charge the system/user time to the task's accounting group.
9324 static void cpuacct_update_stats(struct task_struct *tsk,
9325 enum cpuacct_stat_index idx, cputime_t val)
9327 struct cpuacct *ca;
9328 int batch = CPUACCT_BATCH;
9330 if (unlikely(!cpuacct_subsys.active))
9331 return;
9333 rcu_read_lock();
9334 ca = task_ca(tsk);
9336 do {
9337 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9338 ca = ca->parent;
9339 } while (ca);
9340 rcu_read_unlock();
9343 struct cgroup_subsys cpuacct_subsys = {
9344 .name = "cpuacct",
9345 .create = cpuacct_create,
9346 .destroy = cpuacct_destroy,
9347 .populate = cpuacct_populate,
9348 .subsys_id = cpuacct_subsys_id,
9350 #endif /* CONFIG_CGROUP_CPUACCT */