2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
33 #include <trace/events/kmem.h>
37 * 1. slub_lock (Global Semaphore)
39 * 3. slab_lock(page) (Only on some arches and for debugging)
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
88 * Overloading of page flags that are otherwise used for LRU management.
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
114 static inline int kmem_cache_debug(struct kmem_cache
*s
)
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
124 * Issues still to be resolved:
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 * - Variable sizing of the per node arrays
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
134 /* Enable to log cmpxchg failures */
135 #undef SLUB_DEBUG_CMPXCHG
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 #define MIN_PARTIAL 5
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
148 #define MAX_PARTIAL 10
150 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
158 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
161 * Set of flags that will prevent slab merging
163 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
167 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
168 SLAB_CACHE_DMA | SLAB_NOTRACK)
171 #define OO_MASK ((1 << OO_SHIFT) - 1)
172 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
174 /* Internal SLUB flags */
175 #define __OBJECT_POISON 0x80000000UL /* Poison object */
176 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
178 static int kmem_size
= sizeof(struct kmem_cache
);
181 static struct notifier_block slab_notifier
;
185 DOWN
, /* No slab functionality available */
186 PARTIAL
, /* Kmem_cache_node works */
187 UP
, /* Everything works but does not show up in sysfs */
191 /* A list of all slab caches on the system */
192 static DECLARE_RWSEM(slub_lock
);
193 static LIST_HEAD(slab_caches
);
196 * Tracking user of a slab.
198 #define TRACK_ADDRS_COUNT 16
200 unsigned long addr
; /* Called from address */
201 #ifdef CONFIG_STACKTRACE
202 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
204 int cpu
; /* Was running on cpu */
205 int pid
; /* Pid context */
206 unsigned long when
; /* When did the operation occur */
209 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
212 static int sysfs_slab_add(struct kmem_cache
*);
213 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
214 static void sysfs_slab_remove(struct kmem_cache
*);
217 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
218 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
220 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
228 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
230 #ifdef CONFIG_SLUB_STATS
231 __this_cpu_inc(s
->cpu_slab
->stat
[si
]);
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
239 int slab_is_available(void)
241 return slab_state
>= UP
;
244 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
246 return s
->node
[node
];
249 /* Verify that a pointer has an address that is valid within a slab page */
250 static inline int check_valid_pointer(struct kmem_cache
*s
,
251 struct page
*page
, const void *object
)
258 base
= page_address(page
);
259 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
260 (object
- base
) % s
->size
) {
267 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
269 return *(void **)(object
+ s
->offset
);
272 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
276 #ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
279 p
= get_freepointer(s
, object
);
284 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
286 *(void **)(object
+ s
->offset
) = fp
;
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
294 /* Determine object index from a given position */
295 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
297 return (p
- addr
) / s
->size
;
300 static inline size_t slab_ksize(const struct kmem_cache
*s
)
302 #ifdef CONFIG_SLUB_DEBUG
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
307 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
316 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
319 * Else we can use all the padding etc for the allocation
324 static inline int order_objects(int order
, unsigned long size
, int reserved
)
326 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
329 static inline struct kmem_cache_order_objects
oo_make(int order
,
330 unsigned long size
, int reserved
)
332 struct kmem_cache_order_objects x
= {
333 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
339 static inline int oo_order(struct kmem_cache_order_objects x
)
341 return x
.x
>> OO_SHIFT
;
344 static inline int oo_objects(struct kmem_cache_order_objects x
)
346 return x
.x
& OO_MASK
;
350 * Per slab locking using the pagelock
352 static __always_inline
void slab_lock(struct page
*page
)
354 bit_spin_lock(PG_locked
, &page
->flags
);
357 static __always_inline
void slab_unlock(struct page
*page
)
359 __bit_spin_unlock(PG_locked
, &page
->flags
);
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
364 void *freelist_old
, unsigned long counters_old
,
365 void *freelist_new
, unsigned long counters_new
,
368 VM_BUG_ON(!irqs_disabled());
369 #ifdef CONFIG_CMPXCHG_DOUBLE
370 if (s
->flags
& __CMPXCHG_DOUBLE
) {
371 if (cmpxchg_double(&page
->freelist
,
372 freelist_old
, counters_old
,
373 freelist_new
, counters_new
))
379 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
380 page
->freelist
= freelist_new
;
381 page
->counters
= counters_new
;
389 stat(s
, CMPXCHG_DOUBLE_FAIL
);
391 #ifdef SLUB_DEBUG_CMPXCHG
392 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
398 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
399 void *freelist_old
, unsigned long counters_old
,
400 void *freelist_new
, unsigned long counters_new
,
403 #ifdef CONFIG_CMPXCHG_DOUBLE
404 if (s
->flags
& __CMPXCHG_DOUBLE
) {
405 if (cmpxchg_double(&page
->freelist
,
406 freelist_old
, counters_old
,
407 freelist_new
, counters_new
))
414 local_irq_save(flags
);
416 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
417 page
->freelist
= freelist_new
;
418 page
->counters
= counters_new
;
420 local_irq_restore(flags
);
424 local_irq_restore(flags
);
428 stat(s
, CMPXCHG_DOUBLE_FAIL
);
430 #ifdef SLUB_DEBUG_CMPXCHG
431 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
437 #ifdef CONFIG_SLUB_DEBUG
439 * Determine a map of object in use on a page.
441 * Node listlock must be held to guarantee that the page does
442 * not vanish from under us.
444 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
447 void *addr
= page_address(page
);
449 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
450 set_bit(slab_index(p
, s
, addr
), map
);
456 #ifdef CONFIG_SLUB_DEBUG_ON
457 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
459 static int slub_debug
;
462 static char *slub_debug_slabs
;
463 static int disable_higher_order_debug
;
468 static void print_section(char *text
, u8
*addr
, unsigned int length
)
476 for (i
= 0; i
< length
; i
++) {
478 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
481 printk(KERN_CONT
" %02x", addr
[i
]);
483 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
485 printk(KERN_CONT
" %s\n", ascii
);
492 printk(KERN_CONT
" ");
496 printk(KERN_CONT
" %s\n", ascii
);
500 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
501 enum track_item alloc
)
506 p
= object
+ s
->offset
+ sizeof(void *);
508 p
= object
+ s
->inuse
;
513 static void set_track(struct kmem_cache
*s
, void *object
,
514 enum track_item alloc
, unsigned long addr
)
516 struct track
*p
= get_track(s
, object
, alloc
);
519 #ifdef CONFIG_STACKTRACE
520 struct stack_trace trace
;
523 trace
.nr_entries
= 0;
524 trace
.max_entries
= TRACK_ADDRS_COUNT
;
525 trace
.entries
= p
->addrs
;
527 save_stack_trace(&trace
);
529 /* See rant in lockdep.c */
530 if (trace
.nr_entries
!= 0 &&
531 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
534 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
538 p
->cpu
= smp_processor_id();
539 p
->pid
= current
->pid
;
542 memset(p
, 0, sizeof(struct track
));
545 static void init_tracking(struct kmem_cache
*s
, void *object
)
547 if (!(s
->flags
& SLAB_STORE_USER
))
550 set_track(s
, object
, TRACK_FREE
, 0UL);
551 set_track(s
, object
, TRACK_ALLOC
, 0UL);
554 static void print_track(const char *s
, struct track
*t
)
559 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
560 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
561 #ifdef CONFIG_STACKTRACE
564 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
566 printk(KERN_ERR
"\t%pS\n", (void *)t
->addrs
[i
]);
573 static void print_tracking(struct kmem_cache
*s
, void *object
)
575 if (!(s
->flags
& SLAB_STORE_USER
))
578 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
579 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
582 static void print_page_info(struct page
*page
)
584 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
589 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
595 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
597 printk(KERN_ERR
"========================================"
598 "=====================================\n");
599 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
600 printk(KERN_ERR
"----------------------------------------"
601 "-------------------------------------\n\n");
604 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
610 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
612 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
615 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
617 unsigned int off
; /* Offset of last byte */
618 u8
*addr
= page_address(page
);
620 print_tracking(s
, p
);
622 print_page_info(page
);
624 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
625 p
, p
- addr
, get_freepointer(s
, p
));
628 print_section("Bytes b4", p
- 16, 16);
630 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
632 if (s
->flags
& SLAB_RED_ZONE
)
633 print_section("Redzone", p
+ s
->objsize
,
634 s
->inuse
- s
->objsize
);
637 off
= s
->offset
+ sizeof(void *);
641 if (s
->flags
& SLAB_STORE_USER
)
642 off
+= 2 * sizeof(struct track
);
645 /* Beginning of the filler is the free pointer */
646 print_section("Padding", p
+ off
, s
->size
- off
);
651 static void object_err(struct kmem_cache
*s
, struct page
*page
,
652 u8
*object
, char *reason
)
654 slab_bug(s
, "%s", reason
);
655 print_trailer(s
, page
, object
);
658 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
664 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
666 slab_bug(s
, "%s", buf
);
667 print_page_info(page
);
671 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
675 if (s
->flags
& __OBJECT_POISON
) {
676 memset(p
, POISON_FREE
, s
->objsize
- 1);
677 p
[s
->objsize
- 1] = POISON_END
;
680 if (s
->flags
& SLAB_RED_ZONE
)
681 memset(p
+ s
->objsize
, val
, s
->inuse
- s
->objsize
);
684 static u8
*check_bytes8(u8
*start
, u8 value
, unsigned int bytes
)
695 static u8
*check_bytes(u8
*start
, u8 value
, unsigned int bytes
)
698 unsigned int words
, prefix
;
701 return check_bytes8(start
, value
, bytes
);
703 value64
= value
| value
<< 8 | value
<< 16 | value
<< 24;
704 value64
= (value64
& 0xffffffff) | value64
<< 32;
705 prefix
= 8 - ((unsigned long)start
) % 8;
708 u8
*r
= check_bytes8(start
, value
, prefix
);
718 if (*(u64
*)start
!= value64
)
719 return check_bytes8(start
, value
, 8);
724 return check_bytes8(start
, value
, bytes
% 8);
727 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
728 void *from
, void *to
)
730 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
731 memset(from
, data
, to
- from
);
734 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
735 u8
*object
, char *what
,
736 u8
*start
, unsigned int value
, unsigned int bytes
)
741 fault
= check_bytes(start
, value
, bytes
);
746 while (end
> fault
&& end
[-1] == value
)
749 slab_bug(s
, "%s overwritten", what
);
750 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
751 fault
, end
- 1, fault
[0], value
);
752 print_trailer(s
, page
, object
);
754 restore_bytes(s
, what
, value
, fault
, end
);
762 * Bytes of the object to be managed.
763 * If the freepointer may overlay the object then the free
764 * pointer is the first word of the object.
766 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
769 * object + s->objsize
770 * Padding to reach word boundary. This is also used for Redzoning.
771 * Padding is extended by another word if Redzoning is enabled and
774 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
775 * 0xcc (RED_ACTIVE) for objects in use.
778 * Meta data starts here.
780 * A. Free pointer (if we cannot overwrite object on free)
781 * B. Tracking data for SLAB_STORE_USER
782 * C. Padding to reach required alignment boundary or at mininum
783 * one word if debugging is on to be able to detect writes
784 * before the word boundary.
786 * Padding is done using 0x5a (POISON_INUSE)
789 * Nothing is used beyond s->size.
791 * If slabcaches are merged then the objsize and inuse boundaries are mostly
792 * ignored. And therefore no slab options that rely on these boundaries
793 * may be used with merged slabcaches.
796 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
798 unsigned long off
= s
->inuse
; /* The end of info */
801 /* Freepointer is placed after the object. */
802 off
+= sizeof(void *);
804 if (s
->flags
& SLAB_STORE_USER
)
805 /* We also have user information there */
806 off
+= 2 * sizeof(struct track
);
811 return check_bytes_and_report(s
, page
, p
, "Object padding",
812 p
+ off
, POISON_INUSE
, s
->size
- off
);
815 /* Check the pad bytes at the end of a slab page */
816 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
824 if (!(s
->flags
& SLAB_POISON
))
827 start
= page_address(page
);
828 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
829 end
= start
+ length
;
830 remainder
= length
% s
->size
;
834 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
837 while (end
> fault
&& end
[-1] == POISON_INUSE
)
840 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
841 print_section("Padding", end
- remainder
, remainder
);
843 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
847 static int check_object(struct kmem_cache
*s
, struct page
*page
,
848 void *object
, u8 val
)
851 u8
*endobject
= object
+ s
->objsize
;
853 if (s
->flags
& SLAB_RED_ZONE
) {
854 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
855 endobject
, val
, s
->inuse
- s
->objsize
))
858 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
859 check_bytes_and_report(s
, page
, p
, "Alignment padding",
860 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
864 if (s
->flags
& SLAB_POISON
) {
865 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
866 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
867 POISON_FREE
, s
->objsize
- 1) ||
868 !check_bytes_and_report(s
, page
, p
, "Poison",
869 p
+ s
->objsize
- 1, POISON_END
, 1)))
872 * check_pad_bytes cleans up on its own.
874 check_pad_bytes(s
, page
, p
);
877 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
879 * Object and freepointer overlap. Cannot check
880 * freepointer while object is allocated.
884 /* Check free pointer validity */
885 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
886 object_err(s
, page
, p
, "Freepointer corrupt");
888 * No choice but to zap it and thus lose the remainder
889 * of the free objects in this slab. May cause
890 * another error because the object count is now wrong.
892 set_freepointer(s
, p
, NULL
);
898 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
902 VM_BUG_ON(!irqs_disabled());
904 if (!PageSlab(page
)) {
905 slab_err(s
, page
, "Not a valid slab page");
909 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
910 if (page
->objects
> maxobj
) {
911 slab_err(s
, page
, "objects %u > max %u",
912 s
->name
, page
->objects
, maxobj
);
915 if (page
->inuse
> page
->objects
) {
916 slab_err(s
, page
, "inuse %u > max %u",
917 s
->name
, page
->inuse
, page
->objects
);
920 /* Slab_pad_check fixes things up after itself */
921 slab_pad_check(s
, page
);
926 * Determine if a certain object on a page is on the freelist. Must hold the
927 * slab lock to guarantee that the chains are in a consistent state.
929 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
934 unsigned long max_objects
;
937 while (fp
&& nr
<= page
->objects
) {
940 if (!check_valid_pointer(s
, page
, fp
)) {
942 object_err(s
, page
, object
,
943 "Freechain corrupt");
944 set_freepointer(s
, object
, NULL
);
947 slab_err(s
, page
, "Freepointer corrupt");
948 page
->freelist
= NULL
;
949 page
->inuse
= page
->objects
;
950 slab_fix(s
, "Freelist cleared");
956 fp
= get_freepointer(s
, object
);
960 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
961 if (max_objects
> MAX_OBJS_PER_PAGE
)
962 max_objects
= MAX_OBJS_PER_PAGE
;
964 if (page
->objects
!= max_objects
) {
965 slab_err(s
, page
, "Wrong number of objects. Found %d but "
966 "should be %d", page
->objects
, max_objects
);
967 page
->objects
= max_objects
;
968 slab_fix(s
, "Number of objects adjusted.");
970 if (page
->inuse
!= page
->objects
- nr
) {
971 slab_err(s
, page
, "Wrong object count. Counter is %d but "
972 "counted were %d", page
->inuse
, page
->objects
- nr
);
973 page
->inuse
= page
->objects
- nr
;
974 slab_fix(s
, "Object count adjusted.");
976 return search
== NULL
;
979 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
982 if (s
->flags
& SLAB_TRACE
) {
983 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
985 alloc
? "alloc" : "free",
990 print_section("Object", (void *)object
, s
->objsize
);
997 * Hooks for other subsystems that check memory allocations. In a typical
998 * production configuration these hooks all should produce no code at all.
1000 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1002 flags
&= gfp_allowed_mask
;
1003 lockdep_trace_alloc(flags
);
1004 might_sleep_if(flags
& __GFP_WAIT
);
1006 return should_failslab(s
->objsize
, flags
, s
->flags
);
1009 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
, void *object
)
1011 flags
&= gfp_allowed_mask
;
1012 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
1013 kmemleak_alloc_recursive(object
, s
->objsize
, 1, s
->flags
, flags
);
1016 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
1018 kmemleak_free_recursive(x
, s
->flags
);
1021 * Trouble is that we may no longer disable interupts in the fast path
1022 * So in order to make the debug calls that expect irqs to be
1023 * disabled we need to disable interrupts temporarily.
1025 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1027 unsigned long flags
;
1029 local_irq_save(flags
);
1030 kmemcheck_slab_free(s
, x
, s
->objsize
);
1031 debug_check_no_locks_freed(x
, s
->objsize
);
1032 local_irq_restore(flags
);
1035 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1036 debug_check_no_obj_freed(x
, s
->objsize
);
1040 * Tracking of fully allocated slabs for debugging purposes.
1042 * list_lock must be held.
1044 static void add_full(struct kmem_cache
*s
,
1045 struct kmem_cache_node
*n
, struct page
*page
)
1047 if (!(s
->flags
& SLAB_STORE_USER
))
1050 list_add(&page
->lru
, &n
->full
);
1054 * list_lock must be held.
1056 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
1058 if (!(s
->flags
& SLAB_STORE_USER
))
1061 list_del(&page
->lru
);
1064 /* Tracking of the number of slabs for debugging purposes */
1065 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1067 struct kmem_cache_node
*n
= get_node(s
, node
);
1069 return atomic_long_read(&n
->nr_slabs
);
1072 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1074 return atomic_long_read(&n
->nr_slabs
);
1077 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1079 struct kmem_cache_node
*n
= get_node(s
, node
);
1082 * May be called early in order to allocate a slab for the
1083 * kmem_cache_node structure. Solve the chicken-egg
1084 * dilemma by deferring the increment of the count during
1085 * bootstrap (see early_kmem_cache_node_alloc).
1088 atomic_long_inc(&n
->nr_slabs
);
1089 atomic_long_add(objects
, &n
->total_objects
);
1092 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1094 struct kmem_cache_node
*n
= get_node(s
, node
);
1096 atomic_long_dec(&n
->nr_slabs
);
1097 atomic_long_sub(objects
, &n
->total_objects
);
1100 /* Object debug checks for alloc/free paths */
1101 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1104 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1107 init_object(s
, object
, SLUB_RED_INACTIVE
);
1108 init_tracking(s
, object
);
1111 static noinline
int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
1112 void *object
, unsigned long addr
)
1114 if (!check_slab(s
, page
))
1117 if (!check_valid_pointer(s
, page
, object
)) {
1118 object_err(s
, page
, object
, "Freelist Pointer check fails");
1122 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1125 /* Success perform special debug activities for allocs */
1126 if (s
->flags
& SLAB_STORE_USER
)
1127 set_track(s
, object
, TRACK_ALLOC
, addr
);
1128 trace(s
, page
, object
, 1);
1129 init_object(s
, object
, SLUB_RED_ACTIVE
);
1133 if (PageSlab(page
)) {
1135 * If this is a slab page then lets do the best we can
1136 * to avoid issues in the future. Marking all objects
1137 * as used avoids touching the remaining objects.
1139 slab_fix(s
, "Marking all objects used");
1140 page
->inuse
= page
->objects
;
1141 page
->freelist
= NULL
;
1146 static noinline
int free_debug_processing(struct kmem_cache
*s
,
1147 struct page
*page
, void *object
, unsigned long addr
)
1149 unsigned long flags
;
1152 local_irq_save(flags
);
1155 if (!check_slab(s
, page
))
1158 if (!check_valid_pointer(s
, page
, object
)) {
1159 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1163 if (on_freelist(s
, page
, object
)) {
1164 object_err(s
, page
, object
, "Object already free");
1168 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1171 if (unlikely(s
!= page
->slab
)) {
1172 if (!PageSlab(page
)) {
1173 slab_err(s
, page
, "Attempt to free object(0x%p) "
1174 "outside of slab", object
);
1175 } else if (!page
->slab
) {
1177 "SLUB <none>: no slab for object 0x%p.\n",
1181 object_err(s
, page
, object
,
1182 "page slab pointer corrupt.");
1186 if (s
->flags
& SLAB_STORE_USER
)
1187 set_track(s
, object
, TRACK_FREE
, addr
);
1188 trace(s
, page
, object
, 0);
1189 init_object(s
, object
, SLUB_RED_INACTIVE
);
1193 local_irq_restore(flags
);
1197 slab_fix(s
, "Object at 0x%p not freed", object
);
1201 static int __init
setup_slub_debug(char *str
)
1203 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1204 if (*str
++ != '=' || !*str
)
1206 * No options specified. Switch on full debugging.
1212 * No options but restriction on slabs. This means full
1213 * debugging for slabs matching a pattern.
1217 if (tolower(*str
) == 'o') {
1219 * Avoid enabling debugging on caches if its minimum order
1220 * would increase as a result.
1222 disable_higher_order_debug
= 1;
1229 * Switch off all debugging measures.
1234 * Determine which debug features should be switched on
1236 for (; *str
&& *str
!= ','; str
++) {
1237 switch (tolower(*str
)) {
1239 slub_debug
|= SLAB_DEBUG_FREE
;
1242 slub_debug
|= SLAB_RED_ZONE
;
1245 slub_debug
|= SLAB_POISON
;
1248 slub_debug
|= SLAB_STORE_USER
;
1251 slub_debug
|= SLAB_TRACE
;
1254 slub_debug
|= SLAB_FAILSLAB
;
1257 printk(KERN_ERR
"slub_debug option '%c' "
1258 "unknown. skipped\n", *str
);
1264 slub_debug_slabs
= str
+ 1;
1269 __setup("slub_debug", setup_slub_debug
);
1271 static unsigned long kmem_cache_flags(unsigned long objsize
,
1272 unsigned long flags
, const char *name
,
1273 void (*ctor
)(void *))
1276 * Enable debugging if selected on the kernel commandline.
1278 if (slub_debug
&& (!slub_debug_slabs
||
1279 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
))))
1280 flags
|= slub_debug
;
1285 static inline void setup_object_debug(struct kmem_cache
*s
,
1286 struct page
*page
, void *object
) {}
1288 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1289 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1291 static inline int free_debug_processing(struct kmem_cache
*s
,
1292 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1294 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1296 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1297 void *object
, u8 val
) { return 1; }
1298 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1299 struct page
*page
) {}
1300 static inline void remove_full(struct kmem_cache
*s
, struct page
*page
) {}
1301 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1302 unsigned long flags
, const char *name
,
1303 void (*ctor
)(void *))
1307 #define slub_debug 0
1309 #define disable_higher_order_debug 0
1311 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1313 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1315 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1317 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1320 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1323 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1326 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
) {}
1328 #endif /* CONFIG_SLUB_DEBUG */
1331 * Slab allocation and freeing
1333 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1334 struct kmem_cache_order_objects oo
)
1336 int order
= oo_order(oo
);
1338 flags
|= __GFP_NOTRACK
;
1340 if (node
== NUMA_NO_NODE
)
1341 return alloc_pages(flags
, order
);
1343 return alloc_pages_exact_node(node
, flags
, order
);
1346 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1349 struct kmem_cache_order_objects oo
= s
->oo
;
1352 flags
&= gfp_allowed_mask
;
1354 if (flags
& __GFP_WAIT
)
1357 flags
|= s
->allocflags
;
1360 * Let the initial higher-order allocation fail under memory pressure
1361 * so we fall-back to the minimum order allocation.
1363 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1365 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1366 if (unlikely(!page
)) {
1369 * Allocation may have failed due to fragmentation.
1370 * Try a lower order alloc if possible
1372 page
= alloc_slab_page(flags
, node
, oo
);
1375 stat(s
, ORDER_FALLBACK
);
1378 if (flags
& __GFP_WAIT
)
1379 local_irq_disable();
1384 if (kmemcheck_enabled
1385 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1386 int pages
= 1 << oo_order(oo
);
1388 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1391 * Objects from caches that have a constructor don't get
1392 * cleared when they're allocated, so we need to do it here.
1395 kmemcheck_mark_uninitialized_pages(page
, pages
);
1397 kmemcheck_mark_unallocated_pages(page
, pages
);
1400 page
->objects
= oo_objects(oo
);
1401 mod_zone_page_state(page_zone(page
),
1402 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1403 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1409 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1412 setup_object_debug(s
, page
, object
);
1413 if (unlikely(s
->ctor
))
1417 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1424 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1426 page
= allocate_slab(s
,
1427 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1431 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1433 page
->flags
|= 1 << PG_slab
;
1435 start
= page_address(page
);
1437 if (unlikely(s
->flags
& SLAB_POISON
))
1438 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1441 for_each_object(p
, s
, start
, page
->objects
) {
1442 setup_object(s
, page
, last
);
1443 set_freepointer(s
, last
, p
);
1446 setup_object(s
, page
, last
);
1447 set_freepointer(s
, last
, NULL
);
1449 page
->freelist
= start
;
1450 page
->inuse
= page
->objects
;
1456 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1458 int order
= compound_order(page
);
1459 int pages
= 1 << order
;
1461 if (kmem_cache_debug(s
)) {
1464 slab_pad_check(s
, page
);
1465 for_each_object(p
, s
, page_address(page
),
1467 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1470 kmemcheck_free_shadow(page
, compound_order(page
));
1472 mod_zone_page_state(page_zone(page
),
1473 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1474 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1477 __ClearPageSlab(page
);
1478 reset_page_mapcount(page
);
1479 if (current
->reclaim_state
)
1480 current
->reclaim_state
->reclaimed_slab
+= pages
;
1481 __free_pages(page
, order
);
1484 #define need_reserve_slab_rcu \
1485 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1487 static void rcu_free_slab(struct rcu_head
*h
)
1491 if (need_reserve_slab_rcu
)
1492 page
= virt_to_head_page(h
);
1494 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1496 __free_slab(page
->slab
, page
);
1499 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1501 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1502 struct rcu_head
*head
;
1504 if (need_reserve_slab_rcu
) {
1505 int order
= compound_order(page
);
1506 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1508 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1509 head
= page_address(page
) + offset
;
1512 * RCU free overloads the RCU head over the LRU
1514 head
= (void *)&page
->lru
;
1517 call_rcu(head
, rcu_free_slab
);
1519 __free_slab(s
, page
);
1522 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1524 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1529 * Management of partially allocated slabs.
1531 * list_lock must be held.
1533 static inline void add_partial(struct kmem_cache_node
*n
,
1534 struct page
*page
, int tail
)
1537 if (tail
== DEACTIVATE_TO_TAIL
)
1538 list_add_tail(&page
->lru
, &n
->partial
);
1540 list_add(&page
->lru
, &n
->partial
);
1544 * list_lock must be held.
1546 static inline void remove_partial(struct kmem_cache_node
*n
,
1549 list_del(&page
->lru
);
1554 * Lock slab, remove from the partial list and put the object into the
1557 * Returns a list of objects or NULL if it fails.
1559 * Must hold list_lock.
1561 static inline void *acquire_slab(struct kmem_cache
*s
,
1562 struct kmem_cache_node
*n
, struct page
*page
,
1566 unsigned long counters
;
1570 * Zap the freelist and set the frozen bit.
1571 * The old freelist is the list of objects for the
1572 * per cpu allocation list.
1575 freelist
= page
->freelist
;
1576 counters
= page
->counters
;
1577 new.counters
= counters
;
1579 new.inuse
= page
->objects
;
1581 VM_BUG_ON(new.frozen
);
1584 } while (!__cmpxchg_double_slab(s
, page
,
1587 "lock and freeze"));
1589 remove_partial(n
, page
);
1593 static int put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1596 * Try to allocate a partial slab from a specific node.
1598 static void *get_partial_node(struct kmem_cache
*s
,
1599 struct kmem_cache_node
*n
, struct kmem_cache_cpu
*c
)
1601 struct page
*page
, *page2
;
1602 void *object
= NULL
;
1606 * Racy check. If we mistakenly see no partial slabs then we
1607 * just allocate an empty slab. If we mistakenly try to get a
1608 * partial slab and there is none available then get_partials()
1611 if (!n
|| !n
->nr_partial
)
1614 spin_lock(&n
->list_lock
);
1615 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1616 void *t
= acquire_slab(s
, n
, page
, count
== 0);
1624 c
->node
= page_to_nid(page
);
1625 stat(s
, ALLOC_FROM_PARTIAL
);
1628 available
= page
->objects
- page
->inuse
;
1631 available
= put_cpu_partial(s
, page
, 0);
1633 if (kmem_cache_debug(s
) || available
> s
->cpu_partial
/ 2)
1637 spin_unlock(&n
->list_lock
);
1642 * Get a page from somewhere. Search in increasing NUMA distances.
1644 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1645 struct kmem_cache_cpu
*c
)
1648 struct zonelist
*zonelist
;
1651 enum zone_type high_zoneidx
= gfp_zone(flags
);
1655 * The defrag ratio allows a configuration of the tradeoffs between
1656 * inter node defragmentation and node local allocations. A lower
1657 * defrag_ratio increases the tendency to do local allocations
1658 * instead of attempting to obtain partial slabs from other nodes.
1660 * If the defrag_ratio is set to 0 then kmalloc() always
1661 * returns node local objects. If the ratio is higher then kmalloc()
1662 * may return off node objects because partial slabs are obtained
1663 * from other nodes and filled up.
1665 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1666 * defrag_ratio = 1000) then every (well almost) allocation will
1667 * first attempt to defrag slab caches on other nodes. This means
1668 * scanning over all nodes to look for partial slabs which may be
1669 * expensive if we do it every time we are trying to find a slab
1670 * with available objects.
1672 if (!s
->remote_node_defrag_ratio
||
1673 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1677 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1678 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1679 struct kmem_cache_node
*n
;
1681 n
= get_node(s
, zone_to_nid(zone
));
1683 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1684 n
->nr_partial
> s
->min_partial
) {
1685 object
= get_partial_node(s
, n
, c
);
1698 * Get a partial page, lock it and return it.
1700 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1701 struct kmem_cache_cpu
*c
)
1704 int searchnode
= (node
== NUMA_NO_NODE
) ? numa_node_id() : node
;
1706 object
= get_partial_node(s
, get_node(s
, searchnode
), c
);
1707 if (object
|| node
!= NUMA_NO_NODE
)
1710 return get_any_partial(s
, flags
, c
);
1713 #ifdef CONFIG_PREEMPT
1715 * Calculate the next globally unique transaction for disambiguiation
1716 * during cmpxchg. The transactions start with the cpu number and are then
1717 * incremented by CONFIG_NR_CPUS.
1719 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1722 * No preemption supported therefore also no need to check for
1728 static inline unsigned long next_tid(unsigned long tid
)
1730 return tid
+ TID_STEP
;
1733 static inline unsigned int tid_to_cpu(unsigned long tid
)
1735 return tid
% TID_STEP
;
1738 static inline unsigned long tid_to_event(unsigned long tid
)
1740 return tid
/ TID_STEP
;
1743 static inline unsigned int init_tid(int cpu
)
1748 static inline void note_cmpxchg_failure(const char *n
,
1749 const struct kmem_cache
*s
, unsigned long tid
)
1751 #ifdef SLUB_DEBUG_CMPXCHG
1752 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1754 printk(KERN_INFO
"%s %s: cmpxchg redo ", n
, s
->name
);
1756 #ifdef CONFIG_PREEMPT
1757 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1758 printk("due to cpu change %d -> %d\n",
1759 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1762 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1763 printk("due to cpu running other code. Event %ld->%ld\n",
1764 tid_to_event(tid
), tid_to_event(actual_tid
));
1766 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1767 actual_tid
, tid
, next_tid(tid
));
1769 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1772 void init_kmem_cache_cpus(struct kmem_cache
*s
)
1776 for_each_possible_cpu(cpu
)
1777 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1781 * Remove the cpu slab
1783 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1785 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1786 struct page
*page
= c
->page
;
1787 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1789 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1792 int tail
= DEACTIVATE_TO_HEAD
;
1796 if (page
->freelist
) {
1797 stat(s
, DEACTIVATE_REMOTE_FREES
);
1798 tail
= DEACTIVATE_TO_TAIL
;
1801 c
->tid
= next_tid(c
->tid
);
1803 freelist
= c
->freelist
;
1807 * Stage one: Free all available per cpu objects back
1808 * to the page freelist while it is still frozen. Leave the
1811 * There is no need to take the list->lock because the page
1814 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
1816 unsigned long counters
;
1819 prior
= page
->freelist
;
1820 counters
= page
->counters
;
1821 set_freepointer(s
, freelist
, prior
);
1822 new.counters
= counters
;
1824 VM_BUG_ON(!new.frozen
);
1826 } while (!__cmpxchg_double_slab(s
, page
,
1828 freelist
, new.counters
,
1829 "drain percpu freelist"));
1831 freelist
= nextfree
;
1835 * Stage two: Ensure that the page is unfrozen while the
1836 * list presence reflects the actual number of objects
1839 * We setup the list membership and then perform a cmpxchg
1840 * with the count. If there is a mismatch then the page
1841 * is not unfrozen but the page is on the wrong list.
1843 * Then we restart the process which may have to remove
1844 * the page from the list that we just put it on again
1845 * because the number of objects in the slab may have
1850 old
.freelist
= page
->freelist
;
1851 old
.counters
= page
->counters
;
1852 VM_BUG_ON(!old
.frozen
);
1854 /* Determine target state of the slab */
1855 new.counters
= old
.counters
;
1858 set_freepointer(s
, freelist
, old
.freelist
);
1859 new.freelist
= freelist
;
1861 new.freelist
= old
.freelist
;
1865 if (!new.inuse
&& n
->nr_partial
> s
->min_partial
)
1867 else if (new.freelist
) {
1872 * Taking the spinlock removes the possiblity
1873 * that acquire_slab() will see a slab page that
1876 spin_lock(&n
->list_lock
);
1880 if (kmem_cache_debug(s
) && !lock
) {
1883 * This also ensures that the scanning of full
1884 * slabs from diagnostic functions will not see
1887 spin_lock(&n
->list_lock
);
1895 remove_partial(n
, page
);
1897 else if (l
== M_FULL
)
1899 remove_full(s
, page
);
1901 if (m
== M_PARTIAL
) {
1903 add_partial(n
, page
, tail
);
1906 } else if (m
== M_FULL
) {
1908 stat(s
, DEACTIVATE_FULL
);
1909 add_full(s
, n
, page
);
1915 if (!__cmpxchg_double_slab(s
, page
,
1916 old
.freelist
, old
.counters
,
1917 new.freelist
, new.counters
,
1922 spin_unlock(&n
->list_lock
);
1925 stat(s
, DEACTIVATE_EMPTY
);
1926 discard_slab(s
, page
);
1931 /* Unfreeze all the cpu partial slabs */
1932 static void unfreeze_partials(struct kmem_cache
*s
)
1934 struct kmem_cache_node
*n
= NULL
;
1935 struct kmem_cache_cpu
*c
= this_cpu_ptr(s
->cpu_slab
);
1938 while ((page
= c
->partial
)) {
1939 enum slab_modes
{ M_PARTIAL
, M_FREE
};
1940 enum slab_modes l
, m
;
1944 c
->partial
= page
->next
;
1949 old
.freelist
= page
->freelist
;
1950 old
.counters
= page
->counters
;
1951 VM_BUG_ON(!old
.frozen
);
1953 new.counters
= old
.counters
;
1954 new.freelist
= old
.freelist
;
1958 if (!new.inuse
&& (!n
|| n
->nr_partial
< s
->min_partial
))
1961 struct kmem_cache_node
*n2
= get_node(s
,
1967 spin_unlock(&n
->list_lock
);
1970 spin_lock(&n
->list_lock
);
1976 remove_partial(n
, page
);
1978 add_partial(n
, page
, 1);
1983 } while (!cmpxchg_double_slab(s
, page
,
1984 old
.freelist
, old
.counters
,
1985 new.freelist
, new.counters
,
1986 "unfreezing slab"));
1989 stat(s
, DEACTIVATE_EMPTY
);
1990 discard_slab(s
, page
);
1996 spin_unlock(&n
->list_lock
);
2000 * Put a page that was just frozen (in __slab_free) into a partial page
2001 * slot if available. This is done without interrupts disabled and without
2002 * preemption disabled. The cmpxchg is racy and may put the partial page
2003 * onto a random cpus partial slot.
2005 * If we did not find a slot then simply move all the partials to the
2006 * per node partial list.
2008 int put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2010 struct page
*oldpage
;
2017 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2020 pobjects
= oldpage
->pobjects
;
2021 pages
= oldpage
->pages
;
2022 if (drain
&& pobjects
> s
->cpu_partial
) {
2023 unsigned long flags
;
2025 * partial array is full. Move the existing
2026 * set to the per node partial list.
2028 local_irq_save(flags
);
2029 unfreeze_partials(s
);
2030 local_irq_restore(flags
);
2037 pobjects
+= page
->objects
- page
->inuse
;
2039 page
->pages
= pages
;
2040 page
->pobjects
= pobjects
;
2041 page
->next
= oldpage
;
2043 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
) != oldpage
);
2044 stat(s
, CPU_PARTIAL_FREE
);
2048 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2050 stat(s
, CPUSLAB_FLUSH
);
2051 deactivate_slab(s
, c
);
2057 * Called from IPI handler with interrupts disabled.
2059 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2061 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2067 unfreeze_partials(s
);
2071 static void flush_cpu_slab(void *d
)
2073 struct kmem_cache
*s
= d
;
2075 __flush_cpu_slab(s
, smp_processor_id());
2078 static void flush_all(struct kmem_cache
*s
)
2080 on_each_cpu(flush_cpu_slab
, s
, 1);
2084 * Check if the objects in a per cpu structure fit numa
2085 * locality expectations.
2087 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
2090 if (node
!= NUMA_NO_NODE
&& c
->node
!= node
)
2096 static int count_free(struct page
*page
)
2098 return page
->objects
- page
->inuse
;
2101 static unsigned long count_partial(struct kmem_cache_node
*n
,
2102 int (*get_count
)(struct page
*))
2104 unsigned long flags
;
2105 unsigned long x
= 0;
2108 spin_lock_irqsave(&n
->list_lock
, flags
);
2109 list_for_each_entry(page
, &n
->partial
, lru
)
2110 x
+= get_count(page
);
2111 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2115 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2117 #ifdef CONFIG_SLUB_DEBUG
2118 return atomic_long_read(&n
->total_objects
);
2124 static noinline
void
2125 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2130 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2132 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
2133 "default order: %d, min order: %d\n", s
->name
, s
->objsize
,
2134 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
2136 if (oo_order(s
->min
) > get_order(s
->objsize
))
2137 printk(KERN_WARNING
" %s debugging increased min order, use "
2138 "slub_debug=O to disable.\n", s
->name
);
2140 for_each_online_node(node
) {
2141 struct kmem_cache_node
*n
= get_node(s
, node
);
2142 unsigned long nr_slabs
;
2143 unsigned long nr_objs
;
2144 unsigned long nr_free
;
2149 nr_free
= count_partial(n
, count_free
);
2150 nr_slabs
= node_nr_slabs(n
);
2151 nr_objs
= node_nr_objs(n
);
2154 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2155 node
, nr_slabs
, nr_objs
, nr_free
);
2159 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2160 int node
, struct kmem_cache_cpu
**pc
)
2163 struct kmem_cache_cpu
*c
;
2164 struct page
*page
= new_slab(s
, flags
, node
);
2167 c
= __this_cpu_ptr(s
->cpu_slab
);
2172 * No other reference to the page yet so we can
2173 * muck around with it freely without cmpxchg
2175 object
= page
->freelist
;
2176 page
->freelist
= NULL
;
2178 stat(s
, ALLOC_SLAB
);
2179 c
->node
= page_to_nid(page
);
2189 * Slow path. The lockless freelist is empty or we need to perform
2192 * Processing is still very fast if new objects have been freed to the
2193 * regular freelist. In that case we simply take over the regular freelist
2194 * as the lockless freelist and zap the regular freelist.
2196 * If that is not working then we fall back to the partial lists. We take the
2197 * first element of the freelist as the object to allocate now and move the
2198 * rest of the freelist to the lockless freelist.
2200 * And if we were unable to get a new slab from the partial slab lists then
2201 * we need to allocate a new slab. This is the slowest path since it involves
2202 * a call to the page allocator and the setup of a new slab.
2204 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2205 unsigned long addr
, struct kmem_cache_cpu
*c
)
2208 unsigned long flags
;
2210 unsigned long counters
;
2212 local_irq_save(flags
);
2213 #ifdef CONFIG_PREEMPT
2215 * We may have been preempted and rescheduled on a different
2216 * cpu before disabling interrupts. Need to reload cpu area
2219 c
= this_cpu_ptr(s
->cpu_slab
);
2225 if (unlikely(!node_match(c
, node
))) {
2226 stat(s
, ALLOC_NODE_MISMATCH
);
2227 deactivate_slab(s
, c
);
2231 stat(s
, ALLOC_SLOWPATH
);
2234 object
= c
->page
->freelist
;
2235 counters
= c
->page
->counters
;
2236 new.counters
= counters
;
2237 VM_BUG_ON(!new.frozen
);
2240 * If there is no object left then we use this loop to
2241 * deactivate the slab which is simple since no objects
2242 * are left in the slab and therefore we do not need to
2243 * put the page back onto the partial list.
2245 * If there are objects left then we retrieve them
2246 * and use them to refill the per cpu queue.
2249 new.inuse
= c
->page
->objects
;
2250 new.frozen
= object
!= NULL
;
2252 } while (!__cmpxchg_double_slab(s
, c
->page
,
2259 stat(s
, DEACTIVATE_BYPASS
);
2263 stat(s
, ALLOC_REFILL
);
2266 c
->freelist
= get_freepointer(s
, object
);
2267 c
->tid
= next_tid(c
->tid
);
2268 local_irq_restore(flags
);
2274 c
->page
= c
->partial
;
2275 c
->partial
= c
->page
->next
;
2276 c
->node
= page_to_nid(c
->page
);
2277 stat(s
, CPU_PARTIAL_ALLOC
);
2282 /* Then do expensive stuff like retrieving pages from the partial lists */
2283 object
= get_partial(s
, gfpflags
, node
, c
);
2285 if (unlikely(!object
)) {
2287 object
= new_slab_objects(s
, gfpflags
, node
, &c
);
2289 if (unlikely(!object
)) {
2290 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
2291 slab_out_of_memory(s
, gfpflags
, node
);
2293 local_irq_restore(flags
);
2298 if (likely(!kmem_cache_debug(s
)))
2301 /* Only entered in the debug case */
2302 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
2303 goto new_slab
; /* Slab failed checks. Next slab needed */
2305 c
->freelist
= get_freepointer(s
, object
);
2306 deactivate_slab(s
, c
);
2307 c
->node
= NUMA_NO_NODE
;
2308 local_irq_restore(flags
);
2313 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2314 * have the fastpath folded into their functions. So no function call
2315 * overhead for requests that can be satisfied on the fastpath.
2317 * The fastpath works by first checking if the lockless freelist can be used.
2318 * If not then __slab_alloc is called for slow processing.
2320 * Otherwise we can simply pick the next object from the lockless free list.
2322 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2323 gfp_t gfpflags
, int node
, unsigned long addr
)
2326 struct kmem_cache_cpu
*c
;
2329 if (slab_pre_alloc_hook(s
, gfpflags
))
2335 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2336 * enabled. We may switch back and forth between cpus while
2337 * reading from one cpu area. That does not matter as long
2338 * as we end up on the original cpu again when doing the cmpxchg.
2340 c
= __this_cpu_ptr(s
->cpu_slab
);
2343 * The transaction ids are globally unique per cpu and per operation on
2344 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2345 * occurs on the right processor and that there was no operation on the
2346 * linked list in between.
2351 object
= c
->freelist
;
2352 if (unlikely(!object
|| !node_match(c
, node
)))
2354 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2358 * The cmpxchg will only match if there was no additional
2359 * operation and if we are on the right processor.
2361 * The cmpxchg does the following atomically (without lock semantics!)
2362 * 1. Relocate first pointer to the current per cpu area.
2363 * 2. Verify that tid and freelist have not been changed
2364 * 3. If they were not changed replace tid and freelist
2366 * Since this is without lock semantics the protection is only against
2367 * code executing on this cpu *not* from access by other cpus.
2369 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2370 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2372 get_freepointer_safe(s
, object
), next_tid(tid
)))) {
2374 note_cmpxchg_failure("slab_alloc", s
, tid
);
2377 stat(s
, ALLOC_FASTPATH
);
2380 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2381 memset(object
, 0, s
->objsize
);
2383 slab_post_alloc_hook(s
, gfpflags
, object
);
2388 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2390 void *ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
);
2392 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->objsize
, s
->size
, gfpflags
);
2396 EXPORT_SYMBOL(kmem_cache_alloc
);
2398 #ifdef CONFIG_TRACING
2399 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2401 void *ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
);
2402 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2405 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2407 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
2409 void *ret
= kmalloc_order(size
, flags
, order
);
2410 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
2413 EXPORT_SYMBOL(kmalloc_order_trace
);
2417 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2419 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
2421 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2422 s
->objsize
, s
->size
, gfpflags
, node
);
2426 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2428 #ifdef CONFIG_TRACING
2429 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2431 int node
, size_t size
)
2433 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
2435 trace_kmalloc_node(_RET_IP_
, ret
,
2436 size
, s
->size
, gfpflags
, node
);
2439 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2444 * Slow patch handling. This may still be called frequently since objects
2445 * have a longer lifetime than the cpu slabs in most processing loads.
2447 * So we still attempt to reduce cache line usage. Just take the slab
2448 * lock and free the item. If there is no additional partial page
2449 * handling required then we can return immediately.
2451 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2452 void *x
, unsigned long addr
)
2455 void **object
= (void *)x
;
2459 unsigned long counters
;
2460 struct kmem_cache_node
*n
= NULL
;
2461 unsigned long uninitialized_var(flags
);
2463 stat(s
, FREE_SLOWPATH
);
2465 if (kmem_cache_debug(s
) && !free_debug_processing(s
, page
, x
, addr
))
2469 prior
= page
->freelist
;
2470 counters
= page
->counters
;
2471 set_freepointer(s
, object
, prior
);
2472 new.counters
= counters
;
2473 was_frozen
= new.frozen
;
2475 if ((!new.inuse
|| !prior
) && !was_frozen
&& !n
) {
2477 if (!kmem_cache_debug(s
) && !prior
)
2480 * Slab was on no list before and will be partially empty
2481 * We can defer the list move and instead freeze it.
2485 else { /* Needs to be taken off a list */
2487 n
= get_node(s
, page_to_nid(page
));
2489 * Speculatively acquire the list_lock.
2490 * If the cmpxchg does not succeed then we may
2491 * drop the list_lock without any processing.
2493 * Otherwise the list_lock will synchronize with
2494 * other processors updating the list of slabs.
2496 spin_lock_irqsave(&n
->list_lock
, flags
);
2502 } while (!cmpxchg_double_slab(s
, page
,
2504 object
, new.counters
,
2510 * If we just froze the page then put it onto the
2511 * per cpu partial list.
2513 if (new.frozen
&& !was_frozen
)
2514 put_cpu_partial(s
, page
, 1);
2517 * The list lock was not taken therefore no list
2518 * activity can be necessary.
2521 stat(s
, FREE_FROZEN
);
2526 * was_frozen may have been set after we acquired the list_lock in
2527 * an earlier loop. So we need to check it here again.
2530 stat(s
, FREE_FROZEN
);
2532 if (unlikely(!inuse
&& n
->nr_partial
> s
->min_partial
))
2536 * Objects left in the slab. If it was not on the partial list before
2539 if (unlikely(!prior
)) {
2540 remove_full(s
, page
);
2541 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2542 stat(s
, FREE_ADD_PARTIAL
);
2545 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2551 * Slab on the partial list.
2553 remove_partial(n
, page
);
2554 stat(s
, FREE_REMOVE_PARTIAL
);
2556 /* Slab must be on the full list */
2557 remove_full(s
, page
);
2559 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2561 discard_slab(s
, page
);
2565 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2566 * can perform fastpath freeing without additional function calls.
2568 * The fastpath is only possible if we are freeing to the current cpu slab
2569 * of this processor. This typically the case if we have just allocated
2572 * If fastpath is not possible then fall back to __slab_free where we deal
2573 * with all sorts of special processing.
2575 static __always_inline
void slab_free(struct kmem_cache
*s
,
2576 struct page
*page
, void *x
, unsigned long addr
)
2578 void **object
= (void *)x
;
2579 struct kmem_cache_cpu
*c
;
2582 slab_free_hook(s
, x
);
2586 * Determine the currently cpus per cpu slab.
2587 * The cpu may change afterward. However that does not matter since
2588 * data is retrieved via this pointer. If we are on the same cpu
2589 * during the cmpxchg then the free will succedd.
2591 c
= __this_cpu_ptr(s
->cpu_slab
);
2596 if (likely(page
== c
->page
)) {
2597 set_freepointer(s
, object
, c
->freelist
);
2599 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2600 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2602 object
, next_tid(tid
)))) {
2604 note_cmpxchg_failure("slab_free", s
, tid
);
2607 stat(s
, FREE_FASTPATH
);
2609 __slab_free(s
, page
, x
, addr
);
2613 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2617 page
= virt_to_head_page(x
);
2619 slab_free(s
, page
, x
, _RET_IP_
);
2621 trace_kmem_cache_free(_RET_IP_
, x
);
2623 EXPORT_SYMBOL(kmem_cache_free
);
2626 * Object placement in a slab is made very easy because we always start at
2627 * offset 0. If we tune the size of the object to the alignment then we can
2628 * get the required alignment by putting one properly sized object after
2631 * Notice that the allocation order determines the sizes of the per cpu
2632 * caches. Each processor has always one slab available for allocations.
2633 * Increasing the allocation order reduces the number of times that slabs
2634 * must be moved on and off the partial lists and is therefore a factor in
2639 * Mininum / Maximum order of slab pages. This influences locking overhead
2640 * and slab fragmentation. A higher order reduces the number of partial slabs
2641 * and increases the number of allocations possible without having to
2642 * take the list_lock.
2644 static int slub_min_order
;
2645 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
2646 static int slub_min_objects
;
2649 * Merge control. If this is set then no merging of slab caches will occur.
2650 * (Could be removed. This was introduced to pacify the merge skeptics.)
2652 static int slub_nomerge
;
2655 * Calculate the order of allocation given an slab object size.
2657 * The order of allocation has significant impact on performance and other
2658 * system components. Generally order 0 allocations should be preferred since
2659 * order 0 does not cause fragmentation in the page allocator. Larger objects
2660 * be problematic to put into order 0 slabs because there may be too much
2661 * unused space left. We go to a higher order if more than 1/16th of the slab
2664 * In order to reach satisfactory performance we must ensure that a minimum
2665 * number of objects is in one slab. Otherwise we may generate too much
2666 * activity on the partial lists which requires taking the list_lock. This is
2667 * less a concern for large slabs though which are rarely used.
2669 * slub_max_order specifies the order where we begin to stop considering the
2670 * number of objects in a slab as critical. If we reach slub_max_order then
2671 * we try to keep the page order as low as possible. So we accept more waste
2672 * of space in favor of a small page order.
2674 * Higher order allocations also allow the placement of more objects in a
2675 * slab and thereby reduce object handling overhead. If the user has
2676 * requested a higher mininum order then we start with that one instead of
2677 * the smallest order which will fit the object.
2679 static inline int slab_order(int size
, int min_objects
,
2680 int max_order
, int fract_leftover
, int reserved
)
2684 int min_order
= slub_min_order
;
2686 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
2687 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
2689 for (order
= max(min_order
,
2690 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
2691 order
<= max_order
; order
++) {
2693 unsigned long slab_size
= PAGE_SIZE
<< order
;
2695 if (slab_size
< min_objects
* size
+ reserved
)
2698 rem
= (slab_size
- reserved
) % size
;
2700 if (rem
<= slab_size
/ fract_leftover
)
2708 static inline int calculate_order(int size
, int reserved
)
2716 * Attempt to find best configuration for a slab. This
2717 * works by first attempting to generate a layout with
2718 * the best configuration and backing off gradually.
2720 * First we reduce the acceptable waste in a slab. Then
2721 * we reduce the minimum objects required in a slab.
2723 min_objects
= slub_min_objects
;
2725 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2726 max_objects
= order_objects(slub_max_order
, size
, reserved
);
2727 min_objects
= min(min_objects
, max_objects
);
2729 while (min_objects
> 1) {
2731 while (fraction
>= 4) {
2732 order
= slab_order(size
, min_objects
,
2733 slub_max_order
, fraction
, reserved
);
2734 if (order
<= slub_max_order
)
2742 * We were unable to place multiple objects in a slab. Now
2743 * lets see if we can place a single object there.
2745 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
2746 if (order
<= slub_max_order
)
2750 * Doh this slab cannot be placed using slub_max_order.
2752 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
2753 if (order
< MAX_ORDER
)
2759 * Figure out what the alignment of the objects will be.
2761 static unsigned long calculate_alignment(unsigned long flags
,
2762 unsigned long align
, unsigned long size
)
2765 * If the user wants hardware cache aligned objects then follow that
2766 * suggestion if the object is sufficiently large.
2768 * The hardware cache alignment cannot override the specified
2769 * alignment though. If that is greater then use it.
2771 if (flags
& SLAB_HWCACHE_ALIGN
) {
2772 unsigned long ralign
= cache_line_size();
2773 while (size
<= ralign
/ 2)
2775 align
= max(align
, ralign
);
2778 if (align
< ARCH_SLAB_MINALIGN
)
2779 align
= ARCH_SLAB_MINALIGN
;
2781 return ALIGN(align
, sizeof(void *));
2785 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
2788 spin_lock_init(&n
->list_lock
);
2789 INIT_LIST_HEAD(&n
->partial
);
2790 #ifdef CONFIG_SLUB_DEBUG
2791 atomic_long_set(&n
->nr_slabs
, 0);
2792 atomic_long_set(&n
->total_objects
, 0);
2793 INIT_LIST_HEAD(&n
->full
);
2797 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
2799 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
2800 SLUB_PAGE_SHIFT
* sizeof(struct kmem_cache_cpu
));
2803 * Must align to double word boundary for the double cmpxchg
2804 * instructions to work; see __pcpu_double_call_return_bool().
2806 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
2807 2 * sizeof(void *));
2812 init_kmem_cache_cpus(s
);
2817 static struct kmem_cache
*kmem_cache_node
;
2820 * No kmalloc_node yet so do it by hand. We know that this is the first
2821 * slab on the node for this slabcache. There are no concurrent accesses
2824 * Note that this function only works on the kmalloc_node_cache
2825 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2826 * memory on a fresh node that has no slab structures yet.
2828 static void early_kmem_cache_node_alloc(int node
)
2831 struct kmem_cache_node
*n
;
2833 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
2835 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
2838 if (page_to_nid(page
) != node
) {
2839 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2841 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2842 "in order to be able to continue\n");
2847 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
2850 kmem_cache_node
->node
[node
] = n
;
2851 #ifdef CONFIG_SLUB_DEBUG
2852 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
2853 init_tracking(kmem_cache_node
, n
);
2855 init_kmem_cache_node(n
, kmem_cache_node
);
2856 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
2858 add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
2861 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2865 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2866 struct kmem_cache_node
*n
= s
->node
[node
];
2869 kmem_cache_free(kmem_cache_node
, n
);
2871 s
->node
[node
] = NULL
;
2875 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
2879 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2880 struct kmem_cache_node
*n
;
2882 if (slab_state
== DOWN
) {
2883 early_kmem_cache_node_alloc(node
);
2886 n
= kmem_cache_alloc_node(kmem_cache_node
,
2890 free_kmem_cache_nodes(s
);
2895 init_kmem_cache_node(n
, s
);
2900 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2902 if (min
< MIN_PARTIAL
)
2904 else if (min
> MAX_PARTIAL
)
2906 s
->min_partial
= min
;
2910 * calculate_sizes() determines the order and the distribution of data within
2913 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2915 unsigned long flags
= s
->flags
;
2916 unsigned long size
= s
->objsize
;
2917 unsigned long align
= s
->align
;
2921 * Round up object size to the next word boundary. We can only
2922 * place the free pointer at word boundaries and this determines
2923 * the possible location of the free pointer.
2925 size
= ALIGN(size
, sizeof(void *));
2927 #ifdef CONFIG_SLUB_DEBUG
2929 * Determine if we can poison the object itself. If the user of
2930 * the slab may touch the object after free or before allocation
2931 * then we should never poison the object itself.
2933 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2935 s
->flags
|= __OBJECT_POISON
;
2937 s
->flags
&= ~__OBJECT_POISON
;
2941 * If we are Redzoning then check if there is some space between the
2942 * end of the object and the free pointer. If not then add an
2943 * additional word to have some bytes to store Redzone information.
2945 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2946 size
+= sizeof(void *);
2950 * With that we have determined the number of bytes in actual use
2951 * by the object. This is the potential offset to the free pointer.
2955 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2958 * Relocate free pointer after the object if it is not
2959 * permitted to overwrite the first word of the object on
2962 * This is the case if we do RCU, have a constructor or
2963 * destructor or are poisoning the objects.
2966 size
+= sizeof(void *);
2969 #ifdef CONFIG_SLUB_DEBUG
2970 if (flags
& SLAB_STORE_USER
)
2972 * Need to store information about allocs and frees after
2975 size
+= 2 * sizeof(struct track
);
2977 if (flags
& SLAB_RED_ZONE
)
2979 * Add some empty padding so that we can catch
2980 * overwrites from earlier objects rather than let
2981 * tracking information or the free pointer be
2982 * corrupted if a user writes before the start
2985 size
+= sizeof(void *);
2989 * Determine the alignment based on various parameters that the
2990 * user specified and the dynamic determination of cache line size
2993 align
= calculate_alignment(flags
, align
, s
->objsize
);
2997 * SLUB stores one object immediately after another beginning from
2998 * offset 0. In order to align the objects we have to simply size
2999 * each object to conform to the alignment.
3001 size
= ALIGN(size
, align
);
3003 if (forced_order
>= 0)
3004 order
= forced_order
;
3006 order
= calculate_order(size
, s
->reserved
);
3013 s
->allocflags
|= __GFP_COMP
;
3015 if (s
->flags
& SLAB_CACHE_DMA
)
3016 s
->allocflags
|= SLUB_DMA
;
3018 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3019 s
->allocflags
|= __GFP_RECLAIMABLE
;
3022 * Determine the number of objects per slab
3024 s
->oo
= oo_make(order
, size
, s
->reserved
);
3025 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3026 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3029 return !!oo_objects(s
->oo
);
3033 static int kmem_cache_open(struct kmem_cache
*s
,
3034 const char *name
, size_t size
,
3035 size_t align
, unsigned long flags
,
3036 void (*ctor
)(void *))
3038 memset(s
, 0, kmem_size
);
3043 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
3046 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
3047 s
->reserved
= sizeof(struct rcu_head
);
3049 if (!calculate_sizes(s
, -1))
3051 if (disable_higher_order_debug
) {
3053 * Disable debugging flags that store metadata if the min slab
3056 if (get_order(s
->size
) > get_order(s
->objsize
)) {
3057 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3059 if (!calculate_sizes(s
, -1))
3064 #ifdef CONFIG_CMPXCHG_DOUBLE
3065 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_DEBUG_FLAGS
) == 0)
3066 /* Enable fast mode */
3067 s
->flags
|= __CMPXCHG_DOUBLE
;
3071 * The larger the object size is, the more pages we want on the partial
3072 * list to avoid pounding the page allocator excessively.
3074 set_min_partial(s
, ilog2(s
->size
) / 2);
3077 * cpu_partial determined the maximum number of objects kept in the
3078 * per cpu partial lists of a processor.
3080 * Per cpu partial lists mainly contain slabs that just have one
3081 * object freed. If they are used for allocation then they can be
3082 * filled up again with minimal effort. The slab will never hit the
3083 * per node partial lists and therefore no locking will be required.
3085 * This setting also determines
3087 * A) The number of objects from per cpu partial slabs dumped to the
3088 * per node list when we reach the limit.
3089 * B) The number of objects in partial partial slabs to extract from the
3090 * per node list when we run out of per cpu objects. We only fetch 50%
3091 * to keep some capacity around for frees.
3093 if (s
->size
>= PAGE_SIZE
)
3095 else if (s
->size
>= 1024)
3097 else if (s
->size
>= 256)
3098 s
->cpu_partial
= 13;
3100 s
->cpu_partial
= 30;
3104 s
->remote_node_defrag_ratio
= 1000;
3106 if (!init_kmem_cache_nodes(s
))
3109 if (alloc_kmem_cache_cpus(s
))
3112 free_kmem_cache_nodes(s
);
3114 if (flags
& SLAB_PANIC
)
3115 panic("Cannot create slab %s size=%lu realsize=%u "
3116 "order=%u offset=%u flags=%lx\n",
3117 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
3123 * Determine the size of a slab object
3125 unsigned int kmem_cache_size(struct kmem_cache
*s
)
3129 EXPORT_SYMBOL(kmem_cache_size
);
3131 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3134 #ifdef CONFIG_SLUB_DEBUG
3135 void *addr
= page_address(page
);
3137 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3138 sizeof(long), GFP_ATOMIC
);
3141 slab_err(s
, page
, "%s", text
);
3144 get_map(s
, page
, map
);
3145 for_each_object(p
, s
, addr
, page
->objects
) {
3147 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3148 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
3150 print_tracking(s
, p
);
3159 * Attempt to free all partial slabs on a node.
3160 * This is called from kmem_cache_close(). We must be the last thread
3161 * using the cache and therefore we do not need to lock anymore.
3163 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3165 struct page
*page
, *h
;
3167 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3169 remove_partial(n
, page
);
3170 discard_slab(s
, page
);
3172 list_slab_objects(s
, page
,
3173 "Objects remaining on kmem_cache_close()");
3179 * Release all resources used by a slab cache.
3181 static inline int kmem_cache_close(struct kmem_cache
*s
)
3186 free_percpu(s
->cpu_slab
);
3187 /* Attempt to free all objects */
3188 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3189 struct kmem_cache_node
*n
= get_node(s
, node
);
3192 if (n
->nr_partial
|| slabs_node(s
, node
))
3195 free_kmem_cache_nodes(s
);
3200 * Close a cache and release the kmem_cache structure
3201 * (must be used for caches created using kmem_cache_create)
3203 void kmem_cache_destroy(struct kmem_cache
*s
)
3205 down_write(&slub_lock
);
3209 up_write(&slub_lock
);
3210 if (kmem_cache_close(s
)) {
3211 printk(KERN_ERR
"SLUB %s: %s called for cache that "
3212 "still has objects.\n", s
->name
, __func__
);
3215 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
3217 sysfs_slab_remove(s
);
3219 up_write(&slub_lock
);
3221 EXPORT_SYMBOL(kmem_cache_destroy
);
3223 /********************************************************************
3225 *******************************************************************/
3227 struct kmem_cache
*kmalloc_caches
[SLUB_PAGE_SHIFT
];
3228 EXPORT_SYMBOL(kmalloc_caches
);
3230 static struct kmem_cache
*kmem_cache
;
3232 #ifdef CONFIG_ZONE_DMA
3233 static struct kmem_cache
*kmalloc_dma_caches
[SLUB_PAGE_SHIFT
];
3236 static int __init
setup_slub_min_order(char *str
)
3238 get_option(&str
, &slub_min_order
);
3243 __setup("slub_min_order=", setup_slub_min_order
);
3245 static int __init
setup_slub_max_order(char *str
)
3247 get_option(&str
, &slub_max_order
);
3248 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3253 __setup("slub_max_order=", setup_slub_max_order
);
3255 static int __init
setup_slub_min_objects(char *str
)
3257 get_option(&str
, &slub_min_objects
);
3262 __setup("slub_min_objects=", setup_slub_min_objects
);
3264 static int __init
setup_slub_nomerge(char *str
)
3270 __setup("slub_nomerge", setup_slub_nomerge
);
3272 static struct kmem_cache
*__init
create_kmalloc_cache(const char *name
,
3273 int size
, unsigned int flags
)
3275 struct kmem_cache
*s
;
3277 s
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3280 * This function is called with IRQs disabled during early-boot on
3281 * single CPU so there's no need to take slub_lock here.
3283 if (!kmem_cache_open(s
, name
, size
, ARCH_KMALLOC_MINALIGN
,
3287 list_add(&s
->list
, &slab_caches
);
3291 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
3296 * Conversion table for small slabs sizes / 8 to the index in the
3297 * kmalloc array. This is necessary for slabs < 192 since we have non power
3298 * of two cache sizes there. The size of larger slabs can be determined using
3301 static s8 size_index
[24] = {
3328 static inline int size_index_elem(size_t bytes
)
3330 return (bytes
- 1) / 8;
3333 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
3339 return ZERO_SIZE_PTR
;
3341 index
= size_index
[size_index_elem(size
)];
3343 index
= fls(size
- 1);
3345 #ifdef CONFIG_ZONE_DMA
3346 if (unlikely((flags
& SLUB_DMA
)))
3347 return kmalloc_dma_caches
[index
];
3350 return kmalloc_caches
[index
];
3353 void *__kmalloc(size_t size
, gfp_t flags
)
3355 struct kmem_cache
*s
;
3358 if (unlikely(size
> SLUB_MAX_SIZE
))
3359 return kmalloc_large(size
, flags
);
3361 s
= get_slab(size
, flags
);
3363 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3366 ret
= slab_alloc(s
, flags
, NUMA_NO_NODE
, _RET_IP_
);
3368 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3372 EXPORT_SYMBOL(__kmalloc
);
3375 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3380 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
3381 page
= alloc_pages_node(node
, flags
, get_order(size
));
3383 ptr
= page_address(page
);
3385 kmemleak_alloc(ptr
, size
, 1, flags
);
3389 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3391 struct kmem_cache
*s
;
3394 if (unlikely(size
> SLUB_MAX_SIZE
)) {
3395 ret
= kmalloc_large_node(size
, flags
, node
);
3397 trace_kmalloc_node(_RET_IP_
, ret
,
3398 size
, PAGE_SIZE
<< get_order(size
),
3404 s
= get_slab(size
, flags
);
3406 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3409 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
3411 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3415 EXPORT_SYMBOL(__kmalloc_node
);
3418 size_t ksize(const void *object
)
3422 if (unlikely(object
== ZERO_SIZE_PTR
))
3425 page
= virt_to_head_page(object
);
3427 if (unlikely(!PageSlab(page
))) {
3428 WARN_ON(!PageCompound(page
));
3429 return PAGE_SIZE
<< compound_order(page
);
3432 return slab_ksize(page
->slab
);
3434 EXPORT_SYMBOL(ksize
);
3436 #ifdef CONFIG_SLUB_DEBUG
3437 bool verify_mem_not_deleted(const void *x
)
3440 void *object
= (void *)x
;
3441 unsigned long flags
;
3444 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3447 local_irq_save(flags
);
3449 page
= virt_to_head_page(x
);
3450 if (unlikely(!PageSlab(page
))) {
3451 /* maybe it was from stack? */
3457 if (on_freelist(page
->slab
, page
, object
)) {
3458 object_err(page
->slab
, page
, object
, "Object is on free-list");
3466 local_irq_restore(flags
);
3469 EXPORT_SYMBOL(verify_mem_not_deleted
);
3472 void kfree(const void *x
)
3475 void *object
= (void *)x
;
3477 trace_kfree(_RET_IP_
, x
);
3479 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3482 page
= virt_to_head_page(x
);
3483 if (unlikely(!PageSlab(page
))) {
3484 BUG_ON(!PageCompound(page
));
3489 slab_free(page
->slab
, page
, object
, _RET_IP_
);
3491 EXPORT_SYMBOL(kfree
);
3494 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3495 * the remaining slabs by the number of items in use. The slabs with the
3496 * most items in use come first. New allocations will then fill those up
3497 * and thus they can be removed from the partial lists.
3499 * The slabs with the least items are placed last. This results in them
3500 * being allocated from last increasing the chance that the last objects
3501 * are freed in them.
3503 int kmem_cache_shrink(struct kmem_cache
*s
)
3507 struct kmem_cache_node
*n
;
3510 int objects
= oo_objects(s
->max
);
3511 struct list_head
*slabs_by_inuse
=
3512 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
3513 unsigned long flags
;
3515 if (!slabs_by_inuse
)
3519 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3520 n
= get_node(s
, node
);
3525 for (i
= 0; i
< objects
; i
++)
3526 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
3528 spin_lock_irqsave(&n
->list_lock
, flags
);
3531 * Build lists indexed by the items in use in each slab.
3533 * Note that concurrent frees may occur while we hold the
3534 * list_lock. page->inuse here is the upper limit.
3536 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3537 list_move(&page
->lru
, slabs_by_inuse
+ page
->inuse
);
3543 * Rebuild the partial list with the slabs filled up most
3544 * first and the least used slabs at the end.
3546 for (i
= objects
- 1; i
> 0; i
--)
3547 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3549 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3551 /* Release empty slabs */
3552 list_for_each_entry_safe(page
, t
, slabs_by_inuse
, lru
)
3553 discard_slab(s
, page
);
3556 kfree(slabs_by_inuse
);
3559 EXPORT_SYMBOL(kmem_cache_shrink
);
3561 #if defined(CONFIG_MEMORY_HOTPLUG)
3562 static int slab_mem_going_offline_callback(void *arg
)
3564 struct kmem_cache
*s
;
3566 down_read(&slub_lock
);
3567 list_for_each_entry(s
, &slab_caches
, list
)
3568 kmem_cache_shrink(s
);
3569 up_read(&slub_lock
);
3574 static void slab_mem_offline_callback(void *arg
)
3576 struct kmem_cache_node
*n
;
3577 struct kmem_cache
*s
;
3578 struct memory_notify
*marg
= arg
;
3581 offline_node
= marg
->status_change_nid
;
3584 * If the node still has available memory. we need kmem_cache_node
3587 if (offline_node
< 0)
3590 down_read(&slub_lock
);
3591 list_for_each_entry(s
, &slab_caches
, list
) {
3592 n
= get_node(s
, offline_node
);
3595 * if n->nr_slabs > 0, slabs still exist on the node
3596 * that is going down. We were unable to free them,
3597 * and offline_pages() function shouldn't call this
3598 * callback. So, we must fail.
3600 BUG_ON(slabs_node(s
, offline_node
));
3602 s
->node
[offline_node
] = NULL
;
3603 kmem_cache_free(kmem_cache_node
, n
);
3606 up_read(&slub_lock
);
3609 static int slab_mem_going_online_callback(void *arg
)
3611 struct kmem_cache_node
*n
;
3612 struct kmem_cache
*s
;
3613 struct memory_notify
*marg
= arg
;
3614 int nid
= marg
->status_change_nid
;
3618 * If the node's memory is already available, then kmem_cache_node is
3619 * already created. Nothing to do.
3625 * We are bringing a node online. No memory is available yet. We must
3626 * allocate a kmem_cache_node structure in order to bring the node
3629 down_read(&slub_lock
);
3630 list_for_each_entry(s
, &slab_caches
, list
) {
3632 * XXX: kmem_cache_alloc_node will fallback to other nodes
3633 * since memory is not yet available from the node that
3636 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3641 init_kmem_cache_node(n
, s
);
3645 up_read(&slub_lock
);
3649 static int slab_memory_callback(struct notifier_block
*self
,
3650 unsigned long action
, void *arg
)
3655 case MEM_GOING_ONLINE
:
3656 ret
= slab_mem_going_online_callback(arg
);
3658 case MEM_GOING_OFFLINE
:
3659 ret
= slab_mem_going_offline_callback(arg
);
3662 case MEM_CANCEL_ONLINE
:
3663 slab_mem_offline_callback(arg
);
3666 case MEM_CANCEL_OFFLINE
:
3670 ret
= notifier_from_errno(ret
);
3676 #endif /* CONFIG_MEMORY_HOTPLUG */
3678 /********************************************************************
3679 * Basic setup of slabs
3680 *******************************************************************/
3683 * Used for early kmem_cache structures that were allocated using
3684 * the page allocator
3687 static void __init
kmem_cache_bootstrap_fixup(struct kmem_cache
*s
)
3691 list_add(&s
->list
, &slab_caches
);
3694 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3695 struct kmem_cache_node
*n
= get_node(s
, node
);
3699 list_for_each_entry(p
, &n
->partial
, lru
)
3702 #ifdef CONFIG_SLUB_DEBUG
3703 list_for_each_entry(p
, &n
->full
, lru
)
3710 void __init
kmem_cache_init(void)
3714 struct kmem_cache
*temp_kmem_cache
;
3716 struct kmem_cache
*temp_kmem_cache_node
;
3717 unsigned long kmalloc_size
;
3719 kmem_size
= offsetof(struct kmem_cache
, node
) +
3720 nr_node_ids
* sizeof(struct kmem_cache_node
*);
3722 /* Allocate two kmem_caches from the page allocator */
3723 kmalloc_size
= ALIGN(kmem_size
, cache_line_size());
3724 order
= get_order(2 * kmalloc_size
);
3725 kmem_cache
= (void *)__get_free_pages(GFP_NOWAIT
, order
);
3728 * Must first have the slab cache available for the allocations of the
3729 * struct kmem_cache_node's. There is special bootstrap code in
3730 * kmem_cache_open for slab_state == DOWN.
3732 kmem_cache_node
= (void *)kmem_cache
+ kmalloc_size
;
3734 kmem_cache_open(kmem_cache_node
, "kmem_cache_node",
3735 sizeof(struct kmem_cache_node
),
3736 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3738 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3740 /* Able to allocate the per node structures */
3741 slab_state
= PARTIAL
;
3743 temp_kmem_cache
= kmem_cache
;
3744 kmem_cache_open(kmem_cache
, "kmem_cache", kmem_size
,
3745 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3746 kmem_cache
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3747 memcpy(kmem_cache
, temp_kmem_cache
, kmem_size
);
3750 * Allocate kmem_cache_node properly from the kmem_cache slab.
3751 * kmem_cache_node is separately allocated so no need to
3752 * update any list pointers.
3754 temp_kmem_cache_node
= kmem_cache_node
;
3756 kmem_cache_node
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3757 memcpy(kmem_cache_node
, temp_kmem_cache_node
, kmem_size
);
3759 kmem_cache_bootstrap_fixup(kmem_cache_node
);
3762 kmem_cache_bootstrap_fixup(kmem_cache
);
3764 /* Free temporary boot structure */
3765 free_pages((unsigned long)temp_kmem_cache
, order
);
3767 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3770 * Patch up the size_index table if we have strange large alignment
3771 * requirements for the kmalloc array. This is only the case for
3772 * MIPS it seems. The standard arches will not generate any code here.
3774 * Largest permitted alignment is 256 bytes due to the way we
3775 * handle the index determination for the smaller caches.
3777 * Make sure that nothing crazy happens if someone starts tinkering
3778 * around with ARCH_KMALLOC_MINALIGN
3780 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3781 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3783 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
3784 int elem
= size_index_elem(i
);
3785 if (elem
>= ARRAY_SIZE(size_index
))
3787 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
3790 if (KMALLOC_MIN_SIZE
== 64) {
3792 * The 96 byte size cache is not used if the alignment
3795 for (i
= 64 + 8; i
<= 96; i
+= 8)
3796 size_index
[size_index_elem(i
)] = 7;
3797 } else if (KMALLOC_MIN_SIZE
== 128) {
3799 * The 192 byte sized cache is not used if the alignment
3800 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3803 for (i
= 128 + 8; i
<= 192; i
+= 8)
3804 size_index
[size_index_elem(i
)] = 8;
3807 /* Caches that are not of the two-to-the-power-of size */
3808 if (KMALLOC_MIN_SIZE
<= 32) {
3809 kmalloc_caches
[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3813 if (KMALLOC_MIN_SIZE
<= 64) {
3814 kmalloc_caches
[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3818 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3819 kmalloc_caches
[i
] = create_kmalloc_cache("kmalloc", 1 << i
, 0);
3825 /* Provide the correct kmalloc names now that the caches are up */
3826 if (KMALLOC_MIN_SIZE
<= 32) {
3827 kmalloc_caches
[1]->name
= kstrdup(kmalloc_caches
[1]->name
, GFP_NOWAIT
);
3828 BUG_ON(!kmalloc_caches
[1]->name
);
3831 if (KMALLOC_MIN_SIZE
<= 64) {
3832 kmalloc_caches
[2]->name
= kstrdup(kmalloc_caches
[2]->name
, GFP_NOWAIT
);
3833 BUG_ON(!kmalloc_caches
[2]->name
);
3836 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3837 char *s
= kasprintf(GFP_NOWAIT
, "kmalloc-%d", 1 << i
);
3840 kmalloc_caches
[i
]->name
= s
;
3844 register_cpu_notifier(&slab_notifier
);
3847 #ifdef CONFIG_ZONE_DMA
3848 for (i
= 0; i
< SLUB_PAGE_SHIFT
; i
++) {
3849 struct kmem_cache
*s
= kmalloc_caches
[i
];
3852 char *name
= kasprintf(GFP_NOWAIT
,
3853 "dma-kmalloc-%d", s
->objsize
);
3856 kmalloc_dma_caches
[i
] = create_kmalloc_cache(name
,
3857 s
->objsize
, SLAB_CACHE_DMA
);
3862 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3863 " CPUs=%d, Nodes=%d\n",
3864 caches
, cache_line_size(),
3865 slub_min_order
, slub_max_order
, slub_min_objects
,
3866 nr_cpu_ids
, nr_node_ids
);
3869 void __init
kmem_cache_init_late(void)
3874 * Find a mergeable slab cache
3876 static int slab_unmergeable(struct kmem_cache
*s
)
3878 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3885 * We may have set a slab to be unmergeable during bootstrap.
3887 if (s
->refcount
< 0)
3893 static struct kmem_cache
*find_mergeable(size_t size
,
3894 size_t align
, unsigned long flags
, const char *name
,
3895 void (*ctor
)(void *))
3897 struct kmem_cache
*s
;
3899 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3905 size
= ALIGN(size
, sizeof(void *));
3906 align
= calculate_alignment(flags
, align
, size
);
3907 size
= ALIGN(size
, align
);
3908 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3910 list_for_each_entry(s
, &slab_caches
, list
) {
3911 if (slab_unmergeable(s
))
3917 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3920 * Check if alignment is compatible.
3921 * Courtesy of Adrian Drzewiecki
3923 if ((s
->size
& ~(align
- 1)) != s
->size
)
3926 if (s
->size
- size
>= sizeof(void *))
3934 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3935 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3937 struct kmem_cache
*s
;
3943 down_write(&slub_lock
);
3944 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3948 * Adjust the object sizes so that we clear
3949 * the complete object on kzalloc.
3951 s
->objsize
= max(s
->objsize
, (int)size
);
3952 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3954 if (sysfs_slab_alias(s
, name
)) {
3958 up_write(&slub_lock
);
3962 n
= kstrdup(name
, GFP_KERNEL
);
3966 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3968 if (kmem_cache_open(s
, n
,
3969 size
, align
, flags
, ctor
)) {
3970 list_add(&s
->list
, &slab_caches
);
3971 if (sysfs_slab_add(s
)) {
3977 up_write(&slub_lock
);
3984 up_write(&slub_lock
);
3986 if (flags
& SLAB_PANIC
)
3987 panic("Cannot create slabcache %s\n", name
);
3992 EXPORT_SYMBOL(kmem_cache_create
);
3996 * Use the cpu notifier to insure that the cpu slabs are flushed when
3999 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
4000 unsigned long action
, void *hcpu
)
4002 long cpu
= (long)hcpu
;
4003 struct kmem_cache
*s
;
4004 unsigned long flags
;
4007 case CPU_UP_CANCELED
:
4008 case CPU_UP_CANCELED_FROZEN
:
4010 case CPU_DEAD_FROZEN
:
4011 down_read(&slub_lock
);
4012 list_for_each_entry(s
, &slab_caches
, list
) {
4013 local_irq_save(flags
);
4014 __flush_cpu_slab(s
, cpu
);
4015 local_irq_restore(flags
);
4017 up_read(&slub_lock
);
4025 static struct notifier_block __cpuinitdata slab_notifier
= {
4026 .notifier_call
= slab_cpuup_callback
4031 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4033 struct kmem_cache
*s
;
4036 if (unlikely(size
> SLUB_MAX_SIZE
))
4037 return kmalloc_large(size
, gfpflags
);
4039 s
= get_slab(size
, gfpflags
);
4041 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4044 ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, caller
);
4046 /* Honor the call site pointer we received. */
4047 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4053 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4054 int node
, unsigned long caller
)
4056 struct kmem_cache
*s
;
4059 if (unlikely(size
> SLUB_MAX_SIZE
)) {
4060 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4062 trace_kmalloc_node(caller
, ret
,
4063 size
, PAGE_SIZE
<< get_order(size
),
4069 s
= get_slab(size
, gfpflags
);
4071 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4074 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
4076 /* Honor the call site pointer we received. */
4077 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4084 static int count_inuse(struct page
*page
)
4089 static int count_total(struct page
*page
)
4091 return page
->objects
;
4095 #ifdef CONFIG_SLUB_DEBUG
4096 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4100 void *addr
= page_address(page
);
4102 if (!check_slab(s
, page
) ||
4103 !on_freelist(s
, page
, NULL
))
4106 /* Now we know that a valid freelist exists */
4107 bitmap_zero(map
, page
->objects
);
4109 get_map(s
, page
, map
);
4110 for_each_object(p
, s
, addr
, page
->objects
) {
4111 if (test_bit(slab_index(p
, s
, addr
), map
))
4112 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4116 for_each_object(p
, s
, addr
, page
->objects
)
4117 if (!test_bit(slab_index(p
, s
, addr
), map
))
4118 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4123 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4127 validate_slab(s
, page
, map
);
4131 static int validate_slab_node(struct kmem_cache
*s
,
4132 struct kmem_cache_node
*n
, unsigned long *map
)
4134 unsigned long count
= 0;
4136 unsigned long flags
;
4138 spin_lock_irqsave(&n
->list_lock
, flags
);
4140 list_for_each_entry(page
, &n
->partial
, lru
) {
4141 validate_slab_slab(s
, page
, map
);
4144 if (count
!= n
->nr_partial
)
4145 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
4146 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
4148 if (!(s
->flags
& SLAB_STORE_USER
))
4151 list_for_each_entry(page
, &n
->full
, lru
) {
4152 validate_slab_slab(s
, page
, map
);
4155 if (count
!= atomic_long_read(&n
->nr_slabs
))
4156 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
4157 "counter=%ld\n", s
->name
, count
,
4158 atomic_long_read(&n
->nr_slabs
));
4161 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4165 static long validate_slab_cache(struct kmem_cache
*s
)
4168 unsigned long count
= 0;
4169 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4170 sizeof(unsigned long), GFP_KERNEL
);
4176 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4177 struct kmem_cache_node
*n
= get_node(s
, node
);
4179 count
+= validate_slab_node(s
, n
, map
);
4185 * Generate lists of code addresses where slabcache objects are allocated
4190 unsigned long count
;
4197 DECLARE_BITMAP(cpus
, NR_CPUS
);
4203 unsigned long count
;
4204 struct location
*loc
;
4207 static void free_loc_track(struct loc_track
*t
)
4210 free_pages((unsigned long)t
->loc
,
4211 get_order(sizeof(struct location
) * t
->max
));
4214 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4219 order
= get_order(sizeof(struct location
) * max
);
4221 l
= (void *)__get_free_pages(flags
, order
);
4226 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4234 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4235 const struct track
*track
)
4237 long start
, end
, pos
;
4239 unsigned long caddr
;
4240 unsigned long age
= jiffies
- track
->when
;
4246 pos
= start
+ (end
- start
+ 1) / 2;
4249 * There is nothing at "end". If we end up there
4250 * we need to add something to before end.
4255 caddr
= t
->loc
[pos
].addr
;
4256 if (track
->addr
== caddr
) {
4262 if (age
< l
->min_time
)
4264 if (age
> l
->max_time
)
4267 if (track
->pid
< l
->min_pid
)
4268 l
->min_pid
= track
->pid
;
4269 if (track
->pid
> l
->max_pid
)
4270 l
->max_pid
= track
->pid
;
4272 cpumask_set_cpu(track
->cpu
,
4273 to_cpumask(l
->cpus
));
4275 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4279 if (track
->addr
< caddr
)
4286 * Not found. Insert new tracking element.
4288 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4294 (t
->count
- pos
) * sizeof(struct location
));
4297 l
->addr
= track
->addr
;
4301 l
->min_pid
= track
->pid
;
4302 l
->max_pid
= track
->pid
;
4303 cpumask_clear(to_cpumask(l
->cpus
));
4304 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4305 nodes_clear(l
->nodes
);
4306 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4310 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4311 struct page
*page
, enum track_item alloc
,
4314 void *addr
= page_address(page
);
4317 bitmap_zero(map
, page
->objects
);
4318 get_map(s
, page
, map
);
4320 for_each_object(p
, s
, addr
, page
->objects
)
4321 if (!test_bit(slab_index(p
, s
, addr
), map
))
4322 add_location(t
, s
, get_track(s
, p
, alloc
));
4325 static int list_locations(struct kmem_cache
*s
, char *buf
,
4326 enum track_item alloc
)
4330 struct loc_track t
= { 0, 0, NULL
};
4332 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4333 sizeof(unsigned long), GFP_KERNEL
);
4335 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4338 return sprintf(buf
, "Out of memory\n");
4340 /* Push back cpu slabs */
4343 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4344 struct kmem_cache_node
*n
= get_node(s
, node
);
4345 unsigned long flags
;
4348 if (!atomic_long_read(&n
->nr_slabs
))
4351 spin_lock_irqsave(&n
->list_lock
, flags
);
4352 list_for_each_entry(page
, &n
->partial
, lru
)
4353 process_slab(&t
, s
, page
, alloc
, map
);
4354 list_for_each_entry(page
, &n
->full
, lru
)
4355 process_slab(&t
, s
, page
, alloc
, map
);
4356 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4359 for (i
= 0; i
< t
.count
; i
++) {
4360 struct location
*l
= &t
.loc
[i
];
4362 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4364 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4367 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4369 len
+= sprintf(buf
+ len
, "<not-available>");
4371 if (l
->sum_time
!= l
->min_time
) {
4372 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4374 (long)div_u64(l
->sum_time
, l
->count
),
4377 len
+= sprintf(buf
+ len
, " age=%ld",
4380 if (l
->min_pid
!= l
->max_pid
)
4381 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4382 l
->min_pid
, l
->max_pid
);
4384 len
+= sprintf(buf
+ len
, " pid=%ld",
4387 if (num_online_cpus() > 1 &&
4388 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4389 len
< PAGE_SIZE
- 60) {
4390 len
+= sprintf(buf
+ len
, " cpus=");
4391 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4392 to_cpumask(l
->cpus
));
4395 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4396 len
< PAGE_SIZE
- 60) {
4397 len
+= sprintf(buf
+ len
, " nodes=");
4398 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4402 len
+= sprintf(buf
+ len
, "\n");
4408 len
+= sprintf(buf
, "No data\n");
4413 #ifdef SLUB_RESILIENCY_TEST
4414 static void resiliency_test(void)
4418 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || SLUB_PAGE_SHIFT
< 10);
4420 printk(KERN_ERR
"SLUB resiliency testing\n");
4421 printk(KERN_ERR
"-----------------------\n");
4422 printk(KERN_ERR
"A. Corruption after allocation\n");
4424 p
= kzalloc(16, GFP_KERNEL
);
4426 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
4427 " 0x12->0x%p\n\n", p
+ 16);
4429 validate_slab_cache(kmalloc_caches
[4]);
4431 /* Hmmm... The next two are dangerous */
4432 p
= kzalloc(32, GFP_KERNEL
);
4433 p
[32 + sizeof(void *)] = 0x34;
4434 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
4435 " 0x34 -> -0x%p\n", p
);
4437 "If allocated object is overwritten then not detectable\n\n");
4439 validate_slab_cache(kmalloc_caches
[5]);
4440 p
= kzalloc(64, GFP_KERNEL
);
4441 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4443 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4446 "If allocated object is overwritten then not detectable\n\n");
4447 validate_slab_cache(kmalloc_caches
[6]);
4449 printk(KERN_ERR
"\nB. Corruption after free\n");
4450 p
= kzalloc(128, GFP_KERNEL
);
4453 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4454 validate_slab_cache(kmalloc_caches
[7]);
4456 p
= kzalloc(256, GFP_KERNEL
);
4459 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4461 validate_slab_cache(kmalloc_caches
[8]);
4463 p
= kzalloc(512, GFP_KERNEL
);
4466 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4467 validate_slab_cache(kmalloc_caches
[9]);
4471 static void resiliency_test(void) {};
4476 enum slab_stat_type
{
4477 SL_ALL
, /* All slabs */
4478 SL_PARTIAL
, /* Only partially allocated slabs */
4479 SL_CPU
, /* Only slabs used for cpu caches */
4480 SL_OBJECTS
, /* Determine allocated objects not slabs */
4481 SL_TOTAL
/* Determine object capacity not slabs */
4484 #define SO_ALL (1 << SL_ALL)
4485 #define SO_PARTIAL (1 << SL_PARTIAL)
4486 #define SO_CPU (1 << SL_CPU)
4487 #define SO_OBJECTS (1 << SL_OBJECTS)
4488 #define SO_TOTAL (1 << SL_TOTAL)
4490 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4491 char *buf
, unsigned long flags
)
4493 unsigned long total
= 0;
4496 unsigned long *nodes
;
4497 unsigned long *per_cpu
;
4499 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4502 per_cpu
= nodes
+ nr_node_ids
;
4504 if (flags
& SO_CPU
) {
4507 for_each_possible_cpu(cpu
) {
4508 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
4511 if (!c
|| c
->node
< 0)
4515 if (flags
& SO_TOTAL
)
4516 x
= c
->page
->objects
;
4517 else if (flags
& SO_OBJECTS
)
4523 nodes
[c
->node
] += x
;
4530 nodes
[c
->node
] += x
;
4536 lock_memory_hotplug();
4537 #ifdef CONFIG_SLUB_DEBUG
4538 if (flags
& SO_ALL
) {
4539 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4540 struct kmem_cache_node
*n
= get_node(s
, node
);
4542 if (flags
& SO_TOTAL
)
4543 x
= atomic_long_read(&n
->total_objects
);
4544 else if (flags
& SO_OBJECTS
)
4545 x
= atomic_long_read(&n
->total_objects
) -
4546 count_partial(n
, count_free
);
4549 x
= atomic_long_read(&n
->nr_slabs
);
4556 if (flags
& SO_PARTIAL
) {
4557 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4558 struct kmem_cache_node
*n
= get_node(s
, node
);
4560 if (flags
& SO_TOTAL
)
4561 x
= count_partial(n
, count_total
);
4562 else if (flags
& SO_OBJECTS
)
4563 x
= count_partial(n
, count_inuse
);
4570 x
= sprintf(buf
, "%lu", total
);
4572 for_each_node_state(node
, N_NORMAL_MEMORY
)
4574 x
+= sprintf(buf
+ x
, " N%d=%lu",
4577 unlock_memory_hotplug();
4579 return x
+ sprintf(buf
+ x
, "\n");
4582 #ifdef CONFIG_SLUB_DEBUG
4583 static int any_slab_objects(struct kmem_cache
*s
)
4587 for_each_online_node(node
) {
4588 struct kmem_cache_node
*n
= get_node(s
, node
);
4593 if (atomic_long_read(&n
->total_objects
))
4600 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4601 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4603 struct slab_attribute
{
4604 struct attribute attr
;
4605 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4606 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4609 #define SLAB_ATTR_RO(_name) \
4610 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4612 #define SLAB_ATTR(_name) \
4613 static struct slab_attribute _name##_attr = \
4614 __ATTR(_name, 0644, _name##_show, _name##_store)
4616 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4618 return sprintf(buf
, "%d\n", s
->size
);
4620 SLAB_ATTR_RO(slab_size
);
4622 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4624 return sprintf(buf
, "%d\n", s
->align
);
4626 SLAB_ATTR_RO(align
);
4628 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4630 return sprintf(buf
, "%d\n", s
->objsize
);
4632 SLAB_ATTR_RO(object_size
);
4634 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4636 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4638 SLAB_ATTR_RO(objs_per_slab
);
4640 static ssize_t
order_store(struct kmem_cache
*s
,
4641 const char *buf
, size_t length
)
4643 unsigned long order
;
4646 err
= strict_strtoul(buf
, 10, &order
);
4650 if (order
> slub_max_order
|| order
< slub_min_order
)
4653 calculate_sizes(s
, order
);
4657 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4659 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4663 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4665 return sprintf(buf
, "%lu\n", s
->min_partial
);
4668 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4674 err
= strict_strtoul(buf
, 10, &min
);
4678 set_min_partial(s
, min
);
4681 SLAB_ATTR(min_partial
);
4683 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4685 return sprintf(buf
, "%u\n", s
->cpu_partial
);
4688 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4691 unsigned long objects
;
4694 err
= strict_strtoul(buf
, 10, &objects
);
4698 s
->cpu_partial
= objects
;
4702 SLAB_ATTR(cpu_partial
);
4704 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4708 return sprintf(buf
, "%pS\n", s
->ctor
);
4712 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4714 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4716 SLAB_ATTR_RO(aliases
);
4718 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4720 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4722 SLAB_ATTR_RO(partial
);
4724 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4726 return show_slab_objects(s
, buf
, SO_CPU
);
4728 SLAB_ATTR_RO(cpu_slabs
);
4730 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4732 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4734 SLAB_ATTR_RO(objects
);
4736 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4738 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4740 SLAB_ATTR_RO(objects_partial
);
4742 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4749 for_each_online_cpu(cpu
) {
4750 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
)->partial
;
4753 pages
+= page
->pages
;
4754 objects
+= page
->pobjects
;
4758 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
4761 for_each_online_cpu(cpu
) {
4762 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
) ->partial
;
4764 if (page
&& len
< PAGE_SIZE
- 20)
4765 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
4766 page
->pobjects
, page
->pages
);
4769 return len
+ sprintf(buf
+ len
, "\n");
4771 SLAB_ATTR_RO(slabs_cpu_partial
);
4773 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4775 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4778 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4779 const char *buf
, size_t length
)
4781 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4783 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4786 SLAB_ATTR(reclaim_account
);
4788 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4790 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4792 SLAB_ATTR_RO(hwcache_align
);
4794 #ifdef CONFIG_ZONE_DMA
4795 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4797 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4799 SLAB_ATTR_RO(cache_dma
);
4802 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4804 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4806 SLAB_ATTR_RO(destroy_by_rcu
);
4808 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4810 return sprintf(buf
, "%d\n", s
->reserved
);
4812 SLAB_ATTR_RO(reserved
);
4814 #ifdef CONFIG_SLUB_DEBUG
4815 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4817 return show_slab_objects(s
, buf
, SO_ALL
);
4819 SLAB_ATTR_RO(slabs
);
4821 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4823 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4825 SLAB_ATTR_RO(total_objects
);
4827 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4829 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4832 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4833 const char *buf
, size_t length
)
4835 s
->flags
&= ~SLAB_DEBUG_FREE
;
4836 if (buf
[0] == '1') {
4837 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4838 s
->flags
|= SLAB_DEBUG_FREE
;
4842 SLAB_ATTR(sanity_checks
);
4844 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4846 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4849 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4852 s
->flags
&= ~SLAB_TRACE
;
4853 if (buf
[0] == '1') {
4854 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4855 s
->flags
|= SLAB_TRACE
;
4861 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4863 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4866 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4867 const char *buf
, size_t length
)
4869 if (any_slab_objects(s
))
4872 s
->flags
&= ~SLAB_RED_ZONE
;
4873 if (buf
[0] == '1') {
4874 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4875 s
->flags
|= SLAB_RED_ZONE
;
4877 calculate_sizes(s
, -1);
4880 SLAB_ATTR(red_zone
);
4882 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4884 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4887 static ssize_t
poison_store(struct kmem_cache
*s
,
4888 const char *buf
, size_t length
)
4890 if (any_slab_objects(s
))
4893 s
->flags
&= ~SLAB_POISON
;
4894 if (buf
[0] == '1') {
4895 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4896 s
->flags
|= SLAB_POISON
;
4898 calculate_sizes(s
, -1);
4903 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4905 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4908 static ssize_t
store_user_store(struct kmem_cache
*s
,
4909 const char *buf
, size_t length
)
4911 if (any_slab_objects(s
))
4914 s
->flags
&= ~SLAB_STORE_USER
;
4915 if (buf
[0] == '1') {
4916 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4917 s
->flags
|= SLAB_STORE_USER
;
4919 calculate_sizes(s
, -1);
4922 SLAB_ATTR(store_user
);
4924 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4929 static ssize_t
validate_store(struct kmem_cache
*s
,
4930 const char *buf
, size_t length
)
4934 if (buf
[0] == '1') {
4935 ret
= validate_slab_cache(s
);
4941 SLAB_ATTR(validate
);
4943 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4945 if (!(s
->flags
& SLAB_STORE_USER
))
4947 return list_locations(s
, buf
, TRACK_ALLOC
);
4949 SLAB_ATTR_RO(alloc_calls
);
4951 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4953 if (!(s
->flags
& SLAB_STORE_USER
))
4955 return list_locations(s
, buf
, TRACK_FREE
);
4957 SLAB_ATTR_RO(free_calls
);
4958 #endif /* CONFIG_SLUB_DEBUG */
4960 #ifdef CONFIG_FAILSLAB
4961 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4963 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4966 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4969 s
->flags
&= ~SLAB_FAILSLAB
;
4971 s
->flags
|= SLAB_FAILSLAB
;
4974 SLAB_ATTR(failslab
);
4977 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4982 static ssize_t
shrink_store(struct kmem_cache
*s
,
4983 const char *buf
, size_t length
)
4985 if (buf
[0] == '1') {
4986 int rc
= kmem_cache_shrink(s
);
4997 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4999 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
5002 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
5003 const char *buf
, size_t length
)
5005 unsigned long ratio
;
5008 err
= strict_strtoul(buf
, 10, &ratio
);
5013 s
->remote_node_defrag_ratio
= ratio
* 10;
5017 SLAB_ATTR(remote_node_defrag_ratio
);
5020 #ifdef CONFIG_SLUB_STATS
5021 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5023 unsigned long sum
= 0;
5026 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
5031 for_each_online_cpu(cpu
) {
5032 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5038 len
= sprintf(buf
, "%lu", sum
);
5041 for_each_online_cpu(cpu
) {
5042 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5043 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5047 return len
+ sprintf(buf
+ len
, "\n");
5050 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5054 for_each_online_cpu(cpu
)
5055 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5058 #define STAT_ATTR(si, text) \
5059 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5061 return show_stat(s, buf, si); \
5063 static ssize_t text##_store(struct kmem_cache *s, \
5064 const char *buf, size_t length) \
5066 if (buf[0] != '0') \
5068 clear_stat(s, si); \
5073 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5074 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5075 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5076 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5077 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5078 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5079 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5080 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5081 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5082 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5083 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5084 STAT_ATTR(FREE_SLAB
, free_slab
);
5085 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5086 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5087 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5088 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5089 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5090 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5091 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5092 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5093 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5094 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5095 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5096 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5099 static struct attribute
*slab_attrs
[] = {
5100 &slab_size_attr
.attr
,
5101 &object_size_attr
.attr
,
5102 &objs_per_slab_attr
.attr
,
5104 &min_partial_attr
.attr
,
5105 &cpu_partial_attr
.attr
,
5107 &objects_partial_attr
.attr
,
5109 &cpu_slabs_attr
.attr
,
5113 &hwcache_align_attr
.attr
,
5114 &reclaim_account_attr
.attr
,
5115 &destroy_by_rcu_attr
.attr
,
5117 &reserved_attr
.attr
,
5118 &slabs_cpu_partial_attr
.attr
,
5119 #ifdef CONFIG_SLUB_DEBUG
5120 &total_objects_attr
.attr
,
5122 &sanity_checks_attr
.attr
,
5124 &red_zone_attr
.attr
,
5126 &store_user_attr
.attr
,
5127 &validate_attr
.attr
,
5128 &alloc_calls_attr
.attr
,
5129 &free_calls_attr
.attr
,
5131 #ifdef CONFIG_ZONE_DMA
5132 &cache_dma_attr
.attr
,
5135 &remote_node_defrag_ratio_attr
.attr
,
5137 #ifdef CONFIG_SLUB_STATS
5138 &alloc_fastpath_attr
.attr
,
5139 &alloc_slowpath_attr
.attr
,
5140 &free_fastpath_attr
.attr
,
5141 &free_slowpath_attr
.attr
,
5142 &free_frozen_attr
.attr
,
5143 &free_add_partial_attr
.attr
,
5144 &free_remove_partial_attr
.attr
,
5145 &alloc_from_partial_attr
.attr
,
5146 &alloc_slab_attr
.attr
,
5147 &alloc_refill_attr
.attr
,
5148 &alloc_node_mismatch_attr
.attr
,
5149 &free_slab_attr
.attr
,
5150 &cpuslab_flush_attr
.attr
,
5151 &deactivate_full_attr
.attr
,
5152 &deactivate_empty_attr
.attr
,
5153 &deactivate_to_head_attr
.attr
,
5154 &deactivate_to_tail_attr
.attr
,
5155 &deactivate_remote_frees_attr
.attr
,
5156 &deactivate_bypass_attr
.attr
,
5157 &order_fallback_attr
.attr
,
5158 &cmpxchg_double_fail_attr
.attr
,
5159 &cmpxchg_double_cpu_fail_attr
.attr
,
5160 &cpu_partial_alloc_attr
.attr
,
5161 &cpu_partial_free_attr
.attr
,
5163 #ifdef CONFIG_FAILSLAB
5164 &failslab_attr
.attr
,
5170 static struct attribute_group slab_attr_group
= {
5171 .attrs
= slab_attrs
,
5174 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5175 struct attribute
*attr
,
5178 struct slab_attribute
*attribute
;
5179 struct kmem_cache
*s
;
5182 attribute
= to_slab_attr(attr
);
5185 if (!attribute
->show
)
5188 err
= attribute
->show(s
, buf
);
5193 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5194 struct attribute
*attr
,
5195 const char *buf
, size_t len
)
5197 struct slab_attribute
*attribute
;
5198 struct kmem_cache
*s
;
5201 attribute
= to_slab_attr(attr
);
5204 if (!attribute
->store
)
5207 err
= attribute
->store(s
, buf
, len
);
5212 static void kmem_cache_release(struct kobject
*kobj
)
5214 struct kmem_cache
*s
= to_slab(kobj
);
5220 static const struct sysfs_ops slab_sysfs_ops
= {
5221 .show
= slab_attr_show
,
5222 .store
= slab_attr_store
,
5225 static struct kobj_type slab_ktype
= {
5226 .sysfs_ops
= &slab_sysfs_ops
,
5227 .release
= kmem_cache_release
5230 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5232 struct kobj_type
*ktype
= get_ktype(kobj
);
5234 if (ktype
== &slab_ktype
)
5239 static const struct kset_uevent_ops slab_uevent_ops
= {
5240 .filter
= uevent_filter
,
5243 static struct kset
*slab_kset
;
5245 #define ID_STR_LENGTH 64
5247 /* Create a unique string id for a slab cache:
5249 * Format :[flags-]size
5251 static char *create_unique_id(struct kmem_cache
*s
)
5253 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5260 * First flags affecting slabcache operations. We will only
5261 * get here for aliasable slabs so we do not need to support
5262 * too many flags. The flags here must cover all flags that
5263 * are matched during merging to guarantee that the id is
5266 if (s
->flags
& SLAB_CACHE_DMA
)
5268 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5270 if (s
->flags
& SLAB_DEBUG_FREE
)
5272 if (!(s
->flags
& SLAB_NOTRACK
))
5276 p
+= sprintf(p
, "%07d", s
->size
);
5277 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5281 static int sysfs_slab_add(struct kmem_cache
*s
)
5287 if (slab_state
< SYSFS
)
5288 /* Defer until later */
5291 unmergeable
= slab_unmergeable(s
);
5294 * Slabcache can never be merged so we can use the name proper.
5295 * This is typically the case for debug situations. In that
5296 * case we can catch duplicate names easily.
5298 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5302 * Create a unique name for the slab as a target
5305 name
= create_unique_id(s
);
5308 s
->kobj
.kset
= slab_kset
;
5309 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
5311 kobject_put(&s
->kobj
);
5315 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5317 kobject_del(&s
->kobj
);
5318 kobject_put(&s
->kobj
);
5321 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5323 /* Setup first alias */
5324 sysfs_slab_alias(s
, s
->name
);
5330 static void sysfs_slab_remove(struct kmem_cache
*s
)
5332 if (slab_state
< SYSFS
)
5334 * Sysfs has not been setup yet so no need to remove the
5339 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5340 kobject_del(&s
->kobj
);
5341 kobject_put(&s
->kobj
);
5345 * Need to buffer aliases during bootup until sysfs becomes
5346 * available lest we lose that information.
5348 struct saved_alias
{
5349 struct kmem_cache
*s
;
5351 struct saved_alias
*next
;
5354 static struct saved_alias
*alias_list
;
5356 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5358 struct saved_alias
*al
;
5360 if (slab_state
== SYSFS
) {
5362 * If we have a leftover link then remove it.
5364 sysfs_remove_link(&slab_kset
->kobj
, name
);
5365 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5368 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5374 al
->next
= alias_list
;
5379 static int __init
slab_sysfs_init(void)
5381 struct kmem_cache
*s
;
5384 down_write(&slub_lock
);
5386 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5388 up_write(&slub_lock
);
5389 printk(KERN_ERR
"Cannot register slab subsystem.\n");
5395 list_for_each_entry(s
, &slab_caches
, list
) {
5396 err
= sysfs_slab_add(s
);
5398 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
5399 " to sysfs\n", s
->name
);
5402 while (alias_list
) {
5403 struct saved_alias
*al
= alias_list
;
5405 alias_list
= alias_list
->next
;
5406 err
= sysfs_slab_alias(al
->s
, al
->name
);
5408 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
5409 " %s to sysfs\n", s
->name
);
5413 up_write(&slub_lock
);
5418 __initcall(slab_sysfs_init
);
5419 #endif /* CONFIG_SYSFS */
5422 * The /proc/slabinfo ABI
5424 #ifdef CONFIG_SLABINFO
5425 static void print_slabinfo_header(struct seq_file
*m
)
5427 seq_puts(m
, "slabinfo - version: 2.1\n");
5428 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
5429 "<objperslab> <pagesperslab>");
5430 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
5431 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5435 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
5439 down_read(&slub_lock
);
5441 print_slabinfo_header(m
);
5443 return seq_list_start(&slab_caches
, *pos
);
5446 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
5448 return seq_list_next(p
, &slab_caches
, pos
);
5451 static void s_stop(struct seq_file
*m
, void *p
)
5453 up_read(&slub_lock
);
5456 static int s_show(struct seq_file
*m
, void *p
)
5458 unsigned long nr_partials
= 0;
5459 unsigned long nr_slabs
= 0;
5460 unsigned long nr_inuse
= 0;
5461 unsigned long nr_objs
= 0;
5462 unsigned long nr_free
= 0;
5463 struct kmem_cache
*s
;
5466 s
= list_entry(p
, struct kmem_cache
, list
);
5468 for_each_online_node(node
) {
5469 struct kmem_cache_node
*n
= get_node(s
, node
);
5474 nr_partials
+= n
->nr_partial
;
5475 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
5476 nr_objs
+= atomic_long_read(&n
->total_objects
);
5477 nr_free
+= count_partial(n
, count_free
);
5480 nr_inuse
= nr_objs
- nr_free
;
5482 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
5483 nr_objs
, s
->size
, oo_objects(s
->oo
),
5484 (1 << oo_order(s
->oo
)));
5485 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
5486 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
5492 static const struct seq_operations slabinfo_op
= {
5499 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
5501 return seq_open(file
, &slabinfo_op
);
5504 static const struct file_operations proc_slabinfo_operations
= {
5505 .open
= slabinfo_open
,
5507 .llseek
= seq_lseek
,
5508 .release
= seq_release
,
5511 static int __init
slab_proc_init(void)
5513 proc_create("slabinfo", S_IRUGO
, NULL
, &proc_slabinfo_operations
);
5516 module_init(slab_proc_init
);
5517 #endif /* CONFIG_SLABINFO */