Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / mm / slub.c
blob537cec14cd2d0d3d84a6cc05f4cc10913b9820f4
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
33 #include <trace/events/kmem.h>
36 * Lock order:
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
41 * slub_lock
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
88 * Overloading of page flags that are otherwise used for LRU management.
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
114 static inline int kmem_cache_debug(struct kmem_cache *s)
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118 #else
119 return 0;
120 #endif
124 * Issues still to be resolved:
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 * - Variable sizing of the per node arrays
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
134 /* Enable to log cmpxchg failures */
135 #undef SLUB_DEBUG_CMPXCHG
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 #define MIN_PARTIAL 5
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
148 #define MAX_PARTIAL 10
150 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
158 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
161 * Set of flags that will prevent slab merging
163 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
167 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
168 SLAB_CACHE_DMA | SLAB_NOTRACK)
170 #define OO_SHIFT 16
171 #define OO_MASK ((1 << OO_SHIFT) - 1)
172 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
174 /* Internal SLUB flags */
175 #define __OBJECT_POISON 0x80000000UL /* Poison object */
176 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
178 static int kmem_size = sizeof(struct kmem_cache);
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
184 static enum {
185 DOWN, /* No slab functionality available */
186 PARTIAL, /* Kmem_cache_node works */
187 UP, /* Everything works but does not show up in sysfs */
188 SYSFS /* Sysfs up */
189 } slab_state = DOWN;
191 /* A list of all slab caches on the system */
192 static DECLARE_RWSEM(slub_lock);
193 static LIST_HEAD(slab_caches);
196 * Tracking user of a slab.
198 #define TRACK_ADDRS_COUNT 16
199 struct track {
200 unsigned long addr; /* Called from address */
201 #ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203 #endif
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
209 enum track_item { TRACK_ALLOC, TRACK_FREE };
211 #ifdef CONFIG_SYSFS
212 static int sysfs_slab_add(struct kmem_cache *);
213 static int sysfs_slab_alias(struct kmem_cache *, const char *);
214 static void sysfs_slab_remove(struct kmem_cache *);
216 #else
217 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
220 static inline void sysfs_slab_remove(struct kmem_cache *s)
222 kfree(s->name);
223 kfree(s);
226 #endif
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 #ifdef CONFIG_SLUB_STATS
231 __this_cpu_inc(s->cpu_slab->stat[si]);
232 #endif
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
239 int slab_is_available(void)
241 return slab_state >= UP;
244 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
246 return s->node[node];
249 /* Verify that a pointer has an address that is valid within a slab page */
250 static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
253 void *base;
255 if (!object)
256 return 1;
258 base = page_address(page);
259 if (object < base || object >= base + page->objects * s->size ||
260 (object - base) % s->size) {
261 return 0;
264 return 1;
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
269 return *(void **)(object + s->offset);
272 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
274 void *p;
276 #ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278 #else
279 p = get_freepointer(s, object);
280 #endif
281 return p;
284 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
286 *(void **)(object + s->offset) = fp;
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
292 __p += (__s)->size)
294 /* Determine object index from a given position */
295 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
297 return (p - addr) / s->size;
300 static inline size_t slab_ksize(const struct kmem_cache *s)
302 #ifdef CONFIG_SLUB_DEBUG
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 return s->objsize;
310 #endif
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 return s->inuse;
319 * Else we can use all the padding etc for the allocation
321 return s->size;
324 static inline int order_objects(int order, unsigned long size, int reserved)
326 return ((PAGE_SIZE << order) - reserved) / size;
329 static inline struct kmem_cache_order_objects oo_make(int order,
330 unsigned long size, int reserved)
332 struct kmem_cache_order_objects x = {
333 (order << OO_SHIFT) + order_objects(order, size, reserved)
336 return x;
339 static inline int oo_order(struct kmem_cache_order_objects x)
341 return x.x >> OO_SHIFT;
344 static inline int oo_objects(struct kmem_cache_order_objects x)
346 return x.x & OO_MASK;
350 * Per slab locking using the pagelock
352 static __always_inline void slab_lock(struct page *page)
354 bit_spin_lock(PG_locked, &page->flags);
357 static __always_inline void slab_unlock(struct page *page)
359 __bit_spin_unlock(PG_locked, &page->flags);
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
368 VM_BUG_ON(!irqs_disabled());
369 #ifdef CONFIG_CMPXCHG_DOUBLE
370 if (s->flags & __CMPXCHG_DOUBLE) {
371 if (cmpxchg_double(&page->freelist,
372 freelist_old, counters_old,
373 freelist_new, counters_new))
374 return 1;
375 } else
376 #endif
378 slab_lock(page);
379 if (page->freelist == freelist_old && page->counters == counters_old) {
380 page->freelist = freelist_new;
381 page->counters = counters_new;
382 slab_unlock(page);
383 return 1;
385 slab_unlock(page);
388 cpu_relax();
389 stat(s, CMPXCHG_DOUBLE_FAIL);
391 #ifdef SLUB_DEBUG_CMPXCHG
392 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
393 #endif
395 return 0;
398 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
399 void *freelist_old, unsigned long counters_old,
400 void *freelist_new, unsigned long counters_new,
401 const char *n)
403 #ifdef CONFIG_CMPXCHG_DOUBLE
404 if (s->flags & __CMPXCHG_DOUBLE) {
405 if (cmpxchg_double(&page->freelist,
406 freelist_old, counters_old,
407 freelist_new, counters_new))
408 return 1;
409 } else
410 #endif
412 unsigned long flags;
414 local_irq_save(flags);
415 slab_lock(page);
416 if (page->freelist == freelist_old && page->counters == counters_old) {
417 page->freelist = freelist_new;
418 page->counters = counters_new;
419 slab_unlock(page);
420 local_irq_restore(flags);
421 return 1;
423 slab_unlock(page);
424 local_irq_restore(flags);
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
430 #ifdef SLUB_DEBUG_CMPXCHG
431 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432 #endif
434 return 0;
437 #ifdef CONFIG_SLUB_DEBUG
439 * Determine a map of object in use on a page.
441 * Node listlock must be held to guarantee that the page does
442 * not vanish from under us.
444 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
446 void *p;
447 void *addr = page_address(page);
449 for (p = page->freelist; p; p = get_freepointer(s, p))
450 set_bit(slab_index(p, s, addr), map);
454 * Debug settings:
456 #ifdef CONFIG_SLUB_DEBUG_ON
457 static int slub_debug = DEBUG_DEFAULT_FLAGS;
458 #else
459 static int slub_debug;
460 #endif
462 static char *slub_debug_slabs;
463 static int disable_higher_order_debug;
466 * Object debugging
468 static void print_section(char *text, u8 *addr, unsigned int length)
470 int i, offset;
471 int newline = 1;
472 char ascii[17];
474 ascii[16] = 0;
476 for (i = 0; i < length; i++) {
477 if (newline) {
478 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
479 newline = 0;
481 printk(KERN_CONT " %02x", addr[i]);
482 offset = i % 16;
483 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
484 if (offset == 15) {
485 printk(KERN_CONT " %s\n", ascii);
486 newline = 1;
489 if (!newline) {
490 i %= 16;
491 while (i < 16) {
492 printk(KERN_CONT " ");
493 ascii[i] = ' ';
494 i++;
496 printk(KERN_CONT " %s\n", ascii);
500 static struct track *get_track(struct kmem_cache *s, void *object,
501 enum track_item alloc)
503 struct track *p;
505 if (s->offset)
506 p = object + s->offset + sizeof(void *);
507 else
508 p = object + s->inuse;
510 return p + alloc;
513 static void set_track(struct kmem_cache *s, void *object,
514 enum track_item alloc, unsigned long addr)
516 struct track *p = get_track(s, object, alloc);
518 if (addr) {
519 #ifdef CONFIG_STACKTRACE
520 struct stack_trace trace;
521 int i;
523 trace.nr_entries = 0;
524 trace.max_entries = TRACK_ADDRS_COUNT;
525 trace.entries = p->addrs;
526 trace.skip = 3;
527 save_stack_trace(&trace);
529 /* See rant in lockdep.c */
530 if (trace.nr_entries != 0 &&
531 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 trace.nr_entries--;
534 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 p->addrs[i] = 0;
536 #endif
537 p->addr = addr;
538 p->cpu = smp_processor_id();
539 p->pid = current->pid;
540 p->when = jiffies;
541 } else
542 memset(p, 0, sizeof(struct track));
545 static void init_tracking(struct kmem_cache *s, void *object)
547 if (!(s->flags & SLAB_STORE_USER))
548 return;
550 set_track(s, object, TRACK_FREE, 0UL);
551 set_track(s, object, TRACK_ALLOC, 0UL);
554 static void print_track(const char *s, struct track *t)
556 if (!t->addr)
557 return;
559 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
560 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
561 #ifdef CONFIG_STACKTRACE
563 int i;
564 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 if (t->addrs[i])
566 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
567 else
568 break;
570 #endif
573 static void print_tracking(struct kmem_cache *s, void *object)
575 if (!(s->flags & SLAB_STORE_USER))
576 return;
578 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 print_track("Freed", get_track(s, object, TRACK_FREE));
582 static void print_page_info(struct page *page)
584 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585 page, page->objects, page->inuse, page->freelist, page->flags);
589 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
591 va_list args;
592 char buf[100];
594 va_start(args, fmt);
595 vsnprintf(buf, sizeof(buf), fmt, args);
596 va_end(args);
597 printk(KERN_ERR "========================================"
598 "=====================================\n");
599 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
600 printk(KERN_ERR "----------------------------------------"
601 "-------------------------------------\n\n");
604 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
606 va_list args;
607 char buf[100];
609 va_start(args, fmt);
610 vsnprintf(buf, sizeof(buf), fmt, args);
611 va_end(args);
612 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
615 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
617 unsigned int off; /* Offset of last byte */
618 u8 *addr = page_address(page);
620 print_tracking(s, p);
622 print_page_info(page);
624 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
625 p, p - addr, get_freepointer(s, p));
627 if (p > addr + 16)
628 print_section("Bytes b4", p - 16, 16);
630 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
632 if (s->flags & SLAB_RED_ZONE)
633 print_section("Redzone", p + s->objsize,
634 s->inuse - s->objsize);
636 if (s->offset)
637 off = s->offset + sizeof(void *);
638 else
639 off = s->inuse;
641 if (s->flags & SLAB_STORE_USER)
642 off += 2 * sizeof(struct track);
644 if (off != s->size)
645 /* Beginning of the filler is the free pointer */
646 print_section("Padding", p + off, s->size - off);
648 dump_stack();
651 static void object_err(struct kmem_cache *s, struct page *page,
652 u8 *object, char *reason)
654 slab_bug(s, "%s", reason);
655 print_trailer(s, page, object);
658 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
660 va_list args;
661 char buf[100];
663 va_start(args, fmt);
664 vsnprintf(buf, sizeof(buf), fmt, args);
665 va_end(args);
666 slab_bug(s, "%s", buf);
667 print_page_info(page);
668 dump_stack();
671 static void init_object(struct kmem_cache *s, void *object, u8 val)
673 u8 *p = object;
675 if (s->flags & __OBJECT_POISON) {
676 memset(p, POISON_FREE, s->objsize - 1);
677 p[s->objsize - 1] = POISON_END;
680 if (s->flags & SLAB_RED_ZONE)
681 memset(p + s->objsize, val, s->inuse - s->objsize);
684 static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
686 while (bytes) {
687 if (*start != value)
688 return start;
689 start++;
690 bytes--;
692 return NULL;
695 static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
697 u64 value64;
698 unsigned int words, prefix;
700 if (bytes <= 16)
701 return check_bytes8(start, value, bytes);
703 value64 = value | value << 8 | value << 16 | value << 24;
704 value64 = (value64 & 0xffffffff) | value64 << 32;
705 prefix = 8 - ((unsigned long)start) % 8;
707 if (prefix) {
708 u8 *r = check_bytes8(start, value, prefix);
709 if (r)
710 return r;
711 start += prefix;
712 bytes -= prefix;
715 words = bytes / 8;
717 while (words) {
718 if (*(u64 *)start != value64)
719 return check_bytes8(start, value, 8);
720 start += 8;
721 words--;
724 return check_bytes8(start, value, bytes % 8);
727 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
728 void *from, void *to)
730 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
731 memset(from, data, to - from);
734 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
735 u8 *object, char *what,
736 u8 *start, unsigned int value, unsigned int bytes)
738 u8 *fault;
739 u8 *end;
741 fault = check_bytes(start, value, bytes);
742 if (!fault)
743 return 1;
745 end = start + bytes;
746 while (end > fault && end[-1] == value)
747 end--;
749 slab_bug(s, "%s overwritten", what);
750 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
751 fault, end - 1, fault[0], value);
752 print_trailer(s, page, object);
754 restore_bytes(s, what, value, fault, end);
755 return 0;
759 * Object layout:
761 * object address
762 * Bytes of the object to be managed.
763 * If the freepointer may overlay the object then the free
764 * pointer is the first word of the object.
766 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
767 * 0xa5 (POISON_END)
769 * object + s->objsize
770 * Padding to reach word boundary. This is also used for Redzoning.
771 * Padding is extended by another word if Redzoning is enabled and
772 * objsize == inuse.
774 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
775 * 0xcc (RED_ACTIVE) for objects in use.
777 * object + s->inuse
778 * Meta data starts here.
780 * A. Free pointer (if we cannot overwrite object on free)
781 * B. Tracking data for SLAB_STORE_USER
782 * C. Padding to reach required alignment boundary or at mininum
783 * one word if debugging is on to be able to detect writes
784 * before the word boundary.
786 * Padding is done using 0x5a (POISON_INUSE)
788 * object + s->size
789 * Nothing is used beyond s->size.
791 * If slabcaches are merged then the objsize and inuse boundaries are mostly
792 * ignored. And therefore no slab options that rely on these boundaries
793 * may be used with merged slabcaches.
796 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
798 unsigned long off = s->inuse; /* The end of info */
800 if (s->offset)
801 /* Freepointer is placed after the object. */
802 off += sizeof(void *);
804 if (s->flags & SLAB_STORE_USER)
805 /* We also have user information there */
806 off += 2 * sizeof(struct track);
808 if (s->size == off)
809 return 1;
811 return check_bytes_and_report(s, page, p, "Object padding",
812 p + off, POISON_INUSE, s->size - off);
815 /* Check the pad bytes at the end of a slab page */
816 static int slab_pad_check(struct kmem_cache *s, struct page *page)
818 u8 *start;
819 u8 *fault;
820 u8 *end;
821 int length;
822 int remainder;
824 if (!(s->flags & SLAB_POISON))
825 return 1;
827 start = page_address(page);
828 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
829 end = start + length;
830 remainder = length % s->size;
831 if (!remainder)
832 return 1;
834 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
835 if (!fault)
836 return 1;
837 while (end > fault && end[-1] == POISON_INUSE)
838 end--;
840 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
841 print_section("Padding", end - remainder, remainder);
843 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
844 return 0;
847 static int check_object(struct kmem_cache *s, struct page *page,
848 void *object, u8 val)
850 u8 *p = object;
851 u8 *endobject = object + s->objsize;
853 if (s->flags & SLAB_RED_ZONE) {
854 if (!check_bytes_and_report(s, page, object, "Redzone",
855 endobject, val, s->inuse - s->objsize))
856 return 0;
857 } else {
858 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
859 check_bytes_and_report(s, page, p, "Alignment padding",
860 endobject, POISON_INUSE, s->inuse - s->objsize);
864 if (s->flags & SLAB_POISON) {
865 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
866 (!check_bytes_and_report(s, page, p, "Poison", p,
867 POISON_FREE, s->objsize - 1) ||
868 !check_bytes_and_report(s, page, p, "Poison",
869 p + s->objsize - 1, POISON_END, 1)))
870 return 0;
872 * check_pad_bytes cleans up on its own.
874 check_pad_bytes(s, page, p);
877 if (!s->offset && val == SLUB_RED_ACTIVE)
879 * Object and freepointer overlap. Cannot check
880 * freepointer while object is allocated.
882 return 1;
884 /* Check free pointer validity */
885 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
886 object_err(s, page, p, "Freepointer corrupt");
888 * No choice but to zap it and thus lose the remainder
889 * of the free objects in this slab. May cause
890 * another error because the object count is now wrong.
892 set_freepointer(s, p, NULL);
893 return 0;
895 return 1;
898 static int check_slab(struct kmem_cache *s, struct page *page)
900 int maxobj;
902 VM_BUG_ON(!irqs_disabled());
904 if (!PageSlab(page)) {
905 slab_err(s, page, "Not a valid slab page");
906 return 0;
909 maxobj = order_objects(compound_order(page), s->size, s->reserved);
910 if (page->objects > maxobj) {
911 slab_err(s, page, "objects %u > max %u",
912 s->name, page->objects, maxobj);
913 return 0;
915 if (page->inuse > page->objects) {
916 slab_err(s, page, "inuse %u > max %u",
917 s->name, page->inuse, page->objects);
918 return 0;
920 /* Slab_pad_check fixes things up after itself */
921 slab_pad_check(s, page);
922 return 1;
926 * Determine if a certain object on a page is on the freelist. Must hold the
927 * slab lock to guarantee that the chains are in a consistent state.
929 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
931 int nr = 0;
932 void *fp;
933 void *object = NULL;
934 unsigned long max_objects;
936 fp = page->freelist;
937 while (fp && nr <= page->objects) {
938 if (fp == search)
939 return 1;
940 if (!check_valid_pointer(s, page, fp)) {
941 if (object) {
942 object_err(s, page, object,
943 "Freechain corrupt");
944 set_freepointer(s, object, NULL);
945 break;
946 } else {
947 slab_err(s, page, "Freepointer corrupt");
948 page->freelist = NULL;
949 page->inuse = page->objects;
950 slab_fix(s, "Freelist cleared");
951 return 0;
953 break;
955 object = fp;
956 fp = get_freepointer(s, object);
957 nr++;
960 max_objects = order_objects(compound_order(page), s->size, s->reserved);
961 if (max_objects > MAX_OBJS_PER_PAGE)
962 max_objects = MAX_OBJS_PER_PAGE;
964 if (page->objects != max_objects) {
965 slab_err(s, page, "Wrong number of objects. Found %d but "
966 "should be %d", page->objects, max_objects);
967 page->objects = max_objects;
968 slab_fix(s, "Number of objects adjusted.");
970 if (page->inuse != page->objects - nr) {
971 slab_err(s, page, "Wrong object count. Counter is %d but "
972 "counted were %d", page->inuse, page->objects - nr);
973 page->inuse = page->objects - nr;
974 slab_fix(s, "Object count adjusted.");
976 return search == NULL;
979 static void trace(struct kmem_cache *s, struct page *page, void *object,
980 int alloc)
982 if (s->flags & SLAB_TRACE) {
983 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
984 s->name,
985 alloc ? "alloc" : "free",
986 object, page->inuse,
987 page->freelist);
989 if (!alloc)
990 print_section("Object", (void *)object, s->objsize);
992 dump_stack();
997 * Hooks for other subsystems that check memory allocations. In a typical
998 * production configuration these hooks all should produce no code at all.
1000 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1002 flags &= gfp_allowed_mask;
1003 lockdep_trace_alloc(flags);
1004 might_sleep_if(flags & __GFP_WAIT);
1006 return should_failslab(s->objsize, flags, s->flags);
1009 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
1011 flags &= gfp_allowed_mask;
1012 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1013 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
1016 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1018 kmemleak_free_recursive(x, s->flags);
1021 * Trouble is that we may no longer disable interupts in the fast path
1022 * So in order to make the debug calls that expect irqs to be
1023 * disabled we need to disable interrupts temporarily.
1025 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1027 unsigned long flags;
1029 local_irq_save(flags);
1030 kmemcheck_slab_free(s, x, s->objsize);
1031 debug_check_no_locks_freed(x, s->objsize);
1032 local_irq_restore(flags);
1034 #endif
1035 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1036 debug_check_no_obj_freed(x, s->objsize);
1040 * Tracking of fully allocated slabs for debugging purposes.
1042 * list_lock must be held.
1044 static void add_full(struct kmem_cache *s,
1045 struct kmem_cache_node *n, struct page *page)
1047 if (!(s->flags & SLAB_STORE_USER))
1048 return;
1050 list_add(&page->lru, &n->full);
1054 * list_lock must be held.
1056 static void remove_full(struct kmem_cache *s, struct page *page)
1058 if (!(s->flags & SLAB_STORE_USER))
1059 return;
1061 list_del(&page->lru);
1064 /* Tracking of the number of slabs for debugging purposes */
1065 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1067 struct kmem_cache_node *n = get_node(s, node);
1069 return atomic_long_read(&n->nr_slabs);
1072 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1074 return atomic_long_read(&n->nr_slabs);
1077 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1079 struct kmem_cache_node *n = get_node(s, node);
1082 * May be called early in order to allocate a slab for the
1083 * kmem_cache_node structure. Solve the chicken-egg
1084 * dilemma by deferring the increment of the count during
1085 * bootstrap (see early_kmem_cache_node_alloc).
1087 if (n) {
1088 atomic_long_inc(&n->nr_slabs);
1089 atomic_long_add(objects, &n->total_objects);
1092 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1094 struct kmem_cache_node *n = get_node(s, node);
1096 atomic_long_dec(&n->nr_slabs);
1097 atomic_long_sub(objects, &n->total_objects);
1100 /* Object debug checks for alloc/free paths */
1101 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1102 void *object)
1104 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1105 return;
1107 init_object(s, object, SLUB_RED_INACTIVE);
1108 init_tracking(s, object);
1111 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1112 void *object, unsigned long addr)
1114 if (!check_slab(s, page))
1115 goto bad;
1117 if (!check_valid_pointer(s, page, object)) {
1118 object_err(s, page, object, "Freelist Pointer check fails");
1119 goto bad;
1122 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1123 goto bad;
1125 /* Success perform special debug activities for allocs */
1126 if (s->flags & SLAB_STORE_USER)
1127 set_track(s, object, TRACK_ALLOC, addr);
1128 trace(s, page, object, 1);
1129 init_object(s, object, SLUB_RED_ACTIVE);
1130 return 1;
1132 bad:
1133 if (PageSlab(page)) {
1135 * If this is a slab page then lets do the best we can
1136 * to avoid issues in the future. Marking all objects
1137 * as used avoids touching the remaining objects.
1139 slab_fix(s, "Marking all objects used");
1140 page->inuse = page->objects;
1141 page->freelist = NULL;
1143 return 0;
1146 static noinline int free_debug_processing(struct kmem_cache *s,
1147 struct page *page, void *object, unsigned long addr)
1149 unsigned long flags;
1150 int rc = 0;
1152 local_irq_save(flags);
1153 slab_lock(page);
1155 if (!check_slab(s, page))
1156 goto fail;
1158 if (!check_valid_pointer(s, page, object)) {
1159 slab_err(s, page, "Invalid object pointer 0x%p", object);
1160 goto fail;
1163 if (on_freelist(s, page, object)) {
1164 object_err(s, page, object, "Object already free");
1165 goto fail;
1168 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1169 goto out;
1171 if (unlikely(s != page->slab)) {
1172 if (!PageSlab(page)) {
1173 slab_err(s, page, "Attempt to free object(0x%p) "
1174 "outside of slab", object);
1175 } else if (!page->slab) {
1176 printk(KERN_ERR
1177 "SLUB <none>: no slab for object 0x%p.\n",
1178 object);
1179 dump_stack();
1180 } else
1181 object_err(s, page, object,
1182 "page slab pointer corrupt.");
1183 goto fail;
1186 if (s->flags & SLAB_STORE_USER)
1187 set_track(s, object, TRACK_FREE, addr);
1188 trace(s, page, object, 0);
1189 init_object(s, object, SLUB_RED_INACTIVE);
1190 rc = 1;
1191 out:
1192 slab_unlock(page);
1193 local_irq_restore(flags);
1194 return rc;
1196 fail:
1197 slab_fix(s, "Object at 0x%p not freed", object);
1198 goto out;
1201 static int __init setup_slub_debug(char *str)
1203 slub_debug = DEBUG_DEFAULT_FLAGS;
1204 if (*str++ != '=' || !*str)
1206 * No options specified. Switch on full debugging.
1208 goto out;
1210 if (*str == ',')
1212 * No options but restriction on slabs. This means full
1213 * debugging for slabs matching a pattern.
1215 goto check_slabs;
1217 if (tolower(*str) == 'o') {
1219 * Avoid enabling debugging on caches if its minimum order
1220 * would increase as a result.
1222 disable_higher_order_debug = 1;
1223 goto out;
1226 slub_debug = 0;
1227 if (*str == '-')
1229 * Switch off all debugging measures.
1231 goto out;
1234 * Determine which debug features should be switched on
1236 for (; *str && *str != ','; str++) {
1237 switch (tolower(*str)) {
1238 case 'f':
1239 slub_debug |= SLAB_DEBUG_FREE;
1240 break;
1241 case 'z':
1242 slub_debug |= SLAB_RED_ZONE;
1243 break;
1244 case 'p':
1245 slub_debug |= SLAB_POISON;
1246 break;
1247 case 'u':
1248 slub_debug |= SLAB_STORE_USER;
1249 break;
1250 case 't':
1251 slub_debug |= SLAB_TRACE;
1252 break;
1253 case 'a':
1254 slub_debug |= SLAB_FAILSLAB;
1255 break;
1256 default:
1257 printk(KERN_ERR "slub_debug option '%c' "
1258 "unknown. skipped\n", *str);
1262 check_slabs:
1263 if (*str == ',')
1264 slub_debug_slabs = str + 1;
1265 out:
1266 return 1;
1269 __setup("slub_debug", setup_slub_debug);
1271 static unsigned long kmem_cache_flags(unsigned long objsize,
1272 unsigned long flags, const char *name,
1273 void (*ctor)(void *))
1276 * Enable debugging if selected on the kernel commandline.
1278 if (slub_debug && (!slub_debug_slabs ||
1279 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1280 flags |= slub_debug;
1282 return flags;
1284 #else
1285 static inline void setup_object_debug(struct kmem_cache *s,
1286 struct page *page, void *object) {}
1288 static inline int alloc_debug_processing(struct kmem_cache *s,
1289 struct page *page, void *object, unsigned long addr) { return 0; }
1291 static inline int free_debug_processing(struct kmem_cache *s,
1292 struct page *page, void *object, unsigned long addr) { return 0; }
1294 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1295 { return 1; }
1296 static inline int check_object(struct kmem_cache *s, struct page *page,
1297 void *object, u8 val) { return 1; }
1298 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1299 struct page *page) {}
1300 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1301 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1302 unsigned long flags, const char *name,
1303 void (*ctor)(void *))
1305 return flags;
1307 #define slub_debug 0
1309 #define disable_higher_order_debug 0
1311 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1312 { return 0; }
1313 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1314 { return 0; }
1315 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1316 int objects) {}
1317 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1318 int objects) {}
1320 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1321 { return 0; }
1323 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1324 void *object) {}
1326 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1328 #endif /* CONFIG_SLUB_DEBUG */
1331 * Slab allocation and freeing
1333 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1334 struct kmem_cache_order_objects oo)
1336 int order = oo_order(oo);
1338 flags |= __GFP_NOTRACK;
1340 if (node == NUMA_NO_NODE)
1341 return alloc_pages(flags, order);
1342 else
1343 return alloc_pages_exact_node(node, flags, order);
1346 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1348 struct page *page;
1349 struct kmem_cache_order_objects oo = s->oo;
1350 gfp_t alloc_gfp;
1352 flags &= gfp_allowed_mask;
1354 if (flags & __GFP_WAIT)
1355 local_irq_enable();
1357 flags |= s->allocflags;
1360 * Let the initial higher-order allocation fail under memory pressure
1361 * so we fall-back to the minimum order allocation.
1363 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1365 page = alloc_slab_page(alloc_gfp, node, oo);
1366 if (unlikely(!page)) {
1367 oo = s->min;
1369 * Allocation may have failed due to fragmentation.
1370 * Try a lower order alloc if possible
1372 page = alloc_slab_page(flags, node, oo);
1374 if (page)
1375 stat(s, ORDER_FALLBACK);
1378 if (flags & __GFP_WAIT)
1379 local_irq_disable();
1381 if (!page)
1382 return NULL;
1384 if (kmemcheck_enabled
1385 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1386 int pages = 1 << oo_order(oo);
1388 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1391 * Objects from caches that have a constructor don't get
1392 * cleared when they're allocated, so we need to do it here.
1394 if (s->ctor)
1395 kmemcheck_mark_uninitialized_pages(page, pages);
1396 else
1397 kmemcheck_mark_unallocated_pages(page, pages);
1400 page->objects = oo_objects(oo);
1401 mod_zone_page_state(page_zone(page),
1402 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1403 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1404 1 << oo_order(oo));
1406 return page;
1409 static void setup_object(struct kmem_cache *s, struct page *page,
1410 void *object)
1412 setup_object_debug(s, page, object);
1413 if (unlikely(s->ctor))
1414 s->ctor(object);
1417 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1419 struct page *page;
1420 void *start;
1421 void *last;
1422 void *p;
1424 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1426 page = allocate_slab(s,
1427 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1428 if (!page)
1429 goto out;
1431 inc_slabs_node(s, page_to_nid(page), page->objects);
1432 page->slab = s;
1433 page->flags |= 1 << PG_slab;
1435 start = page_address(page);
1437 if (unlikely(s->flags & SLAB_POISON))
1438 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1440 last = start;
1441 for_each_object(p, s, start, page->objects) {
1442 setup_object(s, page, last);
1443 set_freepointer(s, last, p);
1444 last = p;
1446 setup_object(s, page, last);
1447 set_freepointer(s, last, NULL);
1449 page->freelist = start;
1450 page->inuse = page->objects;
1451 page->frozen = 1;
1452 out:
1453 return page;
1456 static void __free_slab(struct kmem_cache *s, struct page *page)
1458 int order = compound_order(page);
1459 int pages = 1 << order;
1461 if (kmem_cache_debug(s)) {
1462 void *p;
1464 slab_pad_check(s, page);
1465 for_each_object(p, s, page_address(page),
1466 page->objects)
1467 check_object(s, page, p, SLUB_RED_INACTIVE);
1470 kmemcheck_free_shadow(page, compound_order(page));
1472 mod_zone_page_state(page_zone(page),
1473 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1474 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1475 -pages);
1477 __ClearPageSlab(page);
1478 reset_page_mapcount(page);
1479 if (current->reclaim_state)
1480 current->reclaim_state->reclaimed_slab += pages;
1481 __free_pages(page, order);
1484 #define need_reserve_slab_rcu \
1485 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1487 static void rcu_free_slab(struct rcu_head *h)
1489 struct page *page;
1491 if (need_reserve_slab_rcu)
1492 page = virt_to_head_page(h);
1493 else
1494 page = container_of((struct list_head *)h, struct page, lru);
1496 __free_slab(page->slab, page);
1499 static void free_slab(struct kmem_cache *s, struct page *page)
1501 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1502 struct rcu_head *head;
1504 if (need_reserve_slab_rcu) {
1505 int order = compound_order(page);
1506 int offset = (PAGE_SIZE << order) - s->reserved;
1508 VM_BUG_ON(s->reserved != sizeof(*head));
1509 head = page_address(page) + offset;
1510 } else {
1512 * RCU free overloads the RCU head over the LRU
1514 head = (void *)&page->lru;
1517 call_rcu(head, rcu_free_slab);
1518 } else
1519 __free_slab(s, page);
1522 static void discard_slab(struct kmem_cache *s, struct page *page)
1524 dec_slabs_node(s, page_to_nid(page), page->objects);
1525 free_slab(s, page);
1529 * Management of partially allocated slabs.
1531 * list_lock must be held.
1533 static inline void add_partial(struct kmem_cache_node *n,
1534 struct page *page, int tail)
1536 n->nr_partial++;
1537 if (tail == DEACTIVATE_TO_TAIL)
1538 list_add_tail(&page->lru, &n->partial);
1539 else
1540 list_add(&page->lru, &n->partial);
1544 * list_lock must be held.
1546 static inline void remove_partial(struct kmem_cache_node *n,
1547 struct page *page)
1549 list_del(&page->lru);
1550 n->nr_partial--;
1554 * Lock slab, remove from the partial list and put the object into the
1555 * per cpu freelist.
1557 * Returns a list of objects or NULL if it fails.
1559 * Must hold list_lock.
1561 static inline void *acquire_slab(struct kmem_cache *s,
1562 struct kmem_cache_node *n, struct page *page,
1563 int mode)
1565 void *freelist;
1566 unsigned long counters;
1567 struct page new;
1570 * Zap the freelist and set the frozen bit.
1571 * The old freelist is the list of objects for the
1572 * per cpu allocation list.
1574 do {
1575 freelist = page->freelist;
1576 counters = page->counters;
1577 new.counters = counters;
1578 if (mode)
1579 new.inuse = page->objects;
1581 VM_BUG_ON(new.frozen);
1582 new.frozen = 1;
1584 } while (!__cmpxchg_double_slab(s, page,
1585 freelist, counters,
1586 NULL, new.counters,
1587 "lock and freeze"));
1589 remove_partial(n, page);
1590 return freelist;
1593 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1596 * Try to allocate a partial slab from a specific node.
1598 static void *get_partial_node(struct kmem_cache *s,
1599 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1601 struct page *page, *page2;
1602 void *object = NULL;
1603 int count = 0;
1606 * Racy check. If we mistakenly see no partial slabs then we
1607 * just allocate an empty slab. If we mistakenly try to get a
1608 * partial slab and there is none available then get_partials()
1609 * will return NULL.
1611 if (!n || !n->nr_partial)
1612 return NULL;
1614 spin_lock(&n->list_lock);
1615 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1616 void *t = acquire_slab(s, n, page, count == 0);
1617 int available;
1619 if (!t)
1620 break;
1622 if (!count) {
1623 c->page = page;
1624 c->node = page_to_nid(page);
1625 stat(s, ALLOC_FROM_PARTIAL);
1626 count++;
1627 object = t;
1628 available = page->objects - page->inuse;
1629 } else {
1630 page->freelist = t;
1631 available = put_cpu_partial(s, page, 0);
1633 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1634 break;
1637 spin_unlock(&n->list_lock);
1638 return object;
1642 * Get a page from somewhere. Search in increasing NUMA distances.
1644 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1645 struct kmem_cache_cpu *c)
1647 #ifdef CONFIG_NUMA
1648 struct zonelist *zonelist;
1649 struct zoneref *z;
1650 struct zone *zone;
1651 enum zone_type high_zoneidx = gfp_zone(flags);
1652 void *object;
1655 * The defrag ratio allows a configuration of the tradeoffs between
1656 * inter node defragmentation and node local allocations. A lower
1657 * defrag_ratio increases the tendency to do local allocations
1658 * instead of attempting to obtain partial slabs from other nodes.
1660 * If the defrag_ratio is set to 0 then kmalloc() always
1661 * returns node local objects. If the ratio is higher then kmalloc()
1662 * may return off node objects because partial slabs are obtained
1663 * from other nodes and filled up.
1665 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1666 * defrag_ratio = 1000) then every (well almost) allocation will
1667 * first attempt to defrag slab caches on other nodes. This means
1668 * scanning over all nodes to look for partial slabs which may be
1669 * expensive if we do it every time we are trying to find a slab
1670 * with available objects.
1672 if (!s->remote_node_defrag_ratio ||
1673 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1674 return NULL;
1676 get_mems_allowed();
1677 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1678 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1679 struct kmem_cache_node *n;
1681 n = get_node(s, zone_to_nid(zone));
1683 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1684 n->nr_partial > s->min_partial) {
1685 object = get_partial_node(s, n, c);
1686 if (object) {
1687 put_mems_allowed();
1688 return object;
1692 put_mems_allowed();
1693 #endif
1694 return NULL;
1698 * Get a partial page, lock it and return it.
1700 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1701 struct kmem_cache_cpu *c)
1703 void *object;
1704 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1706 object = get_partial_node(s, get_node(s, searchnode), c);
1707 if (object || node != NUMA_NO_NODE)
1708 return object;
1710 return get_any_partial(s, flags, c);
1713 #ifdef CONFIG_PREEMPT
1715 * Calculate the next globally unique transaction for disambiguiation
1716 * during cmpxchg. The transactions start with the cpu number and are then
1717 * incremented by CONFIG_NR_CPUS.
1719 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1720 #else
1722 * No preemption supported therefore also no need to check for
1723 * different cpus.
1725 #define TID_STEP 1
1726 #endif
1728 static inline unsigned long next_tid(unsigned long tid)
1730 return tid + TID_STEP;
1733 static inline unsigned int tid_to_cpu(unsigned long tid)
1735 return tid % TID_STEP;
1738 static inline unsigned long tid_to_event(unsigned long tid)
1740 return tid / TID_STEP;
1743 static inline unsigned int init_tid(int cpu)
1745 return cpu;
1748 static inline void note_cmpxchg_failure(const char *n,
1749 const struct kmem_cache *s, unsigned long tid)
1751 #ifdef SLUB_DEBUG_CMPXCHG
1752 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1754 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1756 #ifdef CONFIG_PREEMPT
1757 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1758 printk("due to cpu change %d -> %d\n",
1759 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1760 else
1761 #endif
1762 if (tid_to_event(tid) != tid_to_event(actual_tid))
1763 printk("due to cpu running other code. Event %ld->%ld\n",
1764 tid_to_event(tid), tid_to_event(actual_tid));
1765 else
1766 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1767 actual_tid, tid, next_tid(tid));
1768 #endif
1769 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1772 void init_kmem_cache_cpus(struct kmem_cache *s)
1774 int cpu;
1776 for_each_possible_cpu(cpu)
1777 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1781 * Remove the cpu slab
1783 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1785 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1786 struct page *page = c->page;
1787 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1788 int lock = 0;
1789 enum slab_modes l = M_NONE, m = M_NONE;
1790 void *freelist;
1791 void *nextfree;
1792 int tail = DEACTIVATE_TO_HEAD;
1793 struct page new;
1794 struct page old;
1796 if (page->freelist) {
1797 stat(s, DEACTIVATE_REMOTE_FREES);
1798 tail = DEACTIVATE_TO_TAIL;
1801 c->tid = next_tid(c->tid);
1802 c->page = NULL;
1803 freelist = c->freelist;
1804 c->freelist = NULL;
1807 * Stage one: Free all available per cpu objects back
1808 * to the page freelist while it is still frozen. Leave the
1809 * last one.
1811 * There is no need to take the list->lock because the page
1812 * is still frozen.
1814 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1815 void *prior;
1816 unsigned long counters;
1818 do {
1819 prior = page->freelist;
1820 counters = page->counters;
1821 set_freepointer(s, freelist, prior);
1822 new.counters = counters;
1823 new.inuse--;
1824 VM_BUG_ON(!new.frozen);
1826 } while (!__cmpxchg_double_slab(s, page,
1827 prior, counters,
1828 freelist, new.counters,
1829 "drain percpu freelist"));
1831 freelist = nextfree;
1835 * Stage two: Ensure that the page is unfrozen while the
1836 * list presence reflects the actual number of objects
1837 * during unfreeze.
1839 * We setup the list membership and then perform a cmpxchg
1840 * with the count. If there is a mismatch then the page
1841 * is not unfrozen but the page is on the wrong list.
1843 * Then we restart the process which may have to remove
1844 * the page from the list that we just put it on again
1845 * because the number of objects in the slab may have
1846 * changed.
1848 redo:
1850 old.freelist = page->freelist;
1851 old.counters = page->counters;
1852 VM_BUG_ON(!old.frozen);
1854 /* Determine target state of the slab */
1855 new.counters = old.counters;
1856 if (freelist) {
1857 new.inuse--;
1858 set_freepointer(s, freelist, old.freelist);
1859 new.freelist = freelist;
1860 } else
1861 new.freelist = old.freelist;
1863 new.frozen = 0;
1865 if (!new.inuse && n->nr_partial > s->min_partial)
1866 m = M_FREE;
1867 else if (new.freelist) {
1868 m = M_PARTIAL;
1869 if (!lock) {
1870 lock = 1;
1872 * Taking the spinlock removes the possiblity
1873 * that acquire_slab() will see a slab page that
1874 * is frozen
1876 spin_lock(&n->list_lock);
1878 } else {
1879 m = M_FULL;
1880 if (kmem_cache_debug(s) && !lock) {
1881 lock = 1;
1883 * This also ensures that the scanning of full
1884 * slabs from diagnostic functions will not see
1885 * any frozen slabs.
1887 spin_lock(&n->list_lock);
1891 if (l != m) {
1893 if (l == M_PARTIAL)
1895 remove_partial(n, page);
1897 else if (l == M_FULL)
1899 remove_full(s, page);
1901 if (m == M_PARTIAL) {
1903 add_partial(n, page, tail);
1904 stat(s, tail);
1906 } else if (m == M_FULL) {
1908 stat(s, DEACTIVATE_FULL);
1909 add_full(s, n, page);
1914 l = m;
1915 if (!__cmpxchg_double_slab(s, page,
1916 old.freelist, old.counters,
1917 new.freelist, new.counters,
1918 "unfreezing slab"))
1919 goto redo;
1921 if (lock)
1922 spin_unlock(&n->list_lock);
1924 if (m == M_FREE) {
1925 stat(s, DEACTIVATE_EMPTY);
1926 discard_slab(s, page);
1927 stat(s, FREE_SLAB);
1931 /* Unfreeze all the cpu partial slabs */
1932 static void unfreeze_partials(struct kmem_cache *s)
1934 struct kmem_cache_node *n = NULL;
1935 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1936 struct page *page;
1938 while ((page = c->partial)) {
1939 enum slab_modes { M_PARTIAL, M_FREE };
1940 enum slab_modes l, m;
1941 struct page new;
1942 struct page old;
1944 c->partial = page->next;
1945 l = M_FREE;
1947 do {
1949 old.freelist = page->freelist;
1950 old.counters = page->counters;
1951 VM_BUG_ON(!old.frozen);
1953 new.counters = old.counters;
1954 new.freelist = old.freelist;
1956 new.frozen = 0;
1958 if (!new.inuse && (!n || n->nr_partial < s->min_partial))
1959 m = M_FREE;
1960 else {
1961 struct kmem_cache_node *n2 = get_node(s,
1962 page_to_nid(page));
1964 m = M_PARTIAL;
1965 if (n != n2) {
1966 if (n)
1967 spin_unlock(&n->list_lock);
1969 n = n2;
1970 spin_lock(&n->list_lock);
1974 if (l != m) {
1975 if (l == M_PARTIAL)
1976 remove_partial(n, page);
1977 else
1978 add_partial(n, page, 1);
1980 l = m;
1983 } while (!cmpxchg_double_slab(s, page,
1984 old.freelist, old.counters,
1985 new.freelist, new.counters,
1986 "unfreezing slab"));
1988 if (m == M_FREE) {
1989 stat(s, DEACTIVATE_EMPTY);
1990 discard_slab(s, page);
1991 stat(s, FREE_SLAB);
1995 if (n)
1996 spin_unlock(&n->list_lock);
2000 * Put a page that was just frozen (in __slab_free) into a partial page
2001 * slot if available. This is done without interrupts disabled and without
2002 * preemption disabled. The cmpxchg is racy and may put the partial page
2003 * onto a random cpus partial slot.
2005 * If we did not find a slot then simply move all the partials to the
2006 * per node partial list.
2008 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2010 struct page *oldpage;
2011 int pages;
2012 int pobjects;
2014 do {
2015 pages = 0;
2016 pobjects = 0;
2017 oldpage = this_cpu_read(s->cpu_slab->partial);
2019 if (oldpage) {
2020 pobjects = oldpage->pobjects;
2021 pages = oldpage->pages;
2022 if (drain && pobjects > s->cpu_partial) {
2023 unsigned long flags;
2025 * partial array is full. Move the existing
2026 * set to the per node partial list.
2028 local_irq_save(flags);
2029 unfreeze_partials(s);
2030 local_irq_restore(flags);
2031 pobjects = 0;
2032 pages = 0;
2036 pages++;
2037 pobjects += page->objects - page->inuse;
2039 page->pages = pages;
2040 page->pobjects = pobjects;
2041 page->next = oldpage;
2043 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
2044 stat(s, CPU_PARTIAL_FREE);
2045 return pobjects;
2048 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2050 stat(s, CPUSLAB_FLUSH);
2051 deactivate_slab(s, c);
2055 * Flush cpu slab.
2057 * Called from IPI handler with interrupts disabled.
2059 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2061 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2063 if (likely(c)) {
2064 if (c->page)
2065 flush_slab(s, c);
2067 unfreeze_partials(s);
2071 static void flush_cpu_slab(void *d)
2073 struct kmem_cache *s = d;
2075 __flush_cpu_slab(s, smp_processor_id());
2078 static void flush_all(struct kmem_cache *s)
2080 on_each_cpu(flush_cpu_slab, s, 1);
2084 * Check if the objects in a per cpu structure fit numa
2085 * locality expectations.
2087 static inline int node_match(struct kmem_cache_cpu *c, int node)
2089 #ifdef CONFIG_NUMA
2090 if (node != NUMA_NO_NODE && c->node != node)
2091 return 0;
2092 #endif
2093 return 1;
2096 static int count_free(struct page *page)
2098 return page->objects - page->inuse;
2101 static unsigned long count_partial(struct kmem_cache_node *n,
2102 int (*get_count)(struct page *))
2104 unsigned long flags;
2105 unsigned long x = 0;
2106 struct page *page;
2108 spin_lock_irqsave(&n->list_lock, flags);
2109 list_for_each_entry(page, &n->partial, lru)
2110 x += get_count(page);
2111 spin_unlock_irqrestore(&n->list_lock, flags);
2112 return x;
2115 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2117 #ifdef CONFIG_SLUB_DEBUG
2118 return atomic_long_read(&n->total_objects);
2119 #else
2120 return 0;
2121 #endif
2124 static noinline void
2125 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2127 int node;
2129 printk(KERN_WARNING
2130 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2131 nid, gfpflags);
2132 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2133 "default order: %d, min order: %d\n", s->name, s->objsize,
2134 s->size, oo_order(s->oo), oo_order(s->min));
2136 if (oo_order(s->min) > get_order(s->objsize))
2137 printk(KERN_WARNING " %s debugging increased min order, use "
2138 "slub_debug=O to disable.\n", s->name);
2140 for_each_online_node(node) {
2141 struct kmem_cache_node *n = get_node(s, node);
2142 unsigned long nr_slabs;
2143 unsigned long nr_objs;
2144 unsigned long nr_free;
2146 if (!n)
2147 continue;
2149 nr_free = count_partial(n, count_free);
2150 nr_slabs = node_nr_slabs(n);
2151 nr_objs = node_nr_objs(n);
2153 printk(KERN_WARNING
2154 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2155 node, nr_slabs, nr_objs, nr_free);
2159 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2160 int node, struct kmem_cache_cpu **pc)
2162 void *object;
2163 struct kmem_cache_cpu *c;
2164 struct page *page = new_slab(s, flags, node);
2166 if (page) {
2167 c = __this_cpu_ptr(s->cpu_slab);
2168 if (c->page)
2169 flush_slab(s, c);
2172 * No other reference to the page yet so we can
2173 * muck around with it freely without cmpxchg
2175 object = page->freelist;
2176 page->freelist = NULL;
2178 stat(s, ALLOC_SLAB);
2179 c->node = page_to_nid(page);
2180 c->page = page;
2181 *pc = c;
2182 } else
2183 object = NULL;
2185 return object;
2189 * Slow path. The lockless freelist is empty or we need to perform
2190 * debugging duties.
2192 * Processing is still very fast if new objects have been freed to the
2193 * regular freelist. In that case we simply take over the regular freelist
2194 * as the lockless freelist and zap the regular freelist.
2196 * If that is not working then we fall back to the partial lists. We take the
2197 * first element of the freelist as the object to allocate now and move the
2198 * rest of the freelist to the lockless freelist.
2200 * And if we were unable to get a new slab from the partial slab lists then
2201 * we need to allocate a new slab. This is the slowest path since it involves
2202 * a call to the page allocator and the setup of a new slab.
2204 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2205 unsigned long addr, struct kmem_cache_cpu *c)
2207 void **object;
2208 unsigned long flags;
2209 struct page new;
2210 unsigned long counters;
2212 local_irq_save(flags);
2213 #ifdef CONFIG_PREEMPT
2215 * We may have been preempted and rescheduled on a different
2216 * cpu before disabling interrupts. Need to reload cpu area
2217 * pointer.
2219 c = this_cpu_ptr(s->cpu_slab);
2220 #endif
2222 if (!c->page)
2223 goto new_slab;
2224 redo:
2225 if (unlikely(!node_match(c, node))) {
2226 stat(s, ALLOC_NODE_MISMATCH);
2227 deactivate_slab(s, c);
2228 goto new_slab;
2231 stat(s, ALLOC_SLOWPATH);
2233 do {
2234 object = c->page->freelist;
2235 counters = c->page->counters;
2236 new.counters = counters;
2237 VM_BUG_ON(!new.frozen);
2240 * If there is no object left then we use this loop to
2241 * deactivate the slab which is simple since no objects
2242 * are left in the slab and therefore we do not need to
2243 * put the page back onto the partial list.
2245 * If there are objects left then we retrieve them
2246 * and use them to refill the per cpu queue.
2249 new.inuse = c->page->objects;
2250 new.frozen = object != NULL;
2252 } while (!__cmpxchg_double_slab(s, c->page,
2253 object, counters,
2254 NULL, new.counters,
2255 "__slab_alloc"));
2257 if (!object) {
2258 c->page = NULL;
2259 stat(s, DEACTIVATE_BYPASS);
2260 goto new_slab;
2263 stat(s, ALLOC_REFILL);
2265 load_freelist:
2266 c->freelist = get_freepointer(s, object);
2267 c->tid = next_tid(c->tid);
2268 local_irq_restore(flags);
2269 return object;
2271 new_slab:
2273 if (c->partial) {
2274 c->page = c->partial;
2275 c->partial = c->page->next;
2276 c->node = page_to_nid(c->page);
2277 stat(s, CPU_PARTIAL_ALLOC);
2278 c->freelist = NULL;
2279 goto redo;
2282 /* Then do expensive stuff like retrieving pages from the partial lists */
2283 object = get_partial(s, gfpflags, node, c);
2285 if (unlikely(!object)) {
2287 object = new_slab_objects(s, gfpflags, node, &c);
2289 if (unlikely(!object)) {
2290 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2291 slab_out_of_memory(s, gfpflags, node);
2293 local_irq_restore(flags);
2294 return NULL;
2298 if (likely(!kmem_cache_debug(s)))
2299 goto load_freelist;
2301 /* Only entered in the debug case */
2302 if (!alloc_debug_processing(s, c->page, object, addr))
2303 goto new_slab; /* Slab failed checks. Next slab needed */
2305 c->freelist = get_freepointer(s, object);
2306 deactivate_slab(s, c);
2307 c->node = NUMA_NO_NODE;
2308 local_irq_restore(flags);
2309 return object;
2313 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2314 * have the fastpath folded into their functions. So no function call
2315 * overhead for requests that can be satisfied on the fastpath.
2317 * The fastpath works by first checking if the lockless freelist can be used.
2318 * If not then __slab_alloc is called for slow processing.
2320 * Otherwise we can simply pick the next object from the lockless free list.
2322 static __always_inline void *slab_alloc(struct kmem_cache *s,
2323 gfp_t gfpflags, int node, unsigned long addr)
2325 void **object;
2326 struct kmem_cache_cpu *c;
2327 unsigned long tid;
2329 if (slab_pre_alloc_hook(s, gfpflags))
2330 return NULL;
2332 redo:
2335 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2336 * enabled. We may switch back and forth between cpus while
2337 * reading from one cpu area. That does not matter as long
2338 * as we end up on the original cpu again when doing the cmpxchg.
2340 c = __this_cpu_ptr(s->cpu_slab);
2343 * The transaction ids are globally unique per cpu and per operation on
2344 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2345 * occurs on the right processor and that there was no operation on the
2346 * linked list in between.
2348 tid = c->tid;
2349 barrier();
2351 object = c->freelist;
2352 if (unlikely(!object || !node_match(c, node)))
2354 object = __slab_alloc(s, gfpflags, node, addr, c);
2356 else {
2358 * The cmpxchg will only match if there was no additional
2359 * operation and if we are on the right processor.
2361 * The cmpxchg does the following atomically (without lock semantics!)
2362 * 1. Relocate first pointer to the current per cpu area.
2363 * 2. Verify that tid and freelist have not been changed
2364 * 3. If they were not changed replace tid and freelist
2366 * Since this is without lock semantics the protection is only against
2367 * code executing on this cpu *not* from access by other cpus.
2369 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2370 s->cpu_slab->freelist, s->cpu_slab->tid,
2371 object, tid,
2372 get_freepointer_safe(s, object), next_tid(tid)))) {
2374 note_cmpxchg_failure("slab_alloc", s, tid);
2375 goto redo;
2377 stat(s, ALLOC_FASTPATH);
2380 if (unlikely(gfpflags & __GFP_ZERO) && object)
2381 memset(object, 0, s->objsize);
2383 slab_post_alloc_hook(s, gfpflags, object);
2385 return object;
2388 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2390 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2392 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2394 return ret;
2396 EXPORT_SYMBOL(kmem_cache_alloc);
2398 #ifdef CONFIG_TRACING
2399 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2401 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2402 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2403 return ret;
2405 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2407 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2409 void *ret = kmalloc_order(size, flags, order);
2410 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2411 return ret;
2413 EXPORT_SYMBOL(kmalloc_order_trace);
2414 #endif
2416 #ifdef CONFIG_NUMA
2417 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2419 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2421 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2422 s->objsize, s->size, gfpflags, node);
2424 return ret;
2426 EXPORT_SYMBOL(kmem_cache_alloc_node);
2428 #ifdef CONFIG_TRACING
2429 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2430 gfp_t gfpflags,
2431 int node, size_t size)
2433 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2435 trace_kmalloc_node(_RET_IP_, ret,
2436 size, s->size, gfpflags, node);
2437 return ret;
2439 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2440 #endif
2441 #endif
2444 * Slow patch handling. This may still be called frequently since objects
2445 * have a longer lifetime than the cpu slabs in most processing loads.
2447 * So we still attempt to reduce cache line usage. Just take the slab
2448 * lock and free the item. If there is no additional partial page
2449 * handling required then we can return immediately.
2451 static void __slab_free(struct kmem_cache *s, struct page *page,
2452 void *x, unsigned long addr)
2454 void *prior;
2455 void **object = (void *)x;
2456 int was_frozen;
2457 int inuse;
2458 struct page new;
2459 unsigned long counters;
2460 struct kmem_cache_node *n = NULL;
2461 unsigned long uninitialized_var(flags);
2463 stat(s, FREE_SLOWPATH);
2465 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2466 return;
2468 do {
2469 prior = page->freelist;
2470 counters = page->counters;
2471 set_freepointer(s, object, prior);
2472 new.counters = counters;
2473 was_frozen = new.frozen;
2474 new.inuse--;
2475 if ((!new.inuse || !prior) && !was_frozen && !n) {
2477 if (!kmem_cache_debug(s) && !prior)
2480 * Slab was on no list before and will be partially empty
2481 * We can defer the list move and instead freeze it.
2483 new.frozen = 1;
2485 else { /* Needs to be taken off a list */
2487 n = get_node(s, page_to_nid(page));
2489 * Speculatively acquire the list_lock.
2490 * If the cmpxchg does not succeed then we may
2491 * drop the list_lock without any processing.
2493 * Otherwise the list_lock will synchronize with
2494 * other processors updating the list of slabs.
2496 spin_lock_irqsave(&n->list_lock, flags);
2500 inuse = new.inuse;
2502 } while (!cmpxchg_double_slab(s, page,
2503 prior, counters,
2504 object, new.counters,
2505 "__slab_free"));
2507 if (likely(!n)) {
2510 * If we just froze the page then put it onto the
2511 * per cpu partial list.
2513 if (new.frozen && !was_frozen)
2514 put_cpu_partial(s, page, 1);
2517 * The list lock was not taken therefore no list
2518 * activity can be necessary.
2520 if (was_frozen)
2521 stat(s, FREE_FROZEN);
2522 return;
2526 * was_frozen may have been set after we acquired the list_lock in
2527 * an earlier loop. So we need to check it here again.
2529 if (was_frozen)
2530 stat(s, FREE_FROZEN);
2531 else {
2532 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2533 goto slab_empty;
2536 * Objects left in the slab. If it was not on the partial list before
2537 * then add it.
2539 if (unlikely(!prior)) {
2540 remove_full(s, page);
2541 add_partial(n, page, DEACTIVATE_TO_TAIL);
2542 stat(s, FREE_ADD_PARTIAL);
2545 spin_unlock_irqrestore(&n->list_lock, flags);
2546 return;
2548 slab_empty:
2549 if (prior) {
2551 * Slab on the partial list.
2553 remove_partial(n, page);
2554 stat(s, FREE_REMOVE_PARTIAL);
2555 } else
2556 /* Slab must be on the full list */
2557 remove_full(s, page);
2559 spin_unlock_irqrestore(&n->list_lock, flags);
2560 stat(s, FREE_SLAB);
2561 discard_slab(s, page);
2565 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2566 * can perform fastpath freeing without additional function calls.
2568 * The fastpath is only possible if we are freeing to the current cpu slab
2569 * of this processor. This typically the case if we have just allocated
2570 * the item before.
2572 * If fastpath is not possible then fall back to __slab_free where we deal
2573 * with all sorts of special processing.
2575 static __always_inline void slab_free(struct kmem_cache *s,
2576 struct page *page, void *x, unsigned long addr)
2578 void **object = (void *)x;
2579 struct kmem_cache_cpu *c;
2580 unsigned long tid;
2582 slab_free_hook(s, x);
2584 redo:
2586 * Determine the currently cpus per cpu slab.
2587 * The cpu may change afterward. However that does not matter since
2588 * data is retrieved via this pointer. If we are on the same cpu
2589 * during the cmpxchg then the free will succedd.
2591 c = __this_cpu_ptr(s->cpu_slab);
2593 tid = c->tid;
2594 barrier();
2596 if (likely(page == c->page)) {
2597 set_freepointer(s, object, c->freelist);
2599 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2600 s->cpu_slab->freelist, s->cpu_slab->tid,
2601 c->freelist, tid,
2602 object, next_tid(tid)))) {
2604 note_cmpxchg_failure("slab_free", s, tid);
2605 goto redo;
2607 stat(s, FREE_FASTPATH);
2608 } else
2609 __slab_free(s, page, x, addr);
2613 void kmem_cache_free(struct kmem_cache *s, void *x)
2615 struct page *page;
2617 page = virt_to_head_page(x);
2619 slab_free(s, page, x, _RET_IP_);
2621 trace_kmem_cache_free(_RET_IP_, x);
2623 EXPORT_SYMBOL(kmem_cache_free);
2626 * Object placement in a slab is made very easy because we always start at
2627 * offset 0. If we tune the size of the object to the alignment then we can
2628 * get the required alignment by putting one properly sized object after
2629 * another.
2631 * Notice that the allocation order determines the sizes of the per cpu
2632 * caches. Each processor has always one slab available for allocations.
2633 * Increasing the allocation order reduces the number of times that slabs
2634 * must be moved on and off the partial lists and is therefore a factor in
2635 * locking overhead.
2639 * Mininum / Maximum order of slab pages. This influences locking overhead
2640 * and slab fragmentation. A higher order reduces the number of partial slabs
2641 * and increases the number of allocations possible without having to
2642 * take the list_lock.
2644 static int slub_min_order;
2645 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2646 static int slub_min_objects;
2649 * Merge control. If this is set then no merging of slab caches will occur.
2650 * (Could be removed. This was introduced to pacify the merge skeptics.)
2652 static int slub_nomerge;
2655 * Calculate the order of allocation given an slab object size.
2657 * The order of allocation has significant impact on performance and other
2658 * system components. Generally order 0 allocations should be preferred since
2659 * order 0 does not cause fragmentation in the page allocator. Larger objects
2660 * be problematic to put into order 0 slabs because there may be too much
2661 * unused space left. We go to a higher order if more than 1/16th of the slab
2662 * would be wasted.
2664 * In order to reach satisfactory performance we must ensure that a minimum
2665 * number of objects is in one slab. Otherwise we may generate too much
2666 * activity on the partial lists which requires taking the list_lock. This is
2667 * less a concern for large slabs though which are rarely used.
2669 * slub_max_order specifies the order where we begin to stop considering the
2670 * number of objects in a slab as critical. If we reach slub_max_order then
2671 * we try to keep the page order as low as possible. So we accept more waste
2672 * of space in favor of a small page order.
2674 * Higher order allocations also allow the placement of more objects in a
2675 * slab and thereby reduce object handling overhead. If the user has
2676 * requested a higher mininum order then we start with that one instead of
2677 * the smallest order which will fit the object.
2679 static inline int slab_order(int size, int min_objects,
2680 int max_order, int fract_leftover, int reserved)
2682 int order;
2683 int rem;
2684 int min_order = slub_min_order;
2686 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2687 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2689 for (order = max(min_order,
2690 fls(min_objects * size - 1) - PAGE_SHIFT);
2691 order <= max_order; order++) {
2693 unsigned long slab_size = PAGE_SIZE << order;
2695 if (slab_size < min_objects * size + reserved)
2696 continue;
2698 rem = (slab_size - reserved) % size;
2700 if (rem <= slab_size / fract_leftover)
2701 break;
2705 return order;
2708 static inline int calculate_order(int size, int reserved)
2710 int order;
2711 int min_objects;
2712 int fraction;
2713 int max_objects;
2716 * Attempt to find best configuration for a slab. This
2717 * works by first attempting to generate a layout with
2718 * the best configuration and backing off gradually.
2720 * First we reduce the acceptable waste in a slab. Then
2721 * we reduce the minimum objects required in a slab.
2723 min_objects = slub_min_objects;
2724 if (!min_objects)
2725 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2726 max_objects = order_objects(slub_max_order, size, reserved);
2727 min_objects = min(min_objects, max_objects);
2729 while (min_objects > 1) {
2730 fraction = 16;
2731 while (fraction >= 4) {
2732 order = slab_order(size, min_objects,
2733 slub_max_order, fraction, reserved);
2734 if (order <= slub_max_order)
2735 return order;
2736 fraction /= 2;
2738 min_objects--;
2742 * We were unable to place multiple objects in a slab. Now
2743 * lets see if we can place a single object there.
2745 order = slab_order(size, 1, slub_max_order, 1, reserved);
2746 if (order <= slub_max_order)
2747 return order;
2750 * Doh this slab cannot be placed using slub_max_order.
2752 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2753 if (order < MAX_ORDER)
2754 return order;
2755 return -ENOSYS;
2759 * Figure out what the alignment of the objects will be.
2761 static unsigned long calculate_alignment(unsigned long flags,
2762 unsigned long align, unsigned long size)
2765 * If the user wants hardware cache aligned objects then follow that
2766 * suggestion if the object is sufficiently large.
2768 * The hardware cache alignment cannot override the specified
2769 * alignment though. If that is greater then use it.
2771 if (flags & SLAB_HWCACHE_ALIGN) {
2772 unsigned long ralign = cache_line_size();
2773 while (size <= ralign / 2)
2774 ralign /= 2;
2775 align = max(align, ralign);
2778 if (align < ARCH_SLAB_MINALIGN)
2779 align = ARCH_SLAB_MINALIGN;
2781 return ALIGN(align, sizeof(void *));
2784 static void
2785 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2787 n->nr_partial = 0;
2788 spin_lock_init(&n->list_lock);
2789 INIT_LIST_HEAD(&n->partial);
2790 #ifdef CONFIG_SLUB_DEBUG
2791 atomic_long_set(&n->nr_slabs, 0);
2792 atomic_long_set(&n->total_objects, 0);
2793 INIT_LIST_HEAD(&n->full);
2794 #endif
2797 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2799 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2800 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2803 * Must align to double word boundary for the double cmpxchg
2804 * instructions to work; see __pcpu_double_call_return_bool().
2806 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2807 2 * sizeof(void *));
2809 if (!s->cpu_slab)
2810 return 0;
2812 init_kmem_cache_cpus(s);
2814 return 1;
2817 static struct kmem_cache *kmem_cache_node;
2820 * No kmalloc_node yet so do it by hand. We know that this is the first
2821 * slab on the node for this slabcache. There are no concurrent accesses
2822 * possible.
2824 * Note that this function only works on the kmalloc_node_cache
2825 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2826 * memory on a fresh node that has no slab structures yet.
2828 static void early_kmem_cache_node_alloc(int node)
2830 struct page *page;
2831 struct kmem_cache_node *n;
2833 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2835 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2837 BUG_ON(!page);
2838 if (page_to_nid(page) != node) {
2839 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2840 "node %d\n", node);
2841 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2842 "in order to be able to continue\n");
2845 n = page->freelist;
2846 BUG_ON(!n);
2847 page->freelist = get_freepointer(kmem_cache_node, n);
2848 page->inuse = 1;
2849 page->frozen = 0;
2850 kmem_cache_node->node[node] = n;
2851 #ifdef CONFIG_SLUB_DEBUG
2852 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2853 init_tracking(kmem_cache_node, n);
2854 #endif
2855 init_kmem_cache_node(n, kmem_cache_node);
2856 inc_slabs_node(kmem_cache_node, node, page->objects);
2858 add_partial(n, page, DEACTIVATE_TO_HEAD);
2861 static void free_kmem_cache_nodes(struct kmem_cache *s)
2863 int node;
2865 for_each_node_state(node, N_NORMAL_MEMORY) {
2866 struct kmem_cache_node *n = s->node[node];
2868 if (n)
2869 kmem_cache_free(kmem_cache_node, n);
2871 s->node[node] = NULL;
2875 static int init_kmem_cache_nodes(struct kmem_cache *s)
2877 int node;
2879 for_each_node_state(node, N_NORMAL_MEMORY) {
2880 struct kmem_cache_node *n;
2882 if (slab_state == DOWN) {
2883 early_kmem_cache_node_alloc(node);
2884 continue;
2886 n = kmem_cache_alloc_node(kmem_cache_node,
2887 GFP_KERNEL, node);
2889 if (!n) {
2890 free_kmem_cache_nodes(s);
2891 return 0;
2894 s->node[node] = n;
2895 init_kmem_cache_node(n, s);
2897 return 1;
2900 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2902 if (min < MIN_PARTIAL)
2903 min = MIN_PARTIAL;
2904 else if (min > MAX_PARTIAL)
2905 min = MAX_PARTIAL;
2906 s->min_partial = min;
2910 * calculate_sizes() determines the order and the distribution of data within
2911 * a slab object.
2913 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2915 unsigned long flags = s->flags;
2916 unsigned long size = s->objsize;
2917 unsigned long align = s->align;
2918 int order;
2921 * Round up object size to the next word boundary. We can only
2922 * place the free pointer at word boundaries and this determines
2923 * the possible location of the free pointer.
2925 size = ALIGN(size, sizeof(void *));
2927 #ifdef CONFIG_SLUB_DEBUG
2929 * Determine if we can poison the object itself. If the user of
2930 * the slab may touch the object after free or before allocation
2931 * then we should never poison the object itself.
2933 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2934 !s->ctor)
2935 s->flags |= __OBJECT_POISON;
2936 else
2937 s->flags &= ~__OBJECT_POISON;
2941 * If we are Redzoning then check if there is some space between the
2942 * end of the object and the free pointer. If not then add an
2943 * additional word to have some bytes to store Redzone information.
2945 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2946 size += sizeof(void *);
2947 #endif
2950 * With that we have determined the number of bytes in actual use
2951 * by the object. This is the potential offset to the free pointer.
2953 s->inuse = size;
2955 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2956 s->ctor)) {
2958 * Relocate free pointer after the object if it is not
2959 * permitted to overwrite the first word of the object on
2960 * kmem_cache_free.
2962 * This is the case if we do RCU, have a constructor or
2963 * destructor or are poisoning the objects.
2965 s->offset = size;
2966 size += sizeof(void *);
2969 #ifdef CONFIG_SLUB_DEBUG
2970 if (flags & SLAB_STORE_USER)
2972 * Need to store information about allocs and frees after
2973 * the object.
2975 size += 2 * sizeof(struct track);
2977 if (flags & SLAB_RED_ZONE)
2979 * Add some empty padding so that we can catch
2980 * overwrites from earlier objects rather than let
2981 * tracking information or the free pointer be
2982 * corrupted if a user writes before the start
2983 * of the object.
2985 size += sizeof(void *);
2986 #endif
2989 * Determine the alignment based on various parameters that the
2990 * user specified and the dynamic determination of cache line size
2991 * on bootup.
2993 align = calculate_alignment(flags, align, s->objsize);
2994 s->align = align;
2997 * SLUB stores one object immediately after another beginning from
2998 * offset 0. In order to align the objects we have to simply size
2999 * each object to conform to the alignment.
3001 size = ALIGN(size, align);
3002 s->size = size;
3003 if (forced_order >= 0)
3004 order = forced_order;
3005 else
3006 order = calculate_order(size, s->reserved);
3008 if (order < 0)
3009 return 0;
3011 s->allocflags = 0;
3012 if (order)
3013 s->allocflags |= __GFP_COMP;
3015 if (s->flags & SLAB_CACHE_DMA)
3016 s->allocflags |= SLUB_DMA;
3018 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3019 s->allocflags |= __GFP_RECLAIMABLE;
3022 * Determine the number of objects per slab
3024 s->oo = oo_make(order, size, s->reserved);
3025 s->min = oo_make(get_order(size), size, s->reserved);
3026 if (oo_objects(s->oo) > oo_objects(s->max))
3027 s->max = s->oo;
3029 return !!oo_objects(s->oo);
3033 static int kmem_cache_open(struct kmem_cache *s,
3034 const char *name, size_t size,
3035 size_t align, unsigned long flags,
3036 void (*ctor)(void *))
3038 memset(s, 0, kmem_size);
3039 s->name = name;
3040 s->ctor = ctor;
3041 s->objsize = size;
3042 s->align = align;
3043 s->flags = kmem_cache_flags(size, flags, name, ctor);
3044 s->reserved = 0;
3046 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3047 s->reserved = sizeof(struct rcu_head);
3049 if (!calculate_sizes(s, -1))
3050 goto error;
3051 if (disable_higher_order_debug) {
3053 * Disable debugging flags that store metadata if the min slab
3054 * order increased.
3056 if (get_order(s->size) > get_order(s->objsize)) {
3057 s->flags &= ~DEBUG_METADATA_FLAGS;
3058 s->offset = 0;
3059 if (!calculate_sizes(s, -1))
3060 goto error;
3064 #ifdef CONFIG_CMPXCHG_DOUBLE
3065 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3066 /* Enable fast mode */
3067 s->flags |= __CMPXCHG_DOUBLE;
3068 #endif
3071 * The larger the object size is, the more pages we want on the partial
3072 * list to avoid pounding the page allocator excessively.
3074 set_min_partial(s, ilog2(s->size) / 2);
3077 * cpu_partial determined the maximum number of objects kept in the
3078 * per cpu partial lists of a processor.
3080 * Per cpu partial lists mainly contain slabs that just have one
3081 * object freed. If they are used for allocation then they can be
3082 * filled up again with minimal effort. The slab will never hit the
3083 * per node partial lists and therefore no locking will be required.
3085 * This setting also determines
3087 * A) The number of objects from per cpu partial slabs dumped to the
3088 * per node list when we reach the limit.
3089 * B) The number of objects in partial partial slabs to extract from the
3090 * per node list when we run out of per cpu objects. We only fetch 50%
3091 * to keep some capacity around for frees.
3093 if (s->size >= PAGE_SIZE)
3094 s->cpu_partial = 2;
3095 else if (s->size >= 1024)
3096 s->cpu_partial = 6;
3097 else if (s->size >= 256)
3098 s->cpu_partial = 13;
3099 else
3100 s->cpu_partial = 30;
3102 s->refcount = 1;
3103 #ifdef CONFIG_NUMA
3104 s->remote_node_defrag_ratio = 1000;
3105 #endif
3106 if (!init_kmem_cache_nodes(s))
3107 goto error;
3109 if (alloc_kmem_cache_cpus(s))
3110 return 1;
3112 free_kmem_cache_nodes(s);
3113 error:
3114 if (flags & SLAB_PANIC)
3115 panic("Cannot create slab %s size=%lu realsize=%u "
3116 "order=%u offset=%u flags=%lx\n",
3117 s->name, (unsigned long)size, s->size, oo_order(s->oo),
3118 s->offset, flags);
3119 return 0;
3123 * Determine the size of a slab object
3125 unsigned int kmem_cache_size(struct kmem_cache *s)
3127 return s->objsize;
3129 EXPORT_SYMBOL(kmem_cache_size);
3131 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3132 const char *text)
3134 #ifdef CONFIG_SLUB_DEBUG
3135 void *addr = page_address(page);
3136 void *p;
3137 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3138 sizeof(long), GFP_ATOMIC);
3139 if (!map)
3140 return;
3141 slab_err(s, page, "%s", text);
3142 slab_lock(page);
3144 get_map(s, page, map);
3145 for_each_object(p, s, addr, page->objects) {
3147 if (!test_bit(slab_index(p, s, addr), map)) {
3148 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3149 p, p - addr);
3150 print_tracking(s, p);
3153 slab_unlock(page);
3154 kfree(map);
3155 #endif
3159 * Attempt to free all partial slabs on a node.
3160 * This is called from kmem_cache_close(). We must be the last thread
3161 * using the cache and therefore we do not need to lock anymore.
3163 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3165 struct page *page, *h;
3167 list_for_each_entry_safe(page, h, &n->partial, lru) {
3168 if (!page->inuse) {
3169 remove_partial(n, page);
3170 discard_slab(s, page);
3171 } else {
3172 list_slab_objects(s, page,
3173 "Objects remaining on kmem_cache_close()");
3179 * Release all resources used by a slab cache.
3181 static inline int kmem_cache_close(struct kmem_cache *s)
3183 int node;
3185 flush_all(s);
3186 free_percpu(s->cpu_slab);
3187 /* Attempt to free all objects */
3188 for_each_node_state(node, N_NORMAL_MEMORY) {
3189 struct kmem_cache_node *n = get_node(s, node);
3191 free_partial(s, n);
3192 if (n->nr_partial || slabs_node(s, node))
3193 return 1;
3195 free_kmem_cache_nodes(s);
3196 return 0;
3200 * Close a cache and release the kmem_cache structure
3201 * (must be used for caches created using kmem_cache_create)
3203 void kmem_cache_destroy(struct kmem_cache *s)
3205 down_write(&slub_lock);
3206 s->refcount--;
3207 if (!s->refcount) {
3208 list_del(&s->list);
3209 up_write(&slub_lock);
3210 if (kmem_cache_close(s)) {
3211 printk(KERN_ERR "SLUB %s: %s called for cache that "
3212 "still has objects.\n", s->name, __func__);
3213 dump_stack();
3215 if (s->flags & SLAB_DESTROY_BY_RCU)
3216 rcu_barrier();
3217 sysfs_slab_remove(s);
3218 } else
3219 up_write(&slub_lock);
3221 EXPORT_SYMBOL(kmem_cache_destroy);
3223 /********************************************************************
3224 * Kmalloc subsystem
3225 *******************************************************************/
3227 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3228 EXPORT_SYMBOL(kmalloc_caches);
3230 static struct kmem_cache *kmem_cache;
3232 #ifdef CONFIG_ZONE_DMA
3233 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3234 #endif
3236 static int __init setup_slub_min_order(char *str)
3238 get_option(&str, &slub_min_order);
3240 return 1;
3243 __setup("slub_min_order=", setup_slub_min_order);
3245 static int __init setup_slub_max_order(char *str)
3247 get_option(&str, &slub_max_order);
3248 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3250 return 1;
3253 __setup("slub_max_order=", setup_slub_max_order);
3255 static int __init setup_slub_min_objects(char *str)
3257 get_option(&str, &slub_min_objects);
3259 return 1;
3262 __setup("slub_min_objects=", setup_slub_min_objects);
3264 static int __init setup_slub_nomerge(char *str)
3266 slub_nomerge = 1;
3267 return 1;
3270 __setup("slub_nomerge", setup_slub_nomerge);
3272 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3273 int size, unsigned int flags)
3275 struct kmem_cache *s;
3277 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3280 * This function is called with IRQs disabled during early-boot on
3281 * single CPU so there's no need to take slub_lock here.
3283 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3284 flags, NULL))
3285 goto panic;
3287 list_add(&s->list, &slab_caches);
3288 return s;
3290 panic:
3291 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3292 return NULL;
3296 * Conversion table for small slabs sizes / 8 to the index in the
3297 * kmalloc array. This is necessary for slabs < 192 since we have non power
3298 * of two cache sizes there. The size of larger slabs can be determined using
3299 * fls.
3301 static s8 size_index[24] = {
3302 3, /* 8 */
3303 4, /* 16 */
3304 5, /* 24 */
3305 5, /* 32 */
3306 6, /* 40 */
3307 6, /* 48 */
3308 6, /* 56 */
3309 6, /* 64 */
3310 1, /* 72 */
3311 1, /* 80 */
3312 1, /* 88 */
3313 1, /* 96 */
3314 7, /* 104 */
3315 7, /* 112 */
3316 7, /* 120 */
3317 7, /* 128 */
3318 2, /* 136 */
3319 2, /* 144 */
3320 2, /* 152 */
3321 2, /* 160 */
3322 2, /* 168 */
3323 2, /* 176 */
3324 2, /* 184 */
3325 2 /* 192 */
3328 static inline int size_index_elem(size_t bytes)
3330 return (bytes - 1) / 8;
3333 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3335 int index;
3337 if (size <= 192) {
3338 if (!size)
3339 return ZERO_SIZE_PTR;
3341 index = size_index[size_index_elem(size)];
3342 } else
3343 index = fls(size - 1);
3345 #ifdef CONFIG_ZONE_DMA
3346 if (unlikely((flags & SLUB_DMA)))
3347 return kmalloc_dma_caches[index];
3349 #endif
3350 return kmalloc_caches[index];
3353 void *__kmalloc(size_t size, gfp_t flags)
3355 struct kmem_cache *s;
3356 void *ret;
3358 if (unlikely(size > SLUB_MAX_SIZE))
3359 return kmalloc_large(size, flags);
3361 s = get_slab(size, flags);
3363 if (unlikely(ZERO_OR_NULL_PTR(s)))
3364 return s;
3366 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3368 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3370 return ret;
3372 EXPORT_SYMBOL(__kmalloc);
3374 #ifdef CONFIG_NUMA
3375 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3377 struct page *page;
3378 void *ptr = NULL;
3380 flags |= __GFP_COMP | __GFP_NOTRACK;
3381 page = alloc_pages_node(node, flags, get_order(size));
3382 if (page)
3383 ptr = page_address(page);
3385 kmemleak_alloc(ptr, size, 1, flags);
3386 return ptr;
3389 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3391 struct kmem_cache *s;
3392 void *ret;
3394 if (unlikely(size > SLUB_MAX_SIZE)) {
3395 ret = kmalloc_large_node(size, flags, node);
3397 trace_kmalloc_node(_RET_IP_, ret,
3398 size, PAGE_SIZE << get_order(size),
3399 flags, node);
3401 return ret;
3404 s = get_slab(size, flags);
3406 if (unlikely(ZERO_OR_NULL_PTR(s)))
3407 return s;
3409 ret = slab_alloc(s, flags, node, _RET_IP_);
3411 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3413 return ret;
3415 EXPORT_SYMBOL(__kmalloc_node);
3416 #endif
3418 size_t ksize(const void *object)
3420 struct page *page;
3422 if (unlikely(object == ZERO_SIZE_PTR))
3423 return 0;
3425 page = virt_to_head_page(object);
3427 if (unlikely(!PageSlab(page))) {
3428 WARN_ON(!PageCompound(page));
3429 return PAGE_SIZE << compound_order(page);
3432 return slab_ksize(page->slab);
3434 EXPORT_SYMBOL(ksize);
3436 #ifdef CONFIG_SLUB_DEBUG
3437 bool verify_mem_not_deleted(const void *x)
3439 struct page *page;
3440 void *object = (void *)x;
3441 unsigned long flags;
3442 bool rv;
3444 if (unlikely(ZERO_OR_NULL_PTR(x)))
3445 return false;
3447 local_irq_save(flags);
3449 page = virt_to_head_page(x);
3450 if (unlikely(!PageSlab(page))) {
3451 /* maybe it was from stack? */
3452 rv = true;
3453 goto out_unlock;
3456 slab_lock(page);
3457 if (on_freelist(page->slab, page, object)) {
3458 object_err(page->slab, page, object, "Object is on free-list");
3459 rv = false;
3460 } else {
3461 rv = true;
3463 slab_unlock(page);
3465 out_unlock:
3466 local_irq_restore(flags);
3467 return rv;
3469 EXPORT_SYMBOL(verify_mem_not_deleted);
3470 #endif
3472 void kfree(const void *x)
3474 struct page *page;
3475 void *object = (void *)x;
3477 trace_kfree(_RET_IP_, x);
3479 if (unlikely(ZERO_OR_NULL_PTR(x)))
3480 return;
3482 page = virt_to_head_page(x);
3483 if (unlikely(!PageSlab(page))) {
3484 BUG_ON(!PageCompound(page));
3485 kmemleak_free(x);
3486 put_page(page);
3487 return;
3489 slab_free(page->slab, page, object, _RET_IP_);
3491 EXPORT_SYMBOL(kfree);
3494 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3495 * the remaining slabs by the number of items in use. The slabs with the
3496 * most items in use come first. New allocations will then fill those up
3497 * and thus they can be removed from the partial lists.
3499 * The slabs with the least items are placed last. This results in them
3500 * being allocated from last increasing the chance that the last objects
3501 * are freed in them.
3503 int kmem_cache_shrink(struct kmem_cache *s)
3505 int node;
3506 int i;
3507 struct kmem_cache_node *n;
3508 struct page *page;
3509 struct page *t;
3510 int objects = oo_objects(s->max);
3511 struct list_head *slabs_by_inuse =
3512 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3513 unsigned long flags;
3515 if (!slabs_by_inuse)
3516 return -ENOMEM;
3518 flush_all(s);
3519 for_each_node_state(node, N_NORMAL_MEMORY) {
3520 n = get_node(s, node);
3522 if (!n->nr_partial)
3523 continue;
3525 for (i = 0; i < objects; i++)
3526 INIT_LIST_HEAD(slabs_by_inuse + i);
3528 spin_lock_irqsave(&n->list_lock, flags);
3531 * Build lists indexed by the items in use in each slab.
3533 * Note that concurrent frees may occur while we hold the
3534 * list_lock. page->inuse here is the upper limit.
3536 list_for_each_entry_safe(page, t, &n->partial, lru) {
3537 list_move(&page->lru, slabs_by_inuse + page->inuse);
3538 if (!page->inuse)
3539 n->nr_partial--;
3543 * Rebuild the partial list with the slabs filled up most
3544 * first and the least used slabs at the end.
3546 for (i = objects - 1; i > 0; i--)
3547 list_splice(slabs_by_inuse + i, n->partial.prev);
3549 spin_unlock_irqrestore(&n->list_lock, flags);
3551 /* Release empty slabs */
3552 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3553 discard_slab(s, page);
3556 kfree(slabs_by_inuse);
3557 return 0;
3559 EXPORT_SYMBOL(kmem_cache_shrink);
3561 #if defined(CONFIG_MEMORY_HOTPLUG)
3562 static int slab_mem_going_offline_callback(void *arg)
3564 struct kmem_cache *s;
3566 down_read(&slub_lock);
3567 list_for_each_entry(s, &slab_caches, list)
3568 kmem_cache_shrink(s);
3569 up_read(&slub_lock);
3571 return 0;
3574 static void slab_mem_offline_callback(void *arg)
3576 struct kmem_cache_node *n;
3577 struct kmem_cache *s;
3578 struct memory_notify *marg = arg;
3579 int offline_node;
3581 offline_node = marg->status_change_nid;
3584 * If the node still has available memory. we need kmem_cache_node
3585 * for it yet.
3587 if (offline_node < 0)
3588 return;
3590 down_read(&slub_lock);
3591 list_for_each_entry(s, &slab_caches, list) {
3592 n = get_node(s, offline_node);
3593 if (n) {
3595 * if n->nr_slabs > 0, slabs still exist on the node
3596 * that is going down. We were unable to free them,
3597 * and offline_pages() function shouldn't call this
3598 * callback. So, we must fail.
3600 BUG_ON(slabs_node(s, offline_node));
3602 s->node[offline_node] = NULL;
3603 kmem_cache_free(kmem_cache_node, n);
3606 up_read(&slub_lock);
3609 static int slab_mem_going_online_callback(void *arg)
3611 struct kmem_cache_node *n;
3612 struct kmem_cache *s;
3613 struct memory_notify *marg = arg;
3614 int nid = marg->status_change_nid;
3615 int ret = 0;
3618 * If the node's memory is already available, then kmem_cache_node is
3619 * already created. Nothing to do.
3621 if (nid < 0)
3622 return 0;
3625 * We are bringing a node online. No memory is available yet. We must
3626 * allocate a kmem_cache_node structure in order to bring the node
3627 * online.
3629 down_read(&slub_lock);
3630 list_for_each_entry(s, &slab_caches, list) {
3632 * XXX: kmem_cache_alloc_node will fallback to other nodes
3633 * since memory is not yet available from the node that
3634 * is brought up.
3636 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3637 if (!n) {
3638 ret = -ENOMEM;
3639 goto out;
3641 init_kmem_cache_node(n, s);
3642 s->node[nid] = n;
3644 out:
3645 up_read(&slub_lock);
3646 return ret;
3649 static int slab_memory_callback(struct notifier_block *self,
3650 unsigned long action, void *arg)
3652 int ret = 0;
3654 switch (action) {
3655 case MEM_GOING_ONLINE:
3656 ret = slab_mem_going_online_callback(arg);
3657 break;
3658 case MEM_GOING_OFFLINE:
3659 ret = slab_mem_going_offline_callback(arg);
3660 break;
3661 case MEM_OFFLINE:
3662 case MEM_CANCEL_ONLINE:
3663 slab_mem_offline_callback(arg);
3664 break;
3665 case MEM_ONLINE:
3666 case MEM_CANCEL_OFFLINE:
3667 break;
3669 if (ret)
3670 ret = notifier_from_errno(ret);
3671 else
3672 ret = NOTIFY_OK;
3673 return ret;
3676 #endif /* CONFIG_MEMORY_HOTPLUG */
3678 /********************************************************************
3679 * Basic setup of slabs
3680 *******************************************************************/
3683 * Used for early kmem_cache structures that were allocated using
3684 * the page allocator
3687 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3689 int node;
3691 list_add(&s->list, &slab_caches);
3692 s->refcount = -1;
3694 for_each_node_state(node, N_NORMAL_MEMORY) {
3695 struct kmem_cache_node *n = get_node(s, node);
3696 struct page *p;
3698 if (n) {
3699 list_for_each_entry(p, &n->partial, lru)
3700 p->slab = s;
3702 #ifdef CONFIG_SLUB_DEBUG
3703 list_for_each_entry(p, &n->full, lru)
3704 p->slab = s;
3705 #endif
3710 void __init kmem_cache_init(void)
3712 int i;
3713 int caches = 0;
3714 struct kmem_cache *temp_kmem_cache;
3715 int order;
3716 struct kmem_cache *temp_kmem_cache_node;
3717 unsigned long kmalloc_size;
3719 kmem_size = offsetof(struct kmem_cache, node) +
3720 nr_node_ids * sizeof(struct kmem_cache_node *);
3722 /* Allocate two kmem_caches from the page allocator */
3723 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3724 order = get_order(2 * kmalloc_size);
3725 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3728 * Must first have the slab cache available for the allocations of the
3729 * struct kmem_cache_node's. There is special bootstrap code in
3730 * kmem_cache_open for slab_state == DOWN.
3732 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3734 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3735 sizeof(struct kmem_cache_node),
3736 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3738 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3740 /* Able to allocate the per node structures */
3741 slab_state = PARTIAL;
3743 temp_kmem_cache = kmem_cache;
3744 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3745 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3746 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3747 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3750 * Allocate kmem_cache_node properly from the kmem_cache slab.
3751 * kmem_cache_node is separately allocated so no need to
3752 * update any list pointers.
3754 temp_kmem_cache_node = kmem_cache_node;
3756 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3757 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3759 kmem_cache_bootstrap_fixup(kmem_cache_node);
3761 caches++;
3762 kmem_cache_bootstrap_fixup(kmem_cache);
3763 caches++;
3764 /* Free temporary boot structure */
3765 free_pages((unsigned long)temp_kmem_cache, order);
3767 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3770 * Patch up the size_index table if we have strange large alignment
3771 * requirements for the kmalloc array. This is only the case for
3772 * MIPS it seems. The standard arches will not generate any code here.
3774 * Largest permitted alignment is 256 bytes due to the way we
3775 * handle the index determination for the smaller caches.
3777 * Make sure that nothing crazy happens if someone starts tinkering
3778 * around with ARCH_KMALLOC_MINALIGN
3780 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3781 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3783 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3784 int elem = size_index_elem(i);
3785 if (elem >= ARRAY_SIZE(size_index))
3786 break;
3787 size_index[elem] = KMALLOC_SHIFT_LOW;
3790 if (KMALLOC_MIN_SIZE == 64) {
3792 * The 96 byte size cache is not used if the alignment
3793 * is 64 byte.
3795 for (i = 64 + 8; i <= 96; i += 8)
3796 size_index[size_index_elem(i)] = 7;
3797 } else if (KMALLOC_MIN_SIZE == 128) {
3799 * The 192 byte sized cache is not used if the alignment
3800 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3801 * instead.
3803 for (i = 128 + 8; i <= 192; i += 8)
3804 size_index[size_index_elem(i)] = 8;
3807 /* Caches that are not of the two-to-the-power-of size */
3808 if (KMALLOC_MIN_SIZE <= 32) {
3809 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3810 caches++;
3813 if (KMALLOC_MIN_SIZE <= 64) {
3814 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3815 caches++;
3818 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3819 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3820 caches++;
3823 slab_state = UP;
3825 /* Provide the correct kmalloc names now that the caches are up */
3826 if (KMALLOC_MIN_SIZE <= 32) {
3827 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3828 BUG_ON(!kmalloc_caches[1]->name);
3831 if (KMALLOC_MIN_SIZE <= 64) {
3832 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3833 BUG_ON(!kmalloc_caches[2]->name);
3836 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3837 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3839 BUG_ON(!s);
3840 kmalloc_caches[i]->name = s;
3843 #ifdef CONFIG_SMP
3844 register_cpu_notifier(&slab_notifier);
3845 #endif
3847 #ifdef CONFIG_ZONE_DMA
3848 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3849 struct kmem_cache *s = kmalloc_caches[i];
3851 if (s && s->size) {
3852 char *name = kasprintf(GFP_NOWAIT,
3853 "dma-kmalloc-%d", s->objsize);
3855 BUG_ON(!name);
3856 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3857 s->objsize, SLAB_CACHE_DMA);
3860 #endif
3861 printk(KERN_INFO
3862 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3863 " CPUs=%d, Nodes=%d\n",
3864 caches, cache_line_size(),
3865 slub_min_order, slub_max_order, slub_min_objects,
3866 nr_cpu_ids, nr_node_ids);
3869 void __init kmem_cache_init_late(void)
3874 * Find a mergeable slab cache
3876 static int slab_unmergeable(struct kmem_cache *s)
3878 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3879 return 1;
3881 if (s->ctor)
3882 return 1;
3885 * We may have set a slab to be unmergeable during bootstrap.
3887 if (s->refcount < 0)
3888 return 1;
3890 return 0;
3893 static struct kmem_cache *find_mergeable(size_t size,
3894 size_t align, unsigned long flags, const char *name,
3895 void (*ctor)(void *))
3897 struct kmem_cache *s;
3899 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3900 return NULL;
3902 if (ctor)
3903 return NULL;
3905 size = ALIGN(size, sizeof(void *));
3906 align = calculate_alignment(flags, align, size);
3907 size = ALIGN(size, align);
3908 flags = kmem_cache_flags(size, flags, name, NULL);
3910 list_for_each_entry(s, &slab_caches, list) {
3911 if (slab_unmergeable(s))
3912 continue;
3914 if (size > s->size)
3915 continue;
3917 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3918 continue;
3920 * Check if alignment is compatible.
3921 * Courtesy of Adrian Drzewiecki
3923 if ((s->size & ~(align - 1)) != s->size)
3924 continue;
3926 if (s->size - size >= sizeof(void *))
3927 continue;
3929 return s;
3931 return NULL;
3934 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3935 size_t align, unsigned long flags, void (*ctor)(void *))
3937 struct kmem_cache *s;
3938 char *n;
3940 if (WARN_ON(!name))
3941 return NULL;
3943 down_write(&slub_lock);
3944 s = find_mergeable(size, align, flags, name, ctor);
3945 if (s) {
3946 s->refcount++;
3948 * Adjust the object sizes so that we clear
3949 * the complete object on kzalloc.
3951 s->objsize = max(s->objsize, (int)size);
3952 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3954 if (sysfs_slab_alias(s, name)) {
3955 s->refcount--;
3956 goto err;
3958 up_write(&slub_lock);
3959 return s;
3962 n = kstrdup(name, GFP_KERNEL);
3963 if (!n)
3964 goto err;
3966 s = kmalloc(kmem_size, GFP_KERNEL);
3967 if (s) {
3968 if (kmem_cache_open(s, n,
3969 size, align, flags, ctor)) {
3970 list_add(&s->list, &slab_caches);
3971 if (sysfs_slab_add(s)) {
3972 list_del(&s->list);
3973 kfree(n);
3974 kfree(s);
3975 goto err;
3977 up_write(&slub_lock);
3978 return s;
3980 kfree(n);
3981 kfree(s);
3983 err:
3984 up_write(&slub_lock);
3986 if (flags & SLAB_PANIC)
3987 panic("Cannot create slabcache %s\n", name);
3988 else
3989 s = NULL;
3990 return s;
3992 EXPORT_SYMBOL(kmem_cache_create);
3994 #ifdef CONFIG_SMP
3996 * Use the cpu notifier to insure that the cpu slabs are flushed when
3997 * necessary.
3999 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
4000 unsigned long action, void *hcpu)
4002 long cpu = (long)hcpu;
4003 struct kmem_cache *s;
4004 unsigned long flags;
4006 switch (action) {
4007 case CPU_UP_CANCELED:
4008 case CPU_UP_CANCELED_FROZEN:
4009 case CPU_DEAD:
4010 case CPU_DEAD_FROZEN:
4011 down_read(&slub_lock);
4012 list_for_each_entry(s, &slab_caches, list) {
4013 local_irq_save(flags);
4014 __flush_cpu_slab(s, cpu);
4015 local_irq_restore(flags);
4017 up_read(&slub_lock);
4018 break;
4019 default:
4020 break;
4022 return NOTIFY_OK;
4025 static struct notifier_block __cpuinitdata slab_notifier = {
4026 .notifier_call = slab_cpuup_callback
4029 #endif
4031 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4033 struct kmem_cache *s;
4034 void *ret;
4036 if (unlikely(size > SLUB_MAX_SIZE))
4037 return kmalloc_large(size, gfpflags);
4039 s = get_slab(size, gfpflags);
4041 if (unlikely(ZERO_OR_NULL_PTR(s)))
4042 return s;
4044 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4046 /* Honor the call site pointer we received. */
4047 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4049 return ret;
4052 #ifdef CONFIG_NUMA
4053 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4054 int node, unsigned long caller)
4056 struct kmem_cache *s;
4057 void *ret;
4059 if (unlikely(size > SLUB_MAX_SIZE)) {
4060 ret = kmalloc_large_node(size, gfpflags, node);
4062 trace_kmalloc_node(caller, ret,
4063 size, PAGE_SIZE << get_order(size),
4064 gfpflags, node);
4066 return ret;
4069 s = get_slab(size, gfpflags);
4071 if (unlikely(ZERO_OR_NULL_PTR(s)))
4072 return s;
4074 ret = slab_alloc(s, gfpflags, node, caller);
4076 /* Honor the call site pointer we received. */
4077 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4079 return ret;
4081 #endif
4083 #ifdef CONFIG_SYSFS
4084 static int count_inuse(struct page *page)
4086 return page->inuse;
4089 static int count_total(struct page *page)
4091 return page->objects;
4093 #endif
4095 #ifdef CONFIG_SLUB_DEBUG
4096 static int validate_slab(struct kmem_cache *s, struct page *page,
4097 unsigned long *map)
4099 void *p;
4100 void *addr = page_address(page);
4102 if (!check_slab(s, page) ||
4103 !on_freelist(s, page, NULL))
4104 return 0;
4106 /* Now we know that a valid freelist exists */
4107 bitmap_zero(map, page->objects);
4109 get_map(s, page, map);
4110 for_each_object(p, s, addr, page->objects) {
4111 if (test_bit(slab_index(p, s, addr), map))
4112 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4113 return 0;
4116 for_each_object(p, s, addr, page->objects)
4117 if (!test_bit(slab_index(p, s, addr), map))
4118 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4119 return 0;
4120 return 1;
4123 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4124 unsigned long *map)
4126 slab_lock(page);
4127 validate_slab(s, page, map);
4128 slab_unlock(page);
4131 static int validate_slab_node(struct kmem_cache *s,
4132 struct kmem_cache_node *n, unsigned long *map)
4134 unsigned long count = 0;
4135 struct page *page;
4136 unsigned long flags;
4138 spin_lock_irqsave(&n->list_lock, flags);
4140 list_for_each_entry(page, &n->partial, lru) {
4141 validate_slab_slab(s, page, map);
4142 count++;
4144 if (count != n->nr_partial)
4145 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4146 "counter=%ld\n", s->name, count, n->nr_partial);
4148 if (!(s->flags & SLAB_STORE_USER))
4149 goto out;
4151 list_for_each_entry(page, &n->full, lru) {
4152 validate_slab_slab(s, page, map);
4153 count++;
4155 if (count != atomic_long_read(&n->nr_slabs))
4156 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4157 "counter=%ld\n", s->name, count,
4158 atomic_long_read(&n->nr_slabs));
4160 out:
4161 spin_unlock_irqrestore(&n->list_lock, flags);
4162 return count;
4165 static long validate_slab_cache(struct kmem_cache *s)
4167 int node;
4168 unsigned long count = 0;
4169 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4170 sizeof(unsigned long), GFP_KERNEL);
4172 if (!map)
4173 return -ENOMEM;
4175 flush_all(s);
4176 for_each_node_state(node, N_NORMAL_MEMORY) {
4177 struct kmem_cache_node *n = get_node(s, node);
4179 count += validate_slab_node(s, n, map);
4181 kfree(map);
4182 return count;
4185 * Generate lists of code addresses where slabcache objects are allocated
4186 * and freed.
4189 struct location {
4190 unsigned long count;
4191 unsigned long addr;
4192 long long sum_time;
4193 long min_time;
4194 long max_time;
4195 long min_pid;
4196 long max_pid;
4197 DECLARE_BITMAP(cpus, NR_CPUS);
4198 nodemask_t nodes;
4201 struct loc_track {
4202 unsigned long max;
4203 unsigned long count;
4204 struct location *loc;
4207 static void free_loc_track(struct loc_track *t)
4209 if (t->max)
4210 free_pages((unsigned long)t->loc,
4211 get_order(sizeof(struct location) * t->max));
4214 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4216 struct location *l;
4217 int order;
4219 order = get_order(sizeof(struct location) * max);
4221 l = (void *)__get_free_pages(flags, order);
4222 if (!l)
4223 return 0;
4225 if (t->count) {
4226 memcpy(l, t->loc, sizeof(struct location) * t->count);
4227 free_loc_track(t);
4229 t->max = max;
4230 t->loc = l;
4231 return 1;
4234 static int add_location(struct loc_track *t, struct kmem_cache *s,
4235 const struct track *track)
4237 long start, end, pos;
4238 struct location *l;
4239 unsigned long caddr;
4240 unsigned long age = jiffies - track->when;
4242 start = -1;
4243 end = t->count;
4245 for ( ; ; ) {
4246 pos = start + (end - start + 1) / 2;
4249 * There is nothing at "end". If we end up there
4250 * we need to add something to before end.
4252 if (pos == end)
4253 break;
4255 caddr = t->loc[pos].addr;
4256 if (track->addr == caddr) {
4258 l = &t->loc[pos];
4259 l->count++;
4260 if (track->when) {
4261 l->sum_time += age;
4262 if (age < l->min_time)
4263 l->min_time = age;
4264 if (age > l->max_time)
4265 l->max_time = age;
4267 if (track->pid < l->min_pid)
4268 l->min_pid = track->pid;
4269 if (track->pid > l->max_pid)
4270 l->max_pid = track->pid;
4272 cpumask_set_cpu(track->cpu,
4273 to_cpumask(l->cpus));
4275 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4276 return 1;
4279 if (track->addr < caddr)
4280 end = pos;
4281 else
4282 start = pos;
4286 * Not found. Insert new tracking element.
4288 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4289 return 0;
4291 l = t->loc + pos;
4292 if (pos < t->count)
4293 memmove(l + 1, l,
4294 (t->count - pos) * sizeof(struct location));
4295 t->count++;
4296 l->count = 1;
4297 l->addr = track->addr;
4298 l->sum_time = age;
4299 l->min_time = age;
4300 l->max_time = age;
4301 l->min_pid = track->pid;
4302 l->max_pid = track->pid;
4303 cpumask_clear(to_cpumask(l->cpus));
4304 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4305 nodes_clear(l->nodes);
4306 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4307 return 1;
4310 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4311 struct page *page, enum track_item alloc,
4312 unsigned long *map)
4314 void *addr = page_address(page);
4315 void *p;
4317 bitmap_zero(map, page->objects);
4318 get_map(s, page, map);
4320 for_each_object(p, s, addr, page->objects)
4321 if (!test_bit(slab_index(p, s, addr), map))
4322 add_location(t, s, get_track(s, p, alloc));
4325 static int list_locations(struct kmem_cache *s, char *buf,
4326 enum track_item alloc)
4328 int len = 0;
4329 unsigned long i;
4330 struct loc_track t = { 0, 0, NULL };
4331 int node;
4332 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4333 sizeof(unsigned long), GFP_KERNEL);
4335 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4336 GFP_TEMPORARY)) {
4337 kfree(map);
4338 return sprintf(buf, "Out of memory\n");
4340 /* Push back cpu slabs */
4341 flush_all(s);
4343 for_each_node_state(node, N_NORMAL_MEMORY) {
4344 struct kmem_cache_node *n = get_node(s, node);
4345 unsigned long flags;
4346 struct page *page;
4348 if (!atomic_long_read(&n->nr_slabs))
4349 continue;
4351 spin_lock_irqsave(&n->list_lock, flags);
4352 list_for_each_entry(page, &n->partial, lru)
4353 process_slab(&t, s, page, alloc, map);
4354 list_for_each_entry(page, &n->full, lru)
4355 process_slab(&t, s, page, alloc, map);
4356 spin_unlock_irqrestore(&n->list_lock, flags);
4359 for (i = 0; i < t.count; i++) {
4360 struct location *l = &t.loc[i];
4362 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4363 break;
4364 len += sprintf(buf + len, "%7ld ", l->count);
4366 if (l->addr)
4367 len += sprintf(buf + len, "%pS", (void *)l->addr);
4368 else
4369 len += sprintf(buf + len, "<not-available>");
4371 if (l->sum_time != l->min_time) {
4372 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4373 l->min_time,
4374 (long)div_u64(l->sum_time, l->count),
4375 l->max_time);
4376 } else
4377 len += sprintf(buf + len, " age=%ld",
4378 l->min_time);
4380 if (l->min_pid != l->max_pid)
4381 len += sprintf(buf + len, " pid=%ld-%ld",
4382 l->min_pid, l->max_pid);
4383 else
4384 len += sprintf(buf + len, " pid=%ld",
4385 l->min_pid);
4387 if (num_online_cpus() > 1 &&
4388 !cpumask_empty(to_cpumask(l->cpus)) &&
4389 len < PAGE_SIZE - 60) {
4390 len += sprintf(buf + len, " cpus=");
4391 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4392 to_cpumask(l->cpus));
4395 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4396 len < PAGE_SIZE - 60) {
4397 len += sprintf(buf + len, " nodes=");
4398 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4399 l->nodes);
4402 len += sprintf(buf + len, "\n");
4405 free_loc_track(&t);
4406 kfree(map);
4407 if (!t.count)
4408 len += sprintf(buf, "No data\n");
4409 return len;
4411 #endif
4413 #ifdef SLUB_RESILIENCY_TEST
4414 static void resiliency_test(void)
4416 u8 *p;
4418 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4420 printk(KERN_ERR "SLUB resiliency testing\n");
4421 printk(KERN_ERR "-----------------------\n");
4422 printk(KERN_ERR "A. Corruption after allocation\n");
4424 p = kzalloc(16, GFP_KERNEL);
4425 p[16] = 0x12;
4426 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4427 " 0x12->0x%p\n\n", p + 16);
4429 validate_slab_cache(kmalloc_caches[4]);
4431 /* Hmmm... The next two are dangerous */
4432 p = kzalloc(32, GFP_KERNEL);
4433 p[32 + sizeof(void *)] = 0x34;
4434 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4435 " 0x34 -> -0x%p\n", p);
4436 printk(KERN_ERR
4437 "If allocated object is overwritten then not detectable\n\n");
4439 validate_slab_cache(kmalloc_caches[5]);
4440 p = kzalloc(64, GFP_KERNEL);
4441 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4442 *p = 0x56;
4443 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4445 printk(KERN_ERR
4446 "If allocated object is overwritten then not detectable\n\n");
4447 validate_slab_cache(kmalloc_caches[6]);
4449 printk(KERN_ERR "\nB. Corruption after free\n");
4450 p = kzalloc(128, GFP_KERNEL);
4451 kfree(p);
4452 *p = 0x78;
4453 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4454 validate_slab_cache(kmalloc_caches[7]);
4456 p = kzalloc(256, GFP_KERNEL);
4457 kfree(p);
4458 p[50] = 0x9a;
4459 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4461 validate_slab_cache(kmalloc_caches[8]);
4463 p = kzalloc(512, GFP_KERNEL);
4464 kfree(p);
4465 p[512] = 0xab;
4466 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4467 validate_slab_cache(kmalloc_caches[9]);
4469 #else
4470 #ifdef CONFIG_SYSFS
4471 static void resiliency_test(void) {};
4472 #endif
4473 #endif
4475 #ifdef CONFIG_SYSFS
4476 enum slab_stat_type {
4477 SL_ALL, /* All slabs */
4478 SL_PARTIAL, /* Only partially allocated slabs */
4479 SL_CPU, /* Only slabs used for cpu caches */
4480 SL_OBJECTS, /* Determine allocated objects not slabs */
4481 SL_TOTAL /* Determine object capacity not slabs */
4484 #define SO_ALL (1 << SL_ALL)
4485 #define SO_PARTIAL (1 << SL_PARTIAL)
4486 #define SO_CPU (1 << SL_CPU)
4487 #define SO_OBJECTS (1 << SL_OBJECTS)
4488 #define SO_TOTAL (1 << SL_TOTAL)
4490 static ssize_t show_slab_objects(struct kmem_cache *s,
4491 char *buf, unsigned long flags)
4493 unsigned long total = 0;
4494 int node;
4495 int x;
4496 unsigned long *nodes;
4497 unsigned long *per_cpu;
4499 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4500 if (!nodes)
4501 return -ENOMEM;
4502 per_cpu = nodes + nr_node_ids;
4504 if (flags & SO_CPU) {
4505 int cpu;
4507 for_each_possible_cpu(cpu) {
4508 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4509 struct page *page;
4511 if (!c || c->node < 0)
4512 continue;
4514 if (c->page) {
4515 if (flags & SO_TOTAL)
4516 x = c->page->objects;
4517 else if (flags & SO_OBJECTS)
4518 x = c->page->inuse;
4519 else
4520 x = 1;
4522 total += x;
4523 nodes[c->node] += x;
4525 page = c->partial;
4527 if (page) {
4528 x = page->pobjects;
4529 total += x;
4530 nodes[c->node] += x;
4532 per_cpu[c->node]++;
4536 lock_memory_hotplug();
4537 #ifdef CONFIG_SLUB_DEBUG
4538 if (flags & SO_ALL) {
4539 for_each_node_state(node, N_NORMAL_MEMORY) {
4540 struct kmem_cache_node *n = get_node(s, node);
4542 if (flags & SO_TOTAL)
4543 x = atomic_long_read(&n->total_objects);
4544 else if (flags & SO_OBJECTS)
4545 x = atomic_long_read(&n->total_objects) -
4546 count_partial(n, count_free);
4548 else
4549 x = atomic_long_read(&n->nr_slabs);
4550 total += x;
4551 nodes[node] += x;
4554 } else
4555 #endif
4556 if (flags & SO_PARTIAL) {
4557 for_each_node_state(node, N_NORMAL_MEMORY) {
4558 struct kmem_cache_node *n = get_node(s, node);
4560 if (flags & SO_TOTAL)
4561 x = count_partial(n, count_total);
4562 else if (flags & SO_OBJECTS)
4563 x = count_partial(n, count_inuse);
4564 else
4565 x = n->nr_partial;
4566 total += x;
4567 nodes[node] += x;
4570 x = sprintf(buf, "%lu", total);
4571 #ifdef CONFIG_NUMA
4572 for_each_node_state(node, N_NORMAL_MEMORY)
4573 if (nodes[node])
4574 x += sprintf(buf + x, " N%d=%lu",
4575 node, nodes[node]);
4576 #endif
4577 unlock_memory_hotplug();
4578 kfree(nodes);
4579 return x + sprintf(buf + x, "\n");
4582 #ifdef CONFIG_SLUB_DEBUG
4583 static int any_slab_objects(struct kmem_cache *s)
4585 int node;
4587 for_each_online_node(node) {
4588 struct kmem_cache_node *n = get_node(s, node);
4590 if (!n)
4591 continue;
4593 if (atomic_long_read(&n->total_objects))
4594 return 1;
4596 return 0;
4598 #endif
4600 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4601 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4603 struct slab_attribute {
4604 struct attribute attr;
4605 ssize_t (*show)(struct kmem_cache *s, char *buf);
4606 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4609 #define SLAB_ATTR_RO(_name) \
4610 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4612 #define SLAB_ATTR(_name) \
4613 static struct slab_attribute _name##_attr = \
4614 __ATTR(_name, 0644, _name##_show, _name##_store)
4616 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4618 return sprintf(buf, "%d\n", s->size);
4620 SLAB_ATTR_RO(slab_size);
4622 static ssize_t align_show(struct kmem_cache *s, char *buf)
4624 return sprintf(buf, "%d\n", s->align);
4626 SLAB_ATTR_RO(align);
4628 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4630 return sprintf(buf, "%d\n", s->objsize);
4632 SLAB_ATTR_RO(object_size);
4634 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4636 return sprintf(buf, "%d\n", oo_objects(s->oo));
4638 SLAB_ATTR_RO(objs_per_slab);
4640 static ssize_t order_store(struct kmem_cache *s,
4641 const char *buf, size_t length)
4643 unsigned long order;
4644 int err;
4646 err = strict_strtoul(buf, 10, &order);
4647 if (err)
4648 return err;
4650 if (order > slub_max_order || order < slub_min_order)
4651 return -EINVAL;
4653 calculate_sizes(s, order);
4654 return length;
4657 static ssize_t order_show(struct kmem_cache *s, char *buf)
4659 return sprintf(buf, "%d\n", oo_order(s->oo));
4661 SLAB_ATTR(order);
4663 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4665 return sprintf(buf, "%lu\n", s->min_partial);
4668 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4669 size_t length)
4671 unsigned long min;
4672 int err;
4674 err = strict_strtoul(buf, 10, &min);
4675 if (err)
4676 return err;
4678 set_min_partial(s, min);
4679 return length;
4681 SLAB_ATTR(min_partial);
4683 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4685 return sprintf(buf, "%u\n", s->cpu_partial);
4688 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4689 size_t length)
4691 unsigned long objects;
4692 int err;
4694 err = strict_strtoul(buf, 10, &objects);
4695 if (err)
4696 return err;
4698 s->cpu_partial = objects;
4699 flush_all(s);
4700 return length;
4702 SLAB_ATTR(cpu_partial);
4704 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4706 if (!s->ctor)
4707 return 0;
4708 return sprintf(buf, "%pS\n", s->ctor);
4710 SLAB_ATTR_RO(ctor);
4712 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4714 return sprintf(buf, "%d\n", s->refcount - 1);
4716 SLAB_ATTR_RO(aliases);
4718 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4720 return show_slab_objects(s, buf, SO_PARTIAL);
4722 SLAB_ATTR_RO(partial);
4724 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4726 return show_slab_objects(s, buf, SO_CPU);
4728 SLAB_ATTR_RO(cpu_slabs);
4730 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4732 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4734 SLAB_ATTR_RO(objects);
4736 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4738 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4740 SLAB_ATTR_RO(objects_partial);
4742 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4744 int objects = 0;
4745 int pages = 0;
4746 int cpu;
4747 int len;
4749 for_each_online_cpu(cpu) {
4750 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4752 if (page) {
4753 pages += page->pages;
4754 objects += page->pobjects;
4758 len = sprintf(buf, "%d(%d)", objects, pages);
4760 #ifdef CONFIG_SMP
4761 for_each_online_cpu(cpu) {
4762 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4764 if (page && len < PAGE_SIZE - 20)
4765 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4766 page->pobjects, page->pages);
4768 #endif
4769 return len + sprintf(buf + len, "\n");
4771 SLAB_ATTR_RO(slabs_cpu_partial);
4773 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4775 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4778 static ssize_t reclaim_account_store(struct kmem_cache *s,
4779 const char *buf, size_t length)
4781 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4782 if (buf[0] == '1')
4783 s->flags |= SLAB_RECLAIM_ACCOUNT;
4784 return length;
4786 SLAB_ATTR(reclaim_account);
4788 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4790 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4792 SLAB_ATTR_RO(hwcache_align);
4794 #ifdef CONFIG_ZONE_DMA
4795 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4797 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4799 SLAB_ATTR_RO(cache_dma);
4800 #endif
4802 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4804 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4806 SLAB_ATTR_RO(destroy_by_rcu);
4808 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4810 return sprintf(buf, "%d\n", s->reserved);
4812 SLAB_ATTR_RO(reserved);
4814 #ifdef CONFIG_SLUB_DEBUG
4815 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4817 return show_slab_objects(s, buf, SO_ALL);
4819 SLAB_ATTR_RO(slabs);
4821 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4823 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4825 SLAB_ATTR_RO(total_objects);
4827 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4829 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4832 static ssize_t sanity_checks_store(struct kmem_cache *s,
4833 const char *buf, size_t length)
4835 s->flags &= ~SLAB_DEBUG_FREE;
4836 if (buf[0] == '1') {
4837 s->flags &= ~__CMPXCHG_DOUBLE;
4838 s->flags |= SLAB_DEBUG_FREE;
4840 return length;
4842 SLAB_ATTR(sanity_checks);
4844 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4846 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4849 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4850 size_t length)
4852 s->flags &= ~SLAB_TRACE;
4853 if (buf[0] == '1') {
4854 s->flags &= ~__CMPXCHG_DOUBLE;
4855 s->flags |= SLAB_TRACE;
4857 return length;
4859 SLAB_ATTR(trace);
4861 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4863 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4866 static ssize_t red_zone_store(struct kmem_cache *s,
4867 const char *buf, size_t length)
4869 if (any_slab_objects(s))
4870 return -EBUSY;
4872 s->flags &= ~SLAB_RED_ZONE;
4873 if (buf[0] == '1') {
4874 s->flags &= ~__CMPXCHG_DOUBLE;
4875 s->flags |= SLAB_RED_ZONE;
4877 calculate_sizes(s, -1);
4878 return length;
4880 SLAB_ATTR(red_zone);
4882 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4884 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4887 static ssize_t poison_store(struct kmem_cache *s,
4888 const char *buf, size_t length)
4890 if (any_slab_objects(s))
4891 return -EBUSY;
4893 s->flags &= ~SLAB_POISON;
4894 if (buf[0] == '1') {
4895 s->flags &= ~__CMPXCHG_DOUBLE;
4896 s->flags |= SLAB_POISON;
4898 calculate_sizes(s, -1);
4899 return length;
4901 SLAB_ATTR(poison);
4903 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4905 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4908 static ssize_t store_user_store(struct kmem_cache *s,
4909 const char *buf, size_t length)
4911 if (any_slab_objects(s))
4912 return -EBUSY;
4914 s->flags &= ~SLAB_STORE_USER;
4915 if (buf[0] == '1') {
4916 s->flags &= ~__CMPXCHG_DOUBLE;
4917 s->flags |= SLAB_STORE_USER;
4919 calculate_sizes(s, -1);
4920 return length;
4922 SLAB_ATTR(store_user);
4924 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4926 return 0;
4929 static ssize_t validate_store(struct kmem_cache *s,
4930 const char *buf, size_t length)
4932 int ret = -EINVAL;
4934 if (buf[0] == '1') {
4935 ret = validate_slab_cache(s);
4936 if (ret >= 0)
4937 ret = length;
4939 return ret;
4941 SLAB_ATTR(validate);
4943 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4945 if (!(s->flags & SLAB_STORE_USER))
4946 return -ENOSYS;
4947 return list_locations(s, buf, TRACK_ALLOC);
4949 SLAB_ATTR_RO(alloc_calls);
4951 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4953 if (!(s->flags & SLAB_STORE_USER))
4954 return -ENOSYS;
4955 return list_locations(s, buf, TRACK_FREE);
4957 SLAB_ATTR_RO(free_calls);
4958 #endif /* CONFIG_SLUB_DEBUG */
4960 #ifdef CONFIG_FAILSLAB
4961 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4963 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4966 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4967 size_t length)
4969 s->flags &= ~SLAB_FAILSLAB;
4970 if (buf[0] == '1')
4971 s->flags |= SLAB_FAILSLAB;
4972 return length;
4974 SLAB_ATTR(failslab);
4975 #endif
4977 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4979 return 0;
4982 static ssize_t shrink_store(struct kmem_cache *s,
4983 const char *buf, size_t length)
4985 if (buf[0] == '1') {
4986 int rc = kmem_cache_shrink(s);
4988 if (rc)
4989 return rc;
4990 } else
4991 return -EINVAL;
4992 return length;
4994 SLAB_ATTR(shrink);
4996 #ifdef CONFIG_NUMA
4997 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4999 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5002 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5003 const char *buf, size_t length)
5005 unsigned long ratio;
5006 int err;
5008 err = strict_strtoul(buf, 10, &ratio);
5009 if (err)
5010 return err;
5012 if (ratio <= 100)
5013 s->remote_node_defrag_ratio = ratio * 10;
5015 return length;
5017 SLAB_ATTR(remote_node_defrag_ratio);
5018 #endif
5020 #ifdef CONFIG_SLUB_STATS
5021 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5023 unsigned long sum = 0;
5024 int cpu;
5025 int len;
5026 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5028 if (!data)
5029 return -ENOMEM;
5031 for_each_online_cpu(cpu) {
5032 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5034 data[cpu] = x;
5035 sum += x;
5038 len = sprintf(buf, "%lu", sum);
5040 #ifdef CONFIG_SMP
5041 for_each_online_cpu(cpu) {
5042 if (data[cpu] && len < PAGE_SIZE - 20)
5043 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5045 #endif
5046 kfree(data);
5047 return len + sprintf(buf + len, "\n");
5050 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5052 int cpu;
5054 for_each_online_cpu(cpu)
5055 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5058 #define STAT_ATTR(si, text) \
5059 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5061 return show_stat(s, buf, si); \
5063 static ssize_t text##_store(struct kmem_cache *s, \
5064 const char *buf, size_t length) \
5066 if (buf[0] != '0') \
5067 return -EINVAL; \
5068 clear_stat(s, si); \
5069 return length; \
5071 SLAB_ATTR(text); \
5073 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5074 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5075 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5076 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5077 STAT_ATTR(FREE_FROZEN, free_frozen);
5078 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5079 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5080 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5081 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5082 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5083 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5084 STAT_ATTR(FREE_SLAB, free_slab);
5085 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5086 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5087 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5088 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5089 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5090 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5091 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5092 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5093 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5094 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5095 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5096 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5097 #endif
5099 static struct attribute *slab_attrs[] = {
5100 &slab_size_attr.attr,
5101 &object_size_attr.attr,
5102 &objs_per_slab_attr.attr,
5103 &order_attr.attr,
5104 &min_partial_attr.attr,
5105 &cpu_partial_attr.attr,
5106 &objects_attr.attr,
5107 &objects_partial_attr.attr,
5108 &partial_attr.attr,
5109 &cpu_slabs_attr.attr,
5110 &ctor_attr.attr,
5111 &aliases_attr.attr,
5112 &align_attr.attr,
5113 &hwcache_align_attr.attr,
5114 &reclaim_account_attr.attr,
5115 &destroy_by_rcu_attr.attr,
5116 &shrink_attr.attr,
5117 &reserved_attr.attr,
5118 &slabs_cpu_partial_attr.attr,
5119 #ifdef CONFIG_SLUB_DEBUG
5120 &total_objects_attr.attr,
5121 &slabs_attr.attr,
5122 &sanity_checks_attr.attr,
5123 &trace_attr.attr,
5124 &red_zone_attr.attr,
5125 &poison_attr.attr,
5126 &store_user_attr.attr,
5127 &validate_attr.attr,
5128 &alloc_calls_attr.attr,
5129 &free_calls_attr.attr,
5130 #endif
5131 #ifdef CONFIG_ZONE_DMA
5132 &cache_dma_attr.attr,
5133 #endif
5134 #ifdef CONFIG_NUMA
5135 &remote_node_defrag_ratio_attr.attr,
5136 #endif
5137 #ifdef CONFIG_SLUB_STATS
5138 &alloc_fastpath_attr.attr,
5139 &alloc_slowpath_attr.attr,
5140 &free_fastpath_attr.attr,
5141 &free_slowpath_attr.attr,
5142 &free_frozen_attr.attr,
5143 &free_add_partial_attr.attr,
5144 &free_remove_partial_attr.attr,
5145 &alloc_from_partial_attr.attr,
5146 &alloc_slab_attr.attr,
5147 &alloc_refill_attr.attr,
5148 &alloc_node_mismatch_attr.attr,
5149 &free_slab_attr.attr,
5150 &cpuslab_flush_attr.attr,
5151 &deactivate_full_attr.attr,
5152 &deactivate_empty_attr.attr,
5153 &deactivate_to_head_attr.attr,
5154 &deactivate_to_tail_attr.attr,
5155 &deactivate_remote_frees_attr.attr,
5156 &deactivate_bypass_attr.attr,
5157 &order_fallback_attr.attr,
5158 &cmpxchg_double_fail_attr.attr,
5159 &cmpxchg_double_cpu_fail_attr.attr,
5160 &cpu_partial_alloc_attr.attr,
5161 &cpu_partial_free_attr.attr,
5162 #endif
5163 #ifdef CONFIG_FAILSLAB
5164 &failslab_attr.attr,
5165 #endif
5167 NULL
5170 static struct attribute_group slab_attr_group = {
5171 .attrs = slab_attrs,
5174 static ssize_t slab_attr_show(struct kobject *kobj,
5175 struct attribute *attr,
5176 char *buf)
5178 struct slab_attribute *attribute;
5179 struct kmem_cache *s;
5180 int err;
5182 attribute = to_slab_attr(attr);
5183 s = to_slab(kobj);
5185 if (!attribute->show)
5186 return -EIO;
5188 err = attribute->show(s, buf);
5190 return err;
5193 static ssize_t slab_attr_store(struct kobject *kobj,
5194 struct attribute *attr,
5195 const char *buf, size_t len)
5197 struct slab_attribute *attribute;
5198 struct kmem_cache *s;
5199 int err;
5201 attribute = to_slab_attr(attr);
5202 s = to_slab(kobj);
5204 if (!attribute->store)
5205 return -EIO;
5207 err = attribute->store(s, buf, len);
5209 return err;
5212 static void kmem_cache_release(struct kobject *kobj)
5214 struct kmem_cache *s = to_slab(kobj);
5216 kfree(s->name);
5217 kfree(s);
5220 static const struct sysfs_ops slab_sysfs_ops = {
5221 .show = slab_attr_show,
5222 .store = slab_attr_store,
5225 static struct kobj_type slab_ktype = {
5226 .sysfs_ops = &slab_sysfs_ops,
5227 .release = kmem_cache_release
5230 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5232 struct kobj_type *ktype = get_ktype(kobj);
5234 if (ktype == &slab_ktype)
5235 return 1;
5236 return 0;
5239 static const struct kset_uevent_ops slab_uevent_ops = {
5240 .filter = uevent_filter,
5243 static struct kset *slab_kset;
5245 #define ID_STR_LENGTH 64
5247 /* Create a unique string id for a slab cache:
5249 * Format :[flags-]size
5251 static char *create_unique_id(struct kmem_cache *s)
5253 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5254 char *p = name;
5256 BUG_ON(!name);
5258 *p++ = ':';
5260 * First flags affecting slabcache operations. We will only
5261 * get here for aliasable slabs so we do not need to support
5262 * too many flags. The flags here must cover all flags that
5263 * are matched during merging to guarantee that the id is
5264 * unique.
5266 if (s->flags & SLAB_CACHE_DMA)
5267 *p++ = 'd';
5268 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5269 *p++ = 'a';
5270 if (s->flags & SLAB_DEBUG_FREE)
5271 *p++ = 'F';
5272 if (!(s->flags & SLAB_NOTRACK))
5273 *p++ = 't';
5274 if (p != name + 1)
5275 *p++ = '-';
5276 p += sprintf(p, "%07d", s->size);
5277 BUG_ON(p > name + ID_STR_LENGTH - 1);
5278 return name;
5281 static int sysfs_slab_add(struct kmem_cache *s)
5283 int err;
5284 const char *name;
5285 int unmergeable;
5287 if (slab_state < SYSFS)
5288 /* Defer until later */
5289 return 0;
5291 unmergeable = slab_unmergeable(s);
5292 if (unmergeable) {
5294 * Slabcache can never be merged so we can use the name proper.
5295 * This is typically the case for debug situations. In that
5296 * case we can catch duplicate names easily.
5298 sysfs_remove_link(&slab_kset->kobj, s->name);
5299 name = s->name;
5300 } else {
5302 * Create a unique name for the slab as a target
5303 * for the symlinks.
5305 name = create_unique_id(s);
5308 s->kobj.kset = slab_kset;
5309 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5310 if (err) {
5311 kobject_put(&s->kobj);
5312 return err;
5315 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5316 if (err) {
5317 kobject_del(&s->kobj);
5318 kobject_put(&s->kobj);
5319 return err;
5321 kobject_uevent(&s->kobj, KOBJ_ADD);
5322 if (!unmergeable) {
5323 /* Setup first alias */
5324 sysfs_slab_alias(s, s->name);
5325 kfree(name);
5327 return 0;
5330 static void sysfs_slab_remove(struct kmem_cache *s)
5332 if (slab_state < SYSFS)
5334 * Sysfs has not been setup yet so no need to remove the
5335 * cache from sysfs.
5337 return;
5339 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5340 kobject_del(&s->kobj);
5341 kobject_put(&s->kobj);
5345 * Need to buffer aliases during bootup until sysfs becomes
5346 * available lest we lose that information.
5348 struct saved_alias {
5349 struct kmem_cache *s;
5350 const char *name;
5351 struct saved_alias *next;
5354 static struct saved_alias *alias_list;
5356 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5358 struct saved_alias *al;
5360 if (slab_state == SYSFS) {
5362 * If we have a leftover link then remove it.
5364 sysfs_remove_link(&slab_kset->kobj, name);
5365 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5368 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5369 if (!al)
5370 return -ENOMEM;
5372 al->s = s;
5373 al->name = name;
5374 al->next = alias_list;
5375 alias_list = al;
5376 return 0;
5379 static int __init slab_sysfs_init(void)
5381 struct kmem_cache *s;
5382 int err;
5384 down_write(&slub_lock);
5386 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5387 if (!slab_kset) {
5388 up_write(&slub_lock);
5389 printk(KERN_ERR "Cannot register slab subsystem.\n");
5390 return -ENOSYS;
5393 slab_state = SYSFS;
5395 list_for_each_entry(s, &slab_caches, list) {
5396 err = sysfs_slab_add(s);
5397 if (err)
5398 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5399 " to sysfs\n", s->name);
5402 while (alias_list) {
5403 struct saved_alias *al = alias_list;
5405 alias_list = alias_list->next;
5406 err = sysfs_slab_alias(al->s, al->name);
5407 if (err)
5408 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5409 " %s to sysfs\n", s->name);
5410 kfree(al);
5413 up_write(&slub_lock);
5414 resiliency_test();
5415 return 0;
5418 __initcall(slab_sysfs_init);
5419 #endif /* CONFIG_SYSFS */
5422 * The /proc/slabinfo ABI
5424 #ifdef CONFIG_SLABINFO
5425 static void print_slabinfo_header(struct seq_file *m)
5427 seq_puts(m, "slabinfo - version: 2.1\n");
5428 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5429 "<objperslab> <pagesperslab>");
5430 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5431 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5432 seq_putc(m, '\n');
5435 static void *s_start(struct seq_file *m, loff_t *pos)
5437 loff_t n = *pos;
5439 down_read(&slub_lock);
5440 if (!n)
5441 print_slabinfo_header(m);
5443 return seq_list_start(&slab_caches, *pos);
5446 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5448 return seq_list_next(p, &slab_caches, pos);
5451 static void s_stop(struct seq_file *m, void *p)
5453 up_read(&slub_lock);
5456 static int s_show(struct seq_file *m, void *p)
5458 unsigned long nr_partials = 0;
5459 unsigned long nr_slabs = 0;
5460 unsigned long nr_inuse = 0;
5461 unsigned long nr_objs = 0;
5462 unsigned long nr_free = 0;
5463 struct kmem_cache *s;
5464 int node;
5466 s = list_entry(p, struct kmem_cache, list);
5468 for_each_online_node(node) {
5469 struct kmem_cache_node *n = get_node(s, node);
5471 if (!n)
5472 continue;
5474 nr_partials += n->nr_partial;
5475 nr_slabs += atomic_long_read(&n->nr_slabs);
5476 nr_objs += atomic_long_read(&n->total_objects);
5477 nr_free += count_partial(n, count_free);
5480 nr_inuse = nr_objs - nr_free;
5482 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5483 nr_objs, s->size, oo_objects(s->oo),
5484 (1 << oo_order(s->oo)));
5485 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5486 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5487 0UL);
5488 seq_putc(m, '\n');
5489 return 0;
5492 static const struct seq_operations slabinfo_op = {
5493 .start = s_start,
5494 .next = s_next,
5495 .stop = s_stop,
5496 .show = s_show,
5499 static int slabinfo_open(struct inode *inode, struct file *file)
5501 return seq_open(file, &slabinfo_op);
5504 static const struct file_operations proc_slabinfo_operations = {
5505 .open = slabinfo_open,
5506 .read = seq_read,
5507 .llseek = seq_lseek,
5508 .release = seq_release,
5511 static int __init slab_proc_init(void)
5513 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
5514 return 0;
5516 module_init(slab_proc_init);
5517 #endif /* CONFIG_SLABINFO */