Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / net / ipv4 / tcp_input.c
blob385c470195ebb28caca29cb4d3bc0c873678329a
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
96 int sysctl_tcp_thin_dupack __read_mostly;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 /* Adapt the MSS value used to make delayed ack decision to the
126 * real world.
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 struct inet_connection_sock *icsk = inet_csk(sk);
131 const unsigned int lss = icsk->icsk_ack.last_seg_size;
132 unsigned int len;
134 icsk->icsk_ack.last_seg_size = 0;
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
139 len = skb_shinfo(skb)->gso_size ? : skb->len;
140 if (len >= icsk->icsk_ack.rcv_mss) {
141 icsk->icsk_ack.rcv_mss = len;
142 } else {
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
146 * "len" is invariant segment length, including TCP header.
148 len += skb->data - skb_transport_header(skb);
149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
161 len -= tcp_sk(sk)->tcp_header_len;
162 icsk->icsk_ack.last_seg_size = len;
163 if (len == lss) {
164 icsk->icsk_ack.rcv_mss = len;
165 return;
168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
174 static void tcp_incr_quickack(struct sock *sk)
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179 if (quickacks == 0)
180 quickacks = 2;
181 if (quickacks > icsk->icsk_ack.quick)
182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 static void tcp_enter_quickack_mode(struct sock *sk)
187 struct inet_connection_sock *icsk = inet_csk(sk);
188 tcp_incr_quickack(sk);
189 icsk->icsk_ack.pingpong = 0;
190 icsk->icsk_ack.ato = TCP_ATO_MIN;
193 /* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
199 const struct inet_connection_sock *icsk = inet_csk(sk);
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
222 if (tp->ecn_flags & TCP_ECN_OK) {
223 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225 /* Funny extension: if ECT is not set on a segment,
226 * it is surely retransmit. It is not in ECN RFC,
227 * but Linux follows this rule. */
228 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229 tcp_enter_quickack_mode((struct sock *)tp);
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236 tp->ecn_flags &= ~TCP_ECN_OK;
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
241 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242 tp->ecn_flags &= ~TCP_ECN_OK;
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
247 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
248 return 1;
249 return 0;
252 /* Buffer size and advertised window tuning.
254 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
257 static void tcp_fixup_sndbuf(struct sock *sk)
259 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260 sizeof(struct sk_buff);
262 if (sk->sk_sndbuf < 3 * sndmem) {
263 sk->sk_sndbuf = 3 * sndmem;
264 if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
265 sk->sk_sndbuf = sysctl_tcp_wmem[2];
269 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
271 * All tcp_full_space() is split to two parts: "network" buffer, allocated
272 * forward and advertised in receiver window (tp->rcv_wnd) and
273 * "application buffer", required to isolate scheduling/application
274 * latencies from network.
275 * window_clamp is maximal advertised window. It can be less than
276 * tcp_full_space(), in this case tcp_full_space() - window_clamp
277 * is reserved for "application" buffer. The less window_clamp is
278 * the smoother our behaviour from viewpoint of network, but the lower
279 * throughput and the higher sensitivity of the connection to losses. 8)
281 * rcv_ssthresh is more strict window_clamp used at "slow start"
282 * phase to predict further behaviour of this connection.
283 * It is used for two goals:
284 * - to enforce header prediction at sender, even when application
285 * requires some significant "application buffer". It is check #1.
286 * - to prevent pruning of receive queue because of misprediction
287 * of receiver window. Check #2.
289 * The scheme does not work when sender sends good segments opening
290 * window and then starts to feed us spaghetti. But it should work
291 * in common situations. Otherwise, we have to rely on queue collapsing.
294 /* Slow part of check#2. */
295 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
297 struct tcp_sock *tp = tcp_sk(sk);
298 /* Optimize this! */
299 int truesize = tcp_win_from_space(skb->truesize) >> 1;
300 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
302 while (tp->rcv_ssthresh <= window) {
303 if (truesize <= skb->len)
304 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
306 truesize >>= 1;
307 window >>= 1;
309 return 0;
312 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
314 struct tcp_sock *tp = tcp_sk(sk);
316 /* Check #1 */
317 if (tp->rcv_ssthresh < tp->window_clamp &&
318 (int)tp->rcv_ssthresh < tcp_space(sk) &&
319 !tcp_memory_pressure) {
320 int incr;
322 /* Check #2. Increase window, if skb with such overhead
323 * will fit to rcvbuf in future.
325 if (tcp_win_from_space(skb->truesize) <= skb->len)
326 incr = 2 * tp->advmss;
327 else
328 incr = __tcp_grow_window(sk, skb);
330 if (incr) {
331 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
332 tp->window_clamp);
333 inet_csk(sk)->icsk_ack.quick |= 1;
338 /* 3. Tuning rcvbuf, when connection enters established state. */
340 static void tcp_fixup_rcvbuf(struct sock *sk)
342 struct tcp_sock *tp = tcp_sk(sk);
343 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
345 /* Try to select rcvbuf so that 4 mss-sized segments
346 * will fit to window and corresponding skbs will fit to our rcvbuf.
347 * (was 3; 4 is minimum to allow fast retransmit to work.)
349 while (tcp_win_from_space(rcvmem) < tp->advmss)
350 rcvmem += 128;
351 if (sk->sk_rcvbuf < 4 * rcvmem)
352 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
355 /* 4. Try to fixup all. It is made immediately after connection enters
356 * established state.
358 static void tcp_init_buffer_space(struct sock *sk)
360 struct tcp_sock *tp = tcp_sk(sk);
361 int maxwin;
363 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
364 tcp_fixup_rcvbuf(sk);
365 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
366 tcp_fixup_sndbuf(sk);
368 tp->rcvq_space.space = tp->rcv_wnd;
370 maxwin = tcp_full_space(sk);
372 if (tp->window_clamp >= maxwin) {
373 tp->window_clamp = maxwin;
375 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
376 tp->window_clamp = max(maxwin -
377 (maxwin >> sysctl_tcp_app_win),
378 4 * tp->advmss);
381 /* Force reservation of one segment. */
382 if (sysctl_tcp_app_win &&
383 tp->window_clamp > 2 * tp->advmss &&
384 tp->window_clamp + tp->advmss > maxwin)
385 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
387 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
388 tp->snd_cwnd_stamp = tcp_time_stamp;
391 /* 5. Recalculate window clamp after socket hit its memory bounds. */
392 static void tcp_clamp_window(struct sock *sk)
394 struct tcp_sock *tp = tcp_sk(sk);
395 struct inet_connection_sock *icsk = inet_csk(sk);
397 icsk->icsk_ack.quick = 0;
399 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
400 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
401 !tcp_memory_pressure &&
402 atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
403 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
404 sysctl_tcp_rmem[2]);
406 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
407 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
410 /* Initialize RCV_MSS value.
411 * RCV_MSS is an our guess about MSS used by the peer.
412 * We haven't any direct information about the MSS.
413 * It's better to underestimate the RCV_MSS rather than overestimate.
414 * Overestimations make us ACKing less frequently than needed.
415 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
417 void tcp_initialize_rcv_mss(struct sock *sk)
419 struct tcp_sock *tp = tcp_sk(sk);
420 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
422 hint = min(hint, tp->rcv_wnd / 2);
423 hint = min(hint, TCP_MSS_DEFAULT);
424 hint = max(hint, TCP_MIN_MSS);
426 inet_csk(sk)->icsk_ack.rcv_mss = hint;
428 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
430 /* Receiver "autotuning" code.
432 * The algorithm for RTT estimation w/o timestamps is based on
433 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
434 * <http://public.lanl.gov/radiant/pubs.html#DRS>
436 * More detail on this code can be found at
437 * <http://staff.psc.edu/jheffner/>,
438 * though this reference is out of date. A new paper
439 * is pending.
441 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
443 u32 new_sample = tp->rcv_rtt_est.rtt;
444 long m = sample;
446 if (m == 0)
447 m = 1;
449 if (new_sample != 0) {
450 /* If we sample in larger samples in the non-timestamp
451 * case, we could grossly overestimate the RTT especially
452 * with chatty applications or bulk transfer apps which
453 * are stalled on filesystem I/O.
455 * Also, since we are only going for a minimum in the
456 * non-timestamp case, we do not smooth things out
457 * else with timestamps disabled convergence takes too
458 * long.
460 if (!win_dep) {
461 m -= (new_sample >> 3);
462 new_sample += m;
463 } else if (m < new_sample)
464 new_sample = m << 3;
465 } else {
466 /* No previous measure. */
467 new_sample = m << 3;
470 if (tp->rcv_rtt_est.rtt != new_sample)
471 tp->rcv_rtt_est.rtt = new_sample;
474 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
476 if (tp->rcv_rtt_est.time == 0)
477 goto new_measure;
478 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
479 return;
480 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
482 new_measure:
483 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
484 tp->rcv_rtt_est.time = tcp_time_stamp;
487 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
488 const struct sk_buff *skb)
490 struct tcp_sock *tp = tcp_sk(sk);
491 if (tp->rx_opt.rcv_tsecr &&
492 (TCP_SKB_CB(skb)->end_seq -
493 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
494 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
498 * This function should be called every time data is copied to user space.
499 * It calculates the appropriate TCP receive buffer space.
501 void tcp_rcv_space_adjust(struct sock *sk)
503 struct tcp_sock *tp = tcp_sk(sk);
504 int time;
505 int space;
507 if (tp->rcvq_space.time == 0)
508 goto new_measure;
510 time = tcp_time_stamp - tp->rcvq_space.time;
511 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
512 return;
514 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
516 space = max(tp->rcvq_space.space, space);
518 if (tp->rcvq_space.space != space) {
519 int rcvmem;
521 tp->rcvq_space.space = space;
523 if (sysctl_tcp_moderate_rcvbuf &&
524 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
525 int new_clamp = space;
527 /* Receive space grows, normalize in order to
528 * take into account packet headers and sk_buff
529 * structure overhead.
531 space /= tp->advmss;
532 if (!space)
533 space = 1;
534 rcvmem = (tp->advmss + MAX_TCP_HEADER +
535 16 + sizeof(struct sk_buff));
536 while (tcp_win_from_space(rcvmem) < tp->advmss)
537 rcvmem += 128;
538 space *= rcvmem;
539 space = min(space, sysctl_tcp_rmem[2]);
540 if (space > sk->sk_rcvbuf) {
541 sk->sk_rcvbuf = space;
543 /* Make the window clamp follow along. */
544 tp->window_clamp = new_clamp;
549 new_measure:
550 tp->rcvq_space.seq = tp->copied_seq;
551 tp->rcvq_space.time = tcp_time_stamp;
554 /* There is something which you must keep in mind when you analyze the
555 * behavior of the tp->ato delayed ack timeout interval. When a
556 * connection starts up, we want to ack as quickly as possible. The
557 * problem is that "good" TCP's do slow start at the beginning of data
558 * transmission. The means that until we send the first few ACK's the
559 * sender will sit on his end and only queue most of his data, because
560 * he can only send snd_cwnd unacked packets at any given time. For
561 * each ACK we send, he increments snd_cwnd and transmits more of his
562 * queue. -DaveM
564 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
566 struct tcp_sock *tp = tcp_sk(sk);
567 struct inet_connection_sock *icsk = inet_csk(sk);
568 u32 now;
570 inet_csk_schedule_ack(sk);
572 tcp_measure_rcv_mss(sk, skb);
574 tcp_rcv_rtt_measure(tp);
576 now = tcp_time_stamp;
578 if (!icsk->icsk_ack.ato) {
579 /* The _first_ data packet received, initialize
580 * delayed ACK engine.
582 tcp_incr_quickack(sk);
583 icsk->icsk_ack.ato = TCP_ATO_MIN;
584 } else {
585 int m = now - icsk->icsk_ack.lrcvtime;
587 if (m <= TCP_ATO_MIN / 2) {
588 /* The fastest case is the first. */
589 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
590 } else if (m < icsk->icsk_ack.ato) {
591 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
592 if (icsk->icsk_ack.ato > icsk->icsk_rto)
593 icsk->icsk_ack.ato = icsk->icsk_rto;
594 } else if (m > icsk->icsk_rto) {
595 /* Too long gap. Apparently sender failed to
596 * restart window, so that we send ACKs quickly.
598 tcp_incr_quickack(sk);
599 sk_mem_reclaim(sk);
602 icsk->icsk_ack.lrcvtime = now;
604 TCP_ECN_check_ce(tp, skb);
606 if (skb->len >= 128)
607 tcp_grow_window(sk, skb);
610 /* Called to compute a smoothed rtt estimate. The data fed to this
611 * routine either comes from timestamps, or from segments that were
612 * known _not_ to have been retransmitted [see Karn/Partridge
613 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614 * piece by Van Jacobson.
615 * NOTE: the next three routines used to be one big routine.
616 * To save cycles in the RFC 1323 implementation it was better to break
617 * it up into three procedures. -- erics
619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
621 struct tcp_sock *tp = tcp_sk(sk);
622 long m = mrtt; /* RTT */
624 /* The following amusing code comes from Jacobson's
625 * article in SIGCOMM '88. Note that rtt and mdev
626 * are scaled versions of rtt and mean deviation.
627 * This is designed to be as fast as possible
628 * m stands for "measurement".
630 * On a 1990 paper the rto value is changed to:
631 * RTO = rtt + 4 * mdev
633 * Funny. This algorithm seems to be very broken.
634 * These formulae increase RTO, when it should be decreased, increase
635 * too slowly, when it should be increased quickly, decrease too quickly
636 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637 * does not matter how to _calculate_ it. Seems, it was trap
638 * that VJ failed to avoid. 8)
640 if (m == 0)
641 m = 1;
642 if (tp->srtt != 0) {
643 m -= (tp->srtt >> 3); /* m is now error in rtt est */
644 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
645 if (m < 0) {
646 m = -m; /* m is now abs(error) */
647 m -= (tp->mdev >> 2); /* similar update on mdev */
648 /* This is similar to one of Eifel findings.
649 * Eifel blocks mdev updates when rtt decreases.
650 * This solution is a bit different: we use finer gain
651 * for mdev in this case (alpha*beta).
652 * Like Eifel it also prevents growth of rto,
653 * but also it limits too fast rto decreases,
654 * happening in pure Eifel.
656 if (m > 0)
657 m >>= 3;
658 } else {
659 m -= (tp->mdev >> 2); /* similar update on mdev */
661 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
662 if (tp->mdev > tp->mdev_max) {
663 tp->mdev_max = tp->mdev;
664 if (tp->mdev_max > tp->rttvar)
665 tp->rttvar = tp->mdev_max;
667 if (after(tp->snd_una, tp->rtt_seq)) {
668 if (tp->mdev_max < tp->rttvar)
669 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
670 tp->rtt_seq = tp->snd_nxt;
671 tp->mdev_max = tcp_rto_min(sk);
673 } else {
674 /* no previous measure. */
675 tp->srtt = m << 3; /* take the measured time to be rtt */
676 tp->mdev = m << 1; /* make sure rto = 3*rtt */
677 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
678 tp->rtt_seq = tp->snd_nxt;
682 /* Calculate rto without backoff. This is the second half of Van Jacobson's
683 * routine referred to above.
685 static inline void tcp_set_rto(struct sock *sk)
687 const struct tcp_sock *tp = tcp_sk(sk);
688 /* Old crap is replaced with new one. 8)
690 * More seriously:
691 * 1. If rtt variance happened to be less 50msec, it is hallucination.
692 * It cannot be less due to utterly erratic ACK generation made
693 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694 * to do with delayed acks, because at cwnd>2 true delack timeout
695 * is invisible. Actually, Linux-2.4 also generates erratic
696 * ACKs in some circumstances.
698 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
700 /* 2. Fixups made earlier cannot be right.
701 * If we do not estimate RTO correctly without them,
702 * all the algo is pure shit and should be replaced
703 * with correct one. It is exactly, which we pretend to do.
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
709 tcp_bound_rto(sk);
712 /* Save metrics learned by this TCP session.
713 This function is called only, when TCP finishes successfully
714 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
716 void tcp_update_metrics(struct sock *sk)
718 struct tcp_sock *tp = tcp_sk(sk);
719 struct dst_entry *dst = __sk_dst_get(sk);
721 if (sysctl_tcp_nometrics_save)
722 return;
724 dst_confirm(dst);
726 if (dst && (dst->flags & DST_HOST)) {
727 const struct inet_connection_sock *icsk = inet_csk(sk);
728 int m;
729 unsigned long rtt;
731 if (icsk->icsk_backoff || !tp->srtt) {
732 /* This session failed to estimate rtt. Why?
733 * Probably, no packets returned in time.
734 * Reset our results.
736 if (!(dst_metric_locked(dst, RTAX_RTT)))
737 dst_metric_set(dst, RTAX_RTT, 0);
738 return;
741 rtt = dst_metric_rtt(dst, RTAX_RTT);
742 m = rtt - tp->srtt;
744 /* If newly calculated rtt larger than stored one,
745 * store new one. Otherwise, use EWMA. Remember,
746 * rtt overestimation is always better than underestimation.
748 if (!(dst_metric_locked(dst, RTAX_RTT))) {
749 if (m <= 0)
750 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
751 else
752 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
755 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
756 unsigned long var;
757 if (m < 0)
758 m = -m;
760 /* Scale deviation to rttvar fixed point */
761 m >>= 1;
762 if (m < tp->mdev)
763 m = tp->mdev;
765 var = dst_metric_rtt(dst, RTAX_RTTVAR);
766 if (m >= var)
767 var = m;
768 else
769 var -= (var - m) >> 2;
771 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
774 if (tcp_in_initial_slowstart(tp)) {
775 /* Slow start still did not finish. */
776 if (dst_metric(dst, RTAX_SSTHRESH) &&
777 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
780 if (!dst_metric_locked(dst, RTAX_CWND) &&
781 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
783 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
784 icsk->icsk_ca_state == TCP_CA_Open) {
785 /* Cong. avoidance phase, cwnd is reliable. */
786 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787 dst_metric_set(dst, RTAX_SSTHRESH,
788 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
789 if (!dst_metric_locked(dst, RTAX_CWND))
790 dst_metric_set(dst, RTAX_CWND,
791 (dst_metric(dst, RTAX_CWND) +
792 tp->snd_cwnd) >> 1);
793 } else {
794 /* Else slow start did not finish, cwnd is non-sense,
795 ssthresh may be also invalid.
797 if (!dst_metric_locked(dst, RTAX_CWND))
798 dst_metric_set(dst, RTAX_CWND,
799 (dst_metric(dst, RTAX_CWND) +
800 tp->snd_ssthresh) >> 1);
801 if (dst_metric(dst, RTAX_SSTHRESH) &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
804 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
815 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
817 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
819 if (!cwnd)
820 cwnd = TCP_INIT_CWND;
821 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
824 /* Set slow start threshold and cwnd not falling to slow start */
825 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
827 struct tcp_sock *tp = tcp_sk(sk);
828 const struct inet_connection_sock *icsk = inet_csk(sk);
830 tp->prior_ssthresh = 0;
831 tp->bytes_acked = 0;
832 if (icsk->icsk_ca_state < TCP_CA_CWR) {
833 tp->undo_marker = 0;
834 if (set_ssthresh)
835 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
836 tp->snd_cwnd = min(tp->snd_cwnd,
837 tcp_packets_in_flight(tp) + 1U);
838 tp->snd_cwnd_cnt = 0;
839 tp->high_seq = tp->snd_nxt;
840 tp->snd_cwnd_stamp = tcp_time_stamp;
841 TCP_ECN_queue_cwr(tp);
843 tcp_set_ca_state(sk, TCP_CA_CWR);
848 * Packet counting of FACK is based on in-order assumptions, therefore TCP
849 * disables it when reordering is detected
851 static void tcp_disable_fack(struct tcp_sock *tp)
853 /* RFC3517 uses different metric in lost marker => reset on change */
854 if (tcp_is_fack(tp))
855 tp->lost_skb_hint = NULL;
856 tp->rx_opt.sack_ok &= ~2;
859 /* Take a notice that peer is sending D-SACKs */
860 static void tcp_dsack_seen(struct tcp_sock *tp)
862 tp->rx_opt.sack_ok |= 4;
865 /* Initialize metrics on socket. */
867 static void tcp_init_metrics(struct sock *sk)
869 struct tcp_sock *tp = tcp_sk(sk);
870 struct dst_entry *dst = __sk_dst_get(sk);
872 if (dst == NULL)
873 goto reset;
875 dst_confirm(dst);
877 if (dst_metric_locked(dst, RTAX_CWND))
878 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
879 if (dst_metric(dst, RTAX_SSTHRESH)) {
880 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
881 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
882 tp->snd_ssthresh = tp->snd_cwnd_clamp;
883 } else {
884 /* ssthresh may have been reduced unnecessarily during.
885 * 3WHS. Restore it back to its initial default.
887 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
889 if (dst_metric(dst, RTAX_REORDERING) &&
890 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
891 tcp_disable_fack(tp);
892 tp->reordering = dst_metric(dst, RTAX_REORDERING);
895 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
896 goto reset;
898 /* Initial rtt is determined from SYN,SYN-ACK.
899 * The segment is small and rtt may appear much
900 * less than real one. Use per-dst memory
901 * to make it more realistic.
903 * A bit of theory. RTT is time passed after "normal" sized packet
904 * is sent until it is ACKed. In normal circumstances sending small
905 * packets force peer to delay ACKs and calculation is correct too.
906 * The algorithm is adaptive and, provided we follow specs, it
907 * NEVER underestimate RTT. BUT! If peer tries to make some clever
908 * tricks sort of "quick acks" for time long enough to decrease RTT
909 * to low value, and then abruptly stops to do it and starts to delay
910 * ACKs, wait for troubles.
912 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
913 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
914 tp->rtt_seq = tp->snd_nxt;
916 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
917 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
918 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
920 tcp_set_rto(sk);
921 reset:
922 if (tp->srtt == 0) {
923 /* RFC2988bis: We've failed to get a valid RTT sample from
924 * 3WHS. This is most likely due to retransmission,
925 * including spurious one. Reset the RTO back to 3secs
926 * from the more aggressive 1sec to avoid more spurious
927 * retransmission.
929 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
930 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
932 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
933 * retransmitted. In light of RFC2988bis' more aggressive 1sec
934 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
935 * retransmission has occurred.
937 if (tp->total_retrans > 1)
938 tp->snd_cwnd = 1;
939 else
940 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
941 tp->snd_cwnd_stamp = tcp_time_stamp;
944 static void tcp_update_reordering(struct sock *sk, const int metric,
945 const int ts)
947 struct tcp_sock *tp = tcp_sk(sk);
948 if (metric > tp->reordering) {
949 int mib_idx;
951 tp->reordering = min(TCP_MAX_REORDERING, metric);
953 /* This exciting event is worth to be remembered. 8) */
954 if (ts)
955 mib_idx = LINUX_MIB_TCPTSREORDER;
956 else if (tcp_is_reno(tp))
957 mib_idx = LINUX_MIB_TCPRENOREORDER;
958 else if (tcp_is_fack(tp))
959 mib_idx = LINUX_MIB_TCPFACKREORDER;
960 else
961 mib_idx = LINUX_MIB_TCPSACKREORDER;
963 NET_INC_STATS_BH(sock_net(sk), mib_idx);
964 #if FASTRETRANS_DEBUG > 1
965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967 tp->reordering,
968 tp->fackets_out,
969 tp->sacked_out,
970 tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972 tcp_disable_fack(tp);
976 /* This must be called before lost_out is incremented */
977 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
979 if ((tp->retransmit_skb_hint == NULL) ||
980 before(TCP_SKB_CB(skb)->seq,
981 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
982 tp->retransmit_skb_hint = skb;
984 if (!tp->lost_out ||
985 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
986 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
989 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
991 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
992 tcp_verify_retransmit_hint(tp, skb);
994 tp->lost_out += tcp_skb_pcount(skb);
995 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
999 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1000 struct sk_buff *skb)
1002 tcp_verify_retransmit_hint(tp, skb);
1004 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1005 tp->lost_out += tcp_skb_pcount(skb);
1006 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1010 /* This procedure tags the retransmission queue when SACKs arrive.
1012 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1013 * Packets in queue with these bits set are counted in variables
1014 * sacked_out, retrans_out and lost_out, correspondingly.
1016 * Valid combinations are:
1017 * Tag InFlight Description
1018 * 0 1 - orig segment is in flight.
1019 * S 0 - nothing flies, orig reached receiver.
1020 * L 0 - nothing flies, orig lost by net.
1021 * R 2 - both orig and retransmit are in flight.
1022 * L|R 1 - orig is lost, retransmit is in flight.
1023 * S|R 1 - orig reached receiver, retrans is still in flight.
1024 * (L|S|R is logically valid, it could occur when L|R is sacked,
1025 * but it is equivalent to plain S and code short-curcuits it to S.
1026 * L|S is logically invalid, it would mean -1 packet in flight 8))
1028 * These 6 states form finite state machine, controlled by the following events:
1029 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1030 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1031 * 3. Loss detection event of one of three flavors:
1032 * A. Scoreboard estimator decided the packet is lost.
1033 * A'. Reno "three dupacks" marks head of queue lost.
1034 * A''. Its FACK modfication, head until snd.fack is lost.
1035 * B. SACK arrives sacking data transmitted after never retransmitted
1036 * hole was sent out.
1037 * C. SACK arrives sacking SND.NXT at the moment, when the
1038 * segment was retransmitted.
1039 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1041 * It is pleasant to note, that state diagram turns out to be commutative,
1042 * so that we are allowed not to be bothered by order of our actions,
1043 * when multiple events arrive simultaneously. (see the function below).
1045 * Reordering detection.
1046 * --------------------
1047 * Reordering metric is maximal distance, which a packet can be displaced
1048 * in packet stream. With SACKs we can estimate it:
1050 * 1. SACK fills old hole and the corresponding segment was not
1051 * ever retransmitted -> reordering. Alas, we cannot use it
1052 * when segment was retransmitted.
1053 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1054 * for retransmitted and already SACKed segment -> reordering..
1055 * Both of these heuristics are not used in Loss state, when we cannot
1056 * account for retransmits accurately.
1058 * SACK block validation.
1059 * ----------------------
1061 * SACK block range validation checks that the received SACK block fits to
1062 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1063 * Note that SND.UNA is not included to the range though being valid because
1064 * it means that the receiver is rather inconsistent with itself reporting
1065 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1066 * perfectly valid, however, in light of RFC2018 which explicitly states
1067 * that "SACK block MUST reflect the newest segment. Even if the newest
1068 * segment is going to be discarded ...", not that it looks very clever
1069 * in case of head skb. Due to potentional receiver driven attacks, we
1070 * choose to avoid immediate execution of a walk in write queue due to
1071 * reneging and defer head skb's loss recovery to standard loss recovery
1072 * procedure that will eventually trigger (nothing forbids us doing this).
1074 * Implements also blockage to start_seq wrap-around. Problem lies in the
1075 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1076 * there's no guarantee that it will be before snd_nxt (n). The problem
1077 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1078 * wrap (s_w):
1080 * <- outs wnd -> <- wrapzone ->
1081 * u e n u_w e_w s n_w
1082 * | | | | | | |
1083 * |<------------+------+----- TCP seqno space --------------+---------->|
1084 * ...-- <2^31 ->| |<--------...
1085 * ...---- >2^31 ------>| |<--------...
1087 * Current code wouldn't be vulnerable but it's better still to discard such
1088 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1089 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1090 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1091 * equal to the ideal case (infinite seqno space without wrap caused issues).
1093 * With D-SACK the lower bound is extended to cover sequence space below
1094 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1095 * again, D-SACK block must not to go across snd_una (for the same reason as
1096 * for the normal SACK blocks, explained above). But there all simplicity
1097 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1098 * fully below undo_marker they do not affect behavior in anyway and can
1099 * therefore be safely ignored. In rare cases (which are more or less
1100 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1101 * fragmentation and packet reordering past skb's retransmission. To consider
1102 * them correctly, the acceptable range must be extended even more though
1103 * the exact amount is rather hard to quantify. However, tp->max_window can
1104 * be used as an exaggerated estimate.
1106 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1107 u32 start_seq, u32 end_seq)
1109 /* Too far in future, or reversed (interpretation is ambiguous) */
1110 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1111 return 0;
1113 /* Nasty start_seq wrap-around check (see comments above) */
1114 if (!before(start_seq, tp->snd_nxt))
1115 return 0;
1117 /* In outstanding window? ...This is valid exit for D-SACKs too.
1118 * start_seq == snd_una is non-sensical (see comments above)
1120 if (after(start_seq, tp->snd_una))
1121 return 1;
1123 if (!is_dsack || !tp->undo_marker)
1124 return 0;
1126 /* ...Then it's D-SACK, and must reside below snd_una completely */
1127 if (!after(end_seq, tp->snd_una))
1128 return 0;
1130 if (!before(start_seq, tp->undo_marker))
1131 return 1;
1133 /* Too old */
1134 if (!after(end_seq, tp->undo_marker))
1135 return 0;
1137 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1138 * start_seq < undo_marker and end_seq >= undo_marker.
1140 return !before(start_seq, end_seq - tp->max_window);
1143 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1144 * Event "C". Later note: FACK people cheated me again 8), we have to account
1145 * for reordering! Ugly, but should help.
1147 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1148 * less than what is now known to be received by the other end (derived from
1149 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1150 * retransmitted skbs to avoid some costly processing per ACKs.
1152 static void tcp_mark_lost_retrans(struct sock *sk)
1154 const struct inet_connection_sock *icsk = inet_csk(sk);
1155 struct tcp_sock *tp = tcp_sk(sk);
1156 struct sk_buff *skb;
1157 int cnt = 0;
1158 u32 new_low_seq = tp->snd_nxt;
1159 u32 received_upto = tcp_highest_sack_seq(tp);
1161 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1162 !after(received_upto, tp->lost_retrans_low) ||
1163 icsk->icsk_ca_state != TCP_CA_Recovery)
1164 return;
1166 tcp_for_write_queue(skb, sk) {
1167 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1169 if (skb == tcp_send_head(sk))
1170 break;
1171 if (cnt == tp->retrans_out)
1172 break;
1173 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1174 continue;
1176 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1177 continue;
1179 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1180 * constraint here (see above) but figuring out that at
1181 * least tp->reordering SACK blocks reside between ack_seq
1182 * and received_upto is not easy task to do cheaply with
1183 * the available datastructures.
1185 * Whether FACK should check here for tp->reordering segs
1186 * in-between one could argue for either way (it would be
1187 * rather simple to implement as we could count fack_count
1188 * during the walk and do tp->fackets_out - fack_count).
1190 if (after(received_upto, ack_seq)) {
1191 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1192 tp->retrans_out -= tcp_skb_pcount(skb);
1194 tcp_skb_mark_lost_uncond_verify(tp, skb);
1195 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1196 } else {
1197 if (before(ack_seq, new_low_seq))
1198 new_low_seq = ack_seq;
1199 cnt += tcp_skb_pcount(skb);
1203 if (tp->retrans_out)
1204 tp->lost_retrans_low = new_low_seq;
1207 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1208 struct tcp_sack_block_wire *sp, int num_sacks,
1209 u32 prior_snd_una)
1211 struct tcp_sock *tp = tcp_sk(sk);
1212 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1213 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1214 int dup_sack = 0;
1216 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1217 dup_sack = 1;
1218 tcp_dsack_seen(tp);
1219 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1220 } else if (num_sacks > 1) {
1221 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1222 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1224 if (!after(end_seq_0, end_seq_1) &&
1225 !before(start_seq_0, start_seq_1)) {
1226 dup_sack = 1;
1227 tcp_dsack_seen(tp);
1228 NET_INC_STATS_BH(sock_net(sk),
1229 LINUX_MIB_TCPDSACKOFORECV);
1233 /* D-SACK for already forgotten data... Do dumb counting. */
1234 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1235 !after(end_seq_0, prior_snd_una) &&
1236 after(end_seq_0, tp->undo_marker))
1237 tp->undo_retrans--;
1239 return dup_sack;
1242 struct tcp_sacktag_state {
1243 int reord;
1244 int fack_count;
1245 int flag;
1248 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1249 * the incoming SACK may not exactly match but we can find smaller MSS
1250 * aligned portion of it that matches. Therefore we might need to fragment
1251 * which may fail and creates some hassle (caller must handle error case
1252 * returns).
1254 * FIXME: this could be merged to shift decision code
1256 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1257 u32 start_seq, u32 end_seq)
1259 int in_sack, err;
1260 unsigned int pkt_len;
1261 unsigned int mss;
1263 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1264 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1266 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1267 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1268 mss = tcp_skb_mss(skb);
1269 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1271 if (!in_sack) {
1272 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1273 if (pkt_len < mss)
1274 pkt_len = mss;
1275 } else {
1276 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1277 if (pkt_len < mss)
1278 return -EINVAL;
1281 /* Round if necessary so that SACKs cover only full MSSes
1282 * and/or the remaining small portion (if present)
1284 if (pkt_len > mss) {
1285 unsigned int new_len = (pkt_len / mss) * mss;
1286 if (!in_sack && new_len < pkt_len) {
1287 new_len += mss;
1288 if (new_len > skb->len)
1289 return 0;
1291 pkt_len = new_len;
1293 err = tcp_fragment(sk, skb, pkt_len, mss);
1294 if (err < 0)
1295 return err;
1298 return in_sack;
1301 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1302 struct tcp_sacktag_state *state,
1303 int dup_sack, int pcount)
1305 struct tcp_sock *tp = tcp_sk(sk);
1306 u8 sacked = TCP_SKB_CB(skb)->sacked;
1307 int fack_count = state->fack_count;
1309 /* Account D-SACK for retransmitted packet. */
1310 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1311 if (tp->undo_marker && tp->undo_retrans &&
1312 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1313 tp->undo_retrans--;
1314 if (sacked & TCPCB_SACKED_ACKED)
1315 state->reord = min(fack_count, state->reord);
1318 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1319 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1320 return sacked;
1322 if (!(sacked & TCPCB_SACKED_ACKED)) {
1323 if (sacked & TCPCB_SACKED_RETRANS) {
1324 /* If the segment is not tagged as lost,
1325 * we do not clear RETRANS, believing
1326 * that retransmission is still in flight.
1328 if (sacked & TCPCB_LOST) {
1329 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1330 tp->lost_out -= pcount;
1331 tp->retrans_out -= pcount;
1333 } else {
1334 if (!(sacked & TCPCB_RETRANS)) {
1335 /* New sack for not retransmitted frame,
1336 * which was in hole. It is reordering.
1338 if (before(TCP_SKB_CB(skb)->seq,
1339 tcp_highest_sack_seq(tp)))
1340 state->reord = min(fack_count,
1341 state->reord);
1343 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1344 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1345 state->flag |= FLAG_ONLY_ORIG_SACKED;
1348 if (sacked & TCPCB_LOST) {
1349 sacked &= ~TCPCB_LOST;
1350 tp->lost_out -= pcount;
1354 sacked |= TCPCB_SACKED_ACKED;
1355 state->flag |= FLAG_DATA_SACKED;
1356 tp->sacked_out += pcount;
1358 fack_count += pcount;
1360 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1361 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1362 before(TCP_SKB_CB(skb)->seq,
1363 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1364 tp->lost_cnt_hint += pcount;
1366 if (fack_count > tp->fackets_out)
1367 tp->fackets_out = fack_count;
1370 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1371 * frames and clear it. undo_retrans is decreased above, L|R frames
1372 * are accounted above as well.
1374 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1375 sacked &= ~TCPCB_SACKED_RETRANS;
1376 tp->retrans_out -= pcount;
1379 return sacked;
1382 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1383 struct tcp_sacktag_state *state,
1384 unsigned int pcount, int shifted, int mss,
1385 int dup_sack)
1387 struct tcp_sock *tp = tcp_sk(sk);
1388 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1390 BUG_ON(!pcount);
1392 /* Tweak before seqno plays */
1393 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1394 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1395 tp->lost_cnt_hint += pcount;
1397 TCP_SKB_CB(prev)->end_seq += shifted;
1398 TCP_SKB_CB(skb)->seq += shifted;
1400 skb_shinfo(prev)->gso_segs += pcount;
1401 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1402 skb_shinfo(skb)->gso_segs -= pcount;
1404 /* When we're adding to gso_segs == 1, gso_size will be zero,
1405 * in theory this shouldn't be necessary but as long as DSACK
1406 * code can come after this skb later on it's better to keep
1407 * setting gso_size to something.
1409 if (!skb_shinfo(prev)->gso_size) {
1410 skb_shinfo(prev)->gso_size = mss;
1411 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1414 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1415 if (skb_shinfo(skb)->gso_segs <= 1) {
1416 skb_shinfo(skb)->gso_size = 0;
1417 skb_shinfo(skb)->gso_type = 0;
1420 /* We discard results */
1421 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1423 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1424 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1426 if (skb->len > 0) {
1427 BUG_ON(!tcp_skb_pcount(skb));
1428 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1429 return 0;
1432 /* Whole SKB was eaten :-) */
1434 if (skb == tp->retransmit_skb_hint)
1435 tp->retransmit_skb_hint = prev;
1436 if (skb == tp->scoreboard_skb_hint)
1437 tp->scoreboard_skb_hint = prev;
1438 if (skb == tp->lost_skb_hint) {
1439 tp->lost_skb_hint = prev;
1440 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1443 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1444 if (skb == tcp_highest_sack(sk))
1445 tcp_advance_highest_sack(sk, skb);
1447 tcp_unlink_write_queue(skb, sk);
1448 sk_wmem_free_skb(sk, skb);
1450 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1452 return 1;
1455 /* I wish gso_size would have a bit more sane initialization than
1456 * something-or-zero which complicates things
1458 static int tcp_skb_seglen(struct sk_buff *skb)
1460 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1463 /* Shifting pages past head area doesn't work */
1464 static int skb_can_shift(struct sk_buff *skb)
1466 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1469 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1470 * skb.
1472 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1473 struct tcp_sacktag_state *state,
1474 u32 start_seq, u32 end_seq,
1475 int dup_sack)
1477 struct tcp_sock *tp = tcp_sk(sk);
1478 struct sk_buff *prev;
1479 int mss;
1480 int pcount = 0;
1481 int len;
1482 int in_sack;
1484 if (!sk_can_gso(sk))
1485 goto fallback;
1487 /* Normally R but no L won't result in plain S */
1488 if (!dup_sack &&
1489 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1490 goto fallback;
1491 if (!skb_can_shift(skb))
1492 goto fallback;
1493 /* This frame is about to be dropped (was ACKed). */
1494 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1495 goto fallback;
1497 /* Can only happen with delayed DSACK + discard craziness */
1498 if (unlikely(skb == tcp_write_queue_head(sk)))
1499 goto fallback;
1500 prev = tcp_write_queue_prev(sk, skb);
1502 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1503 goto fallback;
1505 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1506 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1508 if (in_sack) {
1509 len = skb->len;
1510 pcount = tcp_skb_pcount(skb);
1511 mss = tcp_skb_seglen(skb);
1513 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1514 * drop this restriction as unnecessary
1516 if (mss != tcp_skb_seglen(prev))
1517 goto fallback;
1518 } else {
1519 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1520 goto noop;
1521 /* CHECKME: This is non-MSS split case only?, this will
1522 * cause skipped skbs due to advancing loop btw, original
1523 * has that feature too
1525 if (tcp_skb_pcount(skb) <= 1)
1526 goto noop;
1528 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1529 if (!in_sack) {
1530 /* TODO: head merge to next could be attempted here
1531 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1532 * though it might not be worth of the additional hassle
1534 * ...we can probably just fallback to what was done
1535 * previously. We could try merging non-SACKed ones
1536 * as well but it probably isn't going to buy off
1537 * because later SACKs might again split them, and
1538 * it would make skb timestamp tracking considerably
1539 * harder problem.
1541 goto fallback;
1544 len = end_seq - TCP_SKB_CB(skb)->seq;
1545 BUG_ON(len < 0);
1546 BUG_ON(len > skb->len);
1548 /* MSS boundaries should be honoured or else pcount will
1549 * severely break even though it makes things bit trickier.
1550 * Optimize common case to avoid most of the divides
1552 mss = tcp_skb_mss(skb);
1554 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1555 * drop this restriction as unnecessary
1557 if (mss != tcp_skb_seglen(prev))
1558 goto fallback;
1560 if (len == mss) {
1561 pcount = 1;
1562 } else if (len < mss) {
1563 goto noop;
1564 } else {
1565 pcount = len / mss;
1566 len = pcount * mss;
1570 if (!skb_shift(prev, skb, len))
1571 goto fallback;
1572 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1573 goto out;
1575 /* Hole filled allows collapsing with the next as well, this is very
1576 * useful when hole on every nth skb pattern happens
1578 if (prev == tcp_write_queue_tail(sk))
1579 goto out;
1580 skb = tcp_write_queue_next(sk, prev);
1582 if (!skb_can_shift(skb) ||
1583 (skb == tcp_send_head(sk)) ||
1584 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1585 (mss != tcp_skb_seglen(skb)))
1586 goto out;
1588 len = skb->len;
1589 if (skb_shift(prev, skb, len)) {
1590 pcount += tcp_skb_pcount(skb);
1591 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1594 out:
1595 state->fack_count += pcount;
1596 return prev;
1598 noop:
1599 return skb;
1601 fallback:
1602 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1603 return NULL;
1606 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1607 struct tcp_sack_block *next_dup,
1608 struct tcp_sacktag_state *state,
1609 u32 start_seq, u32 end_seq,
1610 int dup_sack_in)
1612 struct tcp_sock *tp = tcp_sk(sk);
1613 struct sk_buff *tmp;
1615 tcp_for_write_queue_from(skb, sk) {
1616 int in_sack = 0;
1617 int dup_sack = dup_sack_in;
1619 if (skb == tcp_send_head(sk))
1620 break;
1622 /* queue is in-order => we can short-circuit the walk early */
1623 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1624 break;
1626 if ((next_dup != NULL) &&
1627 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1628 in_sack = tcp_match_skb_to_sack(sk, skb,
1629 next_dup->start_seq,
1630 next_dup->end_seq);
1631 if (in_sack > 0)
1632 dup_sack = 1;
1635 /* skb reference here is a bit tricky to get right, since
1636 * shifting can eat and free both this skb and the next,
1637 * so not even _safe variant of the loop is enough.
1639 if (in_sack <= 0) {
1640 tmp = tcp_shift_skb_data(sk, skb, state,
1641 start_seq, end_seq, dup_sack);
1642 if (tmp != NULL) {
1643 if (tmp != skb) {
1644 skb = tmp;
1645 continue;
1648 in_sack = 0;
1649 } else {
1650 in_sack = tcp_match_skb_to_sack(sk, skb,
1651 start_seq,
1652 end_seq);
1656 if (unlikely(in_sack < 0))
1657 break;
1659 if (in_sack) {
1660 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1661 state,
1662 dup_sack,
1663 tcp_skb_pcount(skb));
1665 if (!before(TCP_SKB_CB(skb)->seq,
1666 tcp_highest_sack_seq(tp)))
1667 tcp_advance_highest_sack(sk, skb);
1670 state->fack_count += tcp_skb_pcount(skb);
1672 return skb;
1675 /* Avoid all extra work that is being done by sacktag while walking in
1676 * a normal way
1678 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1679 struct tcp_sacktag_state *state,
1680 u32 skip_to_seq)
1682 tcp_for_write_queue_from(skb, sk) {
1683 if (skb == tcp_send_head(sk))
1684 break;
1686 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1687 break;
1689 state->fack_count += tcp_skb_pcount(skb);
1691 return skb;
1694 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1695 struct sock *sk,
1696 struct tcp_sack_block *next_dup,
1697 struct tcp_sacktag_state *state,
1698 u32 skip_to_seq)
1700 if (next_dup == NULL)
1701 return skb;
1703 if (before(next_dup->start_seq, skip_to_seq)) {
1704 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1705 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1706 next_dup->start_seq, next_dup->end_seq,
1710 return skb;
1713 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1715 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1718 static int
1719 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1720 u32 prior_snd_una)
1722 const struct inet_connection_sock *icsk = inet_csk(sk);
1723 struct tcp_sock *tp = tcp_sk(sk);
1724 unsigned char *ptr = (skb_transport_header(ack_skb) +
1725 TCP_SKB_CB(ack_skb)->sacked);
1726 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1727 struct tcp_sack_block sp[TCP_NUM_SACKS];
1728 struct tcp_sack_block *cache;
1729 struct tcp_sacktag_state state;
1730 struct sk_buff *skb;
1731 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1732 int used_sacks;
1733 int found_dup_sack = 0;
1734 int i, j;
1735 int first_sack_index;
1737 state.flag = 0;
1738 state.reord = tp->packets_out;
1740 if (!tp->sacked_out) {
1741 if (WARN_ON(tp->fackets_out))
1742 tp->fackets_out = 0;
1743 tcp_highest_sack_reset(sk);
1746 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1747 num_sacks, prior_snd_una);
1748 if (found_dup_sack)
1749 state.flag |= FLAG_DSACKING_ACK;
1751 /* Eliminate too old ACKs, but take into
1752 * account more or less fresh ones, they can
1753 * contain valid SACK info.
1755 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1756 return 0;
1758 if (!tp->packets_out)
1759 goto out;
1761 used_sacks = 0;
1762 first_sack_index = 0;
1763 for (i = 0; i < num_sacks; i++) {
1764 int dup_sack = !i && found_dup_sack;
1766 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1767 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1769 if (!tcp_is_sackblock_valid(tp, dup_sack,
1770 sp[used_sacks].start_seq,
1771 sp[used_sacks].end_seq)) {
1772 int mib_idx;
1774 if (dup_sack) {
1775 if (!tp->undo_marker)
1776 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1777 else
1778 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1779 } else {
1780 /* Don't count olds caused by ACK reordering */
1781 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1782 !after(sp[used_sacks].end_seq, tp->snd_una))
1783 continue;
1784 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1787 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1788 if (i == 0)
1789 first_sack_index = -1;
1790 continue;
1793 /* Ignore very old stuff early */
1794 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1795 continue;
1797 used_sacks++;
1800 /* order SACK blocks to allow in order walk of the retrans queue */
1801 for (i = used_sacks - 1; i > 0; i--) {
1802 for (j = 0; j < i; j++) {
1803 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1804 swap(sp[j], sp[j + 1]);
1806 /* Track where the first SACK block goes to */
1807 if (j == first_sack_index)
1808 first_sack_index = j + 1;
1813 skb = tcp_write_queue_head(sk);
1814 state.fack_count = 0;
1815 i = 0;
1817 if (!tp->sacked_out) {
1818 /* It's already past, so skip checking against it */
1819 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1820 } else {
1821 cache = tp->recv_sack_cache;
1822 /* Skip empty blocks in at head of the cache */
1823 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1824 !cache->end_seq)
1825 cache++;
1828 while (i < used_sacks) {
1829 u32 start_seq = sp[i].start_seq;
1830 u32 end_seq = sp[i].end_seq;
1831 int dup_sack = (found_dup_sack && (i == first_sack_index));
1832 struct tcp_sack_block *next_dup = NULL;
1834 if (found_dup_sack && ((i + 1) == first_sack_index))
1835 next_dup = &sp[i + 1];
1837 /* Event "B" in the comment above. */
1838 if (after(end_seq, tp->high_seq))
1839 state.flag |= FLAG_DATA_LOST;
1841 /* Skip too early cached blocks */
1842 while (tcp_sack_cache_ok(tp, cache) &&
1843 !before(start_seq, cache->end_seq))
1844 cache++;
1846 /* Can skip some work by looking recv_sack_cache? */
1847 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1848 after(end_seq, cache->start_seq)) {
1850 /* Head todo? */
1851 if (before(start_seq, cache->start_seq)) {
1852 skb = tcp_sacktag_skip(skb, sk, &state,
1853 start_seq);
1854 skb = tcp_sacktag_walk(skb, sk, next_dup,
1855 &state,
1856 start_seq,
1857 cache->start_seq,
1858 dup_sack);
1861 /* Rest of the block already fully processed? */
1862 if (!after(end_seq, cache->end_seq))
1863 goto advance_sp;
1865 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1866 &state,
1867 cache->end_seq);
1869 /* ...tail remains todo... */
1870 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1871 /* ...but better entrypoint exists! */
1872 skb = tcp_highest_sack(sk);
1873 if (skb == NULL)
1874 break;
1875 state.fack_count = tp->fackets_out;
1876 cache++;
1877 goto walk;
1880 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1881 /* Check overlap against next cached too (past this one already) */
1882 cache++;
1883 continue;
1886 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1887 skb = tcp_highest_sack(sk);
1888 if (skb == NULL)
1889 break;
1890 state.fack_count = tp->fackets_out;
1892 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1894 walk:
1895 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1896 start_seq, end_seq, dup_sack);
1898 advance_sp:
1899 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1900 * due to in-order walk
1902 if (after(end_seq, tp->frto_highmark))
1903 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1905 i++;
1908 /* Clear the head of the cache sack blocks so we can skip it next time */
1909 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1910 tp->recv_sack_cache[i].start_seq = 0;
1911 tp->recv_sack_cache[i].end_seq = 0;
1913 for (j = 0; j < used_sacks; j++)
1914 tp->recv_sack_cache[i++] = sp[j];
1916 tcp_mark_lost_retrans(sk);
1918 tcp_verify_left_out(tp);
1920 if ((state.reord < tp->fackets_out) &&
1921 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1922 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1923 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1925 out:
1927 #if FASTRETRANS_DEBUG > 0
1928 WARN_ON((int)tp->sacked_out < 0);
1929 WARN_ON((int)tp->lost_out < 0);
1930 WARN_ON((int)tp->retrans_out < 0);
1931 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1932 #endif
1933 return state.flag;
1936 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1937 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1939 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1941 u32 holes;
1943 holes = max(tp->lost_out, 1U);
1944 holes = min(holes, tp->packets_out);
1946 if ((tp->sacked_out + holes) > tp->packets_out) {
1947 tp->sacked_out = tp->packets_out - holes;
1948 return 1;
1950 return 0;
1953 /* If we receive more dupacks than we expected counting segments
1954 * in assumption of absent reordering, interpret this as reordering.
1955 * The only another reason could be bug in receiver TCP.
1957 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1959 struct tcp_sock *tp = tcp_sk(sk);
1960 if (tcp_limit_reno_sacked(tp))
1961 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1964 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1966 static void tcp_add_reno_sack(struct sock *sk)
1968 struct tcp_sock *tp = tcp_sk(sk);
1969 tp->sacked_out++;
1970 tcp_check_reno_reordering(sk, 0);
1971 tcp_verify_left_out(tp);
1974 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1976 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1978 struct tcp_sock *tp = tcp_sk(sk);
1980 if (acked > 0) {
1981 /* One ACK acked hole. The rest eat duplicate ACKs. */
1982 if (acked - 1 >= tp->sacked_out)
1983 tp->sacked_out = 0;
1984 else
1985 tp->sacked_out -= acked - 1;
1987 tcp_check_reno_reordering(sk, acked);
1988 tcp_verify_left_out(tp);
1991 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1993 tp->sacked_out = 0;
1996 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1998 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2001 /* F-RTO can only be used if TCP has never retransmitted anything other than
2002 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2004 int tcp_use_frto(struct sock *sk)
2006 const struct tcp_sock *tp = tcp_sk(sk);
2007 const struct inet_connection_sock *icsk = inet_csk(sk);
2008 struct sk_buff *skb;
2010 if (!sysctl_tcp_frto)
2011 return 0;
2013 /* MTU probe and F-RTO won't really play nicely along currently */
2014 if (icsk->icsk_mtup.probe_size)
2015 return 0;
2017 if (tcp_is_sackfrto(tp))
2018 return 1;
2020 /* Avoid expensive walking of rexmit queue if possible */
2021 if (tp->retrans_out > 1)
2022 return 0;
2024 skb = tcp_write_queue_head(sk);
2025 if (tcp_skb_is_last(sk, skb))
2026 return 1;
2027 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2028 tcp_for_write_queue_from(skb, sk) {
2029 if (skb == tcp_send_head(sk))
2030 break;
2031 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2032 return 0;
2033 /* Short-circuit when first non-SACKed skb has been checked */
2034 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2035 break;
2037 return 1;
2040 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2041 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2042 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2043 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2044 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2045 * bits are handled if the Loss state is really to be entered (in
2046 * tcp_enter_frto_loss).
2048 * Do like tcp_enter_loss() would; when RTO expires the second time it
2049 * does:
2050 * "Reduce ssthresh if it has not yet been made inside this window."
2052 void tcp_enter_frto(struct sock *sk)
2054 const struct inet_connection_sock *icsk = inet_csk(sk);
2055 struct tcp_sock *tp = tcp_sk(sk);
2056 struct sk_buff *skb;
2058 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2059 tp->snd_una == tp->high_seq ||
2060 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2061 !icsk->icsk_retransmits)) {
2062 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2063 /* Our state is too optimistic in ssthresh() call because cwnd
2064 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2065 * recovery has not yet completed. Pattern would be this: RTO,
2066 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2067 * up here twice).
2068 * RFC4138 should be more specific on what to do, even though
2069 * RTO is quite unlikely to occur after the first Cumulative ACK
2070 * due to back-off and complexity of triggering events ...
2072 if (tp->frto_counter) {
2073 u32 stored_cwnd;
2074 stored_cwnd = tp->snd_cwnd;
2075 tp->snd_cwnd = 2;
2076 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2077 tp->snd_cwnd = stored_cwnd;
2078 } else {
2079 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2081 /* ... in theory, cong.control module could do "any tricks" in
2082 * ssthresh(), which means that ca_state, lost bits and lost_out
2083 * counter would have to be faked before the call occurs. We
2084 * consider that too expensive, unlikely and hacky, so modules
2085 * using these in ssthresh() must deal these incompatibility
2086 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2088 tcp_ca_event(sk, CA_EVENT_FRTO);
2091 tp->undo_marker = tp->snd_una;
2092 tp->undo_retrans = 0;
2094 skb = tcp_write_queue_head(sk);
2095 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2096 tp->undo_marker = 0;
2097 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2098 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2099 tp->retrans_out -= tcp_skb_pcount(skb);
2101 tcp_verify_left_out(tp);
2103 /* Too bad if TCP was application limited */
2104 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2106 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2107 * The last condition is necessary at least in tp->frto_counter case.
2109 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2110 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2111 after(tp->high_seq, tp->snd_una)) {
2112 tp->frto_highmark = tp->high_seq;
2113 } else {
2114 tp->frto_highmark = tp->snd_nxt;
2116 tcp_set_ca_state(sk, TCP_CA_Disorder);
2117 tp->high_seq = tp->snd_nxt;
2118 tp->frto_counter = 1;
2121 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2122 * which indicates that we should follow the traditional RTO recovery,
2123 * i.e. mark everything lost and do go-back-N retransmission.
2125 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2127 struct tcp_sock *tp = tcp_sk(sk);
2128 struct sk_buff *skb;
2130 tp->lost_out = 0;
2131 tp->retrans_out = 0;
2132 if (tcp_is_reno(tp))
2133 tcp_reset_reno_sack(tp);
2135 tcp_for_write_queue(skb, sk) {
2136 if (skb == tcp_send_head(sk))
2137 break;
2139 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2141 * Count the retransmission made on RTO correctly (only when
2142 * waiting for the first ACK and did not get it)...
2144 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2145 /* For some reason this R-bit might get cleared? */
2146 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2147 tp->retrans_out += tcp_skb_pcount(skb);
2148 /* ...enter this if branch just for the first segment */
2149 flag |= FLAG_DATA_ACKED;
2150 } else {
2151 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2152 tp->undo_marker = 0;
2153 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2156 /* Marking forward transmissions that were made after RTO lost
2157 * can cause unnecessary retransmissions in some scenarios,
2158 * SACK blocks will mitigate that in some but not in all cases.
2159 * We used to not mark them but it was causing break-ups with
2160 * receivers that do only in-order receival.
2162 * TODO: we could detect presence of such receiver and select
2163 * different behavior per flow.
2165 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2166 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2167 tp->lost_out += tcp_skb_pcount(skb);
2168 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2171 tcp_verify_left_out(tp);
2173 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2174 tp->snd_cwnd_cnt = 0;
2175 tp->snd_cwnd_stamp = tcp_time_stamp;
2176 tp->frto_counter = 0;
2177 tp->bytes_acked = 0;
2179 tp->reordering = min_t(unsigned int, tp->reordering,
2180 sysctl_tcp_reordering);
2181 tcp_set_ca_state(sk, TCP_CA_Loss);
2182 tp->high_seq = tp->snd_nxt;
2183 TCP_ECN_queue_cwr(tp);
2185 tcp_clear_all_retrans_hints(tp);
2188 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2190 tp->retrans_out = 0;
2191 tp->lost_out = 0;
2193 tp->undo_marker = 0;
2194 tp->undo_retrans = 0;
2197 void tcp_clear_retrans(struct tcp_sock *tp)
2199 tcp_clear_retrans_partial(tp);
2201 tp->fackets_out = 0;
2202 tp->sacked_out = 0;
2205 /* Enter Loss state. If "how" is not zero, forget all SACK information
2206 * and reset tags completely, otherwise preserve SACKs. If receiver
2207 * dropped its ofo queue, we will know this due to reneging detection.
2209 void tcp_enter_loss(struct sock *sk, int how)
2211 const struct inet_connection_sock *icsk = inet_csk(sk);
2212 struct tcp_sock *tp = tcp_sk(sk);
2213 struct sk_buff *skb;
2215 /* Reduce ssthresh if it has not yet been made inside this window. */
2216 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2217 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2218 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2219 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2220 tcp_ca_event(sk, CA_EVENT_LOSS);
2222 tp->snd_cwnd = 1;
2223 tp->snd_cwnd_cnt = 0;
2224 tp->snd_cwnd_stamp = tcp_time_stamp;
2226 tp->bytes_acked = 0;
2227 tcp_clear_retrans_partial(tp);
2229 if (tcp_is_reno(tp))
2230 tcp_reset_reno_sack(tp);
2232 if (!how) {
2233 /* Push undo marker, if it was plain RTO and nothing
2234 * was retransmitted. */
2235 tp->undo_marker = tp->snd_una;
2236 } else {
2237 tp->sacked_out = 0;
2238 tp->fackets_out = 0;
2240 tcp_clear_all_retrans_hints(tp);
2242 tcp_for_write_queue(skb, sk) {
2243 if (skb == tcp_send_head(sk))
2244 break;
2246 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2247 tp->undo_marker = 0;
2248 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2249 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2250 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2251 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2252 tp->lost_out += tcp_skb_pcount(skb);
2253 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2256 tcp_verify_left_out(tp);
2258 tp->reordering = min_t(unsigned int, tp->reordering,
2259 sysctl_tcp_reordering);
2260 tcp_set_ca_state(sk, TCP_CA_Loss);
2261 tp->high_seq = tp->snd_nxt;
2262 TCP_ECN_queue_cwr(tp);
2263 /* Abort F-RTO algorithm if one is in progress */
2264 tp->frto_counter = 0;
2267 /* If ACK arrived pointing to a remembered SACK, it means that our
2268 * remembered SACKs do not reflect real state of receiver i.e.
2269 * receiver _host_ is heavily congested (or buggy).
2271 * Do processing similar to RTO timeout.
2273 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2275 if (flag & FLAG_SACK_RENEGING) {
2276 struct inet_connection_sock *icsk = inet_csk(sk);
2277 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2279 tcp_enter_loss(sk, 1);
2280 icsk->icsk_retransmits++;
2281 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2282 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2283 icsk->icsk_rto, TCP_RTO_MAX);
2284 return 1;
2286 return 0;
2289 static inline int tcp_fackets_out(struct tcp_sock *tp)
2291 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2294 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2295 * counter when SACK is enabled (without SACK, sacked_out is used for
2296 * that purpose).
2298 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2299 * segments up to the highest received SACK block so far and holes in
2300 * between them.
2302 * With reordering, holes may still be in flight, so RFC3517 recovery
2303 * uses pure sacked_out (total number of SACKed segments) even though
2304 * it violates the RFC that uses duplicate ACKs, often these are equal
2305 * but when e.g. out-of-window ACKs or packet duplication occurs,
2306 * they differ. Since neither occurs due to loss, TCP should really
2307 * ignore them.
2309 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2311 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2314 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2316 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2319 static inline int tcp_head_timedout(struct sock *sk)
2321 struct tcp_sock *tp = tcp_sk(sk);
2323 return tp->packets_out &&
2324 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2327 /* Linux NewReno/SACK/FACK/ECN state machine.
2328 * --------------------------------------
2330 * "Open" Normal state, no dubious events, fast path.
2331 * "Disorder" In all the respects it is "Open",
2332 * but requires a bit more attention. It is entered when
2333 * we see some SACKs or dupacks. It is split of "Open"
2334 * mainly to move some processing from fast path to slow one.
2335 * "CWR" CWND was reduced due to some Congestion Notification event.
2336 * It can be ECN, ICMP source quench, local device congestion.
2337 * "Recovery" CWND was reduced, we are fast-retransmitting.
2338 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2340 * tcp_fastretrans_alert() is entered:
2341 * - each incoming ACK, if state is not "Open"
2342 * - when arrived ACK is unusual, namely:
2343 * * SACK
2344 * * Duplicate ACK.
2345 * * ECN ECE.
2347 * Counting packets in flight is pretty simple.
2349 * in_flight = packets_out - left_out + retrans_out
2351 * packets_out is SND.NXT-SND.UNA counted in packets.
2353 * retrans_out is number of retransmitted segments.
2355 * left_out is number of segments left network, but not ACKed yet.
2357 * left_out = sacked_out + lost_out
2359 * sacked_out: Packets, which arrived to receiver out of order
2360 * and hence not ACKed. With SACKs this number is simply
2361 * amount of SACKed data. Even without SACKs
2362 * it is easy to give pretty reliable estimate of this number,
2363 * counting duplicate ACKs.
2365 * lost_out: Packets lost by network. TCP has no explicit
2366 * "loss notification" feedback from network (for now).
2367 * It means that this number can be only _guessed_.
2368 * Actually, it is the heuristics to predict lossage that
2369 * distinguishes different algorithms.
2371 * F.e. after RTO, when all the queue is considered as lost,
2372 * lost_out = packets_out and in_flight = retrans_out.
2374 * Essentially, we have now two algorithms counting
2375 * lost packets.
2377 * FACK: It is the simplest heuristics. As soon as we decided
2378 * that something is lost, we decide that _all_ not SACKed
2379 * packets until the most forward SACK are lost. I.e.
2380 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2381 * It is absolutely correct estimate, if network does not reorder
2382 * packets. And it loses any connection to reality when reordering
2383 * takes place. We use FACK by default until reordering
2384 * is suspected on the path to this destination.
2386 * NewReno: when Recovery is entered, we assume that one segment
2387 * is lost (classic Reno). While we are in Recovery and
2388 * a partial ACK arrives, we assume that one more packet
2389 * is lost (NewReno). This heuristics are the same in NewReno
2390 * and SACK.
2392 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2393 * deflation etc. CWND is real congestion window, never inflated, changes
2394 * only according to classic VJ rules.
2396 * Really tricky (and requiring careful tuning) part of algorithm
2397 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2398 * The first determines the moment _when_ we should reduce CWND and,
2399 * hence, slow down forward transmission. In fact, it determines the moment
2400 * when we decide that hole is caused by loss, rather than by a reorder.
2402 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2403 * holes, caused by lost packets.
2405 * And the most logically complicated part of algorithm is undo
2406 * heuristics. We detect false retransmits due to both too early
2407 * fast retransmit (reordering) and underestimated RTO, analyzing
2408 * timestamps and D-SACKs. When we detect that some segments were
2409 * retransmitted by mistake and CWND reduction was wrong, we undo
2410 * window reduction and abort recovery phase. This logic is hidden
2411 * inside several functions named tcp_try_undo_<something>.
2414 /* This function decides, when we should leave Disordered state
2415 * and enter Recovery phase, reducing congestion window.
2417 * Main question: may we further continue forward transmission
2418 * with the same cwnd?
2420 static int tcp_time_to_recover(struct sock *sk)
2422 struct tcp_sock *tp = tcp_sk(sk);
2423 __u32 packets_out;
2425 /* Do not perform any recovery during F-RTO algorithm */
2426 if (tp->frto_counter)
2427 return 0;
2429 /* Trick#1: The loss is proven. */
2430 if (tp->lost_out)
2431 return 1;
2433 /* Not-A-Trick#2 : Classic rule... */
2434 if (tcp_dupack_heuristics(tp) > tp->reordering)
2435 return 1;
2437 /* Trick#3 : when we use RFC2988 timer restart, fast
2438 * retransmit can be triggered by timeout of queue head.
2440 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2441 return 1;
2443 /* Trick#4: It is still not OK... But will it be useful to delay
2444 * recovery more?
2446 packets_out = tp->packets_out;
2447 if (packets_out <= tp->reordering &&
2448 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2449 !tcp_may_send_now(sk)) {
2450 /* We have nothing to send. This connection is limited
2451 * either by receiver window or by application.
2453 return 1;
2456 /* If a thin stream is detected, retransmit after first
2457 * received dupack. Employ only if SACK is supported in order
2458 * to avoid possible corner-case series of spurious retransmissions
2459 * Use only if there are no unsent data.
2461 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2462 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2463 tcp_is_sack(tp) && !tcp_send_head(sk))
2464 return 1;
2466 return 0;
2469 /* New heuristics: it is possible only after we switched to restart timer
2470 * each time when something is ACKed. Hence, we can detect timed out packets
2471 * during fast retransmit without falling to slow start.
2473 * Usefulness of this as is very questionable, since we should know which of
2474 * the segments is the next to timeout which is relatively expensive to find
2475 * in general case unless we add some data structure just for that. The
2476 * current approach certainly won't find the right one too often and when it
2477 * finally does find _something_ it usually marks large part of the window
2478 * right away (because a retransmission with a larger timestamp blocks the
2479 * loop from advancing). -ij
2481 static void tcp_timeout_skbs(struct sock *sk)
2483 struct tcp_sock *tp = tcp_sk(sk);
2484 struct sk_buff *skb;
2486 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2487 return;
2489 skb = tp->scoreboard_skb_hint;
2490 if (tp->scoreboard_skb_hint == NULL)
2491 skb = tcp_write_queue_head(sk);
2493 tcp_for_write_queue_from(skb, sk) {
2494 if (skb == tcp_send_head(sk))
2495 break;
2496 if (!tcp_skb_timedout(sk, skb))
2497 break;
2499 tcp_skb_mark_lost(tp, skb);
2502 tp->scoreboard_skb_hint = skb;
2504 tcp_verify_left_out(tp);
2507 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2508 * is against sacked "cnt", otherwise it's against facked "cnt"
2510 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2512 struct tcp_sock *tp = tcp_sk(sk);
2513 struct sk_buff *skb;
2514 int cnt, oldcnt;
2515 int err;
2516 unsigned int mss;
2518 WARN_ON(packets > tp->packets_out);
2519 if (tp->lost_skb_hint) {
2520 skb = tp->lost_skb_hint;
2521 cnt = tp->lost_cnt_hint;
2522 /* Head already handled? */
2523 if (mark_head && skb != tcp_write_queue_head(sk))
2524 return;
2525 } else {
2526 skb = tcp_write_queue_head(sk);
2527 cnt = 0;
2530 tcp_for_write_queue_from(skb, sk) {
2531 if (skb == tcp_send_head(sk))
2532 break;
2533 /* TODO: do this better */
2534 /* this is not the most efficient way to do this... */
2535 tp->lost_skb_hint = skb;
2536 tp->lost_cnt_hint = cnt;
2538 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2539 break;
2541 oldcnt = cnt;
2542 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2543 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2544 cnt += tcp_skb_pcount(skb);
2546 if (cnt > packets) {
2547 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2548 (oldcnt >= packets))
2549 break;
2551 mss = skb_shinfo(skb)->gso_size;
2552 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2553 if (err < 0)
2554 break;
2555 cnt = packets;
2558 tcp_skb_mark_lost(tp, skb);
2560 if (mark_head)
2561 break;
2563 tcp_verify_left_out(tp);
2566 /* Account newly detected lost packet(s) */
2568 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2570 struct tcp_sock *tp = tcp_sk(sk);
2572 if (tcp_is_reno(tp)) {
2573 tcp_mark_head_lost(sk, 1, 1);
2574 } else if (tcp_is_fack(tp)) {
2575 int lost = tp->fackets_out - tp->reordering;
2576 if (lost <= 0)
2577 lost = 1;
2578 tcp_mark_head_lost(sk, lost, 0);
2579 } else {
2580 int sacked_upto = tp->sacked_out - tp->reordering;
2581 if (sacked_upto >= 0)
2582 tcp_mark_head_lost(sk, sacked_upto, 0);
2583 else if (fast_rexmit)
2584 tcp_mark_head_lost(sk, 1, 1);
2587 tcp_timeout_skbs(sk);
2590 /* CWND moderation, preventing bursts due to too big ACKs
2591 * in dubious situations.
2593 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2595 tp->snd_cwnd = min(tp->snd_cwnd,
2596 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2597 tp->snd_cwnd_stamp = tcp_time_stamp;
2600 /* Lower bound on congestion window is slow start threshold
2601 * unless congestion avoidance choice decides to overide it.
2603 static inline u32 tcp_cwnd_min(const struct sock *sk)
2605 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2607 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2610 /* Decrease cwnd each second ack. */
2611 static void tcp_cwnd_down(struct sock *sk, int flag)
2613 struct tcp_sock *tp = tcp_sk(sk);
2614 int decr = tp->snd_cwnd_cnt + 1;
2616 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2617 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2618 tp->snd_cwnd_cnt = decr & 1;
2619 decr >>= 1;
2621 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2622 tp->snd_cwnd -= decr;
2624 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2625 tp->snd_cwnd_stamp = tcp_time_stamp;
2629 /* Nothing was retransmitted or returned timestamp is less
2630 * than timestamp of the first retransmission.
2632 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2634 return !tp->retrans_stamp ||
2635 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2636 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2639 /* Undo procedures. */
2641 #if FASTRETRANS_DEBUG > 1
2642 static void DBGUNDO(struct sock *sk, const char *msg)
2644 struct tcp_sock *tp = tcp_sk(sk);
2645 struct inet_sock *inet = inet_sk(sk);
2647 if (sk->sk_family == AF_INET) {
2648 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2649 msg,
2650 &inet->inet_daddr, ntohs(inet->inet_dport),
2651 tp->snd_cwnd, tcp_left_out(tp),
2652 tp->snd_ssthresh, tp->prior_ssthresh,
2653 tp->packets_out);
2655 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2656 else if (sk->sk_family == AF_INET6) {
2657 struct ipv6_pinfo *np = inet6_sk(sk);
2658 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2659 msg,
2660 &np->daddr, ntohs(inet->inet_dport),
2661 tp->snd_cwnd, tcp_left_out(tp),
2662 tp->snd_ssthresh, tp->prior_ssthresh,
2663 tp->packets_out);
2665 #endif
2667 #else
2668 #define DBGUNDO(x...) do { } while (0)
2669 #endif
2671 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2673 struct tcp_sock *tp = tcp_sk(sk);
2675 if (tp->prior_ssthresh) {
2676 const struct inet_connection_sock *icsk = inet_csk(sk);
2678 if (icsk->icsk_ca_ops->undo_cwnd)
2679 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2680 else
2681 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2683 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2684 tp->snd_ssthresh = tp->prior_ssthresh;
2685 TCP_ECN_withdraw_cwr(tp);
2687 } else {
2688 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2690 tp->snd_cwnd_stamp = tcp_time_stamp;
2693 static inline int tcp_may_undo(struct tcp_sock *tp)
2695 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2698 /* People celebrate: "We love our President!" */
2699 static int tcp_try_undo_recovery(struct sock *sk)
2701 struct tcp_sock *tp = tcp_sk(sk);
2703 if (tcp_may_undo(tp)) {
2704 int mib_idx;
2706 /* Happy end! We did not retransmit anything
2707 * or our original transmission succeeded.
2709 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2710 tcp_undo_cwr(sk, true);
2711 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2712 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2713 else
2714 mib_idx = LINUX_MIB_TCPFULLUNDO;
2716 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2717 tp->undo_marker = 0;
2719 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2720 /* Hold old state until something *above* high_seq
2721 * is ACKed. For Reno it is MUST to prevent false
2722 * fast retransmits (RFC2582). SACK TCP is safe. */
2723 tcp_moderate_cwnd(tp);
2724 return 1;
2726 tcp_set_ca_state(sk, TCP_CA_Open);
2727 return 0;
2730 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2731 static void tcp_try_undo_dsack(struct sock *sk)
2733 struct tcp_sock *tp = tcp_sk(sk);
2735 if (tp->undo_marker && !tp->undo_retrans) {
2736 DBGUNDO(sk, "D-SACK");
2737 tcp_undo_cwr(sk, true);
2738 tp->undo_marker = 0;
2739 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2743 /* We can clear retrans_stamp when there are no retransmissions in the
2744 * window. It would seem that it is trivially available for us in
2745 * tp->retrans_out, however, that kind of assumptions doesn't consider
2746 * what will happen if errors occur when sending retransmission for the
2747 * second time. ...It could the that such segment has only
2748 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2749 * the head skb is enough except for some reneging corner cases that
2750 * are not worth the effort.
2752 * Main reason for all this complexity is the fact that connection dying
2753 * time now depends on the validity of the retrans_stamp, in particular,
2754 * that successive retransmissions of a segment must not advance
2755 * retrans_stamp under any conditions.
2757 static int tcp_any_retrans_done(struct sock *sk)
2759 struct tcp_sock *tp = tcp_sk(sk);
2760 struct sk_buff *skb;
2762 if (tp->retrans_out)
2763 return 1;
2765 skb = tcp_write_queue_head(sk);
2766 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2767 return 1;
2769 return 0;
2772 /* Undo during fast recovery after partial ACK. */
2774 static int tcp_try_undo_partial(struct sock *sk, int acked)
2776 struct tcp_sock *tp = tcp_sk(sk);
2777 /* Partial ACK arrived. Force Hoe's retransmit. */
2778 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2780 if (tcp_may_undo(tp)) {
2781 /* Plain luck! Hole if filled with delayed
2782 * packet, rather than with a retransmit.
2784 if (!tcp_any_retrans_done(sk))
2785 tp->retrans_stamp = 0;
2787 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2789 DBGUNDO(sk, "Hoe");
2790 tcp_undo_cwr(sk, false);
2791 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2793 /* So... Do not make Hoe's retransmit yet.
2794 * If the first packet was delayed, the rest
2795 * ones are most probably delayed as well.
2797 failed = 0;
2799 return failed;
2802 /* Undo during loss recovery after partial ACK. */
2803 static int tcp_try_undo_loss(struct sock *sk)
2805 struct tcp_sock *tp = tcp_sk(sk);
2807 if (tcp_may_undo(tp)) {
2808 struct sk_buff *skb;
2809 tcp_for_write_queue(skb, sk) {
2810 if (skb == tcp_send_head(sk))
2811 break;
2812 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2815 tcp_clear_all_retrans_hints(tp);
2817 DBGUNDO(sk, "partial loss");
2818 tp->lost_out = 0;
2819 tcp_undo_cwr(sk, true);
2820 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2821 inet_csk(sk)->icsk_retransmits = 0;
2822 tp->undo_marker = 0;
2823 if (tcp_is_sack(tp))
2824 tcp_set_ca_state(sk, TCP_CA_Open);
2825 return 1;
2827 return 0;
2830 static inline void tcp_complete_cwr(struct sock *sk)
2832 struct tcp_sock *tp = tcp_sk(sk);
2834 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2835 if (tp->undo_marker) {
2836 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2837 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2838 else /* PRR */
2839 tp->snd_cwnd = tp->snd_ssthresh;
2840 tp->snd_cwnd_stamp = tcp_time_stamp;
2842 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2845 static void tcp_try_keep_open(struct sock *sk)
2847 struct tcp_sock *tp = tcp_sk(sk);
2848 int state = TCP_CA_Open;
2850 if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2851 state = TCP_CA_Disorder;
2853 if (inet_csk(sk)->icsk_ca_state != state) {
2854 tcp_set_ca_state(sk, state);
2855 tp->high_seq = tp->snd_nxt;
2859 static void tcp_try_to_open(struct sock *sk, int flag)
2861 struct tcp_sock *tp = tcp_sk(sk);
2863 tcp_verify_left_out(tp);
2865 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2866 tp->retrans_stamp = 0;
2868 if (flag & FLAG_ECE)
2869 tcp_enter_cwr(sk, 1);
2871 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2872 tcp_try_keep_open(sk);
2873 tcp_moderate_cwnd(tp);
2874 } else {
2875 tcp_cwnd_down(sk, flag);
2879 static void tcp_mtup_probe_failed(struct sock *sk)
2881 struct inet_connection_sock *icsk = inet_csk(sk);
2883 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2884 icsk->icsk_mtup.probe_size = 0;
2887 static void tcp_mtup_probe_success(struct sock *sk)
2889 struct tcp_sock *tp = tcp_sk(sk);
2890 struct inet_connection_sock *icsk = inet_csk(sk);
2892 /* FIXME: breaks with very large cwnd */
2893 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2894 tp->snd_cwnd = tp->snd_cwnd *
2895 tcp_mss_to_mtu(sk, tp->mss_cache) /
2896 icsk->icsk_mtup.probe_size;
2897 tp->snd_cwnd_cnt = 0;
2898 tp->snd_cwnd_stamp = tcp_time_stamp;
2899 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2901 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2902 icsk->icsk_mtup.probe_size = 0;
2903 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2906 /* Do a simple retransmit without using the backoff mechanisms in
2907 * tcp_timer. This is used for path mtu discovery.
2908 * The socket is already locked here.
2910 void tcp_simple_retransmit(struct sock *sk)
2912 const struct inet_connection_sock *icsk = inet_csk(sk);
2913 struct tcp_sock *tp = tcp_sk(sk);
2914 struct sk_buff *skb;
2915 unsigned int mss = tcp_current_mss(sk);
2916 u32 prior_lost = tp->lost_out;
2918 tcp_for_write_queue(skb, sk) {
2919 if (skb == tcp_send_head(sk))
2920 break;
2921 if (tcp_skb_seglen(skb) > mss &&
2922 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2923 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2924 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2925 tp->retrans_out -= tcp_skb_pcount(skb);
2927 tcp_skb_mark_lost_uncond_verify(tp, skb);
2931 tcp_clear_retrans_hints_partial(tp);
2933 if (prior_lost == tp->lost_out)
2934 return;
2936 if (tcp_is_reno(tp))
2937 tcp_limit_reno_sacked(tp);
2939 tcp_verify_left_out(tp);
2941 /* Don't muck with the congestion window here.
2942 * Reason is that we do not increase amount of _data_
2943 * in network, but units changed and effective
2944 * cwnd/ssthresh really reduced now.
2946 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2947 tp->high_seq = tp->snd_nxt;
2948 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2949 tp->prior_ssthresh = 0;
2950 tp->undo_marker = 0;
2951 tcp_set_ca_state(sk, TCP_CA_Loss);
2953 tcp_xmit_retransmit_queue(sk);
2955 EXPORT_SYMBOL(tcp_simple_retransmit);
2957 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2958 * (proportional rate reduction with slow start reduction bound) as described in
2959 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2960 * It computes the number of packets to send (sndcnt) based on packets newly
2961 * delivered:
2962 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2963 * cwnd reductions across a full RTT.
2964 * 2) If packets in flight is lower than ssthresh (such as due to excess
2965 * losses and/or application stalls), do not perform any further cwnd
2966 * reductions, but instead slow start up to ssthresh.
2968 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
2969 int fast_rexmit, int flag)
2971 struct tcp_sock *tp = tcp_sk(sk);
2972 int sndcnt = 0;
2973 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2975 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2976 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2977 tp->prior_cwnd - 1;
2978 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2979 } else {
2980 sndcnt = min_t(int, delta,
2981 max_t(int, tp->prr_delivered - tp->prr_out,
2982 newly_acked_sacked) + 1);
2985 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2986 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2989 /* Process an event, which can update packets-in-flight not trivially.
2990 * Main goal of this function is to calculate new estimate for left_out,
2991 * taking into account both packets sitting in receiver's buffer and
2992 * packets lost by network.
2994 * Besides that it does CWND reduction, when packet loss is detected
2995 * and changes state of machine.
2997 * It does _not_ decide what to send, it is made in function
2998 * tcp_xmit_retransmit_queue().
3000 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3001 int newly_acked_sacked, int flag)
3003 struct inet_connection_sock *icsk = inet_csk(sk);
3004 struct tcp_sock *tp = tcp_sk(sk);
3005 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3006 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3007 (tcp_fackets_out(tp) > tp->reordering));
3008 int fast_rexmit = 0, mib_idx;
3010 if (WARN_ON(!tp->packets_out && tp->sacked_out))
3011 tp->sacked_out = 0;
3012 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3013 tp->fackets_out = 0;
3015 /* Now state machine starts.
3016 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3017 if (flag & FLAG_ECE)
3018 tp->prior_ssthresh = 0;
3020 /* B. In all the states check for reneging SACKs. */
3021 if (tcp_check_sack_reneging(sk, flag))
3022 return;
3024 /* C. Process data loss notification, provided it is valid. */
3025 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
3026 before(tp->snd_una, tp->high_seq) &&
3027 icsk->icsk_ca_state != TCP_CA_Open &&
3028 tp->fackets_out > tp->reordering) {
3029 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
3030 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
3033 /* D. Check consistency of the current state. */
3034 tcp_verify_left_out(tp);
3036 /* E. Check state exit conditions. State can be terminated
3037 * when high_seq is ACKed. */
3038 if (icsk->icsk_ca_state == TCP_CA_Open) {
3039 WARN_ON(tp->retrans_out != 0);
3040 tp->retrans_stamp = 0;
3041 } else if (!before(tp->snd_una, tp->high_seq)) {
3042 switch (icsk->icsk_ca_state) {
3043 case TCP_CA_Loss:
3044 icsk->icsk_retransmits = 0;
3045 if (tcp_try_undo_recovery(sk))
3046 return;
3047 break;
3049 case TCP_CA_CWR:
3050 /* CWR is to be held something *above* high_seq
3051 * is ACKed for CWR bit to reach receiver. */
3052 if (tp->snd_una != tp->high_seq) {
3053 tcp_complete_cwr(sk);
3054 tcp_set_ca_state(sk, TCP_CA_Open);
3056 break;
3058 case TCP_CA_Disorder:
3059 tcp_try_undo_dsack(sk);
3060 if (!tp->undo_marker ||
3061 /* For SACK case do not Open to allow to undo
3062 * catching for all duplicate ACKs. */
3063 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3064 tp->undo_marker = 0;
3065 tcp_set_ca_state(sk, TCP_CA_Open);
3067 break;
3069 case TCP_CA_Recovery:
3070 if (tcp_is_reno(tp))
3071 tcp_reset_reno_sack(tp);
3072 if (tcp_try_undo_recovery(sk))
3073 return;
3074 tcp_complete_cwr(sk);
3075 break;
3079 /* F. Process state. */
3080 switch (icsk->icsk_ca_state) {
3081 case TCP_CA_Recovery:
3082 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3083 if (tcp_is_reno(tp) && is_dupack)
3084 tcp_add_reno_sack(sk);
3085 } else
3086 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3087 break;
3088 case TCP_CA_Loss:
3089 if (flag & FLAG_DATA_ACKED)
3090 icsk->icsk_retransmits = 0;
3091 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3092 tcp_reset_reno_sack(tp);
3093 if (!tcp_try_undo_loss(sk)) {
3094 tcp_moderate_cwnd(tp);
3095 tcp_xmit_retransmit_queue(sk);
3096 return;
3098 if (icsk->icsk_ca_state != TCP_CA_Open)
3099 return;
3100 /* Loss is undone; fall through to processing in Open state. */
3101 default:
3102 if (tcp_is_reno(tp)) {
3103 if (flag & FLAG_SND_UNA_ADVANCED)
3104 tcp_reset_reno_sack(tp);
3105 if (is_dupack)
3106 tcp_add_reno_sack(sk);
3109 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3110 tcp_try_undo_dsack(sk);
3112 if (!tcp_time_to_recover(sk)) {
3113 tcp_try_to_open(sk, flag);
3114 return;
3117 /* MTU probe failure: don't reduce cwnd */
3118 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3119 icsk->icsk_mtup.probe_size &&
3120 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3121 tcp_mtup_probe_failed(sk);
3122 /* Restores the reduction we did in tcp_mtup_probe() */
3123 tp->snd_cwnd++;
3124 tcp_simple_retransmit(sk);
3125 return;
3128 /* Otherwise enter Recovery state */
3130 if (tcp_is_reno(tp))
3131 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3132 else
3133 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3135 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3137 tp->high_seq = tp->snd_nxt;
3138 tp->prior_ssthresh = 0;
3139 tp->undo_marker = tp->snd_una;
3140 tp->undo_retrans = tp->retrans_out;
3142 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3143 if (!(flag & FLAG_ECE))
3144 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3145 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3146 TCP_ECN_queue_cwr(tp);
3149 tp->bytes_acked = 0;
3150 tp->snd_cwnd_cnt = 0;
3151 tp->prior_cwnd = tp->snd_cwnd;
3152 tp->prr_delivered = 0;
3153 tp->prr_out = 0;
3154 tcp_set_ca_state(sk, TCP_CA_Recovery);
3155 fast_rexmit = 1;
3158 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3159 tcp_update_scoreboard(sk, fast_rexmit);
3160 tp->prr_delivered += newly_acked_sacked;
3161 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3162 tcp_xmit_retransmit_queue(sk);
3165 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3167 tcp_rtt_estimator(sk, seq_rtt);
3168 tcp_set_rto(sk);
3169 inet_csk(sk)->icsk_backoff = 0;
3171 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3173 /* Read draft-ietf-tcplw-high-performance before mucking
3174 * with this code. (Supersedes RFC1323)
3176 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3178 /* RTTM Rule: A TSecr value received in a segment is used to
3179 * update the averaged RTT measurement only if the segment
3180 * acknowledges some new data, i.e., only if it advances the
3181 * left edge of the send window.
3183 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3184 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3186 * Changed: reset backoff as soon as we see the first valid sample.
3187 * If we do not, we get strongly overestimated rto. With timestamps
3188 * samples are accepted even from very old segments: f.e., when rtt=1
3189 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3190 * answer arrives rto becomes 120 seconds! If at least one of segments
3191 * in window is lost... Voila. --ANK (010210)
3193 struct tcp_sock *tp = tcp_sk(sk);
3195 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3198 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3200 /* We don't have a timestamp. Can only use
3201 * packets that are not retransmitted to determine
3202 * rtt estimates. Also, we must not reset the
3203 * backoff for rto until we get a non-retransmitted
3204 * packet. This allows us to deal with a situation
3205 * where the network delay has increased suddenly.
3206 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3209 if (flag & FLAG_RETRANS_DATA_ACKED)
3210 return;
3212 tcp_valid_rtt_meas(sk, seq_rtt);
3215 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3216 const s32 seq_rtt)
3218 const struct tcp_sock *tp = tcp_sk(sk);
3219 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3220 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3221 tcp_ack_saw_tstamp(sk, flag);
3222 else if (seq_rtt >= 0)
3223 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3226 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3228 const struct inet_connection_sock *icsk = inet_csk(sk);
3229 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3230 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3233 /* Restart timer after forward progress on connection.
3234 * RFC2988 recommends to restart timer to now+rto.
3236 static void tcp_rearm_rto(struct sock *sk)
3238 struct tcp_sock *tp = tcp_sk(sk);
3240 if (!tp->packets_out) {
3241 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3242 } else {
3243 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3244 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3248 /* If we get here, the whole TSO packet has not been acked. */
3249 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3251 struct tcp_sock *tp = tcp_sk(sk);
3252 u32 packets_acked;
3254 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3256 packets_acked = tcp_skb_pcount(skb);
3257 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3258 return 0;
3259 packets_acked -= tcp_skb_pcount(skb);
3261 if (packets_acked) {
3262 BUG_ON(tcp_skb_pcount(skb) == 0);
3263 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3266 return packets_acked;
3269 /* Remove acknowledged frames from the retransmission queue. If our packet
3270 * is before the ack sequence we can discard it as it's confirmed to have
3271 * arrived at the other end.
3273 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3274 u32 prior_snd_una)
3276 struct tcp_sock *tp = tcp_sk(sk);
3277 const struct inet_connection_sock *icsk = inet_csk(sk);
3278 struct sk_buff *skb;
3279 u32 now = tcp_time_stamp;
3280 int fully_acked = 1;
3281 int flag = 0;
3282 u32 pkts_acked = 0;
3283 u32 reord = tp->packets_out;
3284 u32 prior_sacked = tp->sacked_out;
3285 s32 seq_rtt = -1;
3286 s32 ca_seq_rtt = -1;
3287 ktime_t last_ackt = net_invalid_timestamp();
3289 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3290 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3291 u32 acked_pcount;
3292 u8 sacked = scb->sacked;
3294 /* Determine how many packets and what bytes were acked, tso and else */
3295 if (after(scb->end_seq, tp->snd_una)) {
3296 if (tcp_skb_pcount(skb) == 1 ||
3297 !after(tp->snd_una, scb->seq))
3298 break;
3300 acked_pcount = tcp_tso_acked(sk, skb);
3301 if (!acked_pcount)
3302 break;
3304 fully_acked = 0;
3305 } else {
3306 acked_pcount = tcp_skb_pcount(skb);
3309 if (sacked & TCPCB_RETRANS) {
3310 if (sacked & TCPCB_SACKED_RETRANS)
3311 tp->retrans_out -= acked_pcount;
3312 flag |= FLAG_RETRANS_DATA_ACKED;
3313 ca_seq_rtt = -1;
3314 seq_rtt = -1;
3315 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3316 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3317 } else {
3318 ca_seq_rtt = now - scb->when;
3319 last_ackt = skb->tstamp;
3320 if (seq_rtt < 0) {
3321 seq_rtt = ca_seq_rtt;
3323 if (!(sacked & TCPCB_SACKED_ACKED))
3324 reord = min(pkts_acked, reord);
3327 if (sacked & TCPCB_SACKED_ACKED)
3328 tp->sacked_out -= acked_pcount;
3329 if (sacked & TCPCB_LOST)
3330 tp->lost_out -= acked_pcount;
3332 tp->packets_out -= acked_pcount;
3333 pkts_acked += acked_pcount;
3335 /* Initial outgoing SYN's get put onto the write_queue
3336 * just like anything else we transmit. It is not
3337 * true data, and if we misinform our callers that
3338 * this ACK acks real data, we will erroneously exit
3339 * connection startup slow start one packet too
3340 * quickly. This is severely frowned upon behavior.
3342 if (!(scb->flags & TCPHDR_SYN)) {
3343 flag |= FLAG_DATA_ACKED;
3344 } else {
3345 flag |= FLAG_SYN_ACKED;
3346 tp->retrans_stamp = 0;
3349 if (!fully_acked)
3350 break;
3352 tcp_unlink_write_queue(skb, sk);
3353 sk_wmem_free_skb(sk, skb);
3354 tp->scoreboard_skb_hint = NULL;
3355 if (skb == tp->retransmit_skb_hint)
3356 tp->retransmit_skb_hint = NULL;
3357 if (skb == tp->lost_skb_hint)
3358 tp->lost_skb_hint = NULL;
3361 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3362 tp->snd_up = tp->snd_una;
3364 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3365 flag |= FLAG_SACK_RENEGING;
3367 if (flag & FLAG_ACKED) {
3368 const struct tcp_congestion_ops *ca_ops
3369 = inet_csk(sk)->icsk_ca_ops;
3371 if (unlikely(icsk->icsk_mtup.probe_size &&
3372 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3373 tcp_mtup_probe_success(sk);
3376 tcp_ack_update_rtt(sk, flag, seq_rtt);
3377 tcp_rearm_rto(sk);
3379 if (tcp_is_reno(tp)) {
3380 tcp_remove_reno_sacks(sk, pkts_acked);
3381 } else {
3382 int delta;
3384 /* Non-retransmitted hole got filled? That's reordering */
3385 if (reord < prior_fackets)
3386 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3388 delta = tcp_is_fack(tp) ? pkts_acked :
3389 prior_sacked - tp->sacked_out;
3390 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3393 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3395 if (ca_ops->pkts_acked) {
3396 s32 rtt_us = -1;
3398 /* Is the ACK triggering packet unambiguous? */
3399 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3400 /* High resolution needed and available? */
3401 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3402 !ktime_equal(last_ackt,
3403 net_invalid_timestamp()))
3404 rtt_us = ktime_us_delta(ktime_get_real(),
3405 last_ackt);
3406 else if (ca_seq_rtt >= 0)
3407 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3410 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3414 #if FASTRETRANS_DEBUG > 0
3415 WARN_ON((int)tp->sacked_out < 0);
3416 WARN_ON((int)tp->lost_out < 0);
3417 WARN_ON((int)tp->retrans_out < 0);
3418 if (!tp->packets_out && tcp_is_sack(tp)) {
3419 icsk = inet_csk(sk);
3420 if (tp->lost_out) {
3421 printk(KERN_DEBUG "Leak l=%u %d\n",
3422 tp->lost_out, icsk->icsk_ca_state);
3423 tp->lost_out = 0;
3425 if (tp->sacked_out) {
3426 printk(KERN_DEBUG "Leak s=%u %d\n",
3427 tp->sacked_out, icsk->icsk_ca_state);
3428 tp->sacked_out = 0;
3430 if (tp->retrans_out) {
3431 printk(KERN_DEBUG "Leak r=%u %d\n",
3432 tp->retrans_out, icsk->icsk_ca_state);
3433 tp->retrans_out = 0;
3436 #endif
3437 return flag;
3440 static void tcp_ack_probe(struct sock *sk)
3442 const struct tcp_sock *tp = tcp_sk(sk);
3443 struct inet_connection_sock *icsk = inet_csk(sk);
3445 /* Was it a usable window open? */
3447 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3448 icsk->icsk_backoff = 0;
3449 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3450 /* Socket must be waked up by subsequent tcp_data_snd_check().
3451 * This function is not for random using!
3453 } else {
3454 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3455 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3456 TCP_RTO_MAX);
3460 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3462 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3463 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3466 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3468 const struct tcp_sock *tp = tcp_sk(sk);
3469 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3470 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3473 /* Check that window update is acceptable.
3474 * The function assumes that snd_una<=ack<=snd_next.
3476 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3477 const u32 ack, const u32 ack_seq,
3478 const u32 nwin)
3480 return after(ack, tp->snd_una) ||
3481 after(ack_seq, tp->snd_wl1) ||
3482 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3485 /* Update our send window.
3487 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3488 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3490 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3491 u32 ack_seq)
3493 struct tcp_sock *tp = tcp_sk(sk);
3494 int flag = 0;
3495 u32 nwin = ntohs(tcp_hdr(skb)->window);
3497 if (likely(!tcp_hdr(skb)->syn))
3498 nwin <<= tp->rx_opt.snd_wscale;
3500 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3501 flag |= FLAG_WIN_UPDATE;
3502 tcp_update_wl(tp, ack_seq);
3504 if (tp->snd_wnd != nwin) {
3505 tp->snd_wnd = nwin;
3507 /* Note, it is the only place, where
3508 * fast path is recovered for sending TCP.
3510 tp->pred_flags = 0;
3511 tcp_fast_path_check(sk);
3513 if (nwin > tp->max_window) {
3514 tp->max_window = nwin;
3515 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3520 tp->snd_una = ack;
3522 return flag;
3525 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3526 * continue in congestion avoidance.
3528 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3530 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3531 tp->snd_cwnd_cnt = 0;
3532 tp->bytes_acked = 0;
3533 TCP_ECN_queue_cwr(tp);
3534 tcp_moderate_cwnd(tp);
3537 /* A conservative spurious RTO response algorithm: reduce cwnd using
3538 * rate halving and continue in congestion avoidance.
3540 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3542 tcp_enter_cwr(sk, 0);
3545 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3547 if (flag & FLAG_ECE)
3548 tcp_ratehalving_spur_to_response(sk);
3549 else
3550 tcp_undo_cwr(sk, true);
3553 /* F-RTO spurious RTO detection algorithm (RFC4138)
3555 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3556 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3557 * window (but not to or beyond highest sequence sent before RTO):
3558 * On First ACK, send two new segments out.
3559 * On Second ACK, RTO was likely spurious. Do spurious response (response
3560 * algorithm is not part of the F-RTO detection algorithm
3561 * given in RFC4138 but can be selected separately).
3562 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3563 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3564 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3565 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3567 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3568 * original window even after we transmit two new data segments.
3570 * SACK version:
3571 * on first step, wait until first cumulative ACK arrives, then move to
3572 * the second step. In second step, the next ACK decides.
3574 * F-RTO is implemented (mainly) in four functions:
3575 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3576 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3577 * called when tcp_use_frto() showed green light
3578 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3579 * - tcp_enter_frto_loss() is called if there is not enough evidence
3580 * to prove that the RTO is indeed spurious. It transfers the control
3581 * from F-RTO to the conventional RTO recovery
3583 static int tcp_process_frto(struct sock *sk, int flag)
3585 struct tcp_sock *tp = tcp_sk(sk);
3587 tcp_verify_left_out(tp);
3589 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3590 if (flag & FLAG_DATA_ACKED)
3591 inet_csk(sk)->icsk_retransmits = 0;
3593 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3594 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3595 tp->undo_marker = 0;
3597 if (!before(tp->snd_una, tp->frto_highmark)) {
3598 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3599 return 1;
3602 if (!tcp_is_sackfrto(tp)) {
3603 /* RFC4138 shortcoming in step 2; should also have case c):
3604 * ACK isn't duplicate nor advances window, e.g., opposite dir
3605 * data, winupdate
3607 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3608 return 1;
3610 if (!(flag & FLAG_DATA_ACKED)) {
3611 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3612 flag);
3613 return 1;
3615 } else {
3616 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3617 /* Prevent sending of new data. */
3618 tp->snd_cwnd = min(tp->snd_cwnd,
3619 tcp_packets_in_flight(tp));
3620 return 1;
3623 if ((tp->frto_counter >= 2) &&
3624 (!(flag & FLAG_FORWARD_PROGRESS) ||
3625 ((flag & FLAG_DATA_SACKED) &&
3626 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3627 /* RFC4138 shortcoming (see comment above) */
3628 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3629 (flag & FLAG_NOT_DUP))
3630 return 1;
3632 tcp_enter_frto_loss(sk, 3, flag);
3633 return 1;
3637 if (tp->frto_counter == 1) {
3638 /* tcp_may_send_now needs to see updated state */
3639 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3640 tp->frto_counter = 2;
3642 if (!tcp_may_send_now(sk))
3643 tcp_enter_frto_loss(sk, 2, flag);
3645 return 1;
3646 } else {
3647 switch (sysctl_tcp_frto_response) {
3648 case 2:
3649 tcp_undo_spur_to_response(sk, flag);
3650 break;
3651 case 1:
3652 tcp_conservative_spur_to_response(tp);
3653 break;
3654 default:
3655 tcp_ratehalving_spur_to_response(sk);
3656 break;
3658 tp->frto_counter = 0;
3659 tp->undo_marker = 0;
3660 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3662 return 0;
3665 /* This routine deals with incoming acks, but not outgoing ones. */
3666 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3668 struct inet_connection_sock *icsk = inet_csk(sk);
3669 struct tcp_sock *tp = tcp_sk(sk);
3670 u32 prior_snd_una = tp->snd_una;
3671 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3672 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3673 u32 prior_in_flight;
3674 u32 prior_fackets;
3675 int prior_packets;
3676 int prior_sacked = tp->sacked_out;
3677 int newly_acked_sacked = 0;
3678 int frto_cwnd = 0;
3680 /* If the ack is older than previous acks
3681 * then we can probably ignore it.
3683 if (before(ack, prior_snd_una))
3684 goto old_ack;
3686 /* If the ack includes data we haven't sent yet, discard
3687 * this segment (RFC793 Section 3.9).
3689 if (after(ack, tp->snd_nxt))
3690 goto invalid_ack;
3692 if (after(ack, prior_snd_una))
3693 flag |= FLAG_SND_UNA_ADVANCED;
3695 if (sysctl_tcp_abc) {
3696 if (icsk->icsk_ca_state < TCP_CA_CWR)
3697 tp->bytes_acked += ack - prior_snd_una;
3698 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3699 /* we assume just one segment left network */
3700 tp->bytes_acked += min(ack - prior_snd_una,
3701 tp->mss_cache);
3704 prior_fackets = tp->fackets_out;
3705 prior_in_flight = tcp_packets_in_flight(tp);
3707 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3708 /* Window is constant, pure forward advance.
3709 * No more checks are required.
3710 * Note, we use the fact that SND.UNA>=SND.WL2.
3712 tcp_update_wl(tp, ack_seq);
3713 tp->snd_una = ack;
3714 flag |= FLAG_WIN_UPDATE;
3716 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3718 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3719 } else {
3720 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3721 flag |= FLAG_DATA;
3722 else
3723 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3725 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3727 if (TCP_SKB_CB(skb)->sacked)
3728 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3730 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3731 flag |= FLAG_ECE;
3733 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3736 /* We passed data and got it acked, remove any soft error
3737 * log. Something worked...
3739 sk->sk_err_soft = 0;
3740 icsk->icsk_probes_out = 0;
3741 tp->rcv_tstamp = tcp_time_stamp;
3742 prior_packets = tp->packets_out;
3743 if (!prior_packets)
3744 goto no_queue;
3746 /* See if we can take anything off of the retransmit queue. */
3747 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3749 newly_acked_sacked = (prior_packets - prior_sacked) -
3750 (tp->packets_out - tp->sacked_out);
3752 if (tp->frto_counter)
3753 frto_cwnd = tcp_process_frto(sk, flag);
3754 /* Guarantee sacktag reordering detection against wrap-arounds */
3755 if (before(tp->frto_highmark, tp->snd_una))
3756 tp->frto_highmark = 0;
3758 if (tcp_ack_is_dubious(sk, flag)) {
3759 /* Advance CWND, if state allows this. */
3760 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3761 tcp_may_raise_cwnd(sk, flag))
3762 tcp_cong_avoid(sk, ack, prior_in_flight);
3763 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3764 newly_acked_sacked, flag);
3765 } else {
3766 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3767 tcp_cong_avoid(sk, ack, prior_in_flight);
3770 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3771 dst_confirm(__sk_dst_get(sk));
3773 return 1;
3775 no_queue:
3776 /* If this ack opens up a zero window, clear backoff. It was
3777 * being used to time the probes, and is probably far higher than
3778 * it needs to be for normal retransmission.
3780 if (tcp_send_head(sk))
3781 tcp_ack_probe(sk);
3782 return 1;
3784 invalid_ack:
3785 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3786 return -1;
3788 old_ack:
3789 if (TCP_SKB_CB(skb)->sacked) {
3790 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3791 if (icsk->icsk_ca_state == TCP_CA_Open)
3792 tcp_try_keep_open(sk);
3795 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3796 return 0;
3799 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3800 * But, this can also be called on packets in the established flow when
3801 * the fast version below fails.
3803 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3804 u8 **hvpp, int estab)
3806 unsigned char *ptr;
3807 struct tcphdr *th = tcp_hdr(skb);
3808 int length = (th->doff * 4) - sizeof(struct tcphdr);
3810 ptr = (unsigned char *)(th + 1);
3811 opt_rx->saw_tstamp = 0;
3813 while (length > 0) {
3814 int opcode = *ptr++;
3815 int opsize;
3817 switch (opcode) {
3818 case TCPOPT_EOL:
3819 return;
3820 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3821 length--;
3822 continue;
3823 default:
3824 opsize = *ptr++;
3825 if (opsize < 2) /* "silly options" */
3826 return;
3827 if (opsize > length)
3828 return; /* don't parse partial options */
3829 switch (opcode) {
3830 case TCPOPT_MSS:
3831 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3832 u16 in_mss = get_unaligned_be16(ptr);
3833 if (in_mss) {
3834 if (opt_rx->user_mss &&
3835 opt_rx->user_mss < in_mss)
3836 in_mss = opt_rx->user_mss;
3837 opt_rx->mss_clamp = in_mss;
3840 break;
3841 case TCPOPT_WINDOW:
3842 if (opsize == TCPOLEN_WINDOW && th->syn &&
3843 !estab && sysctl_tcp_window_scaling) {
3844 __u8 snd_wscale = *(__u8 *)ptr;
3845 opt_rx->wscale_ok = 1;
3846 if (snd_wscale > 14) {
3847 if (net_ratelimit())
3848 printk(KERN_INFO "tcp_parse_options: Illegal window "
3849 "scaling value %d >14 received.\n",
3850 snd_wscale);
3851 snd_wscale = 14;
3853 opt_rx->snd_wscale = snd_wscale;
3855 break;
3856 case TCPOPT_TIMESTAMP:
3857 if ((opsize == TCPOLEN_TIMESTAMP) &&
3858 ((estab && opt_rx->tstamp_ok) ||
3859 (!estab && sysctl_tcp_timestamps))) {
3860 opt_rx->saw_tstamp = 1;
3861 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3862 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3864 break;
3865 case TCPOPT_SACK_PERM:
3866 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3867 !estab && sysctl_tcp_sack) {
3868 opt_rx->sack_ok = 1;
3869 tcp_sack_reset(opt_rx);
3871 break;
3873 case TCPOPT_SACK:
3874 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3875 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3876 opt_rx->sack_ok) {
3877 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3879 break;
3880 #ifdef CONFIG_TCP_MD5SIG
3881 case TCPOPT_MD5SIG:
3883 * The MD5 Hash has already been
3884 * checked (see tcp_v{4,6}_do_rcv()).
3886 break;
3887 #endif
3888 case TCPOPT_COOKIE:
3889 /* This option is variable length.
3891 switch (opsize) {
3892 case TCPOLEN_COOKIE_BASE:
3893 /* not yet implemented */
3894 break;
3895 case TCPOLEN_COOKIE_PAIR:
3896 /* not yet implemented */
3897 break;
3898 case TCPOLEN_COOKIE_MIN+0:
3899 case TCPOLEN_COOKIE_MIN+2:
3900 case TCPOLEN_COOKIE_MIN+4:
3901 case TCPOLEN_COOKIE_MIN+6:
3902 case TCPOLEN_COOKIE_MAX:
3903 /* 16-bit multiple */
3904 opt_rx->cookie_plus = opsize;
3905 *hvpp = ptr;
3906 break;
3907 default:
3908 /* ignore option */
3909 break;
3911 break;
3914 ptr += opsize-2;
3915 length -= opsize;
3919 EXPORT_SYMBOL(tcp_parse_options);
3921 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3923 __be32 *ptr = (__be32 *)(th + 1);
3925 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3926 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3927 tp->rx_opt.saw_tstamp = 1;
3928 ++ptr;
3929 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3930 ++ptr;
3931 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3932 return 1;
3934 return 0;
3937 /* Fast parse options. This hopes to only see timestamps.
3938 * If it is wrong it falls back on tcp_parse_options().
3940 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3941 struct tcp_sock *tp, u8 **hvpp)
3943 /* In the spirit of fast parsing, compare doff directly to constant
3944 * values. Because equality is used, short doff can be ignored here.
3946 if (th->doff == (sizeof(*th) / 4)) {
3947 tp->rx_opt.saw_tstamp = 0;
3948 return 0;
3949 } else if (tp->rx_opt.tstamp_ok &&
3950 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3951 if (tcp_parse_aligned_timestamp(tp, th))
3952 return 1;
3954 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3955 return 1;
3958 #ifdef CONFIG_TCP_MD5SIG
3960 * Parse MD5 Signature option
3962 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3964 int length = (th->doff << 2) - sizeof (*th);
3965 u8 *ptr = (u8*)(th + 1);
3967 /* If the TCP option is too short, we can short cut */
3968 if (length < TCPOLEN_MD5SIG)
3969 return NULL;
3971 while (length > 0) {
3972 int opcode = *ptr++;
3973 int opsize;
3975 switch(opcode) {
3976 case TCPOPT_EOL:
3977 return NULL;
3978 case TCPOPT_NOP:
3979 length--;
3980 continue;
3981 default:
3982 opsize = *ptr++;
3983 if (opsize < 2 || opsize > length)
3984 return NULL;
3985 if (opcode == TCPOPT_MD5SIG)
3986 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3988 ptr += opsize - 2;
3989 length -= opsize;
3991 return NULL;
3993 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3994 #endif
3996 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3998 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3999 tp->rx_opt.ts_recent_stamp = get_seconds();
4002 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4004 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4005 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4006 * extra check below makes sure this can only happen
4007 * for pure ACK frames. -DaveM
4009 * Not only, also it occurs for expired timestamps.
4012 if (tcp_paws_check(&tp->rx_opt, 0))
4013 tcp_store_ts_recent(tp);
4017 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4019 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4020 * it can pass through stack. So, the following predicate verifies that
4021 * this segment is not used for anything but congestion avoidance or
4022 * fast retransmit. Moreover, we even are able to eliminate most of such
4023 * second order effects, if we apply some small "replay" window (~RTO)
4024 * to timestamp space.
4026 * All these measures still do not guarantee that we reject wrapped ACKs
4027 * on networks with high bandwidth, when sequence space is recycled fastly,
4028 * but it guarantees that such events will be very rare and do not affect
4029 * connection seriously. This doesn't look nice, but alas, PAWS is really
4030 * buggy extension.
4032 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4033 * states that events when retransmit arrives after original data are rare.
4034 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4035 * the biggest problem on large power networks even with minor reordering.
4036 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4037 * up to bandwidth of 18Gigabit/sec. 8) ]
4040 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4042 struct tcp_sock *tp = tcp_sk(sk);
4043 struct tcphdr *th = tcp_hdr(skb);
4044 u32 seq = TCP_SKB_CB(skb)->seq;
4045 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4047 return (/* 1. Pure ACK with correct sequence number. */
4048 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4050 /* 2. ... and duplicate ACK. */
4051 ack == tp->snd_una &&
4053 /* 3. ... and does not update window. */
4054 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4056 /* 4. ... and sits in replay window. */
4057 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4060 static inline int tcp_paws_discard(const struct sock *sk,
4061 const struct sk_buff *skb)
4063 const struct tcp_sock *tp = tcp_sk(sk);
4065 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4066 !tcp_disordered_ack(sk, skb);
4069 /* Check segment sequence number for validity.
4071 * Segment controls are considered valid, if the segment
4072 * fits to the window after truncation to the window. Acceptability
4073 * of data (and SYN, FIN, of course) is checked separately.
4074 * See tcp_data_queue(), for example.
4076 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4077 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4078 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4079 * (borrowed from freebsd)
4082 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4084 return !before(end_seq, tp->rcv_wup) &&
4085 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4088 /* When we get a reset we do this. */
4089 static void tcp_reset(struct sock *sk)
4091 /* We want the right error as BSD sees it (and indeed as we do). */
4092 switch (sk->sk_state) {
4093 case TCP_SYN_SENT:
4094 sk->sk_err = ECONNREFUSED;
4095 break;
4096 case TCP_CLOSE_WAIT:
4097 sk->sk_err = EPIPE;
4098 break;
4099 case TCP_CLOSE:
4100 return;
4101 default:
4102 sk->sk_err = ECONNRESET;
4104 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4105 smp_wmb();
4107 if (!sock_flag(sk, SOCK_DEAD))
4108 sk->sk_error_report(sk);
4110 tcp_done(sk);
4114 * Process the FIN bit. This now behaves as it is supposed to work
4115 * and the FIN takes effect when it is validly part of sequence
4116 * space. Not before when we get holes.
4118 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4119 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4120 * TIME-WAIT)
4122 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4123 * close and we go into CLOSING (and later onto TIME-WAIT)
4125 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4127 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4129 struct tcp_sock *tp = tcp_sk(sk);
4131 inet_csk_schedule_ack(sk);
4133 sk->sk_shutdown |= RCV_SHUTDOWN;
4134 sock_set_flag(sk, SOCK_DONE);
4136 switch (sk->sk_state) {
4137 case TCP_SYN_RECV:
4138 case TCP_ESTABLISHED:
4139 /* Move to CLOSE_WAIT */
4140 tcp_set_state(sk, TCP_CLOSE_WAIT);
4141 inet_csk(sk)->icsk_ack.pingpong = 1;
4142 break;
4144 case TCP_CLOSE_WAIT:
4145 case TCP_CLOSING:
4146 /* Received a retransmission of the FIN, do
4147 * nothing.
4149 break;
4150 case TCP_LAST_ACK:
4151 /* RFC793: Remain in the LAST-ACK state. */
4152 break;
4154 case TCP_FIN_WAIT1:
4155 /* This case occurs when a simultaneous close
4156 * happens, we must ack the received FIN and
4157 * enter the CLOSING state.
4159 tcp_send_ack(sk);
4160 tcp_set_state(sk, TCP_CLOSING);
4161 break;
4162 case TCP_FIN_WAIT2:
4163 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4164 tcp_send_ack(sk);
4165 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4166 break;
4167 default:
4168 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4169 * cases we should never reach this piece of code.
4171 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4172 __func__, sk->sk_state);
4173 break;
4176 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4177 * Probably, we should reset in this case. For now drop them.
4179 __skb_queue_purge(&tp->out_of_order_queue);
4180 if (tcp_is_sack(tp))
4181 tcp_sack_reset(&tp->rx_opt);
4182 sk_mem_reclaim(sk);
4184 if (!sock_flag(sk, SOCK_DEAD)) {
4185 sk->sk_state_change(sk);
4187 /* Do not send POLL_HUP for half duplex close. */
4188 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4189 sk->sk_state == TCP_CLOSE)
4190 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4191 else
4192 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4196 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4197 u32 end_seq)
4199 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4200 if (before(seq, sp->start_seq))
4201 sp->start_seq = seq;
4202 if (after(end_seq, sp->end_seq))
4203 sp->end_seq = end_seq;
4204 return 1;
4206 return 0;
4209 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4211 struct tcp_sock *tp = tcp_sk(sk);
4213 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4214 int mib_idx;
4216 if (before(seq, tp->rcv_nxt))
4217 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4218 else
4219 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4221 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4223 tp->rx_opt.dsack = 1;
4224 tp->duplicate_sack[0].start_seq = seq;
4225 tp->duplicate_sack[0].end_seq = end_seq;
4229 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4231 struct tcp_sock *tp = tcp_sk(sk);
4233 if (!tp->rx_opt.dsack)
4234 tcp_dsack_set(sk, seq, end_seq);
4235 else
4236 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4239 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4241 struct tcp_sock *tp = tcp_sk(sk);
4243 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4244 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4245 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4246 tcp_enter_quickack_mode(sk);
4248 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4249 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4251 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4252 end_seq = tp->rcv_nxt;
4253 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4257 tcp_send_ack(sk);
4260 /* These routines update the SACK block as out-of-order packets arrive or
4261 * in-order packets close up the sequence space.
4263 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4265 int this_sack;
4266 struct tcp_sack_block *sp = &tp->selective_acks[0];
4267 struct tcp_sack_block *swalk = sp + 1;
4269 /* See if the recent change to the first SACK eats into
4270 * or hits the sequence space of other SACK blocks, if so coalesce.
4272 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4273 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4274 int i;
4276 /* Zap SWALK, by moving every further SACK up by one slot.
4277 * Decrease num_sacks.
4279 tp->rx_opt.num_sacks--;
4280 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4281 sp[i] = sp[i + 1];
4282 continue;
4284 this_sack++, swalk++;
4288 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4290 struct tcp_sock *tp = tcp_sk(sk);
4291 struct tcp_sack_block *sp = &tp->selective_acks[0];
4292 int cur_sacks = tp->rx_opt.num_sacks;
4293 int this_sack;
4295 if (!cur_sacks)
4296 goto new_sack;
4298 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4299 if (tcp_sack_extend(sp, seq, end_seq)) {
4300 /* Rotate this_sack to the first one. */
4301 for (; this_sack > 0; this_sack--, sp--)
4302 swap(*sp, *(sp - 1));
4303 if (cur_sacks > 1)
4304 tcp_sack_maybe_coalesce(tp);
4305 return;
4309 /* Could not find an adjacent existing SACK, build a new one,
4310 * put it at the front, and shift everyone else down. We
4311 * always know there is at least one SACK present already here.
4313 * If the sack array is full, forget about the last one.
4315 if (this_sack >= TCP_NUM_SACKS) {
4316 this_sack--;
4317 tp->rx_opt.num_sacks--;
4318 sp--;
4320 for (; this_sack > 0; this_sack--, sp--)
4321 *sp = *(sp - 1);
4323 new_sack:
4324 /* Build the new head SACK, and we're done. */
4325 sp->start_seq = seq;
4326 sp->end_seq = end_seq;
4327 tp->rx_opt.num_sacks++;
4330 /* RCV.NXT advances, some SACKs should be eaten. */
4332 static void tcp_sack_remove(struct tcp_sock *tp)
4334 struct tcp_sack_block *sp = &tp->selective_acks[0];
4335 int num_sacks = tp->rx_opt.num_sacks;
4336 int this_sack;
4338 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4339 if (skb_queue_empty(&tp->out_of_order_queue)) {
4340 tp->rx_opt.num_sacks = 0;
4341 return;
4344 for (this_sack = 0; this_sack < num_sacks;) {
4345 /* Check if the start of the sack is covered by RCV.NXT. */
4346 if (!before(tp->rcv_nxt, sp->start_seq)) {
4347 int i;
4349 /* RCV.NXT must cover all the block! */
4350 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4352 /* Zap this SACK, by moving forward any other SACKS. */
4353 for (i=this_sack+1; i < num_sacks; i++)
4354 tp->selective_acks[i-1] = tp->selective_acks[i];
4355 num_sacks--;
4356 continue;
4358 this_sack++;
4359 sp++;
4361 tp->rx_opt.num_sacks = num_sacks;
4364 /* This one checks to see if we can put data from the
4365 * out_of_order queue into the receive_queue.
4367 static void tcp_ofo_queue(struct sock *sk)
4369 struct tcp_sock *tp = tcp_sk(sk);
4370 __u32 dsack_high = tp->rcv_nxt;
4371 struct sk_buff *skb;
4373 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4374 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4375 break;
4377 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4378 __u32 dsack = dsack_high;
4379 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4380 dsack_high = TCP_SKB_CB(skb)->end_seq;
4381 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4384 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4385 SOCK_DEBUG(sk, "ofo packet was already received\n");
4386 __skb_unlink(skb, &tp->out_of_order_queue);
4387 __kfree_skb(skb);
4388 continue;
4390 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4391 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4392 TCP_SKB_CB(skb)->end_seq);
4394 __skb_unlink(skb, &tp->out_of_order_queue);
4395 __skb_queue_tail(&sk->sk_receive_queue, skb);
4396 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4397 if (tcp_hdr(skb)->fin)
4398 tcp_fin(skb, sk, tcp_hdr(skb));
4402 static int tcp_prune_ofo_queue(struct sock *sk);
4403 static int tcp_prune_queue(struct sock *sk);
4405 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4407 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4408 !sk_rmem_schedule(sk, size)) {
4410 if (tcp_prune_queue(sk) < 0)
4411 return -1;
4413 if (!sk_rmem_schedule(sk, size)) {
4414 if (!tcp_prune_ofo_queue(sk))
4415 return -1;
4417 if (!sk_rmem_schedule(sk, size))
4418 return -1;
4421 return 0;
4424 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4426 struct tcphdr *th = tcp_hdr(skb);
4427 struct tcp_sock *tp = tcp_sk(sk);
4428 int eaten = -1;
4430 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4431 goto drop;
4433 skb_dst_drop(skb);
4434 __skb_pull(skb, th->doff * 4);
4436 TCP_ECN_accept_cwr(tp, skb);
4438 tp->rx_opt.dsack = 0;
4440 /* Queue data for delivery to the user.
4441 * Packets in sequence go to the receive queue.
4442 * Out of sequence packets to the out_of_order_queue.
4444 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4445 if (tcp_receive_window(tp) == 0)
4446 goto out_of_window;
4448 /* Ok. In sequence. In window. */
4449 if (tp->ucopy.task == current &&
4450 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4451 sock_owned_by_user(sk) && !tp->urg_data) {
4452 int chunk = min_t(unsigned int, skb->len,
4453 tp->ucopy.len);
4455 __set_current_state(TASK_RUNNING);
4457 local_bh_enable();
4458 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4459 tp->ucopy.len -= chunk;
4460 tp->copied_seq += chunk;
4461 eaten = (chunk == skb->len);
4462 tcp_rcv_space_adjust(sk);
4464 local_bh_disable();
4467 if (eaten <= 0) {
4468 queue_and_out:
4469 if (eaten < 0 &&
4470 tcp_try_rmem_schedule(sk, skb->truesize))
4471 goto drop;
4473 skb_set_owner_r(skb, sk);
4474 __skb_queue_tail(&sk->sk_receive_queue, skb);
4476 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4477 if (skb->len)
4478 tcp_event_data_recv(sk, skb);
4479 if (th->fin)
4480 tcp_fin(skb, sk, th);
4482 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4483 tcp_ofo_queue(sk);
4485 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4486 * gap in queue is filled.
4488 if (skb_queue_empty(&tp->out_of_order_queue))
4489 inet_csk(sk)->icsk_ack.pingpong = 0;
4492 if (tp->rx_opt.num_sacks)
4493 tcp_sack_remove(tp);
4495 tcp_fast_path_check(sk);
4497 if (eaten > 0)
4498 __kfree_skb(skb);
4499 else if (!sock_flag(sk, SOCK_DEAD))
4500 sk->sk_data_ready(sk, 0);
4501 return;
4504 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4505 /* A retransmit, 2nd most common case. Force an immediate ack. */
4506 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4507 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4509 out_of_window:
4510 tcp_enter_quickack_mode(sk);
4511 inet_csk_schedule_ack(sk);
4512 drop:
4513 __kfree_skb(skb);
4514 return;
4517 /* Out of window. F.e. zero window probe. */
4518 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4519 goto out_of_window;
4521 tcp_enter_quickack_mode(sk);
4523 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4524 /* Partial packet, seq < rcv_next < end_seq */
4525 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4526 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4527 TCP_SKB_CB(skb)->end_seq);
4529 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4531 /* If window is closed, drop tail of packet. But after
4532 * remembering D-SACK for its head made in previous line.
4534 if (!tcp_receive_window(tp))
4535 goto out_of_window;
4536 goto queue_and_out;
4539 TCP_ECN_check_ce(tp, skb);
4541 if (tcp_try_rmem_schedule(sk, skb->truesize))
4542 goto drop;
4544 /* Disable header prediction. */
4545 tp->pred_flags = 0;
4546 inet_csk_schedule_ack(sk);
4548 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4549 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4551 skb_set_owner_r(skb, sk);
4553 if (!skb_peek(&tp->out_of_order_queue)) {
4554 /* Initial out of order segment, build 1 SACK. */
4555 if (tcp_is_sack(tp)) {
4556 tp->rx_opt.num_sacks = 1;
4557 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4558 tp->selective_acks[0].end_seq =
4559 TCP_SKB_CB(skb)->end_seq;
4561 __skb_queue_head(&tp->out_of_order_queue, skb);
4562 } else {
4563 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4564 u32 seq = TCP_SKB_CB(skb)->seq;
4565 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4567 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4568 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4570 if (!tp->rx_opt.num_sacks ||
4571 tp->selective_acks[0].end_seq != seq)
4572 goto add_sack;
4574 /* Common case: data arrive in order after hole. */
4575 tp->selective_acks[0].end_seq = end_seq;
4576 return;
4579 /* Find place to insert this segment. */
4580 while (1) {
4581 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4582 break;
4583 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4584 skb1 = NULL;
4585 break;
4587 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4590 /* Do skb overlap to previous one? */
4591 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4592 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4593 /* All the bits are present. Drop. */
4594 __kfree_skb(skb);
4595 tcp_dsack_set(sk, seq, end_seq);
4596 goto add_sack;
4598 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4599 /* Partial overlap. */
4600 tcp_dsack_set(sk, seq,
4601 TCP_SKB_CB(skb1)->end_seq);
4602 } else {
4603 if (skb_queue_is_first(&tp->out_of_order_queue,
4604 skb1))
4605 skb1 = NULL;
4606 else
4607 skb1 = skb_queue_prev(
4608 &tp->out_of_order_queue,
4609 skb1);
4612 if (!skb1)
4613 __skb_queue_head(&tp->out_of_order_queue, skb);
4614 else
4615 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4617 /* And clean segments covered by new one as whole. */
4618 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4619 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4621 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4622 break;
4623 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4624 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4625 end_seq);
4626 break;
4628 __skb_unlink(skb1, &tp->out_of_order_queue);
4629 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4630 TCP_SKB_CB(skb1)->end_seq);
4631 __kfree_skb(skb1);
4634 add_sack:
4635 if (tcp_is_sack(tp))
4636 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4640 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4641 struct sk_buff_head *list)
4643 struct sk_buff *next = NULL;
4645 if (!skb_queue_is_last(list, skb))
4646 next = skb_queue_next(list, skb);
4648 __skb_unlink(skb, list);
4649 __kfree_skb(skb);
4650 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4652 return next;
4655 /* Collapse contiguous sequence of skbs head..tail with
4656 * sequence numbers start..end.
4658 * If tail is NULL, this means until the end of the list.
4660 * Segments with FIN/SYN are not collapsed (only because this
4661 * simplifies code)
4663 static void
4664 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4665 struct sk_buff *head, struct sk_buff *tail,
4666 u32 start, u32 end)
4668 struct sk_buff *skb, *n;
4669 bool end_of_skbs;
4671 /* First, check that queue is collapsible and find
4672 * the point where collapsing can be useful. */
4673 skb = head;
4674 restart:
4675 end_of_skbs = true;
4676 skb_queue_walk_from_safe(list, skb, n) {
4677 if (skb == tail)
4678 break;
4679 /* No new bits? It is possible on ofo queue. */
4680 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4681 skb = tcp_collapse_one(sk, skb, list);
4682 if (!skb)
4683 break;
4684 goto restart;
4687 /* The first skb to collapse is:
4688 * - not SYN/FIN and
4689 * - bloated or contains data before "start" or
4690 * overlaps to the next one.
4692 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4693 (tcp_win_from_space(skb->truesize) > skb->len ||
4694 before(TCP_SKB_CB(skb)->seq, start))) {
4695 end_of_skbs = false;
4696 break;
4699 if (!skb_queue_is_last(list, skb)) {
4700 struct sk_buff *next = skb_queue_next(list, skb);
4701 if (next != tail &&
4702 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4703 end_of_skbs = false;
4704 break;
4708 /* Decided to skip this, advance start seq. */
4709 start = TCP_SKB_CB(skb)->end_seq;
4711 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4712 return;
4714 while (before(start, end)) {
4715 struct sk_buff *nskb;
4716 unsigned int header = skb_headroom(skb);
4717 int copy = SKB_MAX_ORDER(header, 0);
4719 /* Too big header? This can happen with IPv6. */
4720 if (copy < 0)
4721 return;
4722 if (end - start < copy)
4723 copy = end - start;
4724 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4725 if (!nskb)
4726 return;
4728 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4729 skb_set_network_header(nskb, (skb_network_header(skb) -
4730 skb->head));
4731 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4732 skb->head));
4733 skb_reserve(nskb, header);
4734 memcpy(nskb->head, skb->head, header);
4735 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4736 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4737 __skb_queue_before(list, skb, nskb);
4738 skb_set_owner_r(nskb, sk);
4740 /* Copy data, releasing collapsed skbs. */
4741 while (copy > 0) {
4742 int offset = start - TCP_SKB_CB(skb)->seq;
4743 int size = TCP_SKB_CB(skb)->end_seq - start;
4745 BUG_ON(offset < 0);
4746 if (size > 0) {
4747 size = min(copy, size);
4748 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4749 BUG();
4750 TCP_SKB_CB(nskb)->end_seq += size;
4751 copy -= size;
4752 start += size;
4754 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4755 skb = tcp_collapse_one(sk, skb, list);
4756 if (!skb ||
4757 skb == tail ||
4758 tcp_hdr(skb)->syn ||
4759 tcp_hdr(skb)->fin)
4760 return;
4766 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4767 * and tcp_collapse() them until all the queue is collapsed.
4769 static void tcp_collapse_ofo_queue(struct sock *sk)
4771 struct tcp_sock *tp = tcp_sk(sk);
4772 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4773 struct sk_buff *head;
4774 u32 start, end;
4776 if (skb == NULL)
4777 return;
4779 start = TCP_SKB_CB(skb)->seq;
4780 end = TCP_SKB_CB(skb)->end_seq;
4781 head = skb;
4783 for (;;) {
4784 struct sk_buff *next = NULL;
4786 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4787 next = skb_queue_next(&tp->out_of_order_queue, skb);
4788 skb = next;
4790 /* Segment is terminated when we see gap or when
4791 * we are at the end of all the queue. */
4792 if (!skb ||
4793 after(TCP_SKB_CB(skb)->seq, end) ||
4794 before(TCP_SKB_CB(skb)->end_seq, start)) {
4795 tcp_collapse(sk, &tp->out_of_order_queue,
4796 head, skb, start, end);
4797 head = skb;
4798 if (!skb)
4799 break;
4800 /* Start new segment */
4801 start = TCP_SKB_CB(skb)->seq;
4802 end = TCP_SKB_CB(skb)->end_seq;
4803 } else {
4804 if (before(TCP_SKB_CB(skb)->seq, start))
4805 start = TCP_SKB_CB(skb)->seq;
4806 if (after(TCP_SKB_CB(skb)->end_seq, end))
4807 end = TCP_SKB_CB(skb)->end_seq;
4813 * Purge the out-of-order queue.
4814 * Return true if queue was pruned.
4816 static int tcp_prune_ofo_queue(struct sock *sk)
4818 struct tcp_sock *tp = tcp_sk(sk);
4819 int res = 0;
4821 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4822 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4823 __skb_queue_purge(&tp->out_of_order_queue);
4825 /* Reset SACK state. A conforming SACK implementation will
4826 * do the same at a timeout based retransmit. When a connection
4827 * is in a sad state like this, we care only about integrity
4828 * of the connection not performance.
4830 if (tp->rx_opt.sack_ok)
4831 tcp_sack_reset(&tp->rx_opt);
4832 sk_mem_reclaim(sk);
4833 res = 1;
4835 return res;
4838 /* Reduce allocated memory if we can, trying to get
4839 * the socket within its memory limits again.
4841 * Return less than zero if we should start dropping frames
4842 * until the socket owning process reads some of the data
4843 * to stabilize the situation.
4845 static int tcp_prune_queue(struct sock *sk)
4847 struct tcp_sock *tp = tcp_sk(sk);
4849 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4851 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4853 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4854 tcp_clamp_window(sk);
4855 else if (tcp_memory_pressure)
4856 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4858 tcp_collapse_ofo_queue(sk);
4859 if (!skb_queue_empty(&sk->sk_receive_queue))
4860 tcp_collapse(sk, &sk->sk_receive_queue,
4861 skb_peek(&sk->sk_receive_queue),
4862 NULL,
4863 tp->copied_seq, tp->rcv_nxt);
4864 sk_mem_reclaim(sk);
4866 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4867 return 0;
4869 /* Collapsing did not help, destructive actions follow.
4870 * This must not ever occur. */
4872 tcp_prune_ofo_queue(sk);
4874 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4875 return 0;
4877 /* If we are really being abused, tell the caller to silently
4878 * drop receive data on the floor. It will get retransmitted
4879 * and hopefully then we'll have sufficient space.
4881 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4883 /* Massive buffer overcommit. */
4884 tp->pred_flags = 0;
4885 return -1;
4888 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4889 * As additional protections, we do not touch cwnd in retransmission phases,
4890 * and if application hit its sndbuf limit recently.
4892 void tcp_cwnd_application_limited(struct sock *sk)
4894 struct tcp_sock *tp = tcp_sk(sk);
4896 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4897 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4898 /* Limited by application or receiver window. */
4899 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4900 u32 win_used = max(tp->snd_cwnd_used, init_win);
4901 if (win_used < tp->snd_cwnd) {
4902 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4903 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4905 tp->snd_cwnd_used = 0;
4907 tp->snd_cwnd_stamp = tcp_time_stamp;
4910 static int tcp_should_expand_sndbuf(struct sock *sk)
4912 struct tcp_sock *tp = tcp_sk(sk);
4914 /* If the user specified a specific send buffer setting, do
4915 * not modify it.
4917 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4918 return 0;
4920 /* If we are under global TCP memory pressure, do not expand. */
4921 if (tcp_memory_pressure)
4922 return 0;
4924 /* If we are under soft global TCP memory pressure, do not expand. */
4925 if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4926 return 0;
4928 /* If we filled the congestion window, do not expand. */
4929 if (tp->packets_out >= tp->snd_cwnd)
4930 return 0;
4932 return 1;
4935 /* When incoming ACK allowed to free some skb from write_queue,
4936 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4937 * on the exit from tcp input handler.
4939 * PROBLEM: sndbuf expansion does not work well with largesend.
4941 static void tcp_new_space(struct sock *sk)
4943 struct tcp_sock *tp = tcp_sk(sk);
4945 if (tcp_should_expand_sndbuf(sk)) {
4946 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4947 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4948 int demanded = max_t(unsigned int, tp->snd_cwnd,
4949 tp->reordering + 1);
4950 sndmem *= 2 * demanded;
4951 if (sndmem > sk->sk_sndbuf)
4952 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4953 tp->snd_cwnd_stamp = tcp_time_stamp;
4956 sk->sk_write_space(sk);
4959 static void tcp_check_space(struct sock *sk)
4961 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4962 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4963 if (sk->sk_socket &&
4964 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4965 tcp_new_space(sk);
4969 static inline void tcp_data_snd_check(struct sock *sk)
4971 tcp_push_pending_frames(sk);
4972 tcp_check_space(sk);
4976 * Check if sending an ack is needed.
4978 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4980 struct tcp_sock *tp = tcp_sk(sk);
4982 /* More than one full frame received... */
4983 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4984 /* ... and right edge of window advances far enough.
4985 * (tcp_recvmsg() will send ACK otherwise). Or...
4987 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4988 /* We ACK each frame or... */
4989 tcp_in_quickack_mode(sk) ||
4990 /* We have out of order data. */
4991 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4992 /* Then ack it now */
4993 tcp_send_ack(sk);
4994 } else {
4995 /* Else, send delayed ack. */
4996 tcp_send_delayed_ack(sk);
5000 static inline void tcp_ack_snd_check(struct sock *sk)
5002 if (!inet_csk_ack_scheduled(sk)) {
5003 /* We sent a data segment already. */
5004 return;
5006 __tcp_ack_snd_check(sk, 1);
5010 * This routine is only called when we have urgent data
5011 * signaled. Its the 'slow' part of tcp_urg. It could be
5012 * moved inline now as tcp_urg is only called from one
5013 * place. We handle URGent data wrong. We have to - as
5014 * BSD still doesn't use the correction from RFC961.
5015 * For 1003.1g we should support a new option TCP_STDURG to permit
5016 * either form (or just set the sysctl tcp_stdurg).
5019 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
5021 struct tcp_sock *tp = tcp_sk(sk);
5022 u32 ptr = ntohs(th->urg_ptr);
5024 if (ptr && !sysctl_tcp_stdurg)
5025 ptr--;
5026 ptr += ntohl(th->seq);
5028 /* Ignore urgent data that we've already seen and read. */
5029 if (after(tp->copied_seq, ptr))
5030 return;
5032 /* Do not replay urg ptr.
5034 * NOTE: interesting situation not covered by specs.
5035 * Misbehaving sender may send urg ptr, pointing to segment,
5036 * which we already have in ofo queue. We are not able to fetch
5037 * such data and will stay in TCP_URG_NOTYET until will be eaten
5038 * by recvmsg(). Seems, we are not obliged to handle such wicked
5039 * situations. But it is worth to think about possibility of some
5040 * DoSes using some hypothetical application level deadlock.
5042 if (before(ptr, tp->rcv_nxt))
5043 return;
5045 /* Do we already have a newer (or duplicate) urgent pointer? */
5046 if (tp->urg_data && !after(ptr, tp->urg_seq))
5047 return;
5049 /* Tell the world about our new urgent pointer. */
5050 sk_send_sigurg(sk);
5052 /* We may be adding urgent data when the last byte read was
5053 * urgent. To do this requires some care. We cannot just ignore
5054 * tp->copied_seq since we would read the last urgent byte again
5055 * as data, nor can we alter copied_seq until this data arrives
5056 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5058 * NOTE. Double Dutch. Rendering to plain English: author of comment
5059 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5060 * and expect that both A and B disappear from stream. This is _wrong_.
5061 * Though this happens in BSD with high probability, this is occasional.
5062 * Any application relying on this is buggy. Note also, that fix "works"
5063 * only in this artificial test. Insert some normal data between A and B and we will
5064 * decline of BSD again. Verdict: it is better to remove to trap
5065 * buggy users.
5067 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5068 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5069 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5070 tp->copied_seq++;
5071 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5072 __skb_unlink(skb, &sk->sk_receive_queue);
5073 __kfree_skb(skb);
5077 tp->urg_data = TCP_URG_NOTYET;
5078 tp->urg_seq = ptr;
5080 /* Disable header prediction. */
5081 tp->pred_flags = 0;
5084 /* This is the 'fast' part of urgent handling. */
5085 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5087 struct tcp_sock *tp = tcp_sk(sk);
5089 /* Check if we get a new urgent pointer - normally not. */
5090 if (th->urg)
5091 tcp_check_urg(sk, th);
5093 /* Do we wait for any urgent data? - normally not... */
5094 if (tp->urg_data == TCP_URG_NOTYET) {
5095 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5096 th->syn;
5098 /* Is the urgent pointer pointing into this packet? */
5099 if (ptr < skb->len) {
5100 u8 tmp;
5101 if (skb_copy_bits(skb, ptr, &tmp, 1))
5102 BUG();
5103 tp->urg_data = TCP_URG_VALID | tmp;
5104 if (!sock_flag(sk, SOCK_DEAD))
5105 sk->sk_data_ready(sk, 0);
5110 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5112 struct tcp_sock *tp = tcp_sk(sk);
5113 int chunk = skb->len - hlen;
5114 int err;
5116 local_bh_enable();
5117 if (skb_csum_unnecessary(skb))
5118 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5119 else
5120 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5121 tp->ucopy.iov);
5123 if (!err) {
5124 tp->ucopy.len -= chunk;
5125 tp->copied_seq += chunk;
5126 tcp_rcv_space_adjust(sk);
5129 local_bh_disable();
5130 return err;
5133 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5134 struct sk_buff *skb)
5136 __sum16 result;
5138 if (sock_owned_by_user(sk)) {
5139 local_bh_enable();
5140 result = __tcp_checksum_complete(skb);
5141 local_bh_disable();
5142 } else {
5143 result = __tcp_checksum_complete(skb);
5145 return result;
5148 static inline int tcp_checksum_complete_user(struct sock *sk,
5149 struct sk_buff *skb)
5151 return !skb_csum_unnecessary(skb) &&
5152 __tcp_checksum_complete_user(sk, skb);
5155 #ifdef CONFIG_NET_DMA
5156 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5157 int hlen)
5159 struct tcp_sock *tp = tcp_sk(sk);
5160 int chunk = skb->len - hlen;
5161 int dma_cookie;
5162 int copied_early = 0;
5164 if (tp->ucopy.wakeup)
5165 return 0;
5167 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5168 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5170 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5172 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5173 skb, hlen,
5174 tp->ucopy.iov, chunk,
5175 tp->ucopy.pinned_list);
5177 if (dma_cookie < 0)
5178 goto out;
5180 tp->ucopy.dma_cookie = dma_cookie;
5181 copied_early = 1;
5183 tp->ucopy.len -= chunk;
5184 tp->copied_seq += chunk;
5185 tcp_rcv_space_adjust(sk);
5187 if ((tp->ucopy.len == 0) ||
5188 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5189 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5190 tp->ucopy.wakeup = 1;
5191 sk->sk_data_ready(sk, 0);
5193 } else if (chunk > 0) {
5194 tp->ucopy.wakeup = 1;
5195 sk->sk_data_ready(sk, 0);
5197 out:
5198 return copied_early;
5200 #endif /* CONFIG_NET_DMA */
5202 /* Does PAWS and seqno based validation of an incoming segment, flags will
5203 * play significant role here.
5205 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5206 struct tcphdr *th, int syn_inerr)
5208 u8 *hash_location;
5209 struct tcp_sock *tp = tcp_sk(sk);
5211 /* RFC1323: H1. Apply PAWS check first. */
5212 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5213 tp->rx_opt.saw_tstamp &&
5214 tcp_paws_discard(sk, skb)) {
5215 if (!th->rst) {
5216 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5217 tcp_send_dupack(sk, skb);
5218 goto discard;
5220 /* Reset is accepted even if it did not pass PAWS. */
5223 /* Step 1: check sequence number */
5224 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5225 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5226 * (RST) segments are validated by checking their SEQ-fields."
5227 * And page 69: "If an incoming segment is not acceptable,
5228 * an acknowledgment should be sent in reply (unless the RST
5229 * bit is set, if so drop the segment and return)".
5231 if (!th->rst)
5232 tcp_send_dupack(sk, skb);
5233 goto discard;
5236 /* Step 2: check RST bit */
5237 if (th->rst) {
5238 tcp_reset(sk);
5239 goto discard;
5242 /* ts_recent update must be made after we are sure that the packet
5243 * is in window.
5245 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5247 /* step 3: check security and precedence [ignored] */
5249 /* step 4: Check for a SYN in window. */
5250 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5251 if (syn_inerr)
5252 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5253 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5254 tcp_reset(sk);
5255 return -1;
5258 return 1;
5260 discard:
5261 __kfree_skb(skb);
5262 return 0;
5266 * TCP receive function for the ESTABLISHED state.
5268 * It is split into a fast path and a slow path. The fast path is
5269 * disabled when:
5270 * - A zero window was announced from us - zero window probing
5271 * is only handled properly in the slow path.
5272 * - Out of order segments arrived.
5273 * - Urgent data is expected.
5274 * - There is no buffer space left
5275 * - Unexpected TCP flags/window values/header lengths are received
5276 * (detected by checking the TCP header against pred_flags)
5277 * - Data is sent in both directions. Fast path only supports pure senders
5278 * or pure receivers (this means either the sequence number or the ack
5279 * value must stay constant)
5280 * - Unexpected TCP option.
5282 * When these conditions are not satisfied it drops into a standard
5283 * receive procedure patterned after RFC793 to handle all cases.
5284 * The first three cases are guaranteed by proper pred_flags setting,
5285 * the rest is checked inline. Fast processing is turned on in
5286 * tcp_data_queue when everything is OK.
5288 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5289 struct tcphdr *th, unsigned len)
5291 struct tcp_sock *tp = tcp_sk(sk);
5292 int res;
5295 * Header prediction.
5296 * The code loosely follows the one in the famous
5297 * "30 instruction TCP receive" Van Jacobson mail.
5299 * Van's trick is to deposit buffers into socket queue
5300 * on a device interrupt, to call tcp_recv function
5301 * on the receive process context and checksum and copy
5302 * the buffer to user space. smart...
5304 * Our current scheme is not silly either but we take the
5305 * extra cost of the net_bh soft interrupt processing...
5306 * We do checksum and copy also but from device to kernel.
5309 tp->rx_opt.saw_tstamp = 0;
5311 /* pred_flags is 0xS?10 << 16 + snd_wnd
5312 * if header_prediction is to be made
5313 * 'S' will always be tp->tcp_header_len >> 2
5314 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5315 * turn it off (when there are holes in the receive
5316 * space for instance)
5317 * PSH flag is ignored.
5320 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5321 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5322 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5323 int tcp_header_len = tp->tcp_header_len;
5325 /* Timestamp header prediction: tcp_header_len
5326 * is automatically equal to th->doff*4 due to pred_flags
5327 * match.
5330 /* Check timestamp */
5331 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5332 /* No? Slow path! */
5333 if (!tcp_parse_aligned_timestamp(tp, th))
5334 goto slow_path;
5336 /* If PAWS failed, check it more carefully in slow path */
5337 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5338 goto slow_path;
5340 /* DO NOT update ts_recent here, if checksum fails
5341 * and timestamp was corrupted part, it will result
5342 * in a hung connection since we will drop all
5343 * future packets due to the PAWS test.
5347 if (len <= tcp_header_len) {
5348 /* Bulk data transfer: sender */
5349 if (len == tcp_header_len) {
5350 /* Predicted packet is in window by definition.
5351 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5352 * Hence, check seq<=rcv_wup reduces to:
5354 if (tcp_header_len ==
5355 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5356 tp->rcv_nxt == tp->rcv_wup)
5357 tcp_store_ts_recent(tp);
5359 /* We know that such packets are checksummed
5360 * on entry.
5362 tcp_ack(sk, skb, 0);
5363 __kfree_skb(skb);
5364 tcp_data_snd_check(sk);
5365 return 0;
5366 } else { /* Header too small */
5367 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5368 goto discard;
5370 } else {
5371 int eaten = 0;
5372 int copied_early = 0;
5374 if (tp->copied_seq == tp->rcv_nxt &&
5375 len - tcp_header_len <= tp->ucopy.len) {
5376 #ifdef CONFIG_NET_DMA
5377 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5378 copied_early = 1;
5379 eaten = 1;
5381 #endif
5382 if (tp->ucopy.task == current &&
5383 sock_owned_by_user(sk) && !copied_early) {
5384 __set_current_state(TASK_RUNNING);
5386 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5387 eaten = 1;
5389 if (eaten) {
5390 /* Predicted packet is in window by definition.
5391 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5392 * Hence, check seq<=rcv_wup reduces to:
5394 if (tcp_header_len ==
5395 (sizeof(struct tcphdr) +
5396 TCPOLEN_TSTAMP_ALIGNED) &&
5397 tp->rcv_nxt == tp->rcv_wup)
5398 tcp_store_ts_recent(tp);
5400 tcp_rcv_rtt_measure_ts(sk, skb);
5402 __skb_pull(skb, tcp_header_len);
5403 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5404 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5406 if (copied_early)
5407 tcp_cleanup_rbuf(sk, skb->len);
5409 if (!eaten) {
5410 if (tcp_checksum_complete_user(sk, skb))
5411 goto csum_error;
5413 /* Predicted packet is in window by definition.
5414 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5415 * Hence, check seq<=rcv_wup reduces to:
5417 if (tcp_header_len ==
5418 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5419 tp->rcv_nxt == tp->rcv_wup)
5420 tcp_store_ts_recent(tp);
5422 tcp_rcv_rtt_measure_ts(sk, skb);
5424 if ((int)skb->truesize > sk->sk_forward_alloc)
5425 goto step5;
5427 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5429 /* Bulk data transfer: receiver */
5430 __skb_pull(skb, tcp_header_len);
5431 __skb_queue_tail(&sk->sk_receive_queue, skb);
5432 skb_set_owner_r(skb, sk);
5433 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5436 tcp_event_data_recv(sk, skb);
5438 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5439 /* Well, only one small jumplet in fast path... */
5440 tcp_ack(sk, skb, FLAG_DATA);
5441 tcp_data_snd_check(sk);
5442 if (!inet_csk_ack_scheduled(sk))
5443 goto no_ack;
5446 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5447 __tcp_ack_snd_check(sk, 0);
5448 no_ack:
5449 #ifdef CONFIG_NET_DMA
5450 if (copied_early)
5451 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5452 else
5453 #endif
5454 if (eaten)
5455 __kfree_skb(skb);
5456 else
5457 sk->sk_data_ready(sk, 0);
5458 return 0;
5462 slow_path:
5463 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5464 goto csum_error;
5467 * Standard slow path.
5470 res = tcp_validate_incoming(sk, skb, th, 1);
5471 if (res <= 0)
5472 return -res;
5474 step5:
5475 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5476 goto discard;
5478 tcp_rcv_rtt_measure_ts(sk, skb);
5480 /* Process urgent data. */
5481 tcp_urg(sk, skb, th);
5483 /* step 7: process the segment text */
5484 tcp_data_queue(sk, skb);
5486 tcp_data_snd_check(sk);
5487 tcp_ack_snd_check(sk);
5488 return 0;
5490 csum_error:
5491 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5493 discard:
5494 __kfree_skb(skb);
5495 return 0;
5497 EXPORT_SYMBOL(tcp_rcv_established);
5499 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5500 struct tcphdr *th, unsigned len)
5502 u8 *hash_location;
5503 struct inet_connection_sock *icsk = inet_csk(sk);
5504 struct tcp_sock *tp = tcp_sk(sk);
5505 struct tcp_cookie_values *cvp = tp->cookie_values;
5506 int saved_clamp = tp->rx_opt.mss_clamp;
5508 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5510 if (th->ack) {
5511 /* rfc793:
5512 * "If the state is SYN-SENT then
5513 * first check the ACK bit
5514 * If the ACK bit is set
5515 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5516 * a reset (unless the RST bit is set, if so drop
5517 * the segment and return)"
5519 * We do not send data with SYN, so that RFC-correct
5520 * test reduces to:
5522 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5523 goto reset_and_undo;
5525 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5526 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5527 tcp_time_stamp)) {
5528 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5529 goto reset_and_undo;
5532 /* Now ACK is acceptable.
5534 * "If the RST bit is set
5535 * If the ACK was acceptable then signal the user "error:
5536 * connection reset", drop the segment, enter CLOSED state,
5537 * delete TCB, and return."
5540 if (th->rst) {
5541 tcp_reset(sk);
5542 goto discard;
5545 /* rfc793:
5546 * "fifth, if neither of the SYN or RST bits is set then
5547 * drop the segment and return."
5549 * See note below!
5550 * --ANK(990513)
5552 if (!th->syn)
5553 goto discard_and_undo;
5555 /* rfc793:
5556 * "If the SYN bit is on ...
5557 * are acceptable then ...
5558 * (our SYN has been ACKed), change the connection
5559 * state to ESTABLISHED..."
5562 TCP_ECN_rcv_synack(tp, th);
5564 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5565 tcp_ack(sk, skb, FLAG_SLOWPATH);
5567 /* Ok.. it's good. Set up sequence numbers and
5568 * move to established.
5570 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5571 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5573 /* RFC1323: The window in SYN & SYN/ACK segments is
5574 * never scaled.
5576 tp->snd_wnd = ntohs(th->window);
5577 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5579 if (!tp->rx_opt.wscale_ok) {
5580 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5581 tp->window_clamp = min(tp->window_clamp, 65535U);
5584 if (tp->rx_opt.saw_tstamp) {
5585 tp->rx_opt.tstamp_ok = 1;
5586 tp->tcp_header_len =
5587 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5588 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5589 tcp_store_ts_recent(tp);
5590 } else {
5591 tp->tcp_header_len = sizeof(struct tcphdr);
5594 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5595 tcp_enable_fack(tp);
5597 tcp_mtup_init(sk);
5598 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5599 tcp_initialize_rcv_mss(sk);
5601 /* Remember, tcp_poll() does not lock socket!
5602 * Change state from SYN-SENT only after copied_seq
5603 * is initialized. */
5604 tp->copied_seq = tp->rcv_nxt;
5606 if (cvp != NULL &&
5607 cvp->cookie_pair_size > 0 &&
5608 tp->rx_opt.cookie_plus > 0) {
5609 int cookie_size = tp->rx_opt.cookie_plus
5610 - TCPOLEN_COOKIE_BASE;
5611 int cookie_pair_size = cookie_size
5612 + cvp->cookie_desired;
5614 /* A cookie extension option was sent and returned.
5615 * Note that each incoming SYNACK replaces the
5616 * Responder cookie. The initial exchange is most
5617 * fragile, as protection against spoofing relies
5618 * entirely upon the sequence and timestamp (above).
5619 * This replacement strategy allows the correct pair to
5620 * pass through, while any others will be filtered via
5621 * Responder verification later.
5623 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5624 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5625 hash_location, cookie_size);
5626 cvp->cookie_pair_size = cookie_pair_size;
5630 smp_mb();
5631 tcp_set_state(sk, TCP_ESTABLISHED);
5633 security_inet_conn_established(sk, skb);
5635 /* Make sure socket is routed, for correct metrics. */
5636 icsk->icsk_af_ops->rebuild_header(sk);
5638 tcp_init_metrics(sk);
5640 tcp_init_congestion_control(sk);
5642 /* Prevent spurious tcp_cwnd_restart() on first data
5643 * packet.
5645 tp->lsndtime = tcp_time_stamp;
5647 tcp_init_buffer_space(sk);
5649 if (sock_flag(sk, SOCK_KEEPOPEN))
5650 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5652 if (!tp->rx_opt.snd_wscale)
5653 __tcp_fast_path_on(tp, tp->snd_wnd);
5654 else
5655 tp->pred_flags = 0;
5657 if (!sock_flag(sk, SOCK_DEAD)) {
5658 sk->sk_state_change(sk);
5659 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5662 if (sk->sk_write_pending ||
5663 icsk->icsk_accept_queue.rskq_defer_accept ||
5664 icsk->icsk_ack.pingpong) {
5665 /* Save one ACK. Data will be ready after
5666 * several ticks, if write_pending is set.
5668 * It may be deleted, but with this feature tcpdumps
5669 * look so _wonderfully_ clever, that I was not able
5670 * to stand against the temptation 8) --ANK
5672 inet_csk_schedule_ack(sk);
5673 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5674 icsk->icsk_ack.ato = TCP_ATO_MIN;
5675 tcp_incr_quickack(sk);
5676 tcp_enter_quickack_mode(sk);
5677 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5678 TCP_DELACK_MAX, TCP_RTO_MAX);
5680 discard:
5681 __kfree_skb(skb);
5682 return 0;
5683 } else {
5684 tcp_send_ack(sk);
5686 return -1;
5689 /* No ACK in the segment */
5691 if (th->rst) {
5692 /* rfc793:
5693 * "If the RST bit is set
5695 * Otherwise (no ACK) drop the segment and return."
5698 goto discard_and_undo;
5701 /* PAWS check. */
5702 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5703 tcp_paws_reject(&tp->rx_opt, 0))
5704 goto discard_and_undo;
5706 if (th->syn) {
5707 /* We see SYN without ACK. It is attempt of
5708 * simultaneous connect with crossed SYNs.
5709 * Particularly, it can be connect to self.
5711 tcp_set_state(sk, TCP_SYN_RECV);
5713 if (tp->rx_opt.saw_tstamp) {
5714 tp->rx_opt.tstamp_ok = 1;
5715 tcp_store_ts_recent(tp);
5716 tp->tcp_header_len =
5717 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5718 } else {
5719 tp->tcp_header_len = sizeof(struct tcphdr);
5722 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5723 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5725 /* RFC1323: The window in SYN & SYN/ACK segments is
5726 * never scaled.
5728 tp->snd_wnd = ntohs(th->window);
5729 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5730 tp->max_window = tp->snd_wnd;
5732 TCP_ECN_rcv_syn(tp, th);
5734 tcp_mtup_init(sk);
5735 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5736 tcp_initialize_rcv_mss(sk);
5738 tcp_send_synack(sk);
5739 #if 0
5740 /* Note, we could accept data and URG from this segment.
5741 * There are no obstacles to make this.
5743 * However, if we ignore data in ACKless segments sometimes,
5744 * we have no reasons to accept it sometimes.
5745 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5746 * is not flawless. So, discard packet for sanity.
5747 * Uncomment this return to process the data.
5749 return -1;
5750 #else
5751 goto discard;
5752 #endif
5754 /* "fifth, if neither of the SYN or RST bits is set then
5755 * drop the segment and return."
5758 discard_and_undo:
5759 tcp_clear_options(&tp->rx_opt);
5760 tp->rx_opt.mss_clamp = saved_clamp;
5761 goto discard;
5763 reset_and_undo:
5764 tcp_clear_options(&tp->rx_opt);
5765 tp->rx_opt.mss_clamp = saved_clamp;
5766 return 1;
5770 * This function implements the receiving procedure of RFC 793 for
5771 * all states except ESTABLISHED and TIME_WAIT.
5772 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5773 * address independent.
5776 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5777 struct tcphdr *th, unsigned len)
5779 struct tcp_sock *tp = tcp_sk(sk);
5780 struct inet_connection_sock *icsk = inet_csk(sk);
5781 int queued = 0;
5782 int res;
5784 tp->rx_opt.saw_tstamp = 0;
5786 switch (sk->sk_state) {
5787 case TCP_CLOSE:
5788 goto discard;
5790 case TCP_LISTEN:
5791 if (th->ack)
5792 return 1;
5794 if (th->rst)
5795 goto discard;
5797 if (th->syn) {
5798 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5799 return 1;
5801 /* Now we have several options: In theory there is
5802 * nothing else in the frame. KA9Q has an option to
5803 * send data with the syn, BSD accepts data with the
5804 * syn up to the [to be] advertised window and
5805 * Solaris 2.1 gives you a protocol error. For now
5806 * we just ignore it, that fits the spec precisely
5807 * and avoids incompatibilities. It would be nice in
5808 * future to drop through and process the data.
5810 * Now that TTCP is starting to be used we ought to
5811 * queue this data.
5812 * But, this leaves one open to an easy denial of
5813 * service attack, and SYN cookies can't defend
5814 * against this problem. So, we drop the data
5815 * in the interest of security over speed unless
5816 * it's still in use.
5818 kfree_skb(skb);
5819 return 0;
5821 goto discard;
5823 case TCP_SYN_SENT:
5824 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5825 if (queued >= 0)
5826 return queued;
5828 /* Do step6 onward by hand. */
5829 tcp_urg(sk, skb, th);
5830 __kfree_skb(skb);
5831 tcp_data_snd_check(sk);
5832 return 0;
5835 res = tcp_validate_incoming(sk, skb, th, 0);
5836 if (res <= 0)
5837 return -res;
5839 /* step 5: check the ACK field */
5840 if (th->ack) {
5841 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5843 switch (sk->sk_state) {
5844 case TCP_SYN_RECV:
5845 if (acceptable) {
5846 tp->copied_seq = tp->rcv_nxt;
5847 smp_mb();
5848 tcp_set_state(sk, TCP_ESTABLISHED);
5849 sk->sk_state_change(sk);
5851 /* Note, that this wakeup is only for marginal
5852 * crossed SYN case. Passively open sockets
5853 * are not waked up, because sk->sk_sleep ==
5854 * NULL and sk->sk_socket == NULL.
5856 if (sk->sk_socket)
5857 sk_wake_async(sk,
5858 SOCK_WAKE_IO, POLL_OUT);
5860 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5861 tp->snd_wnd = ntohs(th->window) <<
5862 tp->rx_opt.snd_wscale;
5863 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5865 if (tp->rx_opt.tstamp_ok)
5866 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5868 /* Make sure socket is routed, for
5869 * correct metrics.
5871 icsk->icsk_af_ops->rebuild_header(sk);
5873 tcp_init_metrics(sk);
5875 tcp_init_congestion_control(sk);
5877 /* Prevent spurious tcp_cwnd_restart() on
5878 * first data packet.
5880 tp->lsndtime = tcp_time_stamp;
5882 tcp_mtup_init(sk);
5883 tcp_initialize_rcv_mss(sk);
5884 tcp_init_buffer_space(sk);
5885 tcp_fast_path_on(tp);
5886 } else {
5887 return 1;
5889 break;
5891 case TCP_FIN_WAIT1:
5892 if (tp->snd_una == tp->write_seq) {
5893 tcp_set_state(sk, TCP_FIN_WAIT2);
5894 sk->sk_shutdown |= SEND_SHUTDOWN;
5895 dst_confirm(__sk_dst_get(sk));
5897 if (!sock_flag(sk, SOCK_DEAD))
5898 /* Wake up lingering close() */
5899 sk->sk_state_change(sk);
5900 else {
5901 int tmo;
5903 if (tp->linger2 < 0 ||
5904 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5905 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5906 tcp_done(sk);
5907 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5908 return 1;
5911 tmo = tcp_fin_time(sk);
5912 if (tmo > TCP_TIMEWAIT_LEN) {
5913 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5914 } else if (th->fin || sock_owned_by_user(sk)) {
5915 /* Bad case. We could lose such FIN otherwise.
5916 * It is not a big problem, but it looks confusing
5917 * and not so rare event. We still can lose it now,
5918 * if it spins in bh_lock_sock(), but it is really
5919 * marginal case.
5921 inet_csk_reset_keepalive_timer(sk, tmo);
5922 } else {
5923 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5924 goto discard;
5928 break;
5930 case TCP_CLOSING:
5931 if (tp->snd_una == tp->write_seq) {
5932 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5933 goto discard;
5935 break;
5937 case TCP_LAST_ACK:
5938 if (tp->snd_una == tp->write_seq) {
5939 tcp_update_metrics(sk);
5940 tcp_done(sk);
5941 goto discard;
5943 break;
5945 } else
5946 goto discard;
5948 /* step 6: check the URG bit */
5949 tcp_urg(sk, skb, th);
5951 /* step 7: process the segment text */
5952 switch (sk->sk_state) {
5953 case TCP_CLOSE_WAIT:
5954 case TCP_CLOSING:
5955 case TCP_LAST_ACK:
5956 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5957 break;
5958 case TCP_FIN_WAIT1:
5959 case TCP_FIN_WAIT2:
5960 /* RFC 793 says to queue data in these states,
5961 * RFC 1122 says we MUST send a reset.
5962 * BSD 4.4 also does reset.
5964 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5965 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5966 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5967 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5968 tcp_reset(sk);
5969 return 1;
5972 /* Fall through */
5973 case TCP_ESTABLISHED:
5974 tcp_data_queue(sk, skb);
5975 queued = 1;
5976 break;
5979 /* tcp_data could move socket to TIME-WAIT */
5980 if (sk->sk_state != TCP_CLOSE) {
5981 tcp_data_snd_check(sk);
5982 tcp_ack_snd_check(sk);
5985 if (!queued) {
5986 discard:
5987 __kfree_skb(skb);
5989 return 0;
5991 EXPORT_SYMBOL(tcp_rcv_state_process);