2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
76 int sysctl_tcp_timestamps __read_mostly
= 1;
77 int sysctl_tcp_window_scaling __read_mostly
= 1;
78 int sysctl_tcp_sack __read_mostly
= 1;
79 int sysctl_tcp_fack __read_mostly
= 1;
80 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
81 EXPORT_SYMBOL(sysctl_tcp_reordering
);
82 int sysctl_tcp_ecn __read_mostly
= 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn
);
84 int sysctl_tcp_dsack __read_mostly
= 1;
85 int sysctl_tcp_app_win __read_mostly
= 31;
86 int sysctl_tcp_adv_win_scale __read_mostly
= 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
89 int sysctl_tcp_stdurg __read_mostly
;
90 int sysctl_tcp_rfc1337 __read_mostly
;
91 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
92 int sysctl_tcp_frto __read_mostly
= 2;
93 int sysctl_tcp_frto_response __read_mostly
;
94 int sysctl_tcp_nometrics_save __read_mostly
;
96 int sysctl_tcp_thin_dupack __read_mostly
;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
99 int sysctl_tcp_abc __read_mostly
;
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 /* Adapt the MSS value used to make delayed ack decision to the
128 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
130 struct inet_connection_sock
*icsk
= inet_csk(sk
);
131 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
134 icsk
->icsk_ack
.last_seg_size
= 0;
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
139 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
140 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
141 icsk
->icsk_ack
.rcv_mss
= len
;
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
146 * "len" is invariant segment length, including TCP header.
148 len
+= skb
->data
- skb_transport_header(skb
);
149 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
155 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
156 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
161 len
-= tcp_sk(sk
)->tcp_header_len
;
162 icsk
->icsk_ack
.last_seg_size
= len
;
164 icsk
->icsk_ack
.rcv_mss
= len
;
168 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
169 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
170 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
174 static void tcp_incr_quickack(struct sock
*sk
)
176 struct inet_connection_sock
*icsk
= inet_csk(sk
);
177 unsigned quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
181 if (quickacks
> icsk
->icsk_ack
.quick
)
182 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
185 static void tcp_enter_quickack_mode(struct sock
*sk
)
187 struct inet_connection_sock
*icsk
= inet_csk(sk
);
188 tcp_incr_quickack(sk
);
189 icsk
->icsk_ack
.pingpong
= 0;
190 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
193 /* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
197 static inline int tcp_in_quickack_mode(const struct sock
*sk
)
199 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
200 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
205 if (tp
->ecn_flags
& TCP_ECN_OK
)
206 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, struct sk_buff
*skb
)
211 if (tcp_hdr(skb
)->cwr
)
212 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
217 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
220 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, struct sk_buff
*skb
)
222 if (tp
->ecn_flags
& TCP_ECN_OK
) {
223 if (INET_ECN_is_ce(TCP_SKB_CB(skb
)->flags
))
224 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
225 /* Funny extension: if ECT is not set on a segment,
226 * it is surely retransmit. It is not in ECN RFC,
227 * but Linux follows this rule. */
228 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb
)->flags
)))
229 tcp_enter_quickack_mode((struct sock
*)tp
);
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, struct tcphdr
*th
)
235 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
236 tp
->ecn_flags
&= ~TCP_ECN_OK
;
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, struct tcphdr
*th
)
241 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
242 tp
->ecn_flags
&= ~TCP_ECN_OK
;
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock
*tp
, struct tcphdr
*th
)
247 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
252 /* Buffer size and advertised window tuning.
254 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
257 static void tcp_fixup_sndbuf(struct sock
*sk
)
259 int sndmem
= tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
+ 16 +
260 sizeof(struct sk_buff
);
262 if (sk
->sk_sndbuf
< 3 * sndmem
) {
263 sk
->sk_sndbuf
= 3 * sndmem
;
264 if (sk
->sk_sndbuf
> sysctl_tcp_wmem
[2])
265 sk
->sk_sndbuf
= sysctl_tcp_wmem
[2];
269 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
271 * All tcp_full_space() is split to two parts: "network" buffer, allocated
272 * forward and advertised in receiver window (tp->rcv_wnd) and
273 * "application buffer", required to isolate scheduling/application
274 * latencies from network.
275 * window_clamp is maximal advertised window. It can be less than
276 * tcp_full_space(), in this case tcp_full_space() - window_clamp
277 * is reserved for "application" buffer. The less window_clamp is
278 * the smoother our behaviour from viewpoint of network, but the lower
279 * throughput and the higher sensitivity of the connection to losses. 8)
281 * rcv_ssthresh is more strict window_clamp used at "slow start"
282 * phase to predict further behaviour of this connection.
283 * It is used for two goals:
284 * - to enforce header prediction at sender, even when application
285 * requires some significant "application buffer". It is check #1.
286 * - to prevent pruning of receive queue because of misprediction
287 * of receiver window. Check #2.
289 * The scheme does not work when sender sends good segments opening
290 * window and then starts to feed us spaghetti. But it should work
291 * in common situations. Otherwise, we have to rely on queue collapsing.
294 /* Slow part of check#2. */
295 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
297 struct tcp_sock
*tp
= tcp_sk(sk
);
299 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
300 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
302 while (tp
->rcv_ssthresh
<= window
) {
303 if (truesize
<= skb
->len
)
304 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
312 static void tcp_grow_window(struct sock
*sk
, struct sk_buff
*skb
)
314 struct tcp_sock
*tp
= tcp_sk(sk
);
317 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
318 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
319 !tcp_memory_pressure
) {
322 /* Check #2. Increase window, if skb with such overhead
323 * will fit to rcvbuf in future.
325 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
326 incr
= 2 * tp
->advmss
;
328 incr
= __tcp_grow_window(sk
, skb
);
331 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
333 inet_csk(sk
)->icsk_ack
.quick
|= 1;
338 /* 3. Tuning rcvbuf, when connection enters established state. */
340 static void tcp_fixup_rcvbuf(struct sock
*sk
)
342 struct tcp_sock
*tp
= tcp_sk(sk
);
343 int rcvmem
= tp
->advmss
+ MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
345 /* Try to select rcvbuf so that 4 mss-sized segments
346 * will fit to window and corresponding skbs will fit to our rcvbuf.
347 * (was 3; 4 is minimum to allow fast retransmit to work.)
349 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
351 if (sk
->sk_rcvbuf
< 4 * rcvmem
)
352 sk
->sk_rcvbuf
= min(4 * rcvmem
, sysctl_tcp_rmem
[2]);
355 /* 4. Try to fixup all. It is made immediately after connection enters
358 static void tcp_init_buffer_space(struct sock
*sk
)
360 struct tcp_sock
*tp
= tcp_sk(sk
);
363 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
364 tcp_fixup_rcvbuf(sk
);
365 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
366 tcp_fixup_sndbuf(sk
);
368 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
370 maxwin
= tcp_full_space(sk
);
372 if (tp
->window_clamp
>= maxwin
) {
373 tp
->window_clamp
= maxwin
;
375 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
376 tp
->window_clamp
= max(maxwin
-
377 (maxwin
>> sysctl_tcp_app_win
),
381 /* Force reservation of one segment. */
382 if (sysctl_tcp_app_win
&&
383 tp
->window_clamp
> 2 * tp
->advmss
&&
384 tp
->window_clamp
+ tp
->advmss
> maxwin
)
385 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
387 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
388 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
391 /* 5. Recalculate window clamp after socket hit its memory bounds. */
392 static void tcp_clamp_window(struct sock
*sk
)
394 struct tcp_sock
*tp
= tcp_sk(sk
);
395 struct inet_connection_sock
*icsk
= inet_csk(sk
);
397 icsk
->icsk_ack
.quick
= 0;
399 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
400 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
401 !tcp_memory_pressure
&&
402 atomic_long_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0]) {
403 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
406 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
407 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
410 /* Initialize RCV_MSS value.
411 * RCV_MSS is an our guess about MSS used by the peer.
412 * We haven't any direct information about the MSS.
413 * It's better to underestimate the RCV_MSS rather than overestimate.
414 * Overestimations make us ACKing less frequently than needed.
415 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
417 void tcp_initialize_rcv_mss(struct sock
*sk
)
419 struct tcp_sock
*tp
= tcp_sk(sk
);
420 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
422 hint
= min(hint
, tp
->rcv_wnd
/ 2);
423 hint
= min(hint
, TCP_MSS_DEFAULT
);
424 hint
= max(hint
, TCP_MIN_MSS
);
426 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
428 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
430 /* Receiver "autotuning" code.
432 * The algorithm for RTT estimation w/o timestamps is based on
433 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
434 * <http://public.lanl.gov/radiant/pubs.html#DRS>
436 * More detail on this code can be found at
437 * <http://staff.psc.edu/jheffner/>,
438 * though this reference is out of date. A new paper
441 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
443 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
449 if (new_sample
!= 0) {
450 /* If we sample in larger samples in the non-timestamp
451 * case, we could grossly overestimate the RTT especially
452 * with chatty applications or bulk transfer apps which
453 * are stalled on filesystem I/O.
455 * Also, since we are only going for a minimum in the
456 * non-timestamp case, we do not smooth things out
457 * else with timestamps disabled convergence takes too
461 m
-= (new_sample
>> 3);
463 } else if (m
< new_sample
)
466 /* No previous measure. */
470 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
471 tp
->rcv_rtt_est
.rtt
= new_sample
;
474 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
476 if (tp
->rcv_rtt_est
.time
== 0)
478 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
480 tcp_rcv_rtt_update(tp
, jiffies
- tp
->rcv_rtt_est
.time
, 1);
483 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
484 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
487 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
488 const struct sk_buff
*skb
)
490 struct tcp_sock
*tp
= tcp_sk(sk
);
491 if (tp
->rx_opt
.rcv_tsecr
&&
492 (TCP_SKB_CB(skb
)->end_seq
-
493 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
494 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
498 * This function should be called every time data is copied to user space.
499 * It calculates the appropriate TCP receive buffer space.
501 void tcp_rcv_space_adjust(struct sock
*sk
)
503 struct tcp_sock
*tp
= tcp_sk(sk
);
507 if (tp
->rcvq_space
.time
== 0)
510 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
511 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
514 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
516 space
= max(tp
->rcvq_space
.space
, space
);
518 if (tp
->rcvq_space
.space
!= space
) {
521 tp
->rcvq_space
.space
= space
;
523 if (sysctl_tcp_moderate_rcvbuf
&&
524 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
525 int new_clamp
= space
;
527 /* Receive space grows, normalize in order to
528 * take into account packet headers and sk_buff
529 * structure overhead.
534 rcvmem
= (tp
->advmss
+ MAX_TCP_HEADER
+
535 16 + sizeof(struct sk_buff
));
536 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
539 space
= min(space
, sysctl_tcp_rmem
[2]);
540 if (space
> sk
->sk_rcvbuf
) {
541 sk
->sk_rcvbuf
= space
;
543 /* Make the window clamp follow along. */
544 tp
->window_clamp
= new_clamp
;
550 tp
->rcvq_space
.seq
= tp
->copied_seq
;
551 tp
->rcvq_space
.time
= tcp_time_stamp
;
554 /* There is something which you must keep in mind when you analyze the
555 * behavior of the tp->ato delayed ack timeout interval. When a
556 * connection starts up, we want to ack as quickly as possible. The
557 * problem is that "good" TCP's do slow start at the beginning of data
558 * transmission. The means that until we send the first few ACK's the
559 * sender will sit on his end and only queue most of his data, because
560 * he can only send snd_cwnd unacked packets at any given time. For
561 * each ACK we send, he increments snd_cwnd and transmits more of his
564 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
566 struct tcp_sock
*tp
= tcp_sk(sk
);
567 struct inet_connection_sock
*icsk
= inet_csk(sk
);
570 inet_csk_schedule_ack(sk
);
572 tcp_measure_rcv_mss(sk
, skb
);
574 tcp_rcv_rtt_measure(tp
);
576 now
= tcp_time_stamp
;
578 if (!icsk
->icsk_ack
.ato
) {
579 /* The _first_ data packet received, initialize
580 * delayed ACK engine.
582 tcp_incr_quickack(sk
);
583 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
585 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
587 if (m
<= TCP_ATO_MIN
/ 2) {
588 /* The fastest case is the first. */
589 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
590 } else if (m
< icsk
->icsk_ack
.ato
) {
591 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
592 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
593 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
594 } else if (m
> icsk
->icsk_rto
) {
595 /* Too long gap. Apparently sender failed to
596 * restart window, so that we send ACKs quickly.
598 tcp_incr_quickack(sk
);
602 icsk
->icsk_ack
.lrcvtime
= now
;
604 TCP_ECN_check_ce(tp
, skb
);
607 tcp_grow_window(sk
, skb
);
610 /* Called to compute a smoothed rtt estimate. The data fed to this
611 * routine either comes from timestamps, or from segments that were
612 * known _not_ to have been retransmitted [see Karn/Partridge
613 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614 * piece by Van Jacobson.
615 * NOTE: the next three routines used to be one big routine.
616 * To save cycles in the RFC 1323 implementation it was better to break
617 * it up into three procedures. -- erics
619 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
621 struct tcp_sock
*tp
= tcp_sk(sk
);
622 long m
= mrtt
; /* RTT */
624 /* The following amusing code comes from Jacobson's
625 * article in SIGCOMM '88. Note that rtt and mdev
626 * are scaled versions of rtt and mean deviation.
627 * This is designed to be as fast as possible
628 * m stands for "measurement".
630 * On a 1990 paper the rto value is changed to:
631 * RTO = rtt + 4 * mdev
633 * Funny. This algorithm seems to be very broken.
634 * These formulae increase RTO, when it should be decreased, increase
635 * too slowly, when it should be increased quickly, decrease too quickly
636 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637 * does not matter how to _calculate_ it. Seems, it was trap
638 * that VJ failed to avoid. 8)
643 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
644 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
646 m
= -m
; /* m is now abs(error) */
647 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
648 /* This is similar to one of Eifel findings.
649 * Eifel blocks mdev updates when rtt decreases.
650 * This solution is a bit different: we use finer gain
651 * for mdev in this case (alpha*beta).
652 * Like Eifel it also prevents growth of rto,
653 * but also it limits too fast rto decreases,
654 * happening in pure Eifel.
659 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
661 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
662 if (tp
->mdev
> tp
->mdev_max
) {
663 tp
->mdev_max
= tp
->mdev
;
664 if (tp
->mdev_max
> tp
->rttvar
)
665 tp
->rttvar
= tp
->mdev_max
;
667 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
668 if (tp
->mdev_max
< tp
->rttvar
)
669 tp
->rttvar
-= (tp
->rttvar
- tp
->mdev_max
) >> 2;
670 tp
->rtt_seq
= tp
->snd_nxt
;
671 tp
->mdev_max
= tcp_rto_min(sk
);
674 /* no previous measure. */
675 tp
->srtt
= m
<< 3; /* take the measured time to be rtt */
676 tp
->mdev
= m
<< 1; /* make sure rto = 3*rtt */
677 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
678 tp
->rtt_seq
= tp
->snd_nxt
;
682 /* Calculate rto without backoff. This is the second half of Van Jacobson's
683 * routine referred to above.
685 static inline void tcp_set_rto(struct sock
*sk
)
687 const struct tcp_sock
*tp
= tcp_sk(sk
);
688 /* Old crap is replaced with new one. 8)
691 * 1. If rtt variance happened to be less 50msec, it is hallucination.
692 * It cannot be less due to utterly erratic ACK generation made
693 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694 * to do with delayed acks, because at cwnd>2 true delack timeout
695 * is invisible. Actually, Linux-2.4 also generates erratic
696 * ACKs in some circumstances.
698 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
700 /* 2. Fixups made earlier cannot be right.
701 * If we do not estimate RTO correctly without them,
702 * all the algo is pure shit and should be replaced
703 * with correct one. It is exactly, which we pretend to do.
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
712 /* Save metrics learned by this TCP session.
713 This function is called only, when TCP finishes successfully
714 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
716 void tcp_update_metrics(struct sock
*sk
)
718 struct tcp_sock
*tp
= tcp_sk(sk
);
719 struct dst_entry
*dst
= __sk_dst_get(sk
);
721 if (sysctl_tcp_nometrics_save
)
726 if (dst
&& (dst
->flags
& DST_HOST
)) {
727 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
731 if (icsk
->icsk_backoff
|| !tp
->srtt
) {
732 /* This session failed to estimate rtt. Why?
733 * Probably, no packets returned in time.
736 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
737 dst_metric_set(dst
, RTAX_RTT
, 0);
741 rtt
= dst_metric_rtt(dst
, RTAX_RTT
);
744 /* If newly calculated rtt larger than stored one,
745 * store new one. Otherwise, use EWMA. Remember,
746 * rtt overestimation is always better than underestimation.
748 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
750 set_dst_metric_rtt(dst
, RTAX_RTT
, tp
->srtt
);
752 set_dst_metric_rtt(dst
, RTAX_RTT
, rtt
- (m
>> 3));
755 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
760 /* Scale deviation to rttvar fixed point */
765 var
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
769 var
-= (var
- m
) >> 2;
771 set_dst_metric_rtt(dst
, RTAX_RTTVAR
, var
);
774 if (tcp_in_initial_slowstart(tp
)) {
775 /* Slow start still did not finish. */
776 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
777 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
778 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
779 dst_metric_set(dst
, RTAX_SSTHRESH
, tp
->snd_cwnd
>> 1);
780 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
781 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
782 dst_metric_set(dst
, RTAX_CWND
, tp
->snd_cwnd
);
783 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
784 icsk
->icsk_ca_state
== TCP_CA_Open
) {
785 /* Cong. avoidance phase, cwnd is reliable. */
786 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
787 dst_metric_set(dst
, RTAX_SSTHRESH
,
788 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
));
789 if (!dst_metric_locked(dst
, RTAX_CWND
))
790 dst_metric_set(dst
, RTAX_CWND
,
791 (dst_metric(dst
, RTAX_CWND
) +
794 /* Else slow start did not finish, cwnd is non-sense,
795 ssthresh may be also invalid.
797 if (!dst_metric_locked(dst
, RTAX_CWND
))
798 dst_metric_set(dst
, RTAX_CWND
,
799 (dst_metric(dst
, RTAX_CWND
) +
800 tp
->snd_ssthresh
) >> 1);
801 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
802 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
803 tp
->snd_ssthresh
> dst_metric(dst
, RTAX_SSTHRESH
))
804 dst_metric_set(dst
, RTAX_SSTHRESH
, tp
->snd_ssthresh
);
807 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
808 if (dst_metric(dst
, RTAX_REORDERING
) < tp
->reordering
&&
809 tp
->reordering
!= sysctl_tcp_reordering
)
810 dst_metric_set(dst
, RTAX_REORDERING
, tp
->reordering
);
815 __u32
tcp_init_cwnd(struct tcp_sock
*tp
, struct dst_entry
*dst
)
817 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
820 cwnd
= TCP_INIT_CWND
;
821 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
824 /* Set slow start threshold and cwnd not falling to slow start */
825 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
827 struct tcp_sock
*tp
= tcp_sk(sk
);
828 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
830 tp
->prior_ssthresh
= 0;
832 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
835 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
836 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
837 tcp_packets_in_flight(tp
) + 1U);
838 tp
->snd_cwnd_cnt
= 0;
839 tp
->high_seq
= tp
->snd_nxt
;
840 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
841 TCP_ECN_queue_cwr(tp
);
843 tcp_set_ca_state(sk
, TCP_CA_CWR
);
848 * Packet counting of FACK is based on in-order assumptions, therefore TCP
849 * disables it when reordering is detected
851 static void tcp_disable_fack(struct tcp_sock
*tp
)
853 /* RFC3517 uses different metric in lost marker => reset on change */
855 tp
->lost_skb_hint
= NULL
;
856 tp
->rx_opt
.sack_ok
&= ~2;
859 /* Take a notice that peer is sending D-SACKs */
860 static void tcp_dsack_seen(struct tcp_sock
*tp
)
862 tp
->rx_opt
.sack_ok
|= 4;
865 /* Initialize metrics on socket. */
867 static void tcp_init_metrics(struct sock
*sk
)
869 struct tcp_sock
*tp
= tcp_sk(sk
);
870 struct dst_entry
*dst
= __sk_dst_get(sk
);
877 if (dst_metric_locked(dst
, RTAX_CWND
))
878 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
879 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
880 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
881 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
882 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
884 /* ssthresh may have been reduced unnecessarily during.
885 * 3WHS. Restore it back to its initial default.
887 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
889 if (dst_metric(dst
, RTAX_REORDERING
) &&
890 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
891 tcp_disable_fack(tp
);
892 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
895 if (dst_metric(dst
, RTAX_RTT
) == 0 || tp
->srtt
== 0)
898 /* Initial rtt is determined from SYN,SYN-ACK.
899 * The segment is small and rtt may appear much
900 * less than real one. Use per-dst memory
901 * to make it more realistic.
903 * A bit of theory. RTT is time passed after "normal" sized packet
904 * is sent until it is ACKed. In normal circumstances sending small
905 * packets force peer to delay ACKs and calculation is correct too.
906 * The algorithm is adaptive and, provided we follow specs, it
907 * NEVER underestimate RTT. BUT! If peer tries to make some clever
908 * tricks sort of "quick acks" for time long enough to decrease RTT
909 * to low value, and then abruptly stops to do it and starts to delay
910 * ACKs, wait for troubles.
912 if (dst_metric_rtt(dst
, RTAX_RTT
) > tp
->srtt
) {
913 tp
->srtt
= dst_metric_rtt(dst
, RTAX_RTT
);
914 tp
->rtt_seq
= tp
->snd_nxt
;
916 if (dst_metric_rtt(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
917 tp
->mdev
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
918 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
923 /* RFC2988bis: We've failed to get a valid RTT sample from
924 * 3WHS. This is most likely due to retransmission,
925 * including spurious one. Reset the RTO back to 3secs
926 * from the more aggressive 1sec to avoid more spurious
929 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_FALLBACK
;
930 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_FALLBACK
;
932 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
933 * retransmitted. In light of RFC2988bis' more aggressive 1sec
934 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
935 * retransmission has occurred.
937 if (tp
->total_retrans
> 1)
940 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
941 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
944 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
947 struct tcp_sock
*tp
= tcp_sk(sk
);
948 if (metric
> tp
->reordering
) {
951 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
953 /* This exciting event is worth to be remembered. 8) */
955 mib_idx
= LINUX_MIB_TCPTSREORDER
;
956 else if (tcp_is_reno(tp
))
957 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
958 else if (tcp_is_fack(tp
))
959 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
961 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
963 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
964 #if FASTRETRANS_DEBUG > 1
965 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
966 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
970 tp
->undo_marker
? tp
->undo_retrans
: 0);
972 tcp_disable_fack(tp
);
976 /* This must be called before lost_out is incremented */
977 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
979 if ((tp
->retransmit_skb_hint
== NULL
) ||
980 before(TCP_SKB_CB(skb
)->seq
,
981 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
982 tp
->retransmit_skb_hint
= skb
;
985 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
986 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
989 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
991 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
992 tcp_verify_retransmit_hint(tp
, skb
);
994 tp
->lost_out
+= tcp_skb_pcount(skb
);
995 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
999 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
,
1000 struct sk_buff
*skb
)
1002 tcp_verify_retransmit_hint(tp
, skb
);
1004 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1005 tp
->lost_out
+= tcp_skb_pcount(skb
);
1006 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1010 /* This procedure tags the retransmission queue when SACKs arrive.
1012 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1013 * Packets in queue with these bits set are counted in variables
1014 * sacked_out, retrans_out and lost_out, correspondingly.
1016 * Valid combinations are:
1017 * Tag InFlight Description
1018 * 0 1 - orig segment is in flight.
1019 * S 0 - nothing flies, orig reached receiver.
1020 * L 0 - nothing flies, orig lost by net.
1021 * R 2 - both orig and retransmit are in flight.
1022 * L|R 1 - orig is lost, retransmit is in flight.
1023 * S|R 1 - orig reached receiver, retrans is still in flight.
1024 * (L|S|R is logically valid, it could occur when L|R is sacked,
1025 * but it is equivalent to plain S and code short-curcuits it to S.
1026 * L|S is logically invalid, it would mean -1 packet in flight 8))
1028 * These 6 states form finite state machine, controlled by the following events:
1029 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1030 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1031 * 3. Loss detection event of one of three flavors:
1032 * A. Scoreboard estimator decided the packet is lost.
1033 * A'. Reno "three dupacks" marks head of queue lost.
1034 * A''. Its FACK modfication, head until snd.fack is lost.
1035 * B. SACK arrives sacking data transmitted after never retransmitted
1036 * hole was sent out.
1037 * C. SACK arrives sacking SND.NXT at the moment, when the
1038 * segment was retransmitted.
1039 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1041 * It is pleasant to note, that state diagram turns out to be commutative,
1042 * so that we are allowed not to be bothered by order of our actions,
1043 * when multiple events arrive simultaneously. (see the function below).
1045 * Reordering detection.
1046 * --------------------
1047 * Reordering metric is maximal distance, which a packet can be displaced
1048 * in packet stream. With SACKs we can estimate it:
1050 * 1. SACK fills old hole and the corresponding segment was not
1051 * ever retransmitted -> reordering. Alas, we cannot use it
1052 * when segment was retransmitted.
1053 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1054 * for retransmitted and already SACKed segment -> reordering..
1055 * Both of these heuristics are not used in Loss state, when we cannot
1056 * account for retransmits accurately.
1058 * SACK block validation.
1059 * ----------------------
1061 * SACK block range validation checks that the received SACK block fits to
1062 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1063 * Note that SND.UNA is not included to the range though being valid because
1064 * it means that the receiver is rather inconsistent with itself reporting
1065 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1066 * perfectly valid, however, in light of RFC2018 which explicitly states
1067 * that "SACK block MUST reflect the newest segment. Even if the newest
1068 * segment is going to be discarded ...", not that it looks very clever
1069 * in case of head skb. Due to potentional receiver driven attacks, we
1070 * choose to avoid immediate execution of a walk in write queue due to
1071 * reneging and defer head skb's loss recovery to standard loss recovery
1072 * procedure that will eventually trigger (nothing forbids us doing this).
1074 * Implements also blockage to start_seq wrap-around. Problem lies in the
1075 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1076 * there's no guarantee that it will be before snd_nxt (n). The problem
1077 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1080 * <- outs wnd -> <- wrapzone ->
1081 * u e n u_w e_w s n_w
1083 * |<------------+------+----- TCP seqno space --------------+---------->|
1084 * ...-- <2^31 ->| |<--------...
1085 * ...---- >2^31 ------>| |<--------...
1087 * Current code wouldn't be vulnerable but it's better still to discard such
1088 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1089 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1090 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1091 * equal to the ideal case (infinite seqno space without wrap caused issues).
1093 * With D-SACK the lower bound is extended to cover sequence space below
1094 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1095 * again, D-SACK block must not to go across snd_una (for the same reason as
1096 * for the normal SACK blocks, explained above). But there all simplicity
1097 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1098 * fully below undo_marker they do not affect behavior in anyway and can
1099 * therefore be safely ignored. In rare cases (which are more or less
1100 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1101 * fragmentation and packet reordering past skb's retransmission. To consider
1102 * them correctly, the acceptable range must be extended even more though
1103 * the exact amount is rather hard to quantify. However, tp->max_window can
1104 * be used as an exaggerated estimate.
1106 static int tcp_is_sackblock_valid(struct tcp_sock
*tp
, int is_dsack
,
1107 u32 start_seq
, u32 end_seq
)
1109 /* Too far in future, or reversed (interpretation is ambiguous) */
1110 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1113 /* Nasty start_seq wrap-around check (see comments above) */
1114 if (!before(start_seq
, tp
->snd_nxt
))
1117 /* In outstanding window? ...This is valid exit for D-SACKs too.
1118 * start_seq == snd_una is non-sensical (see comments above)
1120 if (after(start_seq
, tp
->snd_una
))
1123 if (!is_dsack
|| !tp
->undo_marker
)
1126 /* ...Then it's D-SACK, and must reside below snd_una completely */
1127 if (!after(end_seq
, tp
->snd_una
))
1130 if (!before(start_seq
, tp
->undo_marker
))
1134 if (!after(end_seq
, tp
->undo_marker
))
1137 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1138 * start_seq < undo_marker and end_seq >= undo_marker.
1140 return !before(start_seq
, end_seq
- tp
->max_window
);
1143 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1144 * Event "C". Later note: FACK people cheated me again 8), we have to account
1145 * for reordering! Ugly, but should help.
1147 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1148 * less than what is now known to be received by the other end (derived from
1149 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1150 * retransmitted skbs to avoid some costly processing per ACKs.
1152 static void tcp_mark_lost_retrans(struct sock
*sk
)
1154 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1155 struct tcp_sock
*tp
= tcp_sk(sk
);
1156 struct sk_buff
*skb
;
1158 u32 new_low_seq
= tp
->snd_nxt
;
1159 u32 received_upto
= tcp_highest_sack_seq(tp
);
1161 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
1162 !after(received_upto
, tp
->lost_retrans_low
) ||
1163 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1166 tcp_for_write_queue(skb
, sk
) {
1167 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
1169 if (skb
== tcp_send_head(sk
))
1171 if (cnt
== tp
->retrans_out
)
1173 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1176 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1179 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1180 * constraint here (see above) but figuring out that at
1181 * least tp->reordering SACK blocks reside between ack_seq
1182 * and received_upto is not easy task to do cheaply with
1183 * the available datastructures.
1185 * Whether FACK should check here for tp->reordering segs
1186 * in-between one could argue for either way (it would be
1187 * rather simple to implement as we could count fack_count
1188 * during the walk and do tp->fackets_out - fack_count).
1190 if (after(received_upto
, ack_seq
)) {
1191 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1192 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1194 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1195 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
);
1197 if (before(ack_seq
, new_low_seq
))
1198 new_low_seq
= ack_seq
;
1199 cnt
+= tcp_skb_pcount(skb
);
1203 if (tp
->retrans_out
)
1204 tp
->lost_retrans_low
= new_low_seq
;
1207 static int tcp_check_dsack(struct sock
*sk
, struct sk_buff
*ack_skb
,
1208 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1211 struct tcp_sock
*tp
= tcp_sk(sk
);
1212 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1213 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1216 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1219 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1220 } else if (num_sacks
> 1) {
1221 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1222 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1224 if (!after(end_seq_0
, end_seq_1
) &&
1225 !before(start_seq_0
, start_seq_1
)) {
1228 NET_INC_STATS_BH(sock_net(sk
),
1229 LINUX_MIB_TCPDSACKOFORECV
);
1233 /* D-SACK for already forgotten data... Do dumb counting. */
1234 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
&&
1235 !after(end_seq_0
, prior_snd_una
) &&
1236 after(end_seq_0
, tp
->undo_marker
))
1242 struct tcp_sacktag_state
{
1248 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1249 * the incoming SACK may not exactly match but we can find smaller MSS
1250 * aligned portion of it that matches. Therefore we might need to fragment
1251 * which may fail and creates some hassle (caller must handle error case
1254 * FIXME: this could be merged to shift decision code
1256 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1257 u32 start_seq
, u32 end_seq
)
1260 unsigned int pkt_len
;
1263 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1264 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1266 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1267 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1268 mss
= tcp_skb_mss(skb
);
1269 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1272 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1276 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1281 /* Round if necessary so that SACKs cover only full MSSes
1282 * and/or the remaining small portion (if present)
1284 if (pkt_len
> mss
) {
1285 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1286 if (!in_sack
&& new_len
< pkt_len
) {
1288 if (new_len
> skb
->len
)
1293 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
);
1301 static u8
tcp_sacktag_one(struct sk_buff
*skb
, struct sock
*sk
,
1302 struct tcp_sacktag_state
*state
,
1303 int dup_sack
, int pcount
)
1305 struct tcp_sock
*tp
= tcp_sk(sk
);
1306 u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1307 int fack_count
= state
->fack_count
;
1309 /* Account D-SACK for retransmitted packet. */
1310 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1311 if (tp
->undo_marker
&& tp
->undo_retrans
&&
1312 after(TCP_SKB_CB(skb
)->end_seq
, tp
->undo_marker
))
1314 if (sacked
& TCPCB_SACKED_ACKED
)
1315 state
->reord
= min(fack_count
, state
->reord
);
1318 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1319 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1322 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1323 if (sacked
& TCPCB_SACKED_RETRANS
) {
1324 /* If the segment is not tagged as lost,
1325 * we do not clear RETRANS, believing
1326 * that retransmission is still in flight.
1328 if (sacked
& TCPCB_LOST
) {
1329 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1330 tp
->lost_out
-= pcount
;
1331 tp
->retrans_out
-= pcount
;
1334 if (!(sacked
& TCPCB_RETRANS
)) {
1335 /* New sack for not retransmitted frame,
1336 * which was in hole. It is reordering.
1338 if (before(TCP_SKB_CB(skb
)->seq
,
1339 tcp_highest_sack_seq(tp
)))
1340 state
->reord
= min(fack_count
,
1343 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1344 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->frto_highmark
))
1345 state
->flag
|= FLAG_ONLY_ORIG_SACKED
;
1348 if (sacked
& TCPCB_LOST
) {
1349 sacked
&= ~TCPCB_LOST
;
1350 tp
->lost_out
-= pcount
;
1354 sacked
|= TCPCB_SACKED_ACKED
;
1355 state
->flag
|= FLAG_DATA_SACKED
;
1356 tp
->sacked_out
+= pcount
;
1358 fack_count
+= pcount
;
1360 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1361 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1362 before(TCP_SKB_CB(skb
)->seq
,
1363 TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1364 tp
->lost_cnt_hint
+= pcount
;
1366 if (fack_count
> tp
->fackets_out
)
1367 tp
->fackets_out
= fack_count
;
1370 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1371 * frames and clear it. undo_retrans is decreased above, L|R frames
1372 * are accounted above as well.
1374 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1375 sacked
&= ~TCPCB_SACKED_RETRANS
;
1376 tp
->retrans_out
-= pcount
;
1382 static int tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1383 struct tcp_sacktag_state
*state
,
1384 unsigned int pcount
, int shifted
, int mss
,
1387 struct tcp_sock
*tp
= tcp_sk(sk
);
1388 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1392 /* Tweak before seqno plays */
1393 if (!tcp_is_fack(tp
) && tcp_is_sack(tp
) && tp
->lost_skb_hint
&&
1394 !before(TCP_SKB_CB(tp
->lost_skb_hint
)->seq
, TCP_SKB_CB(skb
)->seq
))
1395 tp
->lost_cnt_hint
+= pcount
;
1397 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1398 TCP_SKB_CB(skb
)->seq
+= shifted
;
1400 skb_shinfo(prev
)->gso_segs
+= pcount
;
1401 BUG_ON(skb_shinfo(skb
)->gso_segs
< pcount
);
1402 skb_shinfo(skb
)->gso_segs
-= pcount
;
1404 /* When we're adding to gso_segs == 1, gso_size will be zero,
1405 * in theory this shouldn't be necessary but as long as DSACK
1406 * code can come after this skb later on it's better to keep
1407 * setting gso_size to something.
1409 if (!skb_shinfo(prev
)->gso_size
) {
1410 skb_shinfo(prev
)->gso_size
= mss
;
1411 skb_shinfo(prev
)->gso_type
= sk
->sk_gso_type
;
1414 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1415 if (skb_shinfo(skb
)->gso_segs
<= 1) {
1416 skb_shinfo(skb
)->gso_size
= 0;
1417 skb_shinfo(skb
)->gso_type
= 0;
1420 /* We discard results */
1421 tcp_sacktag_one(skb
, sk
, state
, dup_sack
, pcount
);
1423 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1424 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1427 BUG_ON(!tcp_skb_pcount(skb
));
1428 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1432 /* Whole SKB was eaten :-) */
1434 if (skb
== tp
->retransmit_skb_hint
)
1435 tp
->retransmit_skb_hint
= prev
;
1436 if (skb
== tp
->scoreboard_skb_hint
)
1437 tp
->scoreboard_skb_hint
= prev
;
1438 if (skb
== tp
->lost_skb_hint
) {
1439 tp
->lost_skb_hint
= prev
;
1440 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1443 TCP_SKB_CB(skb
)->flags
|= TCP_SKB_CB(prev
)->flags
;
1444 if (skb
== tcp_highest_sack(sk
))
1445 tcp_advance_highest_sack(sk
, skb
);
1447 tcp_unlink_write_queue(skb
, sk
);
1448 sk_wmem_free_skb(sk
, skb
);
1450 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1455 /* I wish gso_size would have a bit more sane initialization than
1456 * something-or-zero which complicates things
1458 static int tcp_skb_seglen(struct sk_buff
*skb
)
1460 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1463 /* Shifting pages past head area doesn't work */
1464 static int skb_can_shift(struct sk_buff
*skb
)
1466 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1469 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1472 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1473 struct tcp_sacktag_state
*state
,
1474 u32 start_seq
, u32 end_seq
,
1477 struct tcp_sock
*tp
= tcp_sk(sk
);
1478 struct sk_buff
*prev
;
1484 if (!sk_can_gso(sk
))
1487 /* Normally R but no L won't result in plain S */
1489 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1491 if (!skb_can_shift(skb
))
1493 /* This frame is about to be dropped (was ACKed). */
1494 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1497 /* Can only happen with delayed DSACK + discard craziness */
1498 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1500 prev
= tcp_write_queue_prev(sk
, skb
);
1502 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1505 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1506 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1510 pcount
= tcp_skb_pcount(skb
);
1511 mss
= tcp_skb_seglen(skb
);
1513 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1514 * drop this restriction as unnecessary
1516 if (mss
!= tcp_skb_seglen(prev
))
1519 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1521 /* CHECKME: This is non-MSS split case only?, this will
1522 * cause skipped skbs due to advancing loop btw, original
1523 * has that feature too
1525 if (tcp_skb_pcount(skb
) <= 1)
1528 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1530 /* TODO: head merge to next could be attempted here
1531 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1532 * though it might not be worth of the additional hassle
1534 * ...we can probably just fallback to what was done
1535 * previously. We could try merging non-SACKed ones
1536 * as well but it probably isn't going to buy off
1537 * because later SACKs might again split them, and
1538 * it would make skb timestamp tracking considerably
1544 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1546 BUG_ON(len
> skb
->len
);
1548 /* MSS boundaries should be honoured or else pcount will
1549 * severely break even though it makes things bit trickier.
1550 * Optimize common case to avoid most of the divides
1552 mss
= tcp_skb_mss(skb
);
1554 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1555 * drop this restriction as unnecessary
1557 if (mss
!= tcp_skb_seglen(prev
))
1562 } else if (len
< mss
) {
1570 if (!skb_shift(prev
, skb
, len
))
1572 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1575 /* Hole filled allows collapsing with the next as well, this is very
1576 * useful when hole on every nth skb pattern happens
1578 if (prev
== tcp_write_queue_tail(sk
))
1580 skb
= tcp_write_queue_next(sk
, prev
);
1582 if (!skb_can_shift(skb
) ||
1583 (skb
== tcp_send_head(sk
)) ||
1584 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1585 (mss
!= tcp_skb_seglen(skb
)))
1589 if (skb_shift(prev
, skb
, len
)) {
1590 pcount
+= tcp_skb_pcount(skb
);
1591 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1595 state
->fack_count
+= pcount
;
1602 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1606 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1607 struct tcp_sack_block
*next_dup
,
1608 struct tcp_sacktag_state
*state
,
1609 u32 start_seq
, u32 end_seq
,
1612 struct tcp_sock
*tp
= tcp_sk(sk
);
1613 struct sk_buff
*tmp
;
1615 tcp_for_write_queue_from(skb
, sk
) {
1617 int dup_sack
= dup_sack_in
;
1619 if (skb
== tcp_send_head(sk
))
1622 /* queue is in-order => we can short-circuit the walk early */
1623 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1626 if ((next_dup
!= NULL
) &&
1627 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1628 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1629 next_dup
->start_seq
,
1635 /* skb reference here is a bit tricky to get right, since
1636 * shifting can eat and free both this skb and the next,
1637 * so not even _safe variant of the loop is enough.
1640 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1641 start_seq
, end_seq
, dup_sack
);
1650 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1656 if (unlikely(in_sack
< 0))
1660 TCP_SKB_CB(skb
)->sacked
= tcp_sacktag_one(skb
, sk
,
1663 tcp_skb_pcount(skb
));
1665 if (!before(TCP_SKB_CB(skb
)->seq
,
1666 tcp_highest_sack_seq(tp
)))
1667 tcp_advance_highest_sack(sk
, skb
);
1670 state
->fack_count
+= tcp_skb_pcount(skb
);
1675 /* Avoid all extra work that is being done by sacktag while walking in
1678 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1679 struct tcp_sacktag_state
*state
,
1682 tcp_for_write_queue_from(skb
, sk
) {
1683 if (skb
== tcp_send_head(sk
))
1686 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1689 state
->fack_count
+= tcp_skb_pcount(skb
);
1694 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1696 struct tcp_sack_block
*next_dup
,
1697 struct tcp_sacktag_state
*state
,
1700 if (next_dup
== NULL
)
1703 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1704 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1705 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1706 next_dup
->start_seq
, next_dup
->end_seq
,
1713 static int tcp_sack_cache_ok(struct tcp_sock
*tp
, struct tcp_sack_block
*cache
)
1715 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1719 tcp_sacktag_write_queue(struct sock
*sk
, struct sk_buff
*ack_skb
,
1722 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1723 struct tcp_sock
*tp
= tcp_sk(sk
);
1724 unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1725 TCP_SKB_CB(ack_skb
)->sacked
);
1726 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1727 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1728 struct tcp_sack_block
*cache
;
1729 struct tcp_sacktag_state state
;
1730 struct sk_buff
*skb
;
1731 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1733 int found_dup_sack
= 0;
1735 int first_sack_index
;
1738 state
.reord
= tp
->packets_out
;
1740 if (!tp
->sacked_out
) {
1741 if (WARN_ON(tp
->fackets_out
))
1742 tp
->fackets_out
= 0;
1743 tcp_highest_sack_reset(sk
);
1746 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1747 num_sacks
, prior_snd_una
);
1749 state
.flag
|= FLAG_DSACKING_ACK
;
1751 /* Eliminate too old ACKs, but take into
1752 * account more or less fresh ones, they can
1753 * contain valid SACK info.
1755 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1758 if (!tp
->packets_out
)
1762 first_sack_index
= 0;
1763 for (i
= 0; i
< num_sacks
; i
++) {
1764 int dup_sack
= !i
&& found_dup_sack
;
1766 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1767 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1769 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1770 sp
[used_sacks
].start_seq
,
1771 sp
[used_sacks
].end_seq
)) {
1775 if (!tp
->undo_marker
)
1776 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1778 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1780 /* Don't count olds caused by ACK reordering */
1781 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1782 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1784 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1787 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1789 first_sack_index
= -1;
1793 /* Ignore very old stuff early */
1794 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1800 /* order SACK blocks to allow in order walk of the retrans queue */
1801 for (i
= used_sacks
- 1; i
> 0; i
--) {
1802 for (j
= 0; j
< i
; j
++) {
1803 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1804 swap(sp
[j
], sp
[j
+ 1]);
1806 /* Track where the first SACK block goes to */
1807 if (j
== first_sack_index
)
1808 first_sack_index
= j
+ 1;
1813 skb
= tcp_write_queue_head(sk
);
1814 state
.fack_count
= 0;
1817 if (!tp
->sacked_out
) {
1818 /* It's already past, so skip checking against it */
1819 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1821 cache
= tp
->recv_sack_cache
;
1822 /* Skip empty blocks in at head of the cache */
1823 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1828 while (i
< used_sacks
) {
1829 u32 start_seq
= sp
[i
].start_seq
;
1830 u32 end_seq
= sp
[i
].end_seq
;
1831 int dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1832 struct tcp_sack_block
*next_dup
= NULL
;
1834 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1835 next_dup
= &sp
[i
+ 1];
1837 /* Event "B" in the comment above. */
1838 if (after(end_seq
, tp
->high_seq
))
1839 state
.flag
|= FLAG_DATA_LOST
;
1841 /* Skip too early cached blocks */
1842 while (tcp_sack_cache_ok(tp
, cache
) &&
1843 !before(start_seq
, cache
->end_seq
))
1846 /* Can skip some work by looking recv_sack_cache? */
1847 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1848 after(end_seq
, cache
->start_seq
)) {
1851 if (before(start_seq
, cache
->start_seq
)) {
1852 skb
= tcp_sacktag_skip(skb
, sk
, &state
,
1854 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1861 /* Rest of the block already fully processed? */
1862 if (!after(end_seq
, cache
->end_seq
))
1865 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1869 /* ...tail remains todo... */
1870 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1871 /* ...but better entrypoint exists! */
1872 skb
= tcp_highest_sack(sk
);
1875 state
.fack_count
= tp
->fackets_out
;
1880 skb
= tcp_sacktag_skip(skb
, sk
, &state
, cache
->end_seq
);
1881 /* Check overlap against next cached too (past this one already) */
1886 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1887 skb
= tcp_highest_sack(sk
);
1890 state
.fack_count
= tp
->fackets_out
;
1892 skb
= tcp_sacktag_skip(skb
, sk
, &state
, start_seq
);
1895 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, &state
,
1896 start_seq
, end_seq
, dup_sack
);
1899 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1900 * due to in-order walk
1902 if (after(end_seq
, tp
->frto_highmark
))
1903 state
.flag
&= ~FLAG_ONLY_ORIG_SACKED
;
1908 /* Clear the head of the cache sack blocks so we can skip it next time */
1909 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1910 tp
->recv_sack_cache
[i
].start_seq
= 0;
1911 tp
->recv_sack_cache
[i
].end_seq
= 0;
1913 for (j
= 0; j
< used_sacks
; j
++)
1914 tp
->recv_sack_cache
[i
++] = sp
[j
];
1916 tcp_mark_lost_retrans(sk
);
1918 tcp_verify_left_out(tp
);
1920 if ((state
.reord
< tp
->fackets_out
) &&
1921 ((icsk
->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
) &&
1922 (!tp
->frto_highmark
|| after(tp
->snd_una
, tp
->frto_highmark
)))
1923 tcp_update_reordering(sk
, tp
->fackets_out
- state
.reord
, 0);
1927 #if FASTRETRANS_DEBUG > 0
1928 WARN_ON((int)tp
->sacked_out
< 0);
1929 WARN_ON((int)tp
->lost_out
< 0);
1930 WARN_ON((int)tp
->retrans_out
< 0);
1931 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1936 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1937 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1939 static int tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1943 holes
= max(tp
->lost_out
, 1U);
1944 holes
= min(holes
, tp
->packets_out
);
1946 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1947 tp
->sacked_out
= tp
->packets_out
- holes
;
1953 /* If we receive more dupacks than we expected counting segments
1954 * in assumption of absent reordering, interpret this as reordering.
1955 * The only another reason could be bug in receiver TCP.
1957 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1959 struct tcp_sock
*tp
= tcp_sk(sk
);
1960 if (tcp_limit_reno_sacked(tp
))
1961 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1964 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1966 static void tcp_add_reno_sack(struct sock
*sk
)
1968 struct tcp_sock
*tp
= tcp_sk(sk
);
1970 tcp_check_reno_reordering(sk
, 0);
1971 tcp_verify_left_out(tp
);
1974 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1976 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1978 struct tcp_sock
*tp
= tcp_sk(sk
);
1981 /* One ACK acked hole. The rest eat duplicate ACKs. */
1982 if (acked
- 1 >= tp
->sacked_out
)
1985 tp
->sacked_out
-= acked
- 1;
1987 tcp_check_reno_reordering(sk
, acked
);
1988 tcp_verify_left_out(tp
);
1991 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1996 static int tcp_is_sackfrto(const struct tcp_sock
*tp
)
1998 return (sysctl_tcp_frto
== 0x2) && !tcp_is_reno(tp
);
2001 /* F-RTO can only be used if TCP has never retransmitted anything other than
2002 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2004 int tcp_use_frto(struct sock
*sk
)
2006 const struct tcp_sock
*tp
= tcp_sk(sk
);
2007 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2008 struct sk_buff
*skb
;
2010 if (!sysctl_tcp_frto
)
2013 /* MTU probe and F-RTO won't really play nicely along currently */
2014 if (icsk
->icsk_mtup
.probe_size
)
2017 if (tcp_is_sackfrto(tp
))
2020 /* Avoid expensive walking of rexmit queue if possible */
2021 if (tp
->retrans_out
> 1)
2024 skb
= tcp_write_queue_head(sk
);
2025 if (tcp_skb_is_last(sk
, skb
))
2027 skb
= tcp_write_queue_next(sk
, skb
); /* Skips head */
2028 tcp_for_write_queue_from(skb
, sk
) {
2029 if (skb
== tcp_send_head(sk
))
2031 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2033 /* Short-circuit when first non-SACKed skb has been checked */
2034 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2040 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2041 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2042 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2043 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2044 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2045 * bits are handled if the Loss state is really to be entered (in
2046 * tcp_enter_frto_loss).
2048 * Do like tcp_enter_loss() would; when RTO expires the second time it
2050 * "Reduce ssthresh if it has not yet been made inside this window."
2052 void tcp_enter_frto(struct sock
*sk
)
2054 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2055 struct tcp_sock
*tp
= tcp_sk(sk
);
2056 struct sk_buff
*skb
;
2058 if ((!tp
->frto_counter
&& icsk
->icsk_ca_state
<= TCP_CA_Disorder
) ||
2059 tp
->snd_una
== tp
->high_seq
||
2060 ((icsk
->icsk_ca_state
== TCP_CA_Loss
|| tp
->frto_counter
) &&
2061 !icsk
->icsk_retransmits
)) {
2062 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2063 /* Our state is too optimistic in ssthresh() call because cwnd
2064 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2065 * recovery has not yet completed. Pattern would be this: RTO,
2066 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2068 * RFC4138 should be more specific on what to do, even though
2069 * RTO is quite unlikely to occur after the first Cumulative ACK
2070 * due to back-off and complexity of triggering events ...
2072 if (tp
->frto_counter
) {
2074 stored_cwnd
= tp
->snd_cwnd
;
2076 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2077 tp
->snd_cwnd
= stored_cwnd
;
2079 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2081 /* ... in theory, cong.control module could do "any tricks" in
2082 * ssthresh(), which means that ca_state, lost bits and lost_out
2083 * counter would have to be faked before the call occurs. We
2084 * consider that too expensive, unlikely and hacky, so modules
2085 * using these in ssthresh() must deal these incompatibility
2086 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2088 tcp_ca_event(sk
, CA_EVENT_FRTO
);
2091 tp
->undo_marker
= tp
->snd_una
;
2092 tp
->undo_retrans
= 0;
2094 skb
= tcp_write_queue_head(sk
);
2095 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2096 tp
->undo_marker
= 0;
2097 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2098 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2099 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2101 tcp_verify_left_out(tp
);
2103 /* Too bad if TCP was application limited */
2104 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2106 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2107 * The last condition is necessary at least in tp->frto_counter case.
2109 if (tcp_is_sackfrto(tp
) && (tp
->frto_counter
||
2110 ((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Recovery
|TCPF_CA_Loss
))) &&
2111 after(tp
->high_seq
, tp
->snd_una
)) {
2112 tp
->frto_highmark
= tp
->high_seq
;
2114 tp
->frto_highmark
= tp
->snd_nxt
;
2116 tcp_set_ca_state(sk
, TCP_CA_Disorder
);
2117 tp
->high_seq
= tp
->snd_nxt
;
2118 tp
->frto_counter
= 1;
2121 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2122 * which indicates that we should follow the traditional RTO recovery,
2123 * i.e. mark everything lost and do go-back-N retransmission.
2125 static void tcp_enter_frto_loss(struct sock
*sk
, int allowed_segments
, int flag
)
2127 struct tcp_sock
*tp
= tcp_sk(sk
);
2128 struct sk_buff
*skb
;
2131 tp
->retrans_out
= 0;
2132 if (tcp_is_reno(tp
))
2133 tcp_reset_reno_sack(tp
);
2135 tcp_for_write_queue(skb
, sk
) {
2136 if (skb
== tcp_send_head(sk
))
2139 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2141 * Count the retransmission made on RTO correctly (only when
2142 * waiting for the first ACK and did not get it)...
2144 if ((tp
->frto_counter
== 1) && !(flag
& FLAG_DATA_ACKED
)) {
2145 /* For some reason this R-bit might get cleared? */
2146 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
2147 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2148 /* ...enter this if branch just for the first segment */
2149 flag
|= FLAG_DATA_ACKED
;
2151 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2152 tp
->undo_marker
= 0;
2153 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2156 /* Marking forward transmissions that were made after RTO lost
2157 * can cause unnecessary retransmissions in some scenarios,
2158 * SACK blocks will mitigate that in some but not in all cases.
2159 * We used to not mark them but it was causing break-ups with
2160 * receivers that do only in-order receival.
2162 * TODO: we could detect presence of such receiver and select
2163 * different behavior per flow.
2165 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2166 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2167 tp
->lost_out
+= tcp_skb_pcount(skb
);
2168 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2171 tcp_verify_left_out(tp
);
2173 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + allowed_segments
;
2174 tp
->snd_cwnd_cnt
= 0;
2175 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2176 tp
->frto_counter
= 0;
2177 tp
->bytes_acked
= 0;
2179 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2180 sysctl_tcp_reordering
);
2181 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2182 tp
->high_seq
= tp
->snd_nxt
;
2183 TCP_ECN_queue_cwr(tp
);
2185 tcp_clear_all_retrans_hints(tp
);
2188 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
2190 tp
->retrans_out
= 0;
2193 tp
->undo_marker
= 0;
2194 tp
->undo_retrans
= 0;
2197 void tcp_clear_retrans(struct tcp_sock
*tp
)
2199 tcp_clear_retrans_partial(tp
);
2201 tp
->fackets_out
= 0;
2205 /* Enter Loss state. If "how" is not zero, forget all SACK information
2206 * and reset tags completely, otherwise preserve SACKs. If receiver
2207 * dropped its ofo queue, we will know this due to reneging detection.
2209 void tcp_enter_loss(struct sock
*sk
, int how
)
2211 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2212 struct tcp_sock
*tp
= tcp_sk(sk
);
2213 struct sk_buff
*skb
;
2215 /* Reduce ssthresh if it has not yet been made inside this window. */
2216 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
2217 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2218 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2219 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2220 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2223 tp
->snd_cwnd_cnt
= 0;
2224 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2226 tp
->bytes_acked
= 0;
2227 tcp_clear_retrans_partial(tp
);
2229 if (tcp_is_reno(tp
))
2230 tcp_reset_reno_sack(tp
);
2233 /* Push undo marker, if it was plain RTO and nothing
2234 * was retransmitted. */
2235 tp
->undo_marker
= tp
->snd_una
;
2238 tp
->fackets_out
= 0;
2240 tcp_clear_all_retrans_hints(tp
);
2242 tcp_for_write_queue(skb
, sk
) {
2243 if (skb
== tcp_send_head(sk
))
2246 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2247 tp
->undo_marker
= 0;
2248 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
2249 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
2250 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2251 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2252 tp
->lost_out
+= tcp_skb_pcount(skb
);
2253 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2256 tcp_verify_left_out(tp
);
2258 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2259 sysctl_tcp_reordering
);
2260 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2261 tp
->high_seq
= tp
->snd_nxt
;
2262 TCP_ECN_queue_cwr(tp
);
2263 /* Abort F-RTO algorithm if one is in progress */
2264 tp
->frto_counter
= 0;
2267 /* If ACK arrived pointing to a remembered SACK, it means that our
2268 * remembered SACKs do not reflect real state of receiver i.e.
2269 * receiver _host_ is heavily congested (or buggy).
2271 * Do processing similar to RTO timeout.
2273 static int tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2275 if (flag
& FLAG_SACK_RENEGING
) {
2276 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2277 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
2279 tcp_enter_loss(sk
, 1);
2280 icsk
->icsk_retransmits
++;
2281 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
2282 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2283 icsk
->icsk_rto
, TCP_RTO_MAX
);
2289 static inline int tcp_fackets_out(struct tcp_sock
*tp
)
2291 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2294 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2295 * counter when SACK is enabled (without SACK, sacked_out is used for
2298 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2299 * segments up to the highest received SACK block so far and holes in
2302 * With reordering, holes may still be in flight, so RFC3517 recovery
2303 * uses pure sacked_out (total number of SACKed segments) even though
2304 * it violates the RFC that uses duplicate ACKs, often these are equal
2305 * but when e.g. out-of-window ACKs or packet duplication occurs,
2306 * they differ. Since neither occurs due to loss, TCP should really
2309 static inline int tcp_dupack_heuristics(struct tcp_sock
*tp
)
2311 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2314 static inline int tcp_skb_timedout(struct sock
*sk
, struct sk_buff
*skb
)
2316 return tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
;
2319 static inline int tcp_head_timedout(struct sock
*sk
)
2321 struct tcp_sock
*tp
= tcp_sk(sk
);
2323 return tp
->packets_out
&&
2324 tcp_skb_timedout(sk
, tcp_write_queue_head(sk
));
2327 /* Linux NewReno/SACK/FACK/ECN state machine.
2328 * --------------------------------------
2330 * "Open" Normal state, no dubious events, fast path.
2331 * "Disorder" In all the respects it is "Open",
2332 * but requires a bit more attention. It is entered when
2333 * we see some SACKs or dupacks. It is split of "Open"
2334 * mainly to move some processing from fast path to slow one.
2335 * "CWR" CWND was reduced due to some Congestion Notification event.
2336 * It can be ECN, ICMP source quench, local device congestion.
2337 * "Recovery" CWND was reduced, we are fast-retransmitting.
2338 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2340 * tcp_fastretrans_alert() is entered:
2341 * - each incoming ACK, if state is not "Open"
2342 * - when arrived ACK is unusual, namely:
2347 * Counting packets in flight is pretty simple.
2349 * in_flight = packets_out - left_out + retrans_out
2351 * packets_out is SND.NXT-SND.UNA counted in packets.
2353 * retrans_out is number of retransmitted segments.
2355 * left_out is number of segments left network, but not ACKed yet.
2357 * left_out = sacked_out + lost_out
2359 * sacked_out: Packets, which arrived to receiver out of order
2360 * and hence not ACKed. With SACKs this number is simply
2361 * amount of SACKed data. Even without SACKs
2362 * it is easy to give pretty reliable estimate of this number,
2363 * counting duplicate ACKs.
2365 * lost_out: Packets lost by network. TCP has no explicit
2366 * "loss notification" feedback from network (for now).
2367 * It means that this number can be only _guessed_.
2368 * Actually, it is the heuristics to predict lossage that
2369 * distinguishes different algorithms.
2371 * F.e. after RTO, when all the queue is considered as lost,
2372 * lost_out = packets_out and in_flight = retrans_out.
2374 * Essentially, we have now two algorithms counting
2377 * FACK: It is the simplest heuristics. As soon as we decided
2378 * that something is lost, we decide that _all_ not SACKed
2379 * packets until the most forward SACK are lost. I.e.
2380 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2381 * It is absolutely correct estimate, if network does not reorder
2382 * packets. And it loses any connection to reality when reordering
2383 * takes place. We use FACK by default until reordering
2384 * is suspected on the path to this destination.
2386 * NewReno: when Recovery is entered, we assume that one segment
2387 * is lost (classic Reno). While we are in Recovery and
2388 * a partial ACK arrives, we assume that one more packet
2389 * is lost (NewReno). This heuristics are the same in NewReno
2392 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2393 * deflation etc. CWND is real congestion window, never inflated, changes
2394 * only according to classic VJ rules.
2396 * Really tricky (and requiring careful tuning) part of algorithm
2397 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2398 * The first determines the moment _when_ we should reduce CWND and,
2399 * hence, slow down forward transmission. In fact, it determines the moment
2400 * when we decide that hole is caused by loss, rather than by a reorder.
2402 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2403 * holes, caused by lost packets.
2405 * And the most logically complicated part of algorithm is undo
2406 * heuristics. We detect false retransmits due to both too early
2407 * fast retransmit (reordering) and underestimated RTO, analyzing
2408 * timestamps and D-SACKs. When we detect that some segments were
2409 * retransmitted by mistake and CWND reduction was wrong, we undo
2410 * window reduction and abort recovery phase. This logic is hidden
2411 * inside several functions named tcp_try_undo_<something>.
2414 /* This function decides, when we should leave Disordered state
2415 * and enter Recovery phase, reducing congestion window.
2417 * Main question: may we further continue forward transmission
2418 * with the same cwnd?
2420 static int tcp_time_to_recover(struct sock
*sk
)
2422 struct tcp_sock
*tp
= tcp_sk(sk
);
2425 /* Do not perform any recovery during F-RTO algorithm */
2426 if (tp
->frto_counter
)
2429 /* Trick#1: The loss is proven. */
2433 /* Not-A-Trick#2 : Classic rule... */
2434 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2437 /* Trick#3 : when we use RFC2988 timer restart, fast
2438 * retransmit can be triggered by timeout of queue head.
2440 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
))
2443 /* Trick#4: It is still not OK... But will it be useful to delay
2446 packets_out
= tp
->packets_out
;
2447 if (packets_out
<= tp
->reordering
&&
2448 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2449 !tcp_may_send_now(sk
)) {
2450 /* We have nothing to send. This connection is limited
2451 * either by receiver window or by application.
2456 /* If a thin stream is detected, retransmit after first
2457 * received dupack. Employ only if SACK is supported in order
2458 * to avoid possible corner-case series of spurious retransmissions
2459 * Use only if there are no unsent data.
2461 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2462 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2463 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2469 /* New heuristics: it is possible only after we switched to restart timer
2470 * each time when something is ACKed. Hence, we can detect timed out packets
2471 * during fast retransmit without falling to slow start.
2473 * Usefulness of this as is very questionable, since we should know which of
2474 * the segments is the next to timeout which is relatively expensive to find
2475 * in general case unless we add some data structure just for that. The
2476 * current approach certainly won't find the right one too often and when it
2477 * finally does find _something_ it usually marks large part of the window
2478 * right away (because a retransmission with a larger timestamp blocks the
2479 * loop from advancing). -ij
2481 static void tcp_timeout_skbs(struct sock
*sk
)
2483 struct tcp_sock
*tp
= tcp_sk(sk
);
2484 struct sk_buff
*skb
;
2486 if (!tcp_is_fack(tp
) || !tcp_head_timedout(sk
))
2489 skb
= tp
->scoreboard_skb_hint
;
2490 if (tp
->scoreboard_skb_hint
== NULL
)
2491 skb
= tcp_write_queue_head(sk
);
2493 tcp_for_write_queue_from(skb
, sk
) {
2494 if (skb
== tcp_send_head(sk
))
2496 if (!tcp_skb_timedout(sk
, skb
))
2499 tcp_skb_mark_lost(tp
, skb
);
2502 tp
->scoreboard_skb_hint
= skb
;
2504 tcp_verify_left_out(tp
);
2507 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2508 * is against sacked "cnt", otherwise it's against facked "cnt"
2510 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2512 struct tcp_sock
*tp
= tcp_sk(sk
);
2513 struct sk_buff
*skb
;
2518 WARN_ON(packets
> tp
->packets_out
);
2519 if (tp
->lost_skb_hint
) {
2520 skb
= tp
->lost_skb_hint
;
2521 cnt
= tp
->lost_cnt_hint
;
2522 /* Head already handled? */
2523 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2526 skb
= tcp_write_queue_head(sk
);
2530 tcp_for_write_queue_from(skb
, sk
) {
2531 if (skb
== tcp_send_head(sk
))
2533 /* TODO: do this better */
2534 /* this is not the most efficient way to do this... */
2535 tp
->lost_skb_hint
= skb
;
2536 tp
->lost_cnt_hint
= cnt
;
2538 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->high_seq
))
2542 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2543 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2544 cnt
+= tcp_skb_pcount(skb
);
2546 if (cnt
> packets
) {
2547 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2548 (oldcnt
>= packets
))
2551 mss
= skb_shinfo(skb
)->gso_size
;
2552 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
, mss
);
2558 tcp_skb_mark_lost(tp
, skb
);
2563 tcp_verify_left_out(tp
);
2566 /* Account newly detected lost packet(s) */
2568 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2570 struct tcp_sock
*tp
= tcp_sk(sk
);
2572 if (tcp_is_reno(tp
)) {
2573 tcp_mark_head_lost(sk
, 1, 1);
2574 } else if (tcp_is_fack(tp
)) {
2575 int lost
= tp
->fackets_out
- tp
->reordering
;
2578 tcp_mark_head_lost(sk
, lost
, 0);
2580 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2581 if (sacked_upto
>= 0)
2582 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2583 else if (fast_rexmit
)
2584 tcp_mark_head_lost(sk
, 1, 1);
2587 tcp_timeout_skbs(sk
);
2590 /* CWND moderation, preventing bursts due to too big ACKs
2591 * in dubious situations.
2593 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2595 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2596 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2597 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2600 /* Lower bound on congestion window is slow start threshold
2601 * unless congestion avoidance choice decides to overide it.
2603 static inline u32
tcp_cwnd_min(const struct sock
*sk
)
2605 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
2607 return ca_ops
->min_cwnd
? ca_ops
->min_cwnd(sk
) : tcp_sk(sk
)->snd_ssthresh
;
2610 /* Decrease cwnd each second ack. */
2611 static void tcp_cwnd_down(struct sock
*sk
, int flag
)
2613 struct tcp_sock
*tp
= tcp_sk(sk
);
2614 int decr
= tp
->snd_cwnd_cnt
+ 1;
2616 if ((flag
& (FLAG_ANY_PROGRESS
| FLAG_DSACKING_ACK
)) ||
2617 (tcp_is_reno(tp
) && !(flag
& FLAG_NOT_DUP
))) {
2618 tp
->snd_cwnd_cnt
= decr
& 1;
2621 if (decr
&& tp
->snd_cwnd
> tcp_cwnd_min(sk
))
2622 tp
->snd_cwnd
-= decr
;
2624 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2625 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2629 /* Nothing was retransmitted or returned timestamp is less
2630 * than timestamp of the first retransmission.
2632 static inline int tcp_packet_delayed(struct tcp_sock
*tp
)
2634 return !tp
->retrans_stamp
||
2635 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2636 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2639 /* Undo procedures. */
2641 #if FASTRETRANS_DEBUG > 1
2642 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2644 struct tcp_sock
*tp
= tcp_sk(sk
);
2645 struct inet_sock
*inet
= inet_sk(sk
);
2647 if (sk
->sk_family
== AF_INET
) {
2648 printk(KERN_DEBUG
"Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2650 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2651 tp
->snd_cwnd
, tcp_left_out(tp
),
2652 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2655 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2656 else if (sk
->sk_family
== AF_INET6
) {
2657 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2658 printk(KERN_DEBUG
"Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2660 &np
->daddr
, ntohs(inet
->inet_dport
),
2661 tp
->snd_cwnd
, tcp_left_out(tp
),
2662 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2668 #define DBGUNDO(x...) do { } while (0)
2671 static void tcp_undo_cwr(struct sock
*sk
, const bool undo_ssthresh
)
2673 struct tcp_sock
*tp
= tcp_sk(sk
);
2675 if (tp
->prior_ssthresh
) {
2676 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2678 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2679 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2681 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2683 if (undo_ssthresh
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2684 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2685 TCP_ECN_withdraw_cwr(tp
);
2688 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2690 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2693 static inline int tcp_may_undo(struct tcp_sock
*tp
)
2695 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2698 /* People celebrate: "We love our President!" */
2699 static int tcp_try_undo_recovery(struct sock
*sk
)
2701 struct tcp_sock
*tp
= tcp_sk(sk
);
2703 if (tcp_may_undo(tp
)) {
2706 /* Happy end! We did not retransmit anything
2707 * or our original transmission succeeded.
2709 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2710 tcp_undo_cwr(sk
, true);
2711 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2712 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2714 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2716 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2717 tp
->undo_marker
= 0;
2719 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2720 /* Hold old state until something *above* high_seq
2721 * is ACKed. For Reno it is MUST to prevent false
2722 * fast retransmits (RFC2582). SACK TCP is safe. */
2723 tcp_moderate_cwnd(tp
);
2726 tcp_set_ca_state(sk
, TCP_CA_Open
);
2730 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2731 static void tcp_try_undo_dsack(struct sock
*sk
)
2733 struct tcp_sock
*tp
= tcp_sk(sk
);
2735 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2736 DBGUNDO(sk
, "D-SACK");
2737 tcp_undo_cwr(sk
, true);
2738 tp
->undo_marker
= 0;
2739 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2743 /* We can clear retrans_stamp when there are no retransmissions in the
2744 * window. It would seem that it is trivially available for us in
2745 * tp->retrans_out, however, that kind of assumptions doesn't consider
2746 * what will happen if errors occur when sending retransmission for the
2747 * second time. ...It could the that such segment has only
2748 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2749 * the head skb is enough except for some reneging corner cases that
2750 * are not worth the effort.
2752 * Main reason for all this complexity is the fact that connection dying
2753 * time now depends on the validity of the retrans_stamp, in particular,
2754 * that successive retransmissions of a segment must not advance
2755 * retrans_stamp under any conditions.
2757 static int tcp_any_retrans_done(struct sock
*sk
)
2759 struct tcp_sock
*tp
= tcp_sk(sk
);
2760 struct sk_buff
*skb
;
2762 if (tp
->retrans_out
)
2765 skb
= tcp_write_queue_head(sk
);
2766 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2772 /* Undo during fast recovery after partial ACK. */
2774 static int tcp_try_undo_partial(struct sock
*sk
, int acked
)
2776 struct tcp_sock
*tp
= tcp_sk(sk
);
2777 /* Partial ACK arrived. Force Hoe's retransmit. */
2778 int failed
= tcp_is_reno(tp
) || (tcp_fackets_out(tp
) > tp
->reordering
);
2780 if (tcp_may_undo(tp
)) {
2781 /* Plain luck! Hole if filled with delayed
2782 * packet, rather than with a retransmit.
2784 if (!tcp_any_retrans_done(sk
))
2785 tp
->retrans_stamp
= 0;
2787 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2790 tcp_undo_cwr(sk
, false);
2791 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2793 /* So... Do not make Hoe's retransmit yet.
2794 * If the first packet was delayed, the rest
2795 * ones are most probably delayed as well.
2802 /* Undo during loss recovery after partial ACK. */
2803 static int tcp_try_undo_loss(struct sock
*sk
)
2805 struct tcp_sock
*tp
= tcp_sk(sk
);
2807 if (tcp_may_undo(tp
)) {
2808 struct sk_buff
*skb
;
2809 tcp_for_write_queue(skb
, sk
) {
2810 if (skb
== tcp_send_head(sk
))
2812 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2815 tcp_clear_all_retrans_hints(tp
);
2817 DBGUNDO(sk
, "partial loss");
2819 tcp_undo_cwr(sk
, true);
2820 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2821 inet_csk(sk
)->icsk_retransmits
= 0;
2822 tp
->undo_marker
= 0;
2823 if (tcp_is_sack(tp
))
2824 tcp_set_ca_state(sk
, TCP_CA_Open
);
2830 static inline void tcp_complete_cwr(struct sock
*sk
)
2832 struct tcp_sock
*tp
= tcp_sk(sk
);
2834 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2835 if (tp
->undo_marker
) {
2836 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
)
2837 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2839 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2840 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2842 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2845 static void tcp_try_keep_open(struct sock
*sk
)
2847 struct tcp_sock
*tp
= tcp_sk(sk
);
2848 int state
= TCP_CA_Open
;
2850 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
) || tp
->undo_marker
)
2851 state
= TCP_CA_Disorder
;
2853 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2854 tcp_set_ca_state(sk
, state
);
2855 tp
->high_seq
= tp
->snd_nxt
;
2859 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2861 struct tcp_sock
*tp
= tcp_sk(sk
);
2863 tcp_verify_left_out(tp
);
2865 if (!tp
->frto_counter
&& !tcp_any_retrans_done(sk
))
2866 tp
->retrans_stamp
= 0;
2868 if (flag
& FLAG_ECE
)
2869 tcp_enter_cwr(sk
, 1);
2871 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2872 tcp_try_keep_open(sk
);
2873 tcp_moderate_cwnd(tp
);
2875 tcp_cwnd_down(sk
, flag
);
2879 static void tcp_mtup_probe_failed(struct sock
*sk
)
2881 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2883 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2884 icsk
->icsk_mtup
.probe_size
= 0;
2887 static void tcp_mtup_probe_success(struct sock
*sk
)
2889 struct tcp_sock
*tp
= tcp_sk(sk
);
2890 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2892 /* FIXME: breaks with very large cwnd */
2893 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2894 tp
->snd_cwnd
= tp
->snd_cwnd
*
2895 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2896 icsk
->icsk_mtup
.probe_size
;
2897 tp
->snd_cwnd_cnt
= 0;
2898 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2899 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2901 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2902 icsk
->icsk_mtup
.probe_size
= 0;
2903 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2906 /* Do a simple retransmit without using the backoff mechanisms in
2907 * tcp_timer. This is used for path mtu discovery.
2908 * The socket is already locked here.
2910 void tcp_simple_retransmit(struct sock
*sk
)
2912 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2913 struct tcp_sock
*tp
= tcp_sk(sk
);
2914 struct sk_buff
*skb
;
2915 unsigned int mss
= tcp_current_mss(sk
);
2916 u32 prior_lost
= tp
->lost_out
;
2918 tcp_for_write_queue(skb
, sk
) {
2919 if (skb
== tcp_send_head(sk
))
2921 if (tcp_skb_seglen(skb
) > mss
&&
2922 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2923 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2924 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2925 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2927 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2931 tcp_clear_retrans_hints_partial(tp
);
2933 if (prior_lost
== tp
->lost_out
)
2936 if (tcp_is_reno(tp
))
2937 tcp_limit_reno_sacked(tp
);
2939 tcp_verify_left_out(tp
);
2941 /* Don't muck with the congestion window here.
2942 * Reason is that we do not increase amount of _data_
2943 * in network, but units changed and effective
2944 * cwnd/ssthresh really reduced now.
2946 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2947 tp
->high_seq
= tp
->snd_nxt
;
2948 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2949 tp
->prior_ssthresh
= 0;
2950 tp
->undo_marker
= 0;
2951 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2953 tcp_xmit_retransmit_queue(sk
);
2955 EXPORT_SYMBOL(tcp_simple_retransmit
);
2957 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2958 * (proportional rate reduction with slow start reduction bound) as described in
2959 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2960 * It computes the number of packets to send (sndcnt) based on packets newly
2962 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2963 * cwnd reductions across a full RTT.
2964 * 2) If packets in flight is lower than ssthresh (such as due to excess
2965 * losses and/or application stalls), do not perform any further cwnd
2966 * reductions, but instead slow start up to ssthresh.
2968 static void tcp_update_cwnd_in_recovery(struct sock
*sk
, int newly_acked_sacked
,
2969 int fast_rexmit
, int flag
)
2971 struct tcp_sock
*tp
= tcp_sk(sk
);
2973 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2975 if (tcp_packets_in_flight(tp
) > tp
->snd_ssthresh
) {
2976 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2978 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2980 sndcnt
= min_t(int, delta
,
2981 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2982 newly_acked_sacked
) + 1);
2985 sndcnt
= max(sndcnt
, (fast_rexmit
? 1 : 0));
2986 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2989 /* Process an event, which can update packets-in-flight not trivially.
2990 * Main goal of this function is to calculate new estimate for left_out,
2991 * taking into account both packets sitting in receiver's buffer and
2992 * packets lost by network.
2994 * Besides that it does CWND reduction, when packet loss is detected
2995 * and changes state of machine.
2997 * It does _not_ decide what to send, it is made in function
2998 * tcp_xmit_retransmit_queue().
3000 static void tcp_fastretrans_alert(struct sock
*sk
, int pkts_acked
,
3001 int newly_acked_sacked
, int flag
)
3003 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3004 struct tcp_sock
*tp
= tcp_sk(sk
);
3005 int is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3006 int do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
3007 (tcp_fackets_out(tp
) > tp
->reordering
));
3008 int fast_rexmit
= 0, mib_idx
;
3010 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
3012 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
3013 tp
->fackets_out
= 0;
3015 /* Now state machine starts.
3016 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3017 if (flag
& FLAG_ECE
)
3018 tp
->prior_ssthresh
= 0;
3020 /* B. In all the states check for reneging SACKs. */
3021 if (tcp_check_sack_reneging(sk
, flag
))
3024 /* C. Process data loss notification, provided it is valid. */
3025 if (tcp_is_fack(tp
) && (flag
& FLAG_DATA_LOST
) &&
3026 before(tp
->snd_una
, tp
->high_seq
) &&
3027 icsk
->icsk_ca_state
!= TCP_CA_Open
&&
3028 tp
->fackets_out
> tp
->reordering
) {
3029 tcp_mark_head_lost(sk
, tp
->fackets_out
- tp
->reordering
, 0);
3030 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSS
);
3033 /* D. Check consistency of the current state. */
3034 tcp_verify_left_out(tp
);
3036 /* E. Check state exit conditions. State can be terminated
3037 * when high_seq is ACKed. */
3038 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
3039 WARN_ON(tp
->retrans_out
!= 0);
3040 tp
->retrans_stamp
= 0;
3041 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
3042 switch (icsk
->icsk_ca_state
) {
3044 icsk
->icsk_retransmits
= 0;
3045 if (tcp_try_undo_recovery(sk
))
3050 /* CWR is to be held something *above* high_seq
3051 * is ACKed for CWR bit to reach receiver. */
3052 if (tp
->snd_una
!= tp
->high_seq
) {
3053 tcp_complete_cwr(sk
);
3054 tcp_set_ca_state(sk
, TCP_CA_Open
);
3058 case TCP_CA_Disorder
:
3059 tcp_try_undo_dsack(sk
);
3060 if (!tp
->undo_marker
||
3061 /* For SACK case do not Open to allow to undo
3062 * catching for all duplicate ACKs. */
3063 tcp_is_reno(tp
) || tp
->snd_una
!= tp
->high_seq
) {
3064 tp
->undo_marker
= 0;
3065 tcp_set_ca_state(sk
, TCP_CA_Open
);
3069 case TCP_CA_Recovery
:
3070 if (tcp_is_reno(tp
))
3071 tcp_reset_reno_sack(tp
);
3072 if (tcp_try_undo_recovery(sk
))
3074 tcp_complete_cwr(sk
);
3079 /* F. Process state. */
3080 switch (icsk
->icsk_ca_state
) {
3081 case TCP_CA_Recovery
:
3082 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
3083 if (tcp_is_reno(tp
) && is_dupack
)
3084 tcp_add_reno_sack(sk
);
3086 do_lost
= tcp_try_undo_partial(sk
, pkts_acked
);
3089 if (flag
& FLAG_DATA_ACKED
)
3090 icsk
->icsk_retransmits
= 0;
3091 if (tcp_is_reno(tp
) && flag
& FLAG_SND_UNA_ADVANCED
)
3092 tcp_reset_reno_sack(tp
);
3093 if (!tcp_try_undo_loss(sk
)) {
3094 tcp_moderate_cwnd(tp
);
3095 tcp_xmit_retransmit_queue(sk
);
3098 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
3100 /* Loss is undone; fall through to processing in Open state. */
3102 if (tcp_is_reno(tp
)) {
3103 if (flag
& FLAG_SND_UNA_ADVANCED
)
3104 tcp_reset_reno_sack(tp
);
3106 tcp_add_reno_sack(sk
);
3109 if (icsk
->icsk_ca_state
== TCP_CA_Disorder
)
3110 tcp_try_undo_dsack(sk
);
3112 if (!tcp_time_to_recover(sk
)) {
3113 tcp_try_to_open(sk
, flag
);
3117 /* MTU probe failure: don't reduce cwnd */
3118 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
3119 icsk
->icsk_mtup
.probe_size
&&
3120 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
3121 tcp_mtup_probe_failed(sk
);
3122 /* Restores the reduction we did in tcp_mtup_probe() */
3124 tcp_simple_retransmit(sk
);
3128 /* Otherwise enter Recovery state */
3130 if (tcp_is_reno(tp
))
3131 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
3133 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
3135 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
3137 tp
->high_seq
= tp
->snd_nxt
;
3138 tp
->prior_ssthresh
= 0;
3139 tp
->undo_marker
= tp
->snd_una
;
3140 tp
->undo_retrans
= tp
->retrans_out
;
3142 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
3143 if (!(flag
& FLAG_ECE
))
3144 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
3145 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
3146 TCP_ECN_queue_cwr(tp
);
3149 tp
->bytes_acked
= 0;
3150 tp
->snd_cwnd_cnt
= 0;
3151 tp
->prior_cwnd
= tp
->snd_cwnd
;
3152 tp
->prr_delivered
= 0;
3154 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
3158 if (do_lost
|| (tcp_is_fack(tp
) && tcp_head_timedout(sk
)))
3159 tcp_update_scoreboard(sk
, fast_rexmit
);
3160 tp
->prr_delivered
+= newly_acked_sacked
;
3161 tcp_update_cwnd_in_recovery(sk
, newly_acked_sacked
, fast_rexmit
, flag
);
3162 tcp_xmit_retransmit_queue(sk
);
3165 void tcp_valid_rtt_meas(struct sock
*sk
, u32 seq_rtt
)
3167 tcp_rtt_estimator(sk
, seq_rtt
);
3169 inet_csk(sk
)->icsk_backoff
= 0;
3171 EXPORT_SYMBOL(tcp_valid_rtt_meas
);
3173 /* Read draft-ietf-tcplw-high-performance before mucking
3174 * with this code. (Supersedes RFC1323)
3176 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
3178 /* RTTM Rule: A TSecr value received in a segment is used to
3179 * update the averaged RTT measurement only if the segment
3180 * acknowledges some new data, i.e., only if it advances the
3181 * left edge of the send window.
3183 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3184 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3186 * Changed: reset backoff as soon as we see the first valid sample.
3187 * If we do not, we get strongly overestimated rto. With timestamps
3188 * samples are accepted even from very old segments: f.e., when rtt=1
3189 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3190 * answer arrives rto becomes 120 seconds! If at least one of segments
3191 * in window is lost... Voila. --ANK (010210)
3193 struct tcp_sock
*tp
= tcp_sk(sk
);
3195 tcp_valid_rtt_meas(sk
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
);
3198 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
3200 /* We don't have a timestamp. Can only use
3201 * packets that are not retransmitted to determine
3202 * rtt estimates. Also, we must not reset the
3203 * backoff for rto until we get a non-retransmitted
3204 * packet. This allows us to deal with a situation
3205 * where the network delay has increased suddenly.
3206 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3209 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3212 tcp_valid_rtt_meas(sk
, seq_rtt
);
3215 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
3218 const struct tcp_sock
*tp
= tcp_sk(sk
);
3219 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3220 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3221 tcp_ack_saw_tstamp(sk
, flag
);
3222 else if (seq_rtt
>= 0)
3223 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
3226 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
3228 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3229 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
);
3230 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3233 /* Restart timer after forward progress on connection.
3234 * RFC2988 recommends to restart timer to now+rto.
3236 static void tcp_rearm_rto(struct sock
*sk
)
3238 struct tcp_sock
*tp
= tcp_sk(sk
);
3240 if (!tp
->packets_out
) {
3241 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3243 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3244 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3248 /* If we get here, the whole TSO packet has not been acked. */
3249 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3251 struct tcp_sock
*tp
= tcp_sk(sk
);
3254 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3256 packets_acked
= tcp_skb_pcount(skb
);
3257 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3259 packets_acked
-= tcp_skb_pcount(skb
);
3261 if (packets_acked
) {
3262 BUG_ON(tcp_skb_pcount(skb
) == 0);
3263 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3266 return packets_acked
;
3269 /* Remove acknowledged frames from the retransmission queue. If our packet
3270 * is before the ack sequence we can discard it as it's confirmed to have
3271 * arrived at the other end.
3273 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3276 struct tcp_sock
*tp
= tcp_sk(sk
);
3277 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3278 struct sk_buff
*skb
;
3279 u32 now
= tcp_time_stamp
;
3280 int fully_acked
= 1;
3283 u32 reord
= tp
->packets_out
;
3284 u32 prior_sacked
= tp
->sacked_out
;
3286 s32 ca_seq_rtt
= -1;
3287 ktime_t last_ackt
= net_invalid_timestamp();
3289 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3290 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3292 u8 sacked
= scb
->sacked
;
3294 /* Determine how many packets and what bytes were acked, tso and else */
3295 if (after(scb
->end_seq
, tp
->snd_una
)) {
3296 if (tcp_skb_pcount(skb
) == 1 ||
3297 !after(tp
->snd_una
, scb
->seq
))
3300 acked_pcount
= tcp_tso_acked(sk
, skb
);
3306 acked_pcount
= tcp_skb_pcount(skb
);
3309 if (sacked
& TCPCB_RETRANS
) {
3310 if (sacked
& TCPCB_SACKED_RETRANS
)
3311 tp
->retrans_out
-= acked_pcount
;
3312 flag
|= FLAG_RETRANS_DATA_ACKED
;
3315 if ((flag
& FLAG_DATA_ACKED
) || (acked_pcount
> 1))
3316 flag
|= FLAG_NONHEAD_RETRANS_ACKED
;
3318 ca_seq_rtt
= now
- scb
->when
;
3319 last_ackt
= skb
->tstamp
;
3321 seq_rtt
= ca_seq_rtt
;
3323 if (!(sacked
& TCPCB_SACKED_ACKED
))
3324 reord
= min(pkts_acked
, reord
);
3327 if (sacked
& TCPCB_SACKED_ACKED
)
3328 tp
->sacked_out
-= acked_pcount
;
3329 if (sacked
& TCPCB_LOST
)
3330 tp
->lost_out
-= acked_pcount
;
3332 tp
->packets_out
-= acked_pcount
;
3333 pkts_acked
+= acked_pcount
;
3335 /* Initial outgoing SYN's get put onto the write_queue
3336 * just like anything else we transmit. It is not
3337 * true data, and if we misinform our callers that
3338 * this ACK acks real data, we will erroneously exit
3339 * connection startup slow start one packet too
3340 * quickly. This is severely frowned upon behavior.
3342 if (!(scb
->flags
& TCPHDR_SYN
)) {
3343 flag
|= FLAG_DATA_ACKED
;
3345 flag
|= FLAG_SYN_ACKED
;
3346 tp
->retrans_stamp
= 0;
3352 tcp_unlink_write_queue(skb
, sk
);
3353 sk_wmem_free_skb(sk
, skb
);
3354 tp
->scoreboard_skb_hint
= NULL
;
3355 if (skb
== tp
->retransmit_skb_hint
)
3356 tp
->retransmit_skb_hint
= NULL
;
3357 if (skb
== tp
->lost_skb_hint
)
3358 tp
->lost_skb_hint
= NULL
;
3361 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3362 tp
->snd_up
= tp
->snd_una
;
3364 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3365 flag
|= FLAG_SACK_RENEGING
;
3367 if (flag
& FLAG_ACKED
) {
3368 const struct tcp_congestion_ops
*ca_ops
3369 = inet_csk(sk
)->icsk_ca_ops
;
3371 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3372 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3373 tcp_mtup_probe_success(sk
);
3376 tcp_ack_update_rtt(sk
, flag
, seq_rtt
);
3379 if (tcp_is_reno(tp
)) {
3380 tcp_remove_reno_sacks(sk
, pkts_acked
);
3384 /* Non-retransmitted hole got filled? That's reordering */
3385 if (reord
< prior_fackets
)
3386 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3388 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3389 prior_sacked
- tp
->sacked_out
;
3390 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3393 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3395 if (ca_ops
->pkts_acked
) {
3398 /* Is the ACK triggering packet unambiguous? */
3399 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3400 /* High resolution needed and available? */
3401 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
3402 !ktime_equal(last_ackt
,
3403 net_invalid_timestamp()))
3404 rtt_us
= ktime_us_delta(ktime_get_real(),
3406 else if (ca_seq_rtt
>= 0)
3407 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
3410 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
3414 #if FASTRETRANS_DEBUG > 0
3415 WARN_ON((int)tp
->sacked_out
< 0);
3416 WARN_ON((int)tp
->lost_out
< 0);
3417 WARN_ON((int)tp
->retrans_out
< 0);
3418 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3419 icsk
= inet_csk(sk
);
3421 printk(KERN_DEBUG
"Leak l=%u %d\n",
3422 tp
->lost_out
, icsk
->icsk_ca_state
);
3425 if (tp
->sacked_out
) {
3426 printk(KERN_DEBUG
"Leak s=%u %d\n",
3427 tp
->sacked_out
, icsk
->icsk_ca_state
);
3430 if (tp
->retrans_out
) {
3431 printk(KERN_DEBUG
"Leak r=%u %d\n",
3432 tp
->retrans_out
, icsk
->icsk_ca_state
);
3433 tp
->retrans_out
= 0;
3440 static void tcp_ack_probe(struct sock
*sk
)
3442 const struct tcp_sock
*tp
= tcp_sk(sk
);
3443 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3445 /* Was it a usable window open? */
3447 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3448 icsk
->icsk_backoff
= 0;
3449 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3450 /* Socket must be waked up by subsequent tcp_data_snd_check().
3451 * This function is not for random using!
3454 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3455 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
3460 static inline int tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3462 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3463 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3466 static inline int tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3468 const struct tcp_sock
*tp
= tcp_sk(sk
);
3469 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
3470 !((1 << inet_csk(sk
)->icsk_ca_state
) & (TCPF_CA_Recovery
| TCPF_CA_CWR
));
3473 /* Check that window update is acceptable.
3474 * The function assumes that snd_una<=ack<=snd_next.
3476 static inline int tcp_may_update_window(const struct tcp_sock
*tp
,
3477 const u32 ack
, const u32 ack_seq
,
3480 return after(ack
, tp
->snd_una
) ||
3481 after(ack_seq
, tp
->snd_wl1
) ||
3482 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3485 /* Update our send window.
3487 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3488 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3490 static int tcp_ack_update_window(struct sock
*sk
, struct sk_buff
*skb
, u32 ack
,
3493 struct tcp_sock
*tp
= tcp_sk(sk
);
3495 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3497 if (likely(!tcp_hdr(skb
)->syn
))
3498 nwin
<<= tp
->rx_opt
.snd_wscale
;
3500 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3501 flag
|= FLAG_WIN_UPDATE
;
3502 tcp_update_wl(tp
, ack_seq
);
3504 if (tp
->snd_wnd
!= nwin
) {
3507 /* Note, it is the only place, where
3508 * fast path is recovered for sending TCP.
3511 tcp_fast_path_check(sk
);
3513 if (nwin
> tp
->max_window
) {
3514 tp
->max_window
= nwin
;
3515 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3525 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3526 * continue in congestion avoidance.
3528 static void tcp_conservative_spur_to_response(struct tcp_sock
*tp
)
3530 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
3531 tp
->snd_cwnd_cnt
= 0;
3532 tp
->bytes_acked
= 0;
3533 TCP_ECN_queue_cwr(tp
);
3534 tcp_moderate_cwnd(tp
);
3537 /* A conservative spurious RTO response algorithm: reduce cwnd using
3538 * rate halving and continue in congestion avoidance.
3540 static void tcp_ratehalving_spur_to_response(struct sock
*sk
)
3542 tcp_enter_cwr(sk
, 0);
3545 static void tcp_undo_spur_to_response(struct sock
*sk
, int flag
)
3547 if (flag
& FLAG_ECE
)
3548 tcp_ratehalving_spur_to_response(sk
);
3550 tcp_undo_cwr(sk
, true);
3553 /* F-RTO spurious RTO detection algorithm (RFC4138)
3555 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3556 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3557 * window (but not to or beyond highest sequence sent before RTO):
3558 * On First ACK, send two new segments out.
3559 * On Second ACK, RTO was likely spurious. Do spurious response (response
3560 * algorithm is not part of the F-RTO detection algorithm
3561 * given in RFC4138 but can be selected separately).
3562 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3563 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3564 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3565 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3567 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3568 * original window even after we transmit two new data segments.
3571 * on first step, wait until first cumulative ACK arrives, then move to
3572 * the second step. In second step, the next ACK decides.
3574 * F-RTO is implemented (mainly) in four functions:
3575 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3576 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3577 * called when tcp_use_frto() showed green light
3578 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3579 * - tcp_enter_frto_loss() is called if there is not enough evidence
3580 * to prove that the RTO is indeed spurious. It transfers the control
3581 * from F-RTO to the conventional RTO recovery
3583 static int tcp_process_frto(struct sock
*sk
, int flag
)
3585 struct tcp_sock
*tp
= tcp_sk(sk
);
3587 tcp_verify_left_out(tp
);
3589 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3590 if (flag
& FLAG_DATA_ACKED
)
3591 inet_csk(sk
)->icsk_retransmits
= 0;
3593 if ((flag
& FLAG_NONHEAD_RETRANS_ACKED
) ||
3594 ((tp
->frto_counter
>= 2) && (flag
& FLAG_RETRANS_DATA_ACKED
)))
3595 tp
->undo_marker
= 0;
3597 if (!before(tp
->snd_una
, tp
->frto_highmark
)) {
3598 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 2 : 3), flag
);
3602 if (!tcp_is_sackfrto(tp
)) {
3603 /* RFC4138 shortcoming in step 2; should also have case c):
3604 * ACK isn't duplicate nor advances window, e.g., opposite dir
3607 if (!(flag
& FLAG_ANY_PROGRESS
) && (flag
& FLAG_NOT_DUP
))
3610 if (!(flag
& FLAG_DATA_ACKED
)) {
3611 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 0 : 3),
3616 if (!(flag
& FLAG_DATA_ACKED
) && (tp
->frto_counter
== 1)) {
3617 /* Prevent sending of new data. */
3618 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
3619 tcp_packets_in_flight(tp
));
3623 if ((tp
->frto_counter
>= 2) &&
3624 (!(flag
& FLAG_FORWARD_PROGRESS
) ||
3625 ((flag
& FLAG_DATA_SACKED
) &&
3626 !(flag
& FLAG_ONLY_ORIG_SACKED
)))) {
3627 /* RFC4138 shortcoming (see comment above) */
3628 if (!(flag
& FLAG_FORWARD_PROGRESS
) &&
3629 (flag
& FLAG_NOT_DUP
))
3632 tcp_enter_frto_loss(sk
, 3, flag
);
3637 if (tp
->frto_counter
== 1) {
3638 /* tcp_may_send_now needs to see updated state */
3639 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
3640 tp
->frto_counter
= 2;
3642 if (!tcp_may_send_now(sk
))
3643 tcp_enter_frto_loss(sk
, 2, flag
);
3647 switch (sysctl_tcp_frto_response
) {
3649 tcp_undo_spur_to_response(sk
, flag
);
3652 tcp_conservative_spur_to_response(tp
);
3655 tcp_ratehalving_spur_to_response(sk
);
3658 tp
->frto_counter
= 0;
3659 tp
->undo_marker
= 0;
3660 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSPURIOUSRTOS
);
3665 /* This routine deals with incoming acks, but not outgoing ones. */
3666 static int tcp_ack(struct sock
*sk
, struct sk_buff
*skb
, int flag
)
3668 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3669 struct tcp_sock
*tp
= tcp_sk(sk
);
3670 u32 prior_snd_una
= tp
->snd_una
;
3671 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3672 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3673 u32 prior_in_flight
;
3676 int prior_sacked
= tp
->sacked_out
;
3677 int newly_acked_sacked
= 0;
3680 /* If the ack is older than previous acks
3681 * then we can probably ignore it.
3683 if (before(ack
, prior_snd_una
))
3686 /* If the ack includes data we haven't sent yet, discard
3687 * this segment (RFC793 Section 3.9).
3689 if (after(ack
, tp
->snd_nxt
))
3692 if (after(ack
, prior_snd_una
))
3693 flag
|= FLAG_SND_UNA_ADVANCED
;
3695 if (sysctl_tcp_abc
) {
3696 if (icsk
->icsk_ca_state
< TCP_CA_CWR
)
3697 tp
->bytes_acked
+= ack
- prior_snd_una
;
3698 else if (icsk
->icsk_ca_state
== TCP_CA_Loss
)
3699 /* we assume just one segment left network */
3700 tp
->bytes_acked
+= min(ack
- prior_snd_una
,
3704 prior_fackets
= tp
->fackets_out
;
3705 prior_in_flight
= tcp_packets_in_flight(tp
);
3707 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3708 /* Window is constant, pure forward advance.
3709 * No more checks are required.
3710 * Note, we use the fact that SND.UNA>=SND.WL2.
3712 tcp_update_wl(tp
, ack_seq
);
3714 flag
|= FLAG_WIN_UPDATE
;
3716 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3718 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3720 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3723 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3725 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3727 if (TCP_SKB_CB(skb
)->sacked
)
3728 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3730 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3733 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3736 /* We passed data and got it acked, remove any soft error
3737 * log. Something worked...
3739 sk
->sk_err_soft
= 0;
3740 icsk
->icsk_probes_out
= 0;
3741 tp
->rcv_tstamp
= tcp_time_stamp
;
3742 prior_packets
= tp
->packets_out
;
3746 /* See if we can take anything off of the retransmit queue. */
3747 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
);
3749 newly_acked_sacked
= (prior_packets
- prior_sacked
) -
3750 (tp
->packets_out
- tp
->sacked_out
);
3752 if (tp
->frto_counter
)
3753 frto_cwnd
= tcp_process_frto(sk
, flag
);
3754 /* Guarantee sacktag reordering detection against wrap-arounds */
3755 if (before(tp
->frto_highmark
, tp
->snd_una
))
3756 tp
->frto_highmark
= 0;
3758 if (tcp_ack_is_dubious(sk
, flag
)) {
3759 /* Advance CWND, if state allows this. */
3760 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
&&
3761 tcp_may_raise_cwnd(sk
, flag
))
3762 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3763 tcp_fastretrans_alert(sk
, prior_packets
- tp
->packets_out
,
3764 newly_acked_sacked
, flag
);
3766 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
)
3767 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3770 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3771 dst_confirm(__sk_dst_get(sk
));
3776 /* If this ack opens up a zero window, clear backoff. It was
3777 * being used to time the probes, and is probably far higher than
3778 * it needs to be for normal retransmission.
3780 if (tcp_send_head(sk
))
3785 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3789 if (TCP_SKB_CB(skb
)->sacked
) {
3790 tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3791 if (icsk
->icsk_ca_state
== TCP_CA_Open
)
3792 tcp_try_keep_open(sk
);
3795 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3799 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3800 * But, this can also be called on packets in the established flow when
3801 * the fast version below fails.
3803 void tcp_parse_options(struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
,
3804 u8
**hvpp
, int estab
)
3807 struct tcphdr
*th
= tcp_hdr(skb
);
3808 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3810 ptr
= (unsigned char *)(th
+ 1);
3811 opt_rx
->saw_tstamp
= 0;
3813 while (length
> 0) {
3814 int opcode
= *ptr
++;
3820 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3825 if (opsize
< 2) /* "silly options" */
3827 if (opsize
> length
)
3828 return; /* don't parse partial options */
3831 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3832 u16 in_mss
= get_unaligned_be16(ptr
);
3834 if (opt_rx
->user_mss
&&
3835 opt_rx
->user_mss
< in_mss
)
3836 in_mss
= opt_rx
->user_mss
;
3837 opt_rx
->mss_clamp
= in_mss
;
3842 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3843 !estab
&& sysctl_tcp_window_scaling
) {
3844 __u8 snd_wscale
= *(__u8
*)ptr
;
3845 opt_rx
->wscale_ok
= 1;
3846 if (snd_wscale
> 14) {
3847 if (net_ratelimit())
3848 printk(KERN_INFO
"tcp_parse_options: Illegal window "
3849 "scaling value %d >14 received.\n",
3853 opt_rx
->snd_wscale
= snd_wscale
;
3856 case TCPOPT_TIMESTAMP
:
3857 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3858 ((estab
&& opt_rx
->tstamp_ok
) ||
3859 (!estab
&& sysctl_tcp_timestamps
))) {
3860 opt_rx
->saw_tstamp
= 1;
3861 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3862 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3865 case TCPOPT_SACK_PERM
:
3866 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3867 !estab
&& sysctl_tcp_sack
) {
3868 opt_rx
->sack_ok
= 1;
3869 tcp_sack_reset(opt_rx
);
3874 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3875 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3877 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3880 #ifdef CONFIG_TCP_MD5SIG
3883 * The MD5 Hash has already been
3884 * checked (see tcp_v{4,6}_do_rcv()).
3889 /* This option is variable length.
3892 case TCPOLEN_COOKIE_BASE
:
3893 /* not yet implemented */
3895 case TCPOLEN_COOKIE_PAIR
:
3896 /* not yet implemented */
3898 case TCPOLEN_COOKIE_MIN
+0:
3899 case TCPOLEN_COOKIE_MIN
+2:
3900 case TCPOLEN_COOKIE_MIN
+4:
3901 case TCPOLEN_COOKIE_MIN
+6:
3902 case TCPOLEN_COOKIE_MAX
:
3903 /* 16-bit multiple */
3904 opt_rx
->cookie_plus
= opsize
;
3919 EXPORT_SYMBOL(tcp_parse_options
);
3921 static int tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, struct tcphdr
*th
)
3923 __be32
*ptr
= (__be32
*)(th
+ 1);
3925 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3926 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3927 tp
->rx_opt
.saw_tstamp
= 1;
3929 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3931 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3937 /* Fast parse options. This hopes to only see timestamps.
3938 * If it is wrong it falls back on tcp_parse_options().
3940 static int tcp_fast_parse_options(struct sk_buff
*skb
, struct tcphdr
*th
,
3941 struct tcp_sock
*tp
, u8
**hvpp
)
3943 /* In the spirit of fast parsing, compare doff directly to constant
3944 * values. Because equality is used, short doff can be ignored here.
3946 if (th
->doff
== (sizeof(*th
) / 4)) {
3947 tp
->rx_opt
.saw_tstamp
= 0;
3949 } else if (tp
->rx_opt
.tstamp_ok
&&
3950 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3951 if (tcp_parse_aligned_timestamp(tp
, th
))
3954 tcp_parse_options(skb
, &tp
->rx_opt
, hvpp
, 1);
3958 #ifdef CONFIG_TCP_MD5SIG
3960 * Parse MD5 Signature option
3962 u8
*tcp_parse_md5sig_option(struct tcphdr
*th
)
3964 int length
= (th
->doff
<< 2) - sizeof (*th
);
3965 u8
*ptr
= (u8
*)(th
+ 1);
3967 /* If the TCP option is too short, we can short cut */
3968 if (length
< TCPOLEN_MD5SIG
)
3971 while (length
> 0) {
3972 int opcode
= *ptr
++;
3983 if (opsize
< 2 || opsize
> length
)
3985 if (opcode
== TCPOPT_MD5SIG
)
3986 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3993 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3996 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
3998 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3999 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
4002 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
4004 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
4005 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4006 * extra check below makes sure this can only happen
4007 * for pure ACK frames. -DaveM
4009 * Not only, also it occurs for expired timestamps.
4012 if (tcp_paws_check(&tp
->rx_opt
, 0))
4013 tcp_store_ts_recent(tp
);
4017 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4019 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4020 * it can pass through stack. So, the following predicate verifies that
4021 * this segment is not used for anything but congestion avoidance or
4022 * fast retransmit. Moreover, we even are able to eliminate most of such
4023 * second order effects, if we apply some small "replay" window (~RTO)
4024 * to timestamp space.
4026 * All these measures still do not guarantee that we reject wrapped ACKs
4027 * on networks with high bandwidth, when sequence space is recycled fastly,
4028 * but it guarantees that such events will be very rare and do not affect
4029 * connection seriously. This doesn't look nice, but alas, PAWS is really
4032 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4033 * states that events when retransmit arrives after original data are rare.
4034 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4035 * the biggest problem on large power networks even with minor reordering.
4036 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4037 * up to bandwidth of 18Gigabit/sec. 8) ]
4040 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
4042 struct tcp_sock
*tp
= tcp_sk(sk
);
4043 struct tcphdr
*th
= tcp_hdr(skb
);
4044 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4045 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
4047 return (/* 1. Pure ACK with correct sequence number. */
4048 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
4050 /* 2. ... and duplicate ACK. */
4051 ack
== tp
->snd_una
&&
4053 /* 3. ... and does not update window. */
4054 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
4056 /* 4. ... and sits in replay window. */
4057 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
4060 static inline int tcp_paws_discard(const struct sock
*sk
,
4061 const struct sk_buff
*skb
)
4063 const struct tcp_sock
*tp
= tcp_sk(sk
);
4065 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
4066 !tcp_disordered_ack(sk
, skb
);
4069 /* Check segment sequence number for validity.
4071 * Segment controls are considered valid, if the segment
4072 * fits to the window after truncation to the window. Acceptability
4073 * of data (and SYN, FIN, of course) is checked separately.
4074 * See tcp_data_queue(), for example.
4076 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4077 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4078 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4079 * (borrowed from freebsd)
4082 static inline int tcp_sequence(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4084 return !before(end_seq
, tp
->rcv_wup
) &&
4085 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4088 /* When we get a reset we do this. */
4089 static void tcp_reset(struct sock
*sk
)
4091 /* We want the right error as BSD sees it (and indeed as we do). */
4092 switch (sk
->sk_state
) {
4094 sk
->sk_err
= ECONNREFUSED
;
4096 case TCP_CLOSE_WAIT
:
4102 sk
->sk_err
= ECONNRESET
;
4104 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4107 if (!sock_flag(sk
, SOCK_DEAD
))
4108 sk
->sk_error_report(sk
);
4114 * Process the FIN bit. This now behaves as it is supposed to work
4115 * and the FIN takes effect when it is validly part of sequence
4116 * space. Not before when we get holes.
4118 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4119 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4122 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4123 * close and we go into CLOSING (and later onto TIME-WAIT)
4125 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4127 static void tcp_fin(struct sk_buff
*skb
, struct sock
*sk
, struct tcphdr
*th
)
4129 struct tcp_sock
*tp
= tcp_sk(sk
);
4131 inet_csk_schedule_ack(sk
);
4133 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4134 sock_set_flag(sk
, SOCK_DONE
);
4136 switch (sk
->sk_state
) {
4138 case TCP_ESTABLISHED
:
4139 /* Move to CLOSE_WAIT */
4140 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4141 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4144 case TCP_CLOSE_WAIT
:
4146 /* Received a retransmission of the FIN, do
4151 /* RFC793: Remain in the LAST-ACK state. */
4155 /* This case occurs when a simultaneous close
4156 * happens, we must ack the received FIN and
4157 * enter the CLOSING state.
4160 tcp_set_state(sk
, TCP_CLOSING
);
4163 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4165 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4168 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4169 * cases we should never reach this piece of code.
4171 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
4172 __func__
, sk
->sk_state
);
4176 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4177 * Probably, we should reset in this case. For now drop them.
4179 __skb_queue_purge(&tp
->out_of_order_queue
);
4180 if (tcp_is_sack(tp
))
4181 tcp_sack_reset(&tp
->rx_opt
);
4184 if (!sock_flag(sk
, SOCK_DEAD
)) {
4185 sk
->sk_state_change(sk
);
4187 /* Do not send POLL_HUP for half duplex close. */
4188 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4189 sk
->sk_state
== TCP_CLOSE
)
4190 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4192 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4196 static inline int tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4199 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4200 if (before(seq
, sp
->start_seq
))
4201 sp
->start_seq
= seq
;
4202 if (after(end_seq
, sp
->end_seq
))
4203 sp
->end_seq
= end_seq
;
4209 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4211 struct tcp_sock
*tp
= tcp_sk(sk
);
4213 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4216 if (before(seq
, tp
->rcv_nxt
))
4217 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4219 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4221 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4223 tp
->rx_opt
.dsack
= 1;
4224 tp
->duplicate_sack
[0].start_seq
= seq
;
4225 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4229 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4231 struct tcp_sock
*tp
= tcp_sk(sk
);
4233 if (!tp
->rx_opt
.dsack
)
4234 tcp_dsack_set(sk
, seq
, end_seq
);
4236 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4239 static void tcp_send_dupack(struct sock
*sk
, struct sk_buff
*skb
)
4241 struct tcp_sock
*tp
= tcp_sk(sk
);
4243 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4244 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4245 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4246 tcp_enter_quickack_mode(sk
);
4248 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4249 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4251 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4252 end_seq
= tp
->rcv_nxt
;
4253 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4260 /* These routines update the SACK block as out-of-order packets arrive or
4261 * in-order packets close up the sequence space.
4263 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4266 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4267 struct tcp_sack_block
*swalk
= sp
+ 1;
4269 /* See if the recent change to the first SACK eats into
4270 * or hits the sequence space of other SACK blocks, if so coalesce.
4272 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4273 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4276 /* Zap SWALK, by moving every further SACK up by one slot.
4277 * Decrease num_sacks.
4279 tp
->rx_opt
.num_sacks
--;
4280 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4284 this_sack
++, swalk
++;
4288 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4290 struct tcp_sock
*tp
= tcp_sk(sk
);
4291 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4292 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4298 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4299 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4300 /* Rotate this_sack to the first one. */
4301 for (; this_sack
> 0; this_sack
--, sp
--)
4302 swap(*sp
, *(sp
- 1));
4304 tcp_sack_maybe_coalesce(tp
);
4309 /* Could not find an adjacent existing SACK, build a new one,
4310 * put it at the front, and shift everyone else down. We
4311 * always know there is at least one SACK present already here.
4313 * If the sack array is full, forget about the last one.
4315 if (this_sack
>= TCP_NUM_SACKS
) {
4317 tp
->rx_opt
.num_sacks
--;
4320 for (; this_sack
> 0; this_sack
--, sp
--)
4324 /* Build the new head SACK, and we're done. */
4325 sp
->start_seq
= seq
;
4326 sp
->end_seq
= end_seq
;
4327 tp
->rx_opt
.num_sacks
++;
4330 /* RCV.NXT advances, some SACKs should be eaten. */
4332 static void tcp_sack_remove(struct tcp_sock
*tp
)
4334 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4335 int num_sacks
= tp
->rx_opt
.num_sacks
;
4338 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4339 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4340 tp
->rx_opt
.num_sacks
= 0;
4344 for (this_sack
= 0; this_sack
< num_sacks
;) {
4345 /* Check if the start of the sack is covered by RCV.NXT. */
4346 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4349 /* RCV.NXT must cover all the block! */
4350 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4352 /* Zap this SACK, by moving forward any other SACKS. */
4353 for (i
=this_sack
+1; i
< num_sacks
; i
++)
4354 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4361 tp
->rx_opt
.num_sacks
= num_sacks
;
4364 /* This one checks to see if we can put data from the
4365 * out_of_order queue into the receive_queue.
4367 static void tcp_ofo_queue(struct sock
*sk
)
4369 struct tcp_sock
*tp
= tcp_sk(sk
);
4370 __u32 dsack_high
= tp
->rcv_nxt
;
4371 struct sk_buff
*skb
;
4373 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4374 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4377 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4378 __u32 dsack
= dsack_high
;
4379 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4380 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4381 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4384 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4385 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4386 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4390 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4391 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4392 TCP_SKB_CB(skb
)->end_seq
);
4394 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4395 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4396 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4397 if (tcp_hdr(skb
)->fin
)
4398 tcp_fin(skb
, sk
, tcp_hdr(skb
));
4402 static int tcp_prune_ofo_queue(struct sock
*sk
);
4403 static int tcp_prune_queue(struct sock
*sk
);
4405 static inline int tcp_try_rmem_schedule(struct sock
*sk
, unsigned int size
)
4407 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4408 !sk_rmem_schedule(sk
, size
)) {
4410 if (tcp_prune_queue(sk
) < 0)
4413 if (!sk_rmem_schedule(sk
, size
)) {
4414 if (!tcp_prune_ofo_queue(sk
))
4417 if (!sk_rmem_schedule(sk
, size
))
4424 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4426 struct tcphdr
*th
= tcp_hdr(skb
);
4427 struct tcp_sock
*tp
= tcp_sk(sk
);
4430 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4434 __skb_pull(skb
, th
->doff
* 4);
4436 TCP_ECN_accept_cwr(tp
, skb
);
4438 tp
->rx_opt
.dsack
= 0;
4440 /* Queue data for delivery to the user.
4441 * Packets in sequence go to the receive queue.
4442 * Out of sequence packets to the out_of_order_queue.
4444 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4445 if (tcp_receive_window(tp
) == 0)
4448 /* Ok. In sequence. In window. */
4449 if (tp
->ucopy
.task
== current
&&
4450 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4451 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4452 int chunk
= min_t(unsigned int, skb
->len
,
4455 __set_current_state(TASK_RUNNING
);
4458 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
4459 tp
->ucopy
.len
-= chunk
;
4460 tp
->copied_seq
+= chunk
;
4461 eaten
= (chunk
== skb
->len
);
4462 tcp_rcv_space_adjust(sk
);
4470 tcp_try_rmem_schedule(sk
, skb
->truesize
))
4473 skb_set_owner_r(skb
, sk
);
4474 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4476 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4478 tcp_event_data_recv(sk
, skb
);
4480 tcp_fin(skb
, sk
, th
);
4482 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4485 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4486 * gap in queue is filled.
4488 if (skb_queue_empty(&tp
->out_of_order_queue
))
4489 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4492 if (tp
->rx_opt
.num_sacks
)
4493 tcp_sack_remove(tp
);
4495 tcp_fast_path_check(sk
);
4499 else if (!sock_flag(sk
, SOCK_DEAD
))
4500 sk
->sk_data_ready(sk
, 0);
4504 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4505 /* A retransmit, 2nd most common case. Force an immediate ack. */
4506 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4507 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4510 tcp_enter_quickack_mode(sk
);
4511 inet_csk_schedule_ack(sk
);
4517 /* Out of window. F.e. zero window probe. */
4518 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4521 tcp_enter_quickack_mode(sk
);
4523 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4524 /* Partial packet, seq < rcv_next < end_seq */
4525 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4526 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4527 TCP_SKB_CB(skb
)->end_seq
);
4529 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4531 /* If window is closed, drop tail of packet. But after
4532 * remembering D-SACK for its head made in previous line.
4534 if (!tcp_receive_window(tp
))
4539 TCP_ECN_check_ce(tp
, skb
);
4541 if (tcp_try_rmem_schedule(sk
, skb
->truesize
))
4544 /* Disable header prediction. */
4546 inet_csk_schedule_ack(sk
);
4548 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4549 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4551 skb_set_owner_r(skb
, sk
);
4553 if (!skb_peek(&tp
->out_of_order_queue
)) {
4554 /* Initial out of order segment, build 1 SACK. */
4555 if (tcp_is_sack(tp
)) {
4556 tp
->rx_opt
.num_sacks
= 1;
4557 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4558 tp
->selective_acks
[0].end_seq
=
4559 TCP_SKB_CB(skb
)->end_seq
;
4561 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4563 struct sk_buff
*skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4564 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4565 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4567 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4568 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4570 if (!tp
->rx_opt
.num_sacks
||
4571 tp
->selective_acks
[0].end_seq
!= seq
)
4574 /* Common case: data arrive in order after hole. */
4575 tp
->selective_acks
[0].end_seq
= end_seq
;
4579 /* Find place to insert this segment. */
4581 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4583 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4587 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4590 /* Do skb overlap to previous one? */
4591 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4592 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4593 /* All the bits are present. Drop. */
4595 tcp_dsack_set(sk
, seq
, end_seq
);
4598 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4599 /* Partial overlap. */
4600 tcp_dsack_set(sk
, seq
,
4601 TCP_SKB_CB(skb1
)->end_seq
);
4603 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4607 skb1
= skb_queue_prev(
4608 &tp
->out_of_order_queue
,
4613 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4615 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4617 /* And clean segments covered by new one as whole. */
4618 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4619 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4621 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4623 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4624 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4628 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4629 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4630 TCP_SKB_CB(skb1
)->end_seq
);
4635 if (tcp_is_sack(tp
))
4636 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4640 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4641 struct sk_buff_head
*list
)
4643 struct sk_buff
*next
= NULL
;
4645 if (!skb_queue_is_last(list
, skb
))
4646 next
= skb_queue_next(list
, skb
);
4648 __skb_unlink(skb
, list
);
4650 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4655 /* Collapse contiguous sequence of skbs head..tail with
4656 * sequence numbers start..end.
4658 * If tail is NULL, this means until the end of the list.
4660 * Segments with FIN/SYN are not collapsed (only because this
4664 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4665 struct sk_buff
*head
, struct sk_buff
*tail
,
4668 struct sk_buff
*skb
, *n
;
4671 /* First, check that queue is collapsible and find
4672 * the point where collapsing can be useful. */
4676 skb_queue_walk_from_safe(list
, skb
, n
) {
4679 /* No new bits? It is possible on ofo queue. */
4680 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4681 skb
= tcp_collapse_one(sk
, skb
, list
);
4687 /* The first skb to collapse is:
4689 * - bloated or contains data before "start" or
4690 * overlaps to the next one.
4692 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
4693 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4694 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4695 end_of_skbs
= false;
4699 if (!skb_queue_is_last(list
, skb
)) {
4700 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4702 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4703 end_of_skbs
= false;
4708 /* Decided to skip this, advance start seq. */
4709 start
= TCP_SKB_CB(skb
)->end_seq
;
4711 if (end_of_skbs
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
4714 while (before(start
, end
)) {
4715 struct sk_buff
*nskb
;
4716 unsigned int header
= skb_headroom(skb
);
4717 int copy
= SKB_MAX_ORDER(header
, 0);
4719 /* Too big header? This can happen with IPv6. */
4722 if (end
- start
< copy
)
4724 nskb
= alloc_skb(copy
+ header
, GFP_ATOMIC
);
4728 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4729 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4731 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4733 skb_reserve(nskb
, header
);
4734 memcpy(nskb
->head
, skb
->head
, header
);
4735 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4736 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4737 __skb_queue_before(list
, skb
, nskb
);
4738 skb_set_owner_r(nskb
, sk
);
4740 /* Copy data, releasing collapsed skbs. */
4742 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4743 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4747 size
= min(copy
, size
);
4748 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4750 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4754 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4755 skb
= tcp_collapse_one(sk
, skb
, list
);
4758 tcp_hdr(skb
)->syn
||
4766 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4767 * and tcp_collapse() them until all the queue is collapsed.
4769 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4771 struct tcp_sock
*tp
= tcp_sk(sk
);
4772 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4773 struct sk_buff
*head
;
4779 start
= TCP_SKB_CB(skb
)->seq
;
4780 end
= TCP_SKB_CB(skb
)->end_seq
;
4784 struct sk_buff
*next
= NULL
;
4786 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4787 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4790 /* Segment is terminated when we see gap or when
4791 * we are at the end of all the queue. */
4793 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4794 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4795 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4796 head
, skb
, start
, end
);
4800 /* Start new segment */
4801 start
= TCP_SKB_CB(skb
)->seq
;
4802 end
= TCP_SKB_CB(skb
)->end_seq
;
4804 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4805 start
= TCP_SKB_CB(skb
)->seq
;
4806 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4807 end
= TCP_SKB_CB(skb
)->end_seq
;
4813 * Purge the out-of-order queue.
4814 * Return true if queue was pruned.
4816 static int tcp_prune_ofo_queue(struct sock
*sk
)
4818 struct tcp_sock
*tp
= tcp_sk(sk
);
4821 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4822 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4823 __skb_queue_purge(&tp
->out_of_order_queue
);
4825 /* Reset SACK state. A conforming SACK implementation will
4826 * do the same at a timeout based retransmit. When a connection
4827 * is in a sad state like this, we care only about integrity
4828 * of the connection not performance.
4830 if (tp
->rx_opt
.sack_ok
)
4831 tcp_sack_reset(&tp
->rx_opt
);
4838 /* Reduce allocated memory if we can, trying to get
4839 * the socket within its memory limits again.
4841 * Return less than zero if we should start dropping frames
4842 * until the socket owning process reads some of the data
4843 * to stabilize the situation.
4845 static int tcp_prune_queue(struct sock
*sk
)
4847 struct tcp_sock
*tp
= tcp_sk(sk
);
4849 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4851 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4853 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4854 tcp_clamp_window(sk
);
4855 else if (tcp_memory_pressure
)
4856 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4858 tcp_collapse_ofo_queue(sk
);
4859 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4860 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4861 skb_peek(&sk
->sk_receive_queue
),
4863 tp
->copied_seq
, tp
->rcv_nxt
);
4866 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4869 /* Collapsing did not help, destructive actions follow.
4870 * This must not ever occur. */
4872 tcp_prune_ofo_queue(sk
);
4874 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4877 /* If we are really being abused, tell the caller to silently
4878 * drop receive data on the floor. It will get retransmitted
4879 * and hopefully then we'll have sufficient space.
4881 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4883 /* Massive buffer overcommit. */
4888 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4889 * As additional protections, we do not touch cwnd in retransmission phases,
4890 * and if application hit its sndbuf limit recently.
4892 void tcp_cwnd_application_limited(struct sock
*sk
)
4894 struct tcp_sock
*tp
= tcp_sk(sk
);
4896 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4897 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4898 /* Limited by application or receiver window. */
4899 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4900 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4901 if (win_used
< tp
->snd_cwnd
) {
4902 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4903 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4905 tp
->snd_cwnd_used
= 0;
4907 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4910 static int tcp_should_expand_sndbuf(struct sock
*sk
)
4912 struct tcp_sock
*tp
= tcp_sk(sk
);
4914 /* If the user specified a specific send buffer setting, do
4917 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4920 /* If we are under global TCP memory pressure, do not expand. */
4921 if (tcp_memory_pressure
)
4924 /* If we are under soft global TCP memory pressure, do not expand. */
4925 if (atomic_long_read(&tcp_memory_allocated
) >= sysctl_tcp_mem
[0])
4928 /* If we filled the congestion window, do not expand. */
4929 if (tp
->packets_out
>= tp
->snd_cwnd
)
4935 /* When incoming ACK allowed to free some skb from write_queue,
4936 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4937 * on the exit from tcp input handler.
4939 * PROBLEM: sndbuf expansion does not work well with largesend.
4941 static void tcp_new_space(struct sock
*sk
)
4943 struct tcp_sock
*tp
= tcp_sk(sk
);
4945 if (tcp_should_expand_sndbuf(sk
)) {
4946 int sndmem
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
4947 MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
4948 int demanded
= max_t(unsigned int, tp
->snd_cwnd
,
4949 tp
->reordering
+ 1);
4950 sndmem
*= 2 * demanded
;
4951 if (sndmem
> sk
->sk_sndbuf
)
4952 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
4953 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4956 sk
->sk_write_space(sk
);
4959 static void tcp_check_space(struct sock
*sk
)
4961 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4962 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4963 if (sk
->sk_socket
&&
4964 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
4969 static inline void tcp_data_snd_check(struct sock
*sk
)
4971 tcp_push_pending_frames(sk
);
4972 tcp_check_space(sk
);
4976 * Check if sending an ack is needed.
4978 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4980 struct tcp_sock
*tp
= tcp_sk(sk
);
4982 /* More than one full frame received... */
4983 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
4984 /* ... and right edge of window advances far enough.
4985 * (tcp_recvmsg() will send ACK otherwise). Or...
4987 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
4988 /* We ACK each frame or... */
4989 tcp_in_quickack_mode(sk
) ||
4990 /* We have out of order data. */
4991 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
4992 /* Then ack it now */
4995 /* Else, send delayed ack. */
4996 tcp_send_delayed_ack(sk
);
5000 static inline void tcp_ack_snd_check(struct sock
*sk
)
5002 if (!inet_csk_ack_scheduled(sk
)) {
5003 /* We sent a data segment already. */
5006 __tcp_ack_snd_check(sk
, 1);
5010 * This routine is only called when we have urgent data
5011 * signaled. Its the 'slow' part of tcp_urg. It could be
5012 * moved inline now as tcp_urg is only called from one
5013 * place. We handle URGent data wrong. We have to - as
5014 * BSD still doesn't use the correction from RFC961.
5015 * For 1003.1g we should support a new option TCP_STDURG to permit
5016 * either form (or just set the sysctl tcp_stdurg).
5019 static void tcp_check_urg(struct sock
*sk
, struct tcphdr
*th
)
5021 struct tcp_sock
*tp
= tcp_sk(sk
);
5022 u32 ptr
= ntohs(th
->urg_ptr
);
5024 if (ptr
&& !sysctl_tcp_stdurg
)
5026 ptr
+= ntohl(th
->seq
);
5028 /* Ignore urgent data that we've already seen and read. */
5029 if (after(tp
->copied_seq
, ptr
))
5032 /* Do not replay urg ptr.
5034 * NOTE: interesting situation not covered by specs.
5035 * Misbehaving sender may send urg ptr, pointing to segment,
5036 * which we already have in ofo queue. We are not able to fetch
5037 * such data and will stay in TCP_URG_NOTYET until will be eaten
5038 * by recvmsg(). Seems, we are not obliged to handle such wicked
5039 * situations. But it is worth to think about possibility of some
5040 * DoSes using some hypothetical application level deadlock.
5042 if (before(ptr
, tp
->rcv_nxt
))
5045 /* Do we already have a newer (or duplicate) urgent pointer? */
5046 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5049 /* Tell the world about our new urgent pointer. */
5052 /* We may be adding urgent data when the last byte read was
5053 * urgent. To do this requires some care. We cannot just ignore
5054 * tp->copied_seq since we would read the last urgent byte again
5055 * as data, nor can we alter copied_seq until this data arrives
5056 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5058 * NOTE. Double Dutch. Rendering to plain English: author of comment
5059 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5060 * and expect that both A and B disappear from stream. This is _wrong_.
5061 * Though this happens in BSD with high probability, this is occasional.
5062 * Any application relying on this is buggy. Note also, that fix "works"
5063 * only in this artificial test. Insert some normal data between A and B and we will
5064 * decline of BSD again. Verdict: it is better to remove to trap
5067 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5068 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5069 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5071 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5072 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5077 tp
->urg_data
= TCP_URG_NOTYET
;
5080 /* Disable header prediction. */
5084 /* This is the 'fast' part of urgent handling. */
5085 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, struct tcphdr
*th
)
5087 struct tcp_sock
*tp
= tcp_sk(sk
);
5089 /* Check if we get a new urgent pointer - normally not. */
5091 tcp_check_urg(sk
, th
);
5093 /* Do we wait for any urgent data? - normally not... */
5094 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5095 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5098 /* Is the urgent pointer pointing into this packet? */
5099 if (ptr
< skb
->len
) {
5101 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5103 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5104 if (!sock_flag(sk
, SOCK_DEAD
))
5105 sk
->sk_data_ready(sk
, 0);
5110 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5112 struct tcp_sock
*tp
= tcp_sk(sk
);
5113 int chunk
= skb
->len
- hlen
;
5117 if (skb_csum_unnecessary(skb
))
5118 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
5120 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
5124 tp
->ucopy
.len
-= chunk
;
5125 tp
->copied_seq
+= chunk
;
5126 tcp_rcv_space_adjust(sk
);
5133 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
5134 struct sk_buff
*skb
)
5138 if (sock_owned_by_user(sk
)) {
5140 result
= __tcp_checksum_complete(skb
);
5143 result
= __tcp_checksum_complete(skb
);
5148 static inline int tcp_checksum_complete_user(struct sock
*sk
,
5149 struct sk_buff
*skb
)
5151 return !skb_csum_unnecessary(skb
) &&
5152 __tcp_checksum_complete_user(sk
, skb
);
5155 #ifdef CONFIG_NET_DMA
5156 static int tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
,
5159 struct tcp_sock
*tp
= tcp_sk(sk
);
5160 int chunk
= skb
->len
- hlen
;
5162 int copied_early
= 0;
5164 if (tp
->ucopy
.wakeup
)
5167 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
5168 tp
->ucopy
.dma_chan
= dma_find_channel(DMA_MEMCPY
);
5170 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
5172 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
5174 tp
->ucopy
.iov
, chunk
,
5175 tp
->ucopy
.pinned_list
);
5180 tp
->ucopy
.dma_cookie
= dma_cookie
;
5183 tp
->ucopy
.len
-= chunk
;
5184 tp
->copied_seq
+= chunk
;
5185 tcp_rcv_space_adjust(sk
);
5187 if ((tp
->ucopy
.len
== 0) ||
5188 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
5189 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
5190 tp
->ucopy
.wakeup
= 1;
5191 sk
->sk_data_ready(sk
, 0);
5193 } else if (chunk
> 0) {
5194 tp
->ucopy
.wakeup
= 1;
5195 sk
->sk_data_ready(sk
, 0);
5198 return copied_early
;
5200 #endif /* CONFIG_NET_DMA */
5202 /* Does PAWS and seqno based validation of an incoming segment, flags will
5203 * play significant role here.
5205 static int tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5206 struct tcphdr
*th
, int syn_inerr
)
5209 struct tcp_sock
*tp
= tcp_sk(sk
);
5211 /* RFC1323: H1. Apply PAWS check first. */
5212 if (tcp_fast_parse_options(skb
, th
, tp
, &hash_location
) &&
5213 tp
->rx_opt
.saw_tstamp
&&
5214 tcp_paws_discard(sk
, skb
)) {
5216 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5217 tcp_send_dupack(sk
, skb
);
5220 /* Reset is accepted even if it did not pass PAWS. */
5223 /* Step 1: check sequence number */
5224 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5225 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5226 * (RST) segments are validated by checking their SEQ-fields."
5227 * And page 69: "If an incoming segment is not acceptable,
5228 * an acknowledgment should be sent in reply (unless the RST
5229 * bit is set, if so drop the segment and return)".
5232 tcp_send_dupack(sk
, skb
);
5236 /* Step 2: check RST bit */
5242 /* ts_recent update must be made after we are sure that the packet
5245 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
5247 /* step 3: check security and precedence [ignored] */
5249 /* step 4: Check for a SYN in window. */
5250 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
5252 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5253 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONSYN
);
5266 * TCP receive function for the ESTABLISHED state.
5268 * It is split into a fast path and a slow path. The fast path is
5270 * - A zero window was announced from us - zero window probing
5271 * is only handled properly in the slow path.
5272 * - Out of order segments arrived.
5273 * - Urgent data is expected.
5274 * - There is no buffer space left
5275 * - Unexpected TCP flags/window values/header lengths are received
5276 * (detected by checking the TCP header against pred_flags)
5277 * - Data is sent in both directions. Fast path only supports pure senders
5278 * or pure receivers (this means either the sequence number or the ack
5279 * value must stay constant)
5280 * - Unexpected TCP option.
5282 * When these conditions are not satisfied it drops into a standard
5283 * receive procedure patterned after RFC793 to handle all cases.
5284 * The first three cases are guaranteed by proper pred_flags setting,
5285 * the rest is checked inline. Fast processing is turned on in
5286 * tcp_data_queue when everything is OK.
5288 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5289 struct tcphdr
*th
, unsigned len
)
5291 struct tcp_sock
*tp
= tcp_sk(sk
);
5295 * Header prediction.
5296 * The code loosely follows the one in the famous
5297 * "30 instruction TCP receive" Van Jacobson mail.
5299 * Van's trick is to deposit buffers into socket queue
5300 * on a device interrupt, to call tcp_recv function
5301 * on the receive process context and checksum and copy
5302 * the buffer to user space. smart...
5304 * Our current scheme is not silly either but we take the
5305 * extra cost of the net_bh soft interrupt processing...
5306 * We do checksum and copy also but from device to kernel.
5309 tp
->rx_opt
.saw_tstamp
= 0;
5311 /* pred_flags is 0xS?10 << 16 + snd_wnd
5312 * if header_prediction is to be made
5313 * 'S' will always be tp->tcp_header_len >> 2
5314 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5315 * turn it off (when there are holes in the receive
5316 * space for instance)
5317 * PSH flag is ignored.
5320 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5321 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5322 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5323 int tcp_header_len
= tp
->tcp_header_len
;
5325 /* Timestamp header prediction: tcp_header_len
5326 * is automatically equal to th->doff*4 due to pred_flags
5330 /* Check timestamp */
5331 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5332 /* No? Slow path! */
5333 if (!tcp_parse_aligned_timestamp(tp
, th
))
5336 /* If PAWS failed, check it more carefully in slow path */
5337 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5340 /* DO NOT update ts_recent here, if checksum fails
5341 * and timestamp was corrupted part, it will result
5342 * in a hung connection since we will drop all
5343 * future packets due to the PAWS test.
5347 if (len
<= tcp_header_len
) {
5348 /* Bulk data transfer: sender */
5349 if (len
== tcp_header_len
) {
5350 /* Predicted packet is in window by definition.
5351 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5352 * Hence, check seq<=rcv_wup reduces to:
5354 if (tcp_header_len
==
5355 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5356 tp
->rcv_nxt
== tp
->rcv_wup
)
5357 tcp_store_ts_recent(tp
);
5359 /* We know that such packets are checksummed
5362 tcp_ack(sk
, skb
, 0);
5364 tcp_data_snd_check(sk
);
5366 } else { /* Header too small */
5367 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5372 int copied_early
= 0;
5374 if (tp
->copied_seq
== tp
->rcv_nxt
&&
5375 len
- tcp_header_len
<= tp
->ucopy
.len
) {
5376 #ifdef CONFIG_NET_DMA
5377 if (tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
5382 if (tp
->ucopy
.task
== current
&&
5383 sock_owned_by_user(sk
) && !copied_early
) {
5384 __set_current_state(TASK_RUNNING
);
5386 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
5390 /* Predicted packet is in window by definition.
5391 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5392 * Hence, check seq<=rcv_wup reduces to:
5394 if (tcp_header_len
==
5395 (sizeof(struct tcphdr
) +
5396 TCPOLEN_TSTAMP_ALIGNED
) &&
5397 tp
->rcv_nxt
== tp
->rcv_wup
)
5398 tcp_store_ts_recent(tp
);
5400 tcp_rcv_rtt_measure_ts(sk
, skb
);
5402 __skb_pull(skb
, tcp_header_len
);
5403 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5404 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5407 tcp_cleanup_rbuf(sk
, skb
->len
);
5410 if (tcp_checksum_complete_user(sk
, skb
))
5413 /* Predicted packet is in window by definition.
5414 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5415 * Hence, check seq<=rcv_wup reduces to:
5417 if (tcp_header_len
==
5418 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5419 tp
->rcv_nxt
== tp
->rcv_wup
)
5420 tcp_store_ts_recent(tp
);
5422 tcp_rcv_rtt_measure_ts(sk
, skb
);
5424 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5427 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5429 /* Bulk data transfer: receiver */
5430 __skb_pull(skb
, tcp_header_len
);
5431 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
5432 skb_set_owner_r(skb
, sk
);
5433 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5436 tcp_event_data_recv(sk
, skb
);
5438 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5439 /* Well, only one small jumplet in fast path... */
5440 tcp_ack(sk
, skb
, FLAG_DATA
);
5441 tcp_data_snd_check(sk
);
5442 if (!inet_csk_ack_scheduled(sk
))
5446 if (!copied_early
|| tp
->rcv_nxt
!= tp
->rcv_wup
)
5447 __tcp_ack_snd_check(sk
, 0);
5449 #ifdef CONFIG_NET_DMA
5451 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
5457 sk
->sk_data_ready(sk
, 0);
5463 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5467 * Standard slow path.
5470 res
= tcp_validate_incoming(sk
, skb
, th
, 1);
5475 if (th
->ack
&& tcp_ack(sk
, skb
, FLAG_SLOWPATH
) < 0)
5478 tcp_rcv_rtt_measure_ts(sk
, skb
);
5480 /* Process urgent data. */
5481 tcp_urg(sk
, skb
, th
);
5483 /* step 7: process the segment text */
5484 tcp_data_queue(sk
, skb
);
5486 tcp_data_snd_check(sk
);
5487 tcp_ack_snd_check(sk
);
5491 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5497 EXPORT_SYMBOL(tcp_rcv_established
);
5499 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5500 struct tcphdr
*th
, unsigned len
)
5503 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5504 struct tcp_sock
*tp
= tcp_sk(sk
);
5505 struct tcp_cookie_values
*cvp
= tp
->cookie_values
;
5506 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5508 tcp_parse_options(skb
, &tp
->rx_opt
, &hash_location
, 0);
5512 * "If the state is SYN-SENT then
5513 * first check the ACK bit
5514 * If the ACK bit is set
5515 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5516 * a reset (unless the RST bit is set, if so drop
5517 * the segment and return)"
5519 * We do not send data with SYN, so that RFC-correct
5522 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
5523 goto reset_and_undo
;
5525 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5526 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5528 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5529 goto reset_and_undo
;
5532 /* Now ACK is acceptable.
5534 * "If the RST bit is set
5535 * If the ACK was acceptable then signal the user "error:
5536 * connection reset", drop the segment, enter CLOSED state,
5537 * delete TCB, and return."
5546 * "fifth, if neither of the SYN or RST bits is set then
5547 * drop the segment and return."
5553 goto discard_and_undo
;
5556 * "If the SYN bit is on ...
5557 * are acceptable then ...
5558 * (our SYN has been ACKed), change the connection
5559 * state to ESTABLISHED..."
5562 TCP_ECN_rcv_synack(tp
, th
);
5564 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5565 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5567 /* Ok.. it's good. Set up sequence numbers and
5568 * move to established.
5570 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5571 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5573 /* RFC1323: The window in SYN & SYN/ACK segments is
5576 tp
->snd_wnd
= ntohs(th
->window
);
5577 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5579 if (!tp
->rx_opt
.wscale_ok
) {
5580 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5581 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5584 if (tp
->rx_opt
.saw_tstamp
) {
5585 tp
->rx_opt
.tstamp_ok
= 1;
5586 tp
->tcp_header_len
=
5587 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5588 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5589 tcp_store_ts_recent(tp
);
5591 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5594 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5595 tcp_enable_fack(tp
);
5598 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5599 tcp_initialize_rcv_mss(sk
);
5601 /* Remember, tcp_poll() does not lock socket!
5602 * Change state from SYN-SENT only after copied_seq
5603 * is initialized. */
5604 tp
->copied_seq
= tp
->rcv_nxt
;
5607 cvp
->cookie_pair_size
> 0 &&
5608 tp
->rx_opt
.cookie_plus
> 0) {
5609 int cookie_size
= tp
->rx_opt
.cookie_plus
5610 - TCPOLEN_COOKIE_BASE
;
5611 int cookie_pair_size
= cookie_size
5612 + cvp
->cookie_desired
;
5614 /* A cookie extension option was sent and returned.
5615 * Note that each incoming SYNACK replaces the
5616 * Responder cookie. The initial exchange is most
5617 * fragile, as protection against spoofing relies
5618 * entirely upon the sequence and timestamp (above).
5619 * This replacement strategy allows the correct pair to
5620 * pass through, while any others will be filtered via
5621 * Responder verification later.
5623 if (sizeof(cvp
->cookie_pair
) >= cookie_pair_size
) {
5624 memcpy(&cvp
->cookie_pair
[cvp
->cookie_desired
],
5625 hash_location
, cookie_size
);
5626 cvp
->cookie_pair_size
= cookie_pair_size
;
5631 tcp_set_state(sk
, TCP_ESTABLISHED
);
5633 security_inet_conn_established(sk
, skb
);
5635 /* Make sure socket is routed, for correct metrics. */
5636 icsk
->icsk_af_ops
->rebuild_header(sk
);
5638 tcp_init_metrics(sk
);
5640 tcp_init_congestion_control(sk
);
5642 /* Prevent spurious tcp_cwnd_restart() on first data
5645 tp
->lsndtime
= tcp_time_stamp
;
5647 tcp_init_buffer_space(sk
);
5649 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5650 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5652 if (!tp
->rx_opt
.snd_wscale
)
5653 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5657 if (!sock_flag(sk
, SOCK_DEAD
)) {
5658 sk
->sk_state_change(sk
);
5659 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5662 if (sk
->sk_write_pending
||
5663 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5664 icsk
->icsk_ack
.pingpong
) {
5665 /* Save one ACK. Data will be ready after
5666 * several ticks, if write_pending is set.
5668 * It may be deleted, but with this feature tcpdumps
5669 * look so _wonderfully_ clever, that I was not able
5670 * to stand against the temptation 8) --ANK
5672 inet_csk_schedule_ack(sk
);
5673 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5674 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
5675 tcp_incr_quickack(sk
);
5676 tcp_enter_quickack_mode(sk
);
5677 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5678 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5689 /* No ACK in the segment */
5693 * "If the RST bit is set
5695 * Otherwise (no ACK) drop the segment and return."
5698 goto discard_and_undo
;
5702 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5703 tcp_paws_reject(&tp
->rx_opt
, 0))
5704 goto discard_and_undo
;
5707 /* We see SYN without ACK. It is attempt of
5708 * simultaneous connect with crossed SYNs.
5709 * Particularly, it can be connect to self.
5711 tcp_set_state(sk
, TCP_SYN_RECV
);
5713 if (tp
->rx_opt
.saw_tstamp
) {
5714 tp
->rx_opt
.tstamp_ok
= 1;
5715 tcp_store_ts_recent(tp
);
5716 tp
->tcp_header_len
=
5717 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5719 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5722 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5723 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5725 /* RFC1323: The window in SYN & SYN/ACK segments is
5728 tp
->snd_wnd
= ntohs(th
->window
);
5729 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5730 tp
->max_window
= tp
->snd_wnd
;
5732 TCP_ECN_rcv_syn(tp
, th
);
5735 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5736 tcp_initialize_rcv_mss(sk
);
5738 tcp_send_synack(sk
);
5740 /* Note, we could accept data and URG from this segment.
5741 * There are no obstacles to make this.
5743 * However, if we ignore data in ACKless segments sometimes,
5744 * we have no reasons to accept it sometimes.
5745 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5746 * is not flawless. So, discard packet for sanity.
5747 * Uncomment this return to process the data.
5754 /* "fifth, if neither of the SYN or RST bits is set then
5755 * drop the segment and return."
5759 tcp_clear_options(&tp
->rx_opt
);
5760 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5764 tcp_clear_options(&tp
->rx_opt
);
5765 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5770 * This function implements the receiving procedure of RFC 793 for
5771 * all states except ESTABLISHED and TIME_WAIT.
5772 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5773 * address independent.
5776 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5777 struct tcphdr
*th
, unsigned len
)
5779 struct tcp_sock
*tp
= tcp_sk(sk
);
5780 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5784 tp
->rx_opt
.saw_tstamp
= 0;
5786 switch (sk
->sk_state
) {
5798 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5801 /* Now we have several options: In theory there is
5802 * nothing else in the frame. KA9Q has an option to
5803 * send data with the syn, BSD accepts data with the
5804 * syn up to the [to be] advertised window and
5805 * Solaris 2.1 gives you a protocol error. For now
5806 * we just ignore it, that fits the spec precisely
5807 * and avoids incompatibilities. It would be nice in
5808 * future to drop through and process the data.
5810 * Now that TTCP is starting to be used we ought to
5812 * But, this leaves one open to an easy denial of
5813 * service attack, and SYN cookies can't defend
5814 * against this problem. So, we drop the data
5815 * in the interest of security over speed unless
5816 * it's still in use.
5824 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5828 /* Do step6 onward by hand. */
5829 tcp_urg(sk
, skb
, th
);
5831 tcp_data_snd_check(sk
);
5835 res
= tcp_validate_incoming(sk
, skb
, th
, 0);
5839 /* step 5: check the ACK field */
5841 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
) > 0;
5843 switch (sk
->sk_state
) {
5846 tp
->copied_seq
= tp
->rcv_nxt
;
5848 tcp_set_state(sk
, TCP_ESTABLISHED
);
5849 sk
->sk_state_change(sk
);
5851 /* Note, that this wakeup is only for marginal
5852 * crossed SYN case. Passively open sockets
5853 * are not waked up, because sk->sk_sleep ==
5854 * NULL and sk->sk_socket == NULL.
5858 SOCK_WAKE_IO
, POLL_OUT
);
5860 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5861 tp
->snd_wnd
= ntohs(th
->window
) <<
5862 tp
->rx_opt
.snd_wscale
;
5863 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5865 if (tp
->rx_opt
.tstamp_ok
)
5866 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5868 /* Make sure socket is routed, for
5871 icsk
->icsk_af_ops
->rebuild_header(sk
);
5873 tcp_init_metrics(sk
);
5875 tcp_init_congestion_control(sk
);
5877 /* Prevent spurious tcp_cwnd_restart() on
5878 * first data packet.
5880 tp
->lsndtime
= tcp_time_stamp
;
5883 tcp_initialize_rcv_mss(sk
);
5884 tcp_init_buffer_space(sk
);
5885 tcp_fast_path_on(tp
);
5892 if (tp
->snd_una
== tp
->write_seq
) {
5893 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5894 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5895 dst_confirm(__sk_dst_get(sk
));
5897 if (!sock_flag(sk
, SOCK_DEAD
))
5898 /* Wake up lingering close() */
5899 sk
->sk_state_change(sk
);
5903 if (tp
->linger2
< 0 ||
5904 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5905 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5907 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5911 tmo
= tcp_fin_time(sk
);
5912 if (tmo
> TCP_TIMEWAIT_LEN
) {
5913 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5914 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5915 /* Bad case. We could lose such FIN otherwise.
5916 * It is not a big problem, but it looks confusing
5917 * and not so rare event. We still can lose it now,
5918 * if it spins in bh_lock_sock(), but it is really
5921 inet_csk_reset_keepalive_timer(sk
, tmo
);
5923 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5931 if (tp
->snd_una
== tp
->write_seq
) {
5932 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5938 if (tp
->snd_una
== tp
->write_seq
) {
5939 tcp_update_metrics(sk
);
5948 /* step 6: check the URG bit */
5949 tcp_urg(sk
, skb
, th
);
5951 /* step 7: process the segment text */
5952 switch (sk
->sk_state
) {
5953 case TCP_CLOSE_WAIT
:
5956 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
5960 /* RFC 793 says to queue data in these states,
5961 * RFC 1122 says we MUST send a reset.
5962 * BSD 4.4 also does reset.
5964 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
5965 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5966 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5967 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5973 case TCP_ESTABLISHED
:
5974 tcp_data_queue(sk
, skb
);
5979 /* tcp_data could move socket to TIME-WAIT */
5980 if (sk
->sk_state
!= TCP_CLOSE
) {
5981 tcp_data_snd_check(sk
);
5982 tcp_ack_snd_check(sk
);
5991 EXPORT_SYMBOL(tcp_rcv_state_process
);