Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / net / mac80211 / rx.c
blobf45fd2fedc2415b6f5f68a58b2c00439dc4a71e6
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
32 * monitor mode reception
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 __pskb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
51 return skb;
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
75 int len;
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
80 if (status->flag & RX_FLAG_MACTIME_MPDU)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
85 if (len & 1) /* padding for RX_FLAGS if necessary */
86 len++;
88 if (status->flag & RX_FLAG_HT) /* HT info */
89 len += 3;
91 return len;
95 * ieee80211_add_rx_radiotap_header - add radiotap header
97 * add a radiotap header containing all the fields which the hardware provided.
99 static void
100 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
101 struct sk_buff *skb,
102 struct ieee80211_rate *rate,
103 int rtap_len)
105 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
106 struct ieee80211_radiotap_header *rthdr;
107 unsigned char *pos;
108 u16 rx_flags = 0;
110 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
111 memset(rthdr, 0, rtap_len);
113 /* radiotap header, set always present flags */
114 rthdr->it_present =
115 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
116 (1 << IEEE80211_RADIOTAP_CHANNEL) |
117 (1 << IEEE80211_RADIOTAP_ANTENNA) |
118 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
119 rthdr->it_len = cpu_to_le16(rtap_len);
121 pos = (unsigned char *)(rthdr+1);
123 /* the order of the following fields is important */
125 /* IEEE80211_RADIOTAP_TSFT */
126 if (status->flag & RX_FLAG_MACTIME_MPDU) {
127 put_unaligned_le64(status->mactime, pos);
128 rthdr->it_present |=
129 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
130 pos += 8;
133 /* IEEE80211_RADIOTAP_FLAGS */
134 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
135 *pos |= IEEE80211_RADIOTAP_F_FCS;
136 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
137 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
138 if (status->flag & RX_FLAG_SHORTPRE)
139 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
140 pos++;
142 /* IEEE80211_RADIOTAP_RATE */
143 if (status->flag & RX_FLAG_HT) {
145 * MCS information is a separate field in radiotap,
146 * added below. The byte here is needed as padding
147 * for the channel though, so initialise it to 0.
149 *pos = 0;
150 } else {
151 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
152 *pos = rate->bitrate / 5;
154 pos++;
156 /* IEEE80211_RADIOTAP_CHANNEL */
157 put_unaligned_le16(status->freq, pos);
158 pos += 2;
159 if (status->band == IEEE80211_BAND_5GHZ)
160 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
161 pos);
162 else if (status->flag & RX_FLAG_HT)
163 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
164 pos);
165 else if (rate->flags & IEEE80211_RATE_ERP_G)
166 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
167 pos);
168 else
169 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
170 pos);
171 pos += 2;
173 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
174 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
175 *pos = status->signal;
176 rthdr->it_present |=
177 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
178 pos++;
181 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
183 /* IEEE80211_RADIOTAP_ANTENNA */
184 *pos = status->antenna;
185 pos++;
187 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
189 /* IEEE80211_RADIOTAP_RX_FLAGS */
190 /* ensure 2 byte alignment for the 2 byte field as required */
191 if ((pos - (u8 *)rthdr) & 1)
192 pos++;
193 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
194 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
195 put_unaligned_le16(rx_flags, pos);
196 pos += 2;
198 if (status->flag & RX_FLAG_HT) {
199 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
200 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
201 IEEE80211_RADIOTAP_MCS_HAVE_GI |
202 IEEE80211_RADIOTAP_MCS_HAVE_BW;
203 *pos = 0;
204 if (status->flag & RX_FLAG_SHORT_GI)
205 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
206 if (status->flag & RX_FLAG_40MHZ)
207 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
208 pos++;
209 *pos++ = status->rate_idx;
214 * This function copies a received frame to all monitor interfaces and
215 * returns a cleaned-up SKB that no longer includes the FCS nor the
216 * radiotap header the driver might have added.
218 static struct sk_buff *
219 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
220 struct ieee80211_rate *rate)
222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
223 struct ieee80211_sub_if_data *sdata;
224 int needed_headroom = 0;
225 struct sk_buff *skb, *skb2;
226 struct net_device *prev_dev = NULL;
227 int present_fcs_len = 0;
230 * First, we may need to make a copy of the skb because
231 * (1) we need to modify it for radiotap (if not present), and
232 * (2) the other RX handlers will modify the skb we got.
234 * We don't need to, of course, if we aren't going to return
235 * the SKB because it has a bad FCS/PLCP checksum.
238 /* room for the radiotap header based on driver features */
239 needed_headroom = ieee80211_rx_radiotap_len(local, status);
241 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
242 present_fcs_len = FCS_LEN;
244 /* make sure hdr->frame_control is on the linear part */
245 if (!pskb_may_pull(origskb, 2)) {
246 dev_kfree_skb(origskb);
247 return NULL;
250 if (!local->monitors) {
251 if (should_drop_frame(origskb, present_fcs_len)) {
252 dev_kfree_skb(origskb);
253 return NULL;
256 return remove_monitor_info(local, origskb);
259 if (should_drop_frame(origskb, present_fcs_len)) {
260 /* only need to expand headroom if necessary */
261 skb = origskb;
262 origskb = NULL;
265 * This shouldn't trigger often because most devices have an
266 * RX header they pull before we get here, and that should
267 * be big enough for our radiotap information. We should
268 * probably export the length to drivers so that we can have
269 * them allocate enough headroom to start with.
271 if (skb_headroom(skb) < needed_headroom &&
272 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
273 dev_kfree_skb(skb);
274 return NULL;
276 } else {
278 * Need to make a copy and possibly remove radiotap header
279 * and FCS from the original.
281 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
283 origskb = remove_monitor_info(local, origskb);
285 if (!skb)
286 return origskb;
289 /* prepend radiotap information */
290 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
292 skb_reset_mac_header(skb);
293 skb->ip_summed = CHECKSUM_UNNECESSARY;
294 skb->pkt_type = PACKET_OTHERHOST;
295 skb->protocol = htons(ETH_P_802_2);
297 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
298 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
299 continue;
301 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
302 continue;
304 if (!ieee80211_sdata_running(sdata))
305 continue;
307 if (prev_dev) {
308 skb2 = skb_clone(skb, GFP_ATOMIC);
309 if (skb2) {
310 skb2->dev = prev_dev;
311 netif_receive_skb(skb2);
315 prev_dev = sdata->dev;
316 sdata->dev->stats.rx_packets++;
317 sdata->dev->stats.rx_bytes += skb->len;
320 if (prev_dev) {
321 skb->dev = prev_dev;
322 netif_receive_skb(skb);
323 } else
324 dev_kfree_skb(skb);
326 return origskb;
330 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
332 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
333 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
334 int tid, seqno_idx, security_idx;
336 /* does the frame have a qos control field? */
337 if (ieee80211_is_data_qos(hdr->frame_control)) {
338 u8 *qc = ieee80211_get_qos_ctl(hdr);
339 /* frame has qos control */
340 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
341 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
342 status->rx_flags |= IEEE80211_RX_AMSDU;
344 seqno_idx = tid;
345 security_idx = tid;
346 } else {
348 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
350 * Sequence numbers for management frames, QoS data
351 * frames with a broadcast/multicast address in the
352 * Address 1 field, and all non-QoS data frames sent
353 * by QoS STAs are assigned using an additional single
354 * modulo-4096 counter, [...]
356 * We also use that counter for non-QoS STAs.
358 seqno_idx = NUM_RX_DATA_QUEUES;
359 security_idx = 0;
360 if (ieee80211_is_mgmt(hdr->frame_control))
361 security_idx = NUM_RX_DATA_QUEUES;
362 tid = 0;
365 rx->seqno_idx = seqno_idx;
366 rx->security_idx = security_idx;
367 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
368 * For now, set skb->priority to 0 for other cases. */
369 rx->skb->priority = (tid > 7) ? 0 : tid;
373 * DOC: Packet alignment
375 * Drivers always need to pass packets that are aligned to two-byte boundaries
376 * to the stack.
378 * Additionally, should, if possible, align the payload data in a way that
379 * guarantees that the contained IP header is aligned to a four-byte
380 * boundary. In the case of regular frames, this simply means aligning the
381 * payload to a four-byte boundary (because either the IP header is directly
382 * contained, or IV/RFC1042 headers that have a length divisible by four are
383 * in front of it). If the payload data is not properly aligned and the
384 * architecture doesn't support efficient unaligned operations, mac80211
385 * will align the data.
387 * With A-MSDU frames, however, the payload data address must yield two modulo
388 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
389 * push the IP header further back to a multiple of four again. Thankfully, the
390 * specs were sane enough this time around to require padding each A-MSDU
391 * subframe to a length that is a multiple of four.
393 * Padding like Atheros hardware adds which is between the 802.11 header and
394 * the payload is not supported, the driver is required to move the 802.11
395 * header to be directly in front of the payload in that case.
397 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
399 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
400 WARN_ONCE((unsigned long)rx->skb->data & 1,
401 "unaligned packet at 0x%p\n", rx->skb->data);
402 #endif
406 /* rx handlers */
408 static ieee80211_rx_result debug_noinline
409 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
411 struct ieee80211_local *local = rx->local;
412 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
413 struct sk_buff *skb = rx->skb;
415 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
416 !local->sched_scanning))
417 return RX_CONTINUE;
419 if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
420 test_bit(SCAN_SW_SCANNING, &local->scanning) ||
421 local->sched_scanning)
422 return ieee80211_scan_rx(rx->sdata, skb);
424 /* scanning finished during invoking of handlers */
425 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
426 return RX_DROP_UNUSABLE;
430 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
432 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
434 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
435 return 0;
437 return ieee80211_is_robust_mgmt_frame(hdr);
441 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
443 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
445 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
446 return 0;
448 return ieee80211_is_robust_mgmt_frame(hdr);
452 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
453 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
455 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
456 struct ieee80211_mmie *mmie;
458 if (skb->len < 24 + sizeof(*mmie) ||
459 !is_multicast_ether_addr(hdr->da))
460 return -1;
462 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
463 return -1; /* not a robust management frame */
465 mmie = (struct ieee80211_mmie *)
466 (skb->data + skb->len - sizeof(*mmie));
467 if (mmie->element_id != WLAN_EID_MMIE ||
468 mmie->length != sizeof(*mmie) - 2)
469 return -1;
471 return le16_to_cpu(mmie->key_id);
475 static ieee80211_rx_result
476 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
478 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
479 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
480 char *dev_addr = rx->sdata->vif.addr;
482 if (ieee80211_is_data(hdr->frame_control)) {
483 if (is_multicast_ether_addr(hdr->addr1)) {
484 if (ieee80211_has_tods(hdr->frame_control) ||
485 !ieee80211_has_fromds(hdr->frame_control))
486 return RX_DROP_MONITOR;
487 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
488 return RX_DROP_MONITOR;
489 } else {
490 if (!ieee80211_has_a4(hdr->frame_control))
491 return RX_DROP_MONITOR;
492 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
493 return RX_DROP_MONITOR;
497 /* If there is not an established peer link and this is not a peer link
498 * establisment frame, beacon or probe, drop the frame.
501 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
502 struct ieee80211_mgmt *mgmt;
504 if (!ieee80211_is_mgmt(hdr->frame_control))
505 return RX_DROP_MONITOR;
507 if (ieee80211_is_action(hdr->frame_control)) {
508 u8 category;
509 mgmt = (struct ieee80211_mgmt *)hdr;
510 category = mgmt->u.action.category;
511 if (category != WLAN_CATEGORY_MESH_ACTION &&
512 category != WLAN_CATEGORY_SELF_PROTECTED)
513 return RX_DROP_MONITOR;
514 return RX_CONTINUE;
517 if (ieee80211_is_probe_req(hdr->frame_control) ||
518 ieee80211_is_probe_resp(hdr->frame_control) ||
519 ieee80211_is_beacon(hdr->frame_control) ||
520 ieee80211_is_auth(hdr->frame_control))
521 return RX_CONTINUE;
523 return RX_DROP_MONITOR;
527 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
529 if (ieee80211_is_data(hdr->frame_control) &&
530 is_multicast_ether_addr(hdr->addr1) &&
531 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
532 return RX_DROP_MONITOR;
533 #undef msh_h_get
535 return RX_CONTINUE;
538 #define SEQ_MODULO 0x1000
539 #define SEQ_MASK 0xfff
541 static inline int seq_less(u16 sq1, u16 sq2)
543 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
546 static inline u16 seq_inc(u16 sq)
548 return (sq + 1) & SEQ_MASK;
551 static inline u16 seq_sub(u16 sq1, u16 sq2)
553 return (sq1 - sq2) & SEQ_MASK;
557 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
558 struct tid_ampdu_rx *tid_agg_rx,
559 int index)
561 struct ieee80211_local *local = hw_to_local(hw);
562 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
563 struct ieee80211_rx_status *status;
565 lockdep_assert_held(&tid_agg_rx->reorder_lock);
567 if (!skb)
568 goto no_frame;
570 /* release the frame from the reorder ring buffer */
571 tid_agg_rx->stored_mpdu_num--;
572 tid_agg_rx->reorder_buf[index] = NULL;
573 status = IEEE80211_SKB_RXCB(skb);
574 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
575 skb_queue_tail(&local->rx_skb_queue, skb);
577 no_frame:
578 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
581 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
582 struct tid_ampdu_rx *tid_agg_rx,
583 u16 head_seq_num)
585 int index;
587 lockdep_assert_held(&tid_agg_rx->reorder_lock);
589 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
590 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
591 tid_agg_rx->buf_size;
592 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
597 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
598 * the skb was added to the buffer longer than this time ago, the earlier
599 * frames that have not yet been received are assumed to be lost and the skb
600 * can be released for processing. This may also release other skb's from the
601 * reorder buffer if there are no additional gaps between the frames.
603 * Callers must hold tid_agg_rx->reorder_lock.
605 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
607 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
608 struct tid_ampdu_rx *tid_agg_rx)
610 int index, j;
612 lockdep_assert_held(&tid_agg_rx->reorder_lock);
614 /* release the buffer until next missing frame */
615 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
616 tid_agg_rx->buf_size;
617 if (!tid_agg_rx->reorder_buf[index] &&
618 tid_agg_rx->stored_mpdu_num > 1) {
620 * No buffers ready to be released, but check whether any
621 * frames in the reorder buffer have timed out.
623 int skipped = 1;
624 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
625 j = (j + 1) % tid_agg_rx->buf_size) {
626 if (!tid_agg_rx->reorder_buf[j]) {
627 skipped++;
628 continue;
630 if (skipped &&
631 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
632 HT_RX_REORDER_BUF_TIMEOUT))
633 goto set_release_timer;
635 #ifdef CONFIG_MAC80211_HT_DEBUG
636 if (net_ratelimit())
637 wiphy_debug(hw->wiphy,
638 "release an RX reorder frame due to timeout on earlier frames\n");
639 #endif
640 ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
643 * Increment the head seq# also for the skipped slots.
645 tid_agg_rx->head_seq_num =
646 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
647 skipped = 0;
649 } else while (tid_agg_rx->reorder_buf[index]) {
650 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
651 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
652 tid_agg_rx->buf_size;
655 if (tid_agg_rx->stored_mpdu_num) {
656 j = index = seq_sub(tid_agg_rx->head_seq_num,
657 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
659 for (; j != (index - 1) % tid_agg_rx->buf_size;
660 j = (j + 1) % tid_agg_rx->buf_size) {
661 if (tid_agg_rx->reorder_buf[j])
662 break;
665 set_release_timer:
667 mod_timer(&tid_agg_rx->reorder_timer,
668 tid_agg_rx->reorder_time[j] + 1 +
669 HT_RX_REORDER_BUF_TIMEOUT);
670 } else {
671 del_timer(&tid_agg_rx->reorder_timer);
676 * As this function belongs to the RX path it must be under
677 * rcu_read_lock protection. It returns false if the frame
678 * can be processed immediately, true if it was consumed.
680 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
681 struct tid_ampdu_rx *tid_agg_rx,
682 struct sk_buff *skb)
684 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
685 u16 sc = le16_to_cpu(hdr->seq_ctrl);
686 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
687 u16 head_seq_num, buf_size;
688 int index;
689 bool ret = true;
691 spin_lock(&tid_agg_rx->reorder_lock);
693 buf_size = tid_agg_rx->buf_size;
694 head_seq_num = tid_agg_rx->head_seq_num;
696 /* frame with out of date sequence number */
697 if (seq_less(mpdu_seq_num, head_seq_num)) {
698 dev_kfree_skb(skb);
699 goto out;
703 * If frame the sequence number exceeds our buffering window
704 * size release some previous frames to make room for this one.
706 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
707 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
708 /* release stored frames up to new head to stack */
709 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
712 /* Now the new frame is always in the range of the reordering buffer */
714 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
716 /* check if we already stored this frame */
717 if (tid_agg_rx->reorder_buf[index]) {
718 dev_kfree_skb(skb);
719 goto out;
723 * If the current MPDU is in the right order and nothing else
724 * is stored we can process it directly, no need to buffer it.
725 * If it is first but there's something stored, we may be able
726 * to release frames after this one.
728 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
729 tid_agg_rx->stored_mpdu_num == 0) {
730 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
731 ret = false;
732 goto out;
735 /* put the frame in the reordering buffer */
736 tid_agg_rx->reorder_buf[index] = skb;
737 tid_agg_rx->reorder_time[index] = jiffies;
738 tid_agg_rx->stored_mpdu_num++;
739 ieee80211_sta_reorder_release(hw, tid_agg_rx);
741 out:
742 spin_unlock(&tid_agg_rx->reorder_lock);
743 return ret;
747 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
748 * true if the MPDU was buffered, false if it should be processed.
750 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
752 struct sk_buff *skb = rx->skb;
753 struct ieee80211_local *local = rx->local;
754 struct ieee80211_hw *hw = &local->hw;
755 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
756 struct sta_info *sta = rx->sta;
757 struct tid_ampdu_rx *tid_agg_rx;
758 u16 sc;
759 int tid;
761 if (!ieee80211_is_data_qos(hdr->frame_control))
762 goto dont_reorder;
765 * filter the QoS data rx stream according to
766 * STA/TID and check if this STA/TID is on aggregation
769 if (!sta)
770 goto dont_reorder;
772 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
774 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
775 if (!tid_agg_rx)
776 goto dont_reorder;
778 /* qos null data frames are excluded */
779 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
780 goto dont_reorder;
782 /* new, potentially un-ordered, ampdu frame - process it */
784 /* reset session timer */
785 if (tid_agg_rx->timeout)
786 mod_timer(&tid_agg_rx->session_timer,
787 TU_TO_EXP_TIME(tid_agg_rx->timeout));
789 /* if this mpdu is fragmented - terminate rx aggregation session */
790 sc = le16_to_cpu(hdr->seq_ctrl);
791 if (sc & IEEE80211_SCTL_FRAG) {
792 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
793 skb_queue_tail(&rx->sdata->skb_queue, skb);
794 ieee80211_queue_work(&local->hw, &rx->sdata->work);
795 return;
799 * No locking needed -- we will only ever process one
800 * RX packet at a time, and thus own tid_agg_rx. All
801 * other code manipulating it needs to (and does) make
802 * sure that we cannot get to it any more before doing
803 * anything with it.
805 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
806 return;
808 dont_reorder:
809 skb_queue_tail(&local->rx_skb_queue, skb);
812 static ieee80211_rx_result debug_noinline
813 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
815 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
816 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
818 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
819 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
820 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
821 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
822 hdr->seq_ctrl)) {
823 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
824 rx->local->dot11FrameDuplicateCount++;
825 rx->sta->num_duplicates++;
827 return RX_DROP_UNUSABLE;
828 } else
829 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
832 if (unlikely(rx->skb->len < 16)) {
833 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
834 return RX_DROP_MONITOR;
837 /* Drop disallowed frame classes based on STA auth/assoc state;
838 * IEEE 802.11, Chap 5.5.
840 * mac80211 filters only based on association state, i.e. it drops
841 * Class 3 frames from not associated stations. hostapd sends
842 * deauth/disassoc frames when needed. In addition, hostapd is
843 * responsible for filtering on both auth and assoc states.
846 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
847 return ieee80211_rx_mesh_check(rx);
849 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
850 ieee80211_is_pspoll(hdr->frame_control)) &&
851 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
852 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
853 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
854 if (rx->sta && rx->sta->dummy &&
855 ieee80211_is_data_present(hdr->frame_control)) {
856 u16 ethertype;
857 u8 *payload;
859 payload = rx->skb->data +
860 ieee80211_hdrlen(hdr->frame_control);
861 ethertype = (payload[6] << 8) | payload[7];
862 if (cpu_to_be16(ethertype) ==
863 rx->sdata->control_port_protocol)
864 return RX_CONTINUE;
866 return RX_DROP_MONITOR;
869 return RX_CONTINUE;
873 static ieee80211_rx_result debug_noinline
874 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
876 struct sk_buff *skb = rx->skb;
877 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
878 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
879 int keyidx;
880 int hdrlen;
881 ieee80211_rx_result result = RX_DROP_UNUSABLE;
882 struct ieee80211_key *sta_ptk = NULL;
883 int mmie_keyidx = -1;
884 __le16 fc;
887 * Key selection 101
889 * There are four types of keys:
890 * - GTK (group keys)
891 * - IGTK (group keys for management frames)
892 * - PTK (pairwise keys)
893 * - STK (station-to-station pairwise keys)
895 * When selecting a key, we have to distinguish between multicast
896 * (including broadcast) and unicast frames, the latter can only
897 * use PTKs and STKs while the former always use GTKs and IGTKs.
898 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
899 * unicast frames can also use key indices like GTKs. Hence, if we
900 * don't have a PTK/STK we check the key index for a WEP key.
902 * Note that in a regular BSS, multicast frames are sent by the
903 * AP only, associated stations unicast the frame to the AP first
904 * which then multicasts it on their behalf.
906 * There is also a slight problem in IBSS mode: GTKs are negotiated
907 * with each station, that is something we don't currently handle.
908 * The spec seems to expect that one negotiates the same key with
909 * every station but there's no such requirement; VLANs could be
910 * possible.
914 * No point in finding a key and decrypting if the frame is neither
915 * addressed to us nor a multicast frame.
917 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
918 return RX_CONTINUE;
920 /* start without a key */
921 rx->key = NULL;
923 if (rx->sta)
924 sta_ptk = rcu_dereference(rx->sta->ptk);
926 fc = hdr->frame_control;
928 if (!ieee80211_has_protected(fc))
929 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
931 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
932 rx->key = sta_ptk;
933 if ((status->flag & RX_FLAG_DECRYPTED) &&
934 (status->flag & RX_FLAG_IV_STRIPPED))
935 return RX_CONTINUE;
936 /* Skip decryption if the frame is not protected. */
937 if (!ieee80211_has_protected(fc))
938 return RX_CONTINUE;
939 } else if (mmie_keyidx >= 0) {
940 /* Broadcast/multicast robust management frame / BIP */
941 if ((status->flag & RX_FLAG_DECRYPTED) &&
942 (status->flag & RX_FLAG_IV_STRIPPED))
943 return RX_CONTINUE;
945 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
946 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
947 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
948 if (rx->sta)
949 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
950 if (!rx->key)
951 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
952 } else if (!ieee80211_has_protected(fc)) {
954 * The frame was not protected, so skip decryption. However, we
955 * need to set rx->key if there is a key that could have been
956 * used so that the frame may be dropped if encryption would
957 * have been expected.
959 struct ieee80211_key *key = NULL;
960 struct ieee80211_sub_if_data *sdata = rx->sdata;
961 int i;
963 if (ieee80211_is_mgmt(fc) &&
964 is_multicast_ether_addr(hdr->addr1) &&
965 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
966 rx->key = key;
967 else {
968 if (rx->sta) {
969 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
970 key = rcu_dereference(rx->sta->gtk[i]);
971 if (key)
972 break;
975 if (!key) {
976 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
977 key = rcu_dereference(sdata->keys[i]);
978 if (key)
979 break;
982 if (key)
983 rx->key = key;
985 return RX_CONTINUE;
986 } else {
987 u8 keyid;
989 * The device doesn't give us the IV so we won't be
990 * able to look up the key. That's ok though, we
991 * don't need to decrypt the frame, we just won't
992 * be able to keep statistics accurate.
993 * Except for key threshold notifications, should
994 * we somehow allow the driver to tell us which key
995 * the hardware used if this flag is set?
997 if ((status->flag & RX_FLAG_DECRYPTED) &&
998 (status->flag & RX_FLAG_IV_STRIPPED))
999 return RX_CONTINUE;
1001 hdrlen = ieee80211_hdrlen(fc);
1003 if (rx->skb->len < 8 + hdrlen)
1004 return RX_DROP_UNUSABLE; /* TODO: count this? */
1007 * no need to call ieee80211_wep_get_keyidx,
1008 * it verifies a bunch of things we've done already
1010 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1011 keyidx = keyid >> 6;
1013 /* check per-station GTK first, if multicast packet */
1014 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1015 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1017 /* if not found, try default key */
1018 if (!rx->key) {
1019 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1022 * RSNA-protected unicast frames should always be
1023 * sent with pairwise or station-to-station keys,
1024 * but for WEP we allow using a key index as well.
1026 if (rx->key &&
1027 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1028 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1029 !is_multicast_ether_addr(hdr->addr1))
1030 rx->key = NULL;
1034 if (rx->key) {
1035 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1036 return RX_DROP_MONITOR;
1038 rx->key->tx_rx_count++;
1039 /* TODO: add threshold stuff again */
1040 } else {
1041 return RX_DROP_MONITOR;
1044 if (skb_linearize(rx->skb))
1045 return RX_DROP_UNUSABLE;
1046 /* the hdr variable is invalid now! */
1048 switch (rx->key->conf.cipher) {
1049 case WLAN_CIPHER_SUITE_WEP40:
1050 case WLAN_CIPHER_SUITE_WEP104:
1051 /* Check for weak IVs if possible */
1052 if (rx->sta && ieee80211_is_data(fc) &&
1053 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1054 !(status->flag & RX_FLAG_DECRYPTED)) &&
1055 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1056 rx->sta->wep_weak_iv_count++;
1058 result = ieee80211_crypto_wep_decrypt(rx);
1059 break;
1060 case WLAN_CIPHER_SUITE_TKIP:
1061 result = ieee80211_crypto_tkip_decrypt(rx);
1062 break;
1063 case WLAN_CIPHER_SUITE_CCMP:
1064 result = ieee80211_crypto_ccmp_decrypt(rx);
1065 break;
1066 case WLAN_CIPHER_SUITE_AES_CMAC:
1067 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1068 break;
1069 default:
1071 * We can reach here only with HW-only algorithms
1072 * but why didn't it decrypt the frame?!
1074 return RX_DROP_UNUSABLE;
1077 /* either the frame has been decrypted or will be dropped */
1078 status->flag |= RX_FLAG_DECRYPTED;
1080 return result;
1083 static ieee80211_rx_result debug_noinline
1084 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1086 struct ieee80211_local *local;
1087 struct ieee80211_hdr *hdr;
1088 struct sk_buff *skb;
1090 local = rx->local;
1091 skb = rx->skb;
1092 hdr = (struct ieee80211_hdr *) skb->data;
1094 if (!local->pspolling)
1095 return RX_CONTINUE;
1097 if (!ieee80211_has_fromds(hdr->frame_control))
1098 /* this is not from AP */
1099 return RX_CONTINUE;
1101 if (!ieee80211_is_data(hdr->frame_control))
1102 return RX_CONTINUE;
1104 if (!ieee80211_has_moredata(hdr->frame_control)) {
1105 /* AP has no more frames buffered for us */
1106 local->pspolling = false;
1107 return RX_CONTINUE;
1110 /* more data bit is set, let's request a new frame from the AP */
1111 ieee80211_send_pspoll(local, rx->sdata);
1113 return RX_CONTINUE;
1116 static void ap_sta_ps_start(struct sta_info *sta)
1118 struct ieee80211_sub_if_data *sdata = sta->sdata;
1119 struct ieee80211_local *local = sdata->local;
1121 atomic_inc(&sdata->bss->num_sta_ps);
1122 set_sta_flags(sta, WLAN_STA_PS_STA);
1123 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1124 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1125 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1126 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1127 sdata->name, sta->sta.addr, sta->sta.aid);
1128 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1131 static void ap_sta_ps_end(struct sta_info *sta)
1133 struct ieee80211_sub_if_data *sdata = sta->sdata;
1135 atomic_dec(&sdata->bss->num_sta_ps);
1137 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1138 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1139 sdata->name, sta->sta.addr, sta->sta.aid);
1140 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1142 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1143 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1144 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1145 sdata->name, sta->sta.addr, sta->sta.aid);
1146 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1147 return;
1150 ieee80211_sta_ps_deliver_wakeup(sta);
1153 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1155 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1156 bool in_ps;
1158 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1160 /* Don't let the same PS state be set twice */
1161 in_ps = test_sta_flags(sta_inf, WLAN_STA_PS_STA);
1162 if ((start && in_ps) || (!start && !in_ps))
1163 return -EINVAL;
1165 if (start)
1166 ap_sta_ps_start(sta_inf);
1167 else
1168 ap_sta_ps_end(sta_inf);
1170 return 0;
1172 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1174 static ieee80211_rx_result debug_noinline
1175 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1177 struct sta_info *sta = rx->sta;
1178 struct sk_buff *skb = rx->skb;
1179 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1180 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1182 if (!sta)
1183 return RX_CONTINUE;
1186 * Update last_rx only for IBSS packets which are for the current
1187 * BSSID to avoid keeping the current IBSS network alive in cases
1188 * where other STAs start using different BSSID.
1190 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1191 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1192 NL80211_IFTYPE_ADHOC);
1193 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1194 sta->last_rx = jiffies;
1195 if (ieee80211_is_data(hdr->frame_control)) {
1196 sta->last_rx_rate_idx = status->rate_idx;
1197 sta->last_rx_rate_flag = status->flag;
1200 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1202 * Mesh beacons will update last_rx when if they are found to
1203 * match the current local configuration when processed.
1205 sta->last_rx = jiffies;
1206 if (ieee80211_is_data(hdr->frame_control)) {
1207 sta->last_rx_rate_idx = status->rate_idx;
1208 sta->last_rx_rate_flag = status->flag;
1212 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1213 return RX_CONTINUE;
1215 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1216 ieee80211_sta_rx_notify(rx->sdata, hdr);
1218 sta->rx_fragments++;
1219 sta->rx_bytes += rx->skb->len;
1220 sta->last_signal = status->signal;
1221 ewma_add(&sta->avg_signal, -status->signal);
1224 * Change STA power saving mode only at the end of a frame
1225 * exchange sequence.
1227 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1228 !ieee80211_has_morefrags(hdr->frame_control) &&
1229 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1230 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1231 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1232 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1234 * Ignore doze->wake transitions that are
1235 * indicated by non-data frames, the standard
1236 * is unclear here, but for example going to
1237 * PS mode and then scanning would cause a
1238 * doze->wake transition for the probe request,
1239 * and that is clearly undesirable.
1241 if (ieee80211_is_data(hdr->frame_control) &&
1242 !ieee80211_has_pm(hdr->frame_control))
1243 ap_sta_ps_end(sta);
1244 } else {
1245 if (ieee80211_has_pm(hdr->frame_control))
1246 ap_sta_ps_start(sta);
1251 * Drop (qos-)data::nullfunc frames silently, since they
1252 * are used only to control station power saving mode.
1254 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1255 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1256 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1259 * If we receive a 4-addr nullfunc frame from a STA
1260 * that was not moved to a 4-addr STA vlan yet, drop
1261 * the frame to the monitor interface, to make sure
1262 * that hostapd sees it
1264 if (ieee80211_has_a4(hdr->frame_control) &&
1265 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1266 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1267 !rx->sdata->u.vlan.sta)))
1268 return RX_DROP_MONITOR;
1270 * Update counter and free packet here to avoid
1271 * counting this as a dropped packed.
1273 sta->rx_packets++;
1274 dev_kfree_skb(rx->skb);
1275 return RX_QUEUED;
1278 return RX_CONTINUE;
1279 } /* ieee80211_rx_h_sta_process */
1281 static inline struct ieee80211_fragment_entry *
1282 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1283 unsigned int frag, unsigned int seq, int rx_queue,
1284 struct sk_buff **skb)
1286 struct ieee80211_fragment_entry *entry;
1287 int idx;
1289 idx = sdata->fragment_next;
1290 entry = &sdata->fragments[sdata->fragment_next++];
1291 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1292 sdata->fragment_next = 0;
1294 if (!skb_queue_empty(&entry->skb_list)) {
1295 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1296 struct ieee80211_hdr *hdr =
1297 (struct ieee80211_hdr *) entry->skb_list.next->data;
1298 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1299 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1300 "addr1=%pM addr2=%pM\n",
1301 sdata->name, idx,
1302 jiffies - entry->first_frag_time, entry->seq,
1303 entry->last_frag, hdr->addr1, hdr->addr2);
1304 #endif
1305 __skb_queue_purge(&entry->skb_list);
1308 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1309 *skb = NULL;
1310 entry->first_frag_time = jiffies;
1311 entry->seq = seq;
1312 entry->rx_queue = rx_queue;
1313 entry->last_frag = frag;
1314 entry->ccmp = 0;
1315 entry->extra_len = 0;
1317 return entry;
1320 static inline struct ieee80211_fragment_entry *
1321 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1322 unsigned int frag, unsigned int seq,
1323 int rx_queue, struct ieee80211_hdr *hdr)
1325 struct ieee80211_fragment_entry *entry;
1326 int i, idx;
1328 idx = sdata->fragment_next;
1329 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1330 struct ieee80211_hdr *f_hdr;
1332 idx--;
1333 if (idx < 0)
1334 idx = IEEE80211_FRAGMENT_MAX - 1;
1336 entry = &sdata->fragments[idx];
1337 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1338 entry->rx_queue != rx_queue ||
1339 entry->last_frag + 1 != frag)
1340 continue;
1342 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1345 * Check ftype and addresses are equal, else check next fragment
1347 if (((hdr->frame_control ^ f_hdr->frame_control) &
1348 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1349 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1350 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1351 continue;
1353 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1354 __skb_queue_purge(&entry->skb_list);
1355 continue;
1357 return entry;
1360 return NULL;
1363 static ieee80211_rx_result debug_noinline
1364 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1366 struct ieee80211_hdr *hdr;
1367 u16 sc;
1368 __le16 fc;
1369 unsigned int frag, seq;
1370 struct ieee80211_fragment_entry *entry;
1371 struct sk_buff *skb;
1372 struct ieee80211_rx_status *status;
1374 hdr = (struct ieee80211_hdr *)rx->skb->data;
1375 fc = hdr->frame_control;
1376 sc = le16_to_cpu(hdr->seq_ctrl);
1377 frag = sc & IEEE80211_SCTL_FRAG;
1379 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1380 (rx->skb)->len < 24 ||
1381 is_multicast_ether_addr(hdr->addr1))) {
1382 /* not fragmented */
1383 goto out;
1385 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1387 if (skb_linearize(rx->skb))
1388 return RX_DROP_UNUSABLE;
1391 * skb_linearize() might change the skb->data and
1392 * previously cached variables (in this case, hdr) need to
1393 * be refreshed with the new data.
1395 hdr = (struct ieee80211_hdr *)rx->skb->data;
1396 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1398 if (frag == 0) {
1399 /* This is the first fragment of a new frame. */
1400 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1401 rx->seqno_idx, &(rx->skb));
1402 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1403 ieee80211_has_protected(fc)) {
1404 int queue = rx->security_idx;
1405 /* Store CCMP PN so that we can verify that the next
1406 * fragment has a sequential PN value. */
1407 entry->ccmp = 1;
1408 memcpy(entry->last_pn,
1409 rx->key->u.ccmp.rx_pn[queue],
1410 CCMP_PN_LEN);
1412 return RX_QUEUED;
1415 /* This is a fragment for a frame that should already be pending in
1416 * fragment cache. Add this fragment to the end of the pending entry.
1418 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1419 rx->seqno_idx, hdr);
1420 if (!entry) {
1421 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1422 return RX_DROP_MONITOR;
1425 /* Verify that MPDUs within one MSDU have sequential PN values.
1426 * (IEEE 802.11i, 8.3.3.4.5) */
1427 if (entry->ccmp) {
1428 int i;
1429 u8 pn[CCMP_PN_LEN], *rpn;
1430 int queue;
1431 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1432 return RX_DROP_UNUSABLE;
1433 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1434 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1435 pn[i]++;
1436 if (pn[i])
1437 break;
1439 queue = rx->security_idx;
1440 rpn = rx->key->u.ccmp.rx_pn[queue];
1441 if (memcmp(pn, rpn, CCMP_PN_LEN))
1442 return RX_DROP_UNUSABLE;
1443 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1446 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1447 __skb_queue_tail(&entry->skb_list, rx->skb);
1448 entry->last_frag = frag;
1449 entry->extra_len += rx->skb->len;
1450 if (ieee80211_has_morefrags(fc)) {
1451 rx->skb = NULL;
1452 return RX_QUEUED;
1455 rx->skb = __skb_dequeue(&entry->skb_list);
1456 if (skb_tailroom(rx->skb) < entry->extra_len) {
1457 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1458 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1459 GFP_ATOMIC))) {
1460 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1461 __skb_queue_purge(&entry->skb_list);
1462 return RX_DROP_UNUSABLE;
1465 while ((skb = __skb_dequeue(&entry->skb_list))) {
1466 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1467 dev_kfree_skb(skb);
1470 /* Complete frame has been reassembled - process it now */
1471 status = IEEE80211_SKB_RXCB(rx->skb);
1472 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1474 out:
1475 if (rx->sta)
1476 rx->sta->rx_packets++;
1477 if (is_multicast_ether_addr(hdr->addr1))
1478 rx->local->dot11MulticastReceivedFrameCount++;
1479 else
1480 ieee80211_led_rx(rx->local);
1481 return RX_CONTINUE;
1484 static ieee80211_rx_result debug_noinline
1485 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1487 struct ieee80211_sub_if_data *sdata = rx->sdata;
1488 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1489 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1491 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1492 !(status->rx_flags & IEEE80211_RX_RA_MATCH)))
1493 return RX_CONTINUE;
1495 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1496 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1497 return RX_DROP_UNUSABLE;
1499 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1500 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1501 else
1502 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1504 /* Free PS Poll skb here instead of returning RX_DROP that would
1505 * count as an dropped frame. */
1506 dev_kfree_skb(rx->skb);
1508 return RX_QUEUED;
1511 static ieee80211_rx_result debug_noinline
1512 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1514 u8 *data = rx->skb->data;
1515 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1517 if (!ieee80211_is_data_qos(hdr->frame_control))
1518 return RX_CONTINUE;
1520 /* remove the qos control field, update frame type and meta-data */
1521 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1522 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1523 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1524 /* change frame type to non QOS */
1525 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1527 return RX_CONTINUE;
1530 static int
1531 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1533 if (unlikely(!rx->sta ||
1534 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1535 return -EACCES;
1537 return 0;
1540 static int
1541 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1543 struct sk_buff *skb = rx->skb;
1544 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1547 * Pass through unencrypted frames if the hardware has
1548 * decrypted them already.
1550 if (status->flag & RX_FLAG_DECRYPTED)
1551 return 0;
1553 /* Drop unencrypted frames if key is set. */
1554 if (unlikely(!ieee80211_has_protected(fc) &&
1555 !ieee80211_is_nullfunc(fc) &&
1556 ieee80211_is_data(fc) &&
1557 (rx->key || rx->sdata->drop_unencrypted)))
1558 return -EACCES;
1560 return 0;
1563 static int
1564 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1566 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1567 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1568 __le16 fc = hdr->frame_control;
1571 * Pass through unencrypted frames if the hardware has
1572 * decrypted them already.
1574 if (status->flag & RX_FLAG_DECRYPTED)
1575 return 0;
1577 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1578 if (unlikely(!ieee80211_has_protected(fc) &&
1579 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1580 rx->key)) {
1581 if (ieee80211_is_deauth(fc))
1582 cfg80211_send_unprot_deauth(rx->sdata->dev,
1583 rx->skb->data,
1584 rx->skb->len);
1585 else if (ieee80211_is_disassoc(fc))
1586 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1587 rx->skb->data,
1588 rx->skb->len);
1589 return -EACCES;
1591 /* BIP does not use Protected field, so need to check MMIE */
1592 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1593 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1594 if (ieee80211_is_deauth(fc))
1595 cfg80211_send_unprot_deauth(rx->sdata->dev,
1596 rx->skb->data,
1597 rx->skb->len);
1598 else if (ieee80211_is_disassoc(fc))
1599 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1600 rx->skb->data,
1601 rx->skb->len);
1602 return -EACCES;
1605 * When using MFP, Action frames are not allowed prior to
1606 * having configured keys.
1608 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1609 ieee80211_is_robust_mgmt_frame(
1610 (struct ieee80211_hdr *) rx->skb->data)))
1611 return -EACCES;
1614 return 0;
1617 static int
1618 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1620 struct ieee80211_sub_if_data *sdata = rx->sdata;
1621 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1622 bool check_port_control = false;
1623 struct ethhdr *ehdr;
1624 int ret;
1626 *port_control = false;
1627 if (ieee80211_has_a4(hdr->frame_control) &&
1628 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1629 return -1;
1631 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1632 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1634 if (!sdata->u.mgd.use_4addr)
1635 return -1;
1636 else
1637 check_port_control = true;
1640 if (is_multicast_ether_addr(hdr->addr1) &&
1641 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1642 return -1;
1644 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1645 if (ret < 0)
1646 return ret;
1648 ehdr = (struct ethhdr *) rx->skb->data;
1649 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1650 *port_control = true;
1651 else if (check_port_control)
1652 return -1;
1654 return 0;
1658 * requires that rx->skb is a frame with ethernet header
1660 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1662 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1663 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1664 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1667 * Allow EAPOL frames to us/the PAE group address regardless
1668 * of whether the frame was encrypted or not.
1670 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1671 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1672 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1673 return true;
1675 if (ieee80211_802_1x_port_control(rx) ||
1676 ieee80211_drop_unencrypted(rx, fc))
1677 return false;
1679 return true;
1683 * requires that rx->skb is a frame with ethernet header
1685 static void
1686 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1688 struct ieee80211_sub_if_data *sdata = rx->sdata;
1689 struct net_device *dev = sdata->dev;
1690 struct sk_buff *skb, *xmit_skb;
1691 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1692 struct sta_info *dsta;
1693 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1695 skb = rx->skb;
1696 xmit_skb = NULL;
1698 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1699 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1700 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1701 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1702 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1703 if (is_multicast_ether_addr(ehdr->h_dest)) {
1705 * send multicast frames both to higher layers in
1706 * local net stack and back to the wireless medium
1708 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1709 if (!xmit_skb && net_ratelimit())
1710 printk(KERN_DEBUG "%s: failed to clone "
1711 "multicast frame\n", dev->name);
1712 } else {
1713 dsta = sta_info_get(sdata, skb->data);
1714 if (dsta) {
1716 * The destination station is associated to
1717 * this AP (in this VLAN), so send the frame
1718 * directly to it and do not pass it to local
1719 * net stack.
1721 xmit_skb = skb;
1722 skb = NULL;
1727 if (skb) {
1728 int align __maybe_unused;
1730 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1732 * 'align' will only take the values 0 or 2 here
1733 * since all frames are required to be aligned
1734 * to 2-byte boundaries when being passed to
1735 * mac80211. That also explains the __skb_push()
1736 * below.
1738 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1739 if (align) {
1740 if (WARN_ON(skb_headroom(skb) < 3)) {
1741 dev_kfree_skb(skb);
1742 skb = NULL;
1743 } else {
1744 u8 *data = skb->data;
1745 size_t len = skb_headlen(skb);
1746 skb->data -= align;
1747 memmove(skb->data, data, len);
1748 skb_set_tail_pointer(skb, len);
1751 #endif
1753 if (skb) {
1754 /* deliver to local stack */
1755 skb->protocol = eth_type_trans(skb, dev);
1756 memset(skb->cb, 0, sizeof(skb->cb));
1757 netif_receive_skb(skb);
1761 if (xmit_skb) {
1762 /* send to wireless media */
1763 xmit_skb->protocol = htons(ETH_P_802_3);
1764 skb_reset_network_header(xmit_skb);
1765 skb_reset_mac_header(xmit_skb);
1766 dev_queue_xmit(xmit_skb);
1770 static ieee80211_rx_result debug_noinline
1771 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1773 struct net_device *dev = rx->sdata->dev;
1774 struct sk_buff *skb = rx->skb;
1775 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1776 __le16 fc = hdr->frame_control;
1777 struct sk_buff_head frame_list;
1778 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1780 if (unlikely(!ieee80211_is_data(fc)))
1781 return RX_CONTINUE;
1783 if (unlikely(!ieee80211_is_data_present(fc)))
1784 return RX_DROP_MONITOR;
1786 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1787 return RX_CONTINUE;
1789 if (ieee80211_has_a4(hdr->frame_control) &&
1790 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1791 !rx->sdata->u.vlan.sta)
1792 return RX_DROP_UNUSABLE;
1794 if (is_multicast_ether_addr(hdr->addr1) &&
1795 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1796 rx->sdata->u.vlan.sta) ||
1797 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1798 rx->sdata->u.mgd.use_4addr)))
1799 return RX_DROP_UNUSABLE;
1801 skb->dev = dev;
1802 __skb_queue_head_init(&frame_list);
1804 if (skb_linearize(skb))
1805 return RX_DROP_UNUSABLE;
1807 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1808 rx->sdata->vif.type,
1809 rx->local->hw.extra_tx_headroom, true);
1811 while (!skb_queue_empty(&frame_list)) {
1812 rx->skb = __skb_dequeue(&frame_list);
1814 if (!ieee80211_frame_allowed(rx, fc)) {
1815 dev_kfree_skb(rx->skb);
1816 continue;
1818 dev->stats.rx_packets++;
1819 dev->stats.rx_bytes += rx->skb->len;
1821 ieee80211_deliver_skb(rx);
1824 return RX_QUEUED;
1827 #ifdef CONFIG_MAC80211_MESH
1828 static ieee80211_rx_result
1829 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1831 struct ieee80211_hdr *hdr;
1832 struct ieee80211s_hdr *mesh_hdr;
1833 unsigned int hdrlen;
1834 struct sk_buff *skb = rx->skb, *fwd_skb;
1835 struct ieee80211_local *local = rx->local;
1836 struct ieee80211_sub_if_data *sdata = rx->sdata;
1837 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1839 hdr = (struct ieee80211_hdr *) skb->data;
1840 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1841 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1843 if (!ieee80211_is_data(hdr->frame_control))
1844 return RX_CONTINUE;
1846 if (!mesh_hdr->ttl)
1847 /* illegal frame */
1848 return RX_DROP_MONITOR;
1850 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1851 struct mesh_path *mppath;
1852 char *proxied_addr;
1853 char *mpp_addr;
1855 if (is_multicast_ether_addr(hdr->addr1)) {
1856 mpp_addr = hdr->addr3;
1857 proxied_addr = mesh_hdr->eaddr1;
1858 } else {
1859 mpp_addr = hdr->addr4;
1860 proxied_addr = mesh_hdr->eaddr2;
1863 rcu_read_lock();
1864 mppath = mpp_path_lookup(proxied_addr, sdata);
1865 if (!mppath) {
1866 mpp_path_add(proxied_addr, mpp_addr, sdata);
1867 } else {
1868 spin_lock_bh(&mppath->state_lock);
1869 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1870 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1871 spin_unlock_bh(&mppath->state_lock);
1873 rcu_read_unlock();
1876 /* Frame has reached destination. Don't forward */
1877 if (!is_multicast_ether_addr(hdr->addr1) &&
1878 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1879 return RX_CONTINUE;
1881 mesh_hdr->ttl--;
1883 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1884 if (!mesh_hdr->ttl)
1885 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1886 dropped_frames_ttl);
1887 else {
1888 struct ieee80211_hdr *fwd_hdr;
1889 struct ieee80211_tx_info *info;
1891 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1893 if (!fwd_skb && net_ratelimit())
1894 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1895 sdata->name);
1896 if (!fwd_skb)
1897 goto out;
1899 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1900 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1901 info = IEEE80211_SKB_CB(fwd_skb);
1902 memset(info, 0, sizeof(*info));
1903 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1904 info->control.vif = &rx->sdata->vif;
1905 skb_set_queue_mapping(skb,
1906 ieee80211_select_queue(rx->sdata, fwd_skb));
1907 ieee80211_set_qos_hdr(local, skb);
1908 if (is_multicast_ether_addr(fwd_hdr->addr1))
1909 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1910 fwded_mcast);
1911 else {
1912 int err;
1914 * Save TA to addr1 to send TA a path error if a
1915 * suitable next hop is not found
1917 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1918 ETH_ALEN);
1919 err = mesh_nexthop_lookup(fwd_skb, sdata);
1920 /* Failed to immediately resolve next hop:
1921 * fwded frame was dropped or will be added
1922 * later to the pending skb queue. */
1923 if (err)
1924 return RX_DROP_MONITOR;
1926 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1927 fwded_unicast);
1929 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1930 fwded_frames);
1931 ieee80211_add_pending_skb(local, fwd_skb);
1935 out:
1936 if (is_multicast_ether_addr(hdr->addr1) ||
1937 sdata->dev->flags & IFF_PROMISC)
1938 return RX_CONTINUE;
1939 else
1940 return RX_DROP_MONITOR;
1942 #endif
1944 static ieee80211_rx_result debug_noinline
1945 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1947 struct ieee80211_sub_if_data *sdata = rx->sdata;
1948 struct ieee80211_local *local = rx->local;
1949 struct net_device *dev = sdata->dev;
1950 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1951 __le16 fc = hdr->frame_control;
1952 bool port_control;
1953 int err;
1955 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1956 return RX_CONTINUE;
1958 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1959 return RX_DROP_MONITOR;
1962 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1963 * that a 4-addr station can be detected and moved into a separate VLAN
1965 if (ieee80211_has_a4(hdr->frame_control) &&
1966 sdata->vif.type == NL80211_IFTYPE_AP)
1967 return RX_DROP_MONITOR;
1969 err = __ieee80211_data_to_8023(rx, &port_control);
1970 if (unlikely(err))
1971 return RX_DROP_UNUSABLE;
1973 if (!ieee80211_frame_allowed(rx, fc))
1974 return RX_DROP_MONITOR;
1976 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1977 unlikely(port_control) && sdata->bss) {
1978 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1979 u.ap);
1980 dev = sdata->dev;
1981 rx->sdata = sdata;
1984 rx->skb->dev = dev;
1986 dev->stats.rx_packets++;
1987 dev->stats.rx_bytes += rx->skb->len;
1989 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
1990 !is_multicast_ether_addr(
1991 ((struct ethhdr *)rx->skb->data)->h_dest) &&
1992 (!local->scanning &&
1993 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
1994 mod_timer(&local->dynamic_ps_timer, jiffies +
1995 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1998 ieee80211_deliver_skb(rx);
2000 return RX_QUEUED;
2003 static ieee80211_rx_result debug_noinline
2004 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
2006 struct ieee80211_local *local = rx->local;
2007 struct ieee80211_hw *hw = &local->hw;
2008 struct sk_buff *skb = rx->skb;
2009 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2010 struct tid_ampdu_rx *tid_agg_rx;
2011 u16 start_seq_num;
2012 u16 tid;
2014 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2015 return RX_CONTINUE;
2017 if (ieee80211_is_back_req(bar->frame_control)) {
2018 struct {
2019 __le16 control, start_seq_num;
2020 } __packed bar_data;
2022 if (!rx->sta)
2023 return RX_DROP_MONITOR;
2025 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2026 &bar_data, sizeof(bar_data)))
2027 return RX_DROP_MONITOR;
2029 tid = le16_to_cpu(bar_data.control) >> 12;
2031 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2032 if (!tid_agg_rx)
2033 return RX_DROP_MONITOR;
2035 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2037 /* reset session timer */
2038 if (tid_agg_rx->timeout)
2039 mod_timer(&tid_agg_rx->session_timer,
2040 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2042 spin_lock(&tid_agg_rx->reorder_lock);
2043 /* release stored frames up to start of BAR */
2044 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2045 spin_unlock(&tid_agg_rx->reorder_lock);
2047 kfree_skb(skb);
2048 return RX_QUEUED;
2052 * After this point, we only want management frames,
2053 * so we can drop all remaining control frames to
2054 * cooked monitor interfaces.
2056 return RX_DROP_MONITOR;
2059 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2060 struct ieee80211_mgmt *mgmt,
2061 size_t len)
2063 struct ieee80211_local *local = sdata->local;
2064 struct sk_buff *skb;
2065 struct ieee80211_mgmt *resp;
2067 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2068 /* Not to own unicast address */
2069 return;
2072 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2073 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2074 /* Not from the current AP or not associated yet. */
2075 return;
2078 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2079 /* Too short SA Query request frame */
2080 return;
2083 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2084 if (skb == NULL)
2085 return;
2087 skb_reserve(skb, local->hw.extra_tx_headroom);
2088 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2089 memset(resp, 0, 24);
2090 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2091 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2092 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2093 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2094 IEEE80211_STYPE_ACTION);
2095 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2096 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2097 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2098 memcpy(resp->u.action.u.sa_query.trans_id,
2099 mgmt->u.action.u.sa_query.trans_id,
2100 WLAN_SA_QUERY_TR_ID_LEN);
2102 ieee80211_tx_skb(sdata, skb);
2105 static ieee80211_rx_result debug_noinline
2106 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2108 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2109 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2112 * From here on, look only at management frames.
2113 * Data and control frames are already handled,
2114 * and unknown (reserved) frames are useless.
2116 if (rx->skb->len < 24)
2117 return RX_DROP_MONITOR;
2119 if (!ieee80211_is_mgmt(mgmt->frame_control))
2120 return RX_DROP_MONITOR;
2122 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2123 return RX_DROP_MONITOR;
2125 if (ieee80211_drop_unencrypted_mgmt(rx))
2126 return RX_DROP_UNUSABLE;
2128 return RX_CONTINUE;
2131 static ieee80211_rx_result debug_noinline
2132 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2134 struct ieee80211_local *local = rx->local;
2135 struct ieee80211_sub_if_data *sdata = rx->sdata;
2136 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2137 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2138 int len = rx->skb->len;
2140 if (!ieee80211_is_action(mgmt->frame_control))
2141 return RX_CONTINUE;
2143 /* drop too small frames */
2144 if (len < IEEE80211_MIN_ACTION_SIZE)
2145 return RX_DROP_UNUSABLE;
2147 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2148 return RX_DROP_UNUSABLE;
2150 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2151 return RX_DROP_UNUSABLE;
2153 switch (mgmt->u.action.category) {
2154 case WLAN_CATEGORY_BACK:
2156 * The aggregation code is not prepared to handle
2157 * anything but STA/AP due to the BSSID handling;
2158 * IBSS could work in the code but isn't supported
2159 * by drivers or the standard.
2161 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2162 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2163 sdata->vif.type != NL80211_IFTYPE_AP)
2164 break;
2166 /* verify action_code is present */
2167 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2168 break;
2170 switch (mgmt->u.action.u.addba_req.action_code) {
2171 case WLAN_ACTION_ADDBA_REQ:
2172 if (len < (IEEE80211_MIN_ACTION_SIZE +
2173 sizeof(mgmt->u.action.u.addba_req)))
2174 goto invalid;
2175 break;
2176 case WLAN_ACTION_ADDBA_RESP:
2177 if (len < (IEEE80211_MIN_ACTION_SIZE +
2178 sizeof(mgmt->u.action.u.addba_resp)))
2179 goto invalid;
2180 break;
2181 case WLAN_ACTION_DELBA:
2182 if (len < (IEEE80211_MIN_ACTION_SIZE +
2183 sizeof(mgmt->u.action.u.delba)))
2184 goto invalid;
2185 break;
2186 default:
2187 goto invalid;
2190 goto queue;
2191 case WLAN_CATEGORY_SPECTRUM_MGMT:
2192 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2193 break;
2195 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2196 break;
2198 /* verify action_code is present */
2199 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2200 break;
2202 switch (mgmt->u.action.u.measurement.action_code) {
2203 case WLAN_ACTION_SPCT_MSR_REQ:
2204 if (len < (IEEE80211_MIN_ACTION_SIZE +
2205 sizeof(mgmt->u.action.u.measurement)))
2206 break;
2207 ieee80211_process_measurement_req(sdata, mgmt, len);
2208 goto handled;
2209 case WLAN_ACTION_SPCT_CHL_SWITCH:
2210 if (len < (IEEE80211_MIN_ACTION_SIZE +
2211 sizeof(mgmt->u.action.u.chan_switch)))
2212 break;
2214 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2215 break;
2217 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2218 break;
2220 goto queue;
2222 break;
2223 case WLAN_CATEGORY_SA_QUERY:
2224 if (len < (IEEE80211_MIN_ACTION_SIZE +
2225 sizeof(mgmt->u.action.u.sa_query)))
2226 break;
2228 switch (mgmt->u.action.u.sa_query.action) {
2229 case WLAN_ACTION_SA_QUERY_REQUEST:
2230 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2231 break;
2232 ieee80211_process_sa_query_req(sdata, mgmt, len);
2233 goto handled;
2235 break;
2236 case WLAN_CATEGORY_SELF_PROTECTED:
2237 switch (mgmt->u.action.u.self_prot.action_code) {
2238 case WLAN_SP_MESH_PEERING_OPEN:
2239 case WLAN_SP_MESH_PEERING_CLOSE:
2240 case WLAN_SP_MESH_PEERING_CONFIRM:
2241 if (!ieee80211_vif_is_mesh(&sdata->vif))
2242 goto invalid;
2243 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
2244 /* userspace handles this frame */
2245 break;
2246 goto queue;
2247 case WLAN_SP_MGK_INFORM:
2248 case WLAN_SP_MGK_ACK:
2249 if (!ieee80211_vif_is_mesh(&sdata->vif))
2250 goto invalid;
2251 break;
2253 break;
2254 case WLAN_CATEGORY_MESH_ACTION:
2255 if (!ieee80211_vif_is_mesh(&sdata->vif))
2256 break;
2257 if (mesh_action_is_path_sel(mgmt) &&
2258 (!mesh_path_sel_is_hwmp(sdata)))
2259 break;
2260 goto queue;
2263 return RX_CONTINUE;
2265 invalid:
2266 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2267 /* will return in the next handlers */
2268 return RX_CONTINUE;
2270 handled:
2271 if (rx->sta)
2272 rx->sta->rx_packets++;
2273 dev_kfree_skb(rx->skb);
2274 return RX_QUEUED;
2276 queue:
2277 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2278 skb_queue_tail(&sdata->skb_queue, rx->skb);
2279 ieee80211_queue_work(&local->hw, &sdata->work);
2280 if (rx->sta)
2281 rx->sta->rx_packets++;
2282 return RX_QUEUED;
2285 static ieee80211_rx_result debug_noinline
2286 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2288 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2290 /* skip known-bad action frames and return them in the next handler */
2291 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2292 return RX_CONTINUE;
2295 * Getting here means the kernel doesn't know how to handle
2296 * it, but maybe userspace does ... include returned frames
2297 * so userspace can register for those to know whether ones
2298 * it transmitted were processed or returned.
2301 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2302 rx->skb->data, rx->skb->len,
2303 GFP_ATOMIC)) {
2304 if (rx->sta)
2305 rx->sta->rx_packets++;
2306 dev_kfree_skb(rx->skb);
2307 return RX_QUEUED;
2311 return RX_CONTINUE;
2314 static ieee80211_rx_result debug_noinline
2315 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2317 struct ieee80211_local *local = rx->local;
2318 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2319 struct sk_buff *nskb;
2320 struct ieee80211_sub_if_data *sdata = rx->sdata;
2321 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2323 if (!ieee80211_is_action(mgmt->frame_control))
2324 return RX_CONTINUE;
2327 * For AP mode, hostapd is responsible for handling any action
2328 * frames that we didn't handle, including returning unknown
2329 * ones. For all other modes we will return them to the sender,
2330 * setting the 0x80 bit in the action category, as required by
2331 * 802.11-2007 7.3.1.11.
2332 * Newer versions of hostapd shall also use the management frame
2333 * registration mechanisms, but older ones still use cooked
2334 * monitor interfaces so push all frames there.
2336 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2337 (sdata->vif.type == NL80211_IFTYPE_AP ||
2338 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2339 return RX_DROP_MONITOR;
2341 /* do not return rejected action frames */
2342 if (mgmt->u.action.category & 0x80)
2343 return RX_DROP_UNUSABLE;
2345 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2346 GFP_ATOMIC);
2347 if (nskb) {
2348 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2350 nmgmt->u.action.category |= 0x80;
2351 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2352 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2354 memset(nskb->cb, 0, sizeof(nskb->cb));
2356 ieee80211_tx_skb(rx->sdata, nskb);
2358 dev_kfree_skb(rx->skb);
2359 return RX_QUEUED;
2362 static ieee80211_rx_result debug_noinline
2363 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2365 struct ieee80211_sub_if_data *sdata = rx->sdata;
2366 ieee80211_rx_result rxs;
2367 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2368 __le16 stype;
2370 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2371 if (rxs != RX_CONTINUE)
2372 return rxs;
2374 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2376 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2377 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2378 sdata->vif.type != NL80211_IFTYPE_STATION)
2379 return RX_DROP_MONITOR;
2381 switch (stype) {
2382 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2383 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2384 /* process for all: mesh, mlme, ibss */
2385 break;
2386 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2387 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2388 if (is_multicast_ether_addr(mgmt->da) &&
2389 !is_broadcast_ether_addr(mgmt->da))
2390 return RX_DROP_MONITOR;
2392 /* process only for station */
2393 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2394 return RX_DROP_MONITOR;
2395 break;
2396 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2397 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2398 /* process only for ibss */
2399 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2400 return RX_DROP_MONITOR;
2401 break;
2402 default:
2403 return RX_DROP_MONITOR;
2406 /* queue up frame and kick off work to process it */
2407 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2408 skb_queue_tail(&sdata->skb_queue, rx->skb);
2409 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2410 if (rx->sta)
2411 rx->sta->rx_packets++;
2413 return RX_QUEUED;
2416 /* TODO: use IEEE80211_RX_FRAGMENTED */
2417 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2418 struct ieee80211_rate *rate)
2420 struct ieee80211_sub_if_data *sdata;
2421 struct ieee80211_local *local = rx->local;
2422 struct ieee80211_rtap_hdr {
2423 struct ieee80211_radiotap_header hdr;
2424 u8 flags;
2425 u8 rate_or_pad;
2426 __le16 chan_freq;
2427 __le16 chan_flags;
2428 } __packed *rthdr;
2429 struct sk_buff *skb = rx->skb, *skb2;
2430 struct net_device *prev_dev = NULL;
2431 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2434 * If cooked monitor has been processed already, then
2435 * don't do it again. If not, set the flag.
2437 if (rx->flags & IEEE80211_RX_CMNTR)
2438 goto out_free_skb;
2439 rx->flags |= IEEE80211_RX_CMNTR;
2441 if (skb_headroom(skb) < sizeof(*rthdr) &&
2442 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2443 goto out_free_skb;
2445 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2446 memset(rthdr, 0, sizeof(*rthdr));
2447 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2448 rthdr->hdr.it_present =
2449 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2450 (1 << IEEE80211_RADIOTAP_CHANNEL));
2452 if (rate) {
2453 rthdr->rate_or_pad = rate->bitrate / 5;
2454 rthdr->hdr.it_present |=
2455 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2457 rthdr->chan_freq = cpu_to_le16(status->freq);
2459 if (status->band == IEEE80211_BAND_5GHZ)
2460 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2461 IEEE80211_CHAN_5GHZ);
2462 else
2463 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2464 IEEE80211_CHAN_2GHZ);
2466 skb_set_mac_header(skb, 0);
2467 skb->ip_summed = CHECKSUM_UNNECESSARY;
2468 skb->pkt_type = PACKET_OTHERHOST;
2469 skb->protocol = htons(ETH_P_802_2);
2471 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2472 if (!ieee80211_sdata_running(sdata))
2473 continue;
2475 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2476 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2477 continue;
2479 if (prev_dev) {
2480 skb2 = skb_clone(skb, GFP_ATOMIC);
2481 if (skb2) {
2482 skb2->dev = prev_dev;
2483 netif_receive_skb(skb2);
2487 prev_dev = sdata->dev;
2488 sdata->dev->stats.rx_packets++;
2489 sdata->dev->stats.rx_bytes += skb->len;
2492 if (prev_dev) {
2493 skb->dev = prev_dev;
2494 netif_receive_skb(skb);
2495 return;
2498 out_free_skb:
2499 dev_kfree_skb(skb);
2502 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2503 ieee80211_rx_result res)
2505 switch (res) {
2506 case RX_DROP_MONITOR:
2507 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2508 if (rx->sta)
2509 rx->sta->rx_dropped++;
2510 /* fall through */
2511 case RX_CONTINUE: {
2512 struct ieee80211_rate *rate = NULL;
2513 struct ieee80211_supported_band *sband;
2514 struct ieee80211_rx_status *status;
2516 status = IEEE80211_SKB_RXCB((rx->skb));
2518 sband = rx->local->hw.wiphy->bands[status->band];
2519 if (!(status->flag & RX_FLAG_HT))
2520 rate = &sband->bitrates[status->rate_idx];
2522 ieee80211_rx_cooked_monitor(rx, rate);
2523 break;
2525 case RX_DROP_UNUSABLE:
2526 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2527 if (rx->sta)
2528 rx->sta->rx_dropped++;
2529 dev_kfree_skb(rx->skb);
2530 break;
2531 case RX_QUEUED:
2532 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2533 break;
2537 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2539 ieee80211_rx_result res = RX_DROP_MONITOR;
2540 struct sk_buff *skb;
2542 #define CALL_RXH(rxh) \
2543 do { \
2544 res = rxh(rx); \
2545 if (res != RX_CONTINUE) \
2546 goto rxh_next; \
2547 } while (0);
2549 spin_lock(&rx->local->rx_skb_queue.lock);
2550 if (rx->local->running_rx_handler)
2551 goto unlock;
2553 rx->local->running_rx_handler = true;
2555 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2556 spin_unlock(&rx->local->rx_skb_queue.lock);
2559 * all the other fields are valid across frames
2560 * that belong to an aMPDU since they are on the
2561 * same TID from the same station
2563 rx->skb = skb;
2565 CALL_RXH(ieee80211_rx_h_decrypt)
2566 CALL_RXH(ieee80211_rx_h_check_more_data)
2567 CALL_RXH(ieee80211_rx_h_sta_process)
2568 CALL_RXH(ieee80211_rx_h_defragment)
2569 CALL_RXH(ieee80211_rx_h_ps_poll)
2570 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2571 /* must be after MMIC verify so header is counted in MPDU mic */
2572 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2573 CALL_RXH(ieee80211_rx_h_amsdu)
2574 #ifdef CONFIG_MAC80211_MESH
2575 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2576 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2577 #endif
2578 CALL_RXH(ieee80211_rx_h_data)
2579 CALL_RXH(ieee80211_rx_h_ctrl);
2580 CALL_RXH(ieee80211_rx_h_mgmt_check)
2581 CALL_RXH(ieee80211_rx_h_action)
2582 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2583 CALL_RXH(ieee80211_rx_h_action_return)
2584 CALL_RXH(ieee80211_rx_h_mgmt)
2586 rxh_next:
2587 ieee80211_rx_handlers_result(rx, res);
2588 spin_lock(&rx->local->rx_skb_queue.lock);
2589 #undef CALL_RXH
2592 rx->local->running_rx_handler = false;
2594 unlock:
2595 spin_unlock(&rx->local->rx_skb_queue.lock);
2598 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2600 ieee80211_rx_result res = RX_DROP_MONITOR;
2602 #define CALL_RXH(rxh) \
2603 do { \
2604 res = rxh(rx); \
2605 if (res != RX_CONTINUE) \
2606 goto rxh_next; \
2607 } while (0);
2609 CALL_RXH(ieee80211_rx_h_passive_scan)
2610 CALL_RXH(ieee80211_rx_h_check)
2612 ieee80211_rx_reorder_ampdu(rx);
2614 ieee80211_rx_handlers(rx);
2615 return;
2617 rxh_next:
2618 ieee80211_rx_handlers_result(rx, res);
2620 #undef CALL_RXH
2624 * This function makes calls into the RX path, therefore
2625 * it has to be invoked under RCU read lock.
2627 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2629 struct ieee80211_rx_data rx = {
2630 .sta = sta,
2631 .sdata = sta->sdata,
2632 .local = sta->local,
2633 /* This is OK -- must be QoS data frame */
2634 .security_idx = tid,
2635 .seqno_idx = tid,
2636 .flags = 0,
2638 struct tid_ampdu_rx *tid_agg_rx;
2640 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2641 if (!tid_agg_rx)
2642 return;
2644 spin_lock(&tid_agg_rx->reorder_lock);
2645 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2646 spin_unlock(&tid_agg_rx->reorder_lock);
2648 ieee80211_rx_handlers(&rx);
2651 /* main receive path */
2653 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2654 struct ieee80211_hdr *hdr)
2656 struct ieee80211_sub_if_data *sdata = rx->sdata;
2657 struct sk_buff *skb = rx->skb;
2658 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2659 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2660 int multicast = is_multicast_ether_addr(hdr->addr1);
2662 switch (sdata->vif.type) {
2663 case NL80211_IFTYPE_STATION:
2664 if (!bssid && !sdata->u.mgd.use_4addr)
2665 return 0;
2666 if (!multicast &&
2667 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2668 if (!(sdata->dev->flags & IFF_PROMISC) ||
2669 sdata->u.mgd.use_4addr)
2670 return 0;
2671 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2673 break;
2674 case NL80211_IFTYPE_ADHOC:
2675 if (!bssid)
2676 return 0;
2677 if (ieee80211_is_beacon(hdr->frame_control)) {
2678 return 1;
2680 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2681 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2682 return 0;
2683 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2684 } else if (!multicast &&
2685 compare_ether_addr(sdata->vif.addr,
2686 hdr->addr1) != 0) {
2687 if (!(sdata->dev->flags & IFF_PROMISC))
2688 return 0;
2689 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2690 } else if (!rx->sta) {
2691 int rate_idx;
2692 if (status->flag & RX_FLAG_HT)
2693 rate_idx = 0; /* TODO: HT rates */
2694 else
2695 rate_idx = status->rate_idx;
2696 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2697 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2699 break;
2700 case NL80211_IFTYPE_MESH_POINT:
2701 if (!multicast &&
2702 compare_ether_addr(sdata->vif.addr,
2703 hdr->addr1) != 0) {
2704 if (!(sdata->dev->flags & IFF_PROMISC))
2705 return 0;
2707 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2709 break;
2710 case NL80211_IFTYPE_AP_VLAN:
2711 case NL80211_IFTYPE_AP:
2712 if (!bssid) {
2713 if (compare_ether_addr(sdata->vif.addr,
2714 hdr->addr1))
2715 return 0;
2716 } else if (!ieee80211_bssid_match(bssid,
2717 sdata->vif.addr)) {
2718 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2719 !ieee80211_is_beacon(hdr->frame_control) &&
2720 !(ieee80211_is_action(hdr->frame_control) &&
2721 sdata->vif.p2p))
2722 return 0;
2723 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2725 break;
2726 case NL80211_IFTYPE_WDS:
2727 if (bssid || !ieee80211_is_data(hdr->frame_control))
2728 return 0;
2729 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2730 return 0;
2731 break;
2732 default:
2733 /* should never get here */
2734 WARN_ON(1);
2735 break;
2738 return 1;
2742 * This function returns whether or not the SKB
2743 * was destined for RX processing or not, which,
2744 * if consume is true, is equivalent to whether
2745 * or not the skb was consumed.
2747 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2748 struct sk_buff *skb, bool consume)
2750 struct ieee80211_local *local = rx->local;
2751 struct ieee80211_sub_if_data *sdata = rx->sdata;
2752 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2753 struct ieee80211_hdr *hdr = (void *)skb->data;
2754 int prepares;
2756 rx->skb = skb;
2757 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2758 prepares = prepare_for_handlers(rx, hdr);
2760 if (!prepares)
2761 return false;
2763 if (!consume) {
2764 skb = skb_copy(skb, GFP_ATOMIC);
2765 if (!skb) {
2766 if (net_ratelimit())
2767 wiphy_debug(local->hw.wiphy,
2768 "failed to copy skb for %s\n",
2769 sdata->name);
2770 return true;
2773 rx->skb = skb;
2776 ieee80211_invoke_rx_handlers(rx);
2777 return true;
2781 * This is the actual Rx frames handler. as it blongs to Rx path it must
2782 * be called with rcu_read_lock protection.
2784 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2785 struct sk_buff *skb)
2787 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2788 struct ieee80211_local *local = hw_to_local(hw);
2789 struct ieee80211_sub_if_data *sdata;
2790 struct ieee80211_hdr *hdr;
2791 __le16 fc;
2792 struct ieee80211_rx_data rx;
2793 struct ieee80211_sub_if_data *prev;
2794 struct sta_info *sta, *tmp, *prev_sta;
2795 int err = 0;
2797 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2798 memset(&rx, 0, sizeof(rx));
2799 rx.skb = skb;
2800 rx.local = local;
2802 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2803 local->dot11ReceivedFragmentCount++;
2805 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2806 test_bit(SCAN_SW_SCANNING, &local->scanning)))
2807 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2809 if (ieee80211_is_mgmt(fc))
2810 err = skb_linearize(skb);
2811 else
2812 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2814 if (err) {
2815 dev_kfree_skb(skb);
2816 return;
2819 hdr = (struct ieee80211_hdr *)skb->data;
2820 ieee80211_parse_qos(&rx);
2821 ieee80211_verify_alignment(&rx);
2823 if (ieee80211_is_data(fc)) {
2824 prev_sta = NULL;
2826 for_each_sta_info_rx(local, hdr->addr2, sta, tmp) {
2827 if (!prev_sta) {
2828 prev_sta = sta;
2829 continue;
2832 rx.sta = prev_sta;
2833 rx.sdata = prev_sta->sdata;
2834 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2836 prev_sta = sta;
2839 if (prev_sta) {
2840 rx.sta = prev_sta;
2841 rx.sdata = prev_sta->sdata;
2843 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2844 return;
2845 goto out;
2849 prev = NULL;
2851 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2852 if (!ieee80211_sdata_running(sdata))
2853 continue;
2855 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2856 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2857 continue;
2860 * frame is destined for this interface, but if it's
2861 * not also for the previous one we handle that after
2862 * the loop to avoid copying the SKB once too much
2865 if (!prev) {
2866 prev = sdata;
2867 continue;
2870 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
2871 rx.sdata = prev;
2872 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2874 prev = sdata;
2877 if (prev) {
2878 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
2879 rx.sdata = prev;
2881 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2882 return;
2885 out:
2886 dev_kfree_skb(skb);
2890 * This is the receive path handler. It is called by a low level driver when an
2891 * 802.11 MPDU is received from the hardware.
2893 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2895 struct ieee80211_local *local = hw_to_local(hw);
2896 struct ieee80211_rate *rate = NULL;
2897 struct ieee80211_supported_band *sband;
2898 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2900 WARN_ON_ONCE(softirq_count() == 0);
2902 if (WARN_ON(status->band < 0 ||
2903 status->band >= IEEE80211_NUM_BANDS))
2904 goto drop;
2906 sband = local->hw.wiphy->bands[status->band];
2907 if (WARN_ON(!sband))
2908 goto drop;
2911 * If we're suspending, it is possible although not too likely
2912 * that we'd be receiving frames after having already partially
2913 * quiesced the stack. We can't process such frames then since
2914 * that might, for example, cause stations to be added or other
2915 * driver callbacks be invoked.
2917 if (unlikely(local->quiescing || local->suspended))
2918 goto drop;
2921 * The same happens when we're not even started,
2922 * but that's worth a warning.
2924 if (WARN_ON(!local->started))
2925 goto drop;
2927 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2929 * Validate the rate, unless a PLCP error means that
2930 * we probably can't have a valid rate here anyway.
2933 if (status->flag & RX_FLAG_HT) {
2935 * rate_idx is MCS index, which can be [0-76]
2936 * as documented on:
2938 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2940 * Anything else would be some sort of driver or
2941 * hardware error. The driver should catch hardware
2942 * errors.
2944 if (WARN((status->rate_idx < 0 ||
2945 status->rate_idx > 76),
2946 "Rate marked as an HT rate but passed "
2947 "status->rate_idx is not "
2948 "an MCS index [0-76]: %d (0x%02x)\n",
2949 status->rate_idx,
2950 status->rate_idx))
2951 goto drop;
2952 } else {
2953 if (WARN_ON(status->rate_idx < 0 ||
2954 status->rate_idx >= sband->n_bitrates))
2955 goto drop;
2956 rate = &sband->bitrates[status->rate_idx];
2960 status->rx_flags = 0;
2963 * key references and virtual interfaces are protected using RCU
2964 * and this requires that we are in a read-side RCU section during
2965 * receive processing
2967 rcu_read_lock();
2970 * Frames with failed FCS/PLCP checksum are not returned,
2971 * all other frames are returned without radiotap header
2972 * if it was previously present.
2973 * Also, frames with less than 16 bytes are dropped.
2975 skb = ieee80211_rx_monitor(local, skb, rate);
2976 if (!skb) {
2977 rcu_read_unlock();
2978 return;
2981 ieee80211_tpt_led_trig_rx(local,
2982 ((struct ieee80211_hdr *)skb->data)->frame_control,
2983 skb->len);
2984 __ieee80211_rx_handle_packet(hw, skb);
2986 rcu_read_unlock();
2988 return;
2989 drop:
2990 kfree_skb(skb);
2992 EXPORT_SYMBOL(ieee80211_rx);
2994 /* This is a version of the rx handler that can be called from hard irq
2995 * context. Post the skb on the queue and schedule the tasklet */
2996 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2998 struct ieee80211_local *local = hw_to_local(hw);
3000 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3002 skb->pkt_type = IEEE80211_RX_MSG;
3003 skb_queue_tail(&local->skb_queue, skb);
3004 tasklet_schedule(&local->tasklet);
3006 EXPORT_SYMBOL(ieee80211_rx_irqsafe);