Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / sound / pci / ctxfi / cthw20k2.c
blobd6c54b524bfa63a9b9ed46c6eeb337848b541185
1 /**
2 * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
4 * This source file is released under GPL v2 license (no other versions).
5 * See the COPYING file included in the main directory of this source
6 * distribution for the license terms and conditions.
8 * @File cthw20k2.c
10 * @Brief
11 * This file contains the implementation of hardware access method for 20k2.
13 * @Author Liu Chun
14 * @Date May 14 2008
18 #include <linux/types.h>
19 #include <linux/slab.h>
20 #include <linux/pci.h>
21 #include <linux/io.h>
22 #include <linux/string.h>
23 #include <linux/kernel.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include "cthw20k2.h"
27 #include "ct20k2reg.h"
29 #if BITS_PER_LONG == 32
30 #define CT_XFI_DMA_MASK DMA_BIT_MASK(32) /* 32 bit PTE */
31 #else
32 #define CT_XFI_DMA_MASK DMA_BIT_MASK(64) /* 64 bit PTE */
33 #endif
35 struct hw20k2 {
36 struct hw hw;
37 /* for i2c */
38 unsigned char dev_id;
39 unsigned char addr_size;
40 unsigned char data_size;
42 int mic_source;
45 static u32 hw_read_20kx(struct hw *hw, u32 reg);
46 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data);
49 * Type definition block.
50 * The layout of control structures can be directly applied on 20k2 chip.
54 * SRC control block definitions.
57 /* SRC resource control block */
58 #define SRCCTL_STATE 0x00000007
59 #define SRCCTL_BM 0x00000008
60 #define SRCCTL_RSR 0x00000030
61 #define SRCCTL_SF 0x000001C0
62 #define SRCCTL_WR 0x00000200
63 #define SRCCTL_PM 0x00000400
64 #define SRCCTL_ROM 0x00001800
65 #define SRCCTL_VO 0x00002000
66 #define SRCCTL_ST 0x00004000
67 #define SRCCTL_IE 0x00008000
68 #define SRCCTL_ILSZ 0x000F0000
69 #define SRCCTL_BP 0x00100000
71 #define SRCCCR_CISZ 0x000007FF
72 #define SRCCCR_CWA 0x001FF800
73 #define SRCCCR_D 0x00200000
74 #define SRCCCR_RS 0x01C00000
75 #define SRCCCR_NAL 0x3E000000
76 #define SRCCCR_RA 0xC0000000
78 #define SRCCA_CA 0x0FFFFFFF
79 #define SRCCA_RS 0xE0000000
81 #define SRCSA_SA 0x0FFFFFFF
83 #define SRCLA_LA 0x0FFFFFFF
85 /* Mixer Parameter Ring ram Low and Hight register.
86 * Fixed-point value in 8.24 format for parameter channel */
87 #define MPRLH_PITCH 0xFFFFFFFF
89 /* SRC resource register dirty flags */
90 union src_dirty {
91 struct {
92 u16 ctl:1;
93 u16 ccr:1;
94 u16 sa:1;
95 u16 la:1;
96 u16 ca:1;
97 u16 mpr:1;
98 u16 czbfs:1; /* Clear Z-Buffers */
99 u16 rsv:9;
100 } bf;
101 u16 data;
104 struct src_rsc_ctrl_blk {
105 unsigned int ctl;
106 unsigned int ccr;
107 unsigned int ca;
108 unsigned int sa;
109 unsigned int la;
110 unsigned int mpr;
111 union src_dirty dirty;
114 /* SRC manager control block */
115 union src_mgr_dirty {
116 struct {
117 u16 enb0:1;
118 u16 enb1:1;
119 u16 enb2:1;
120 u16 enb3:1;
121 u16 enb4:1;
122 u16 enb5:1;
123 u16 enb6:1;
124 u16 enb7:1;
125 u16 enbsa:1;
126 u16 rsv:7;
127 } bf;
128 u16 data;
131 struct src_mgr_ctrl_blk {
132 unsigned int enbsa;
133 unsigned int enb[8];
134 union src_mgr_dirty dirty;
137 /* SRCIMP manager control block */
138 #define SRCAIM_ARC 0x00000FFF
139 #define SRCAIM_NXT 0x00FF0000
140 #define SRCAIM_SRC 0xFF000000
142 struct srcimap {
143 unsigned int srcaim;
144 unsigned int idx;
147 /* SRCIMP manager register dirty flags */
148 union srcimp_mgr_dirty {
149 struct {
150 u16 srcimap:1;
151 u16 rsv:15;
152 } bf;
153 u16 data;
156 struct srcimp_mgr_ctrl_blk {
157 struct srcimap srcimap;
158 union srcimp_mgr_dirty dirty;
162 * Function implementation block.
165 static int src_get_rsc_ctrl_blk(void **rblk)
167 struct src_rsc_ctrl_blk *blk;
169 *rblk = NULL;
170 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
171 if (!blk)
172 return -ENOMEM;
174 *rblk = blk;
176 return 0;
179 static int src_put_rsc_ctrl_blk(void *blk)
181 kfree(blk);
183 return 0;
186 static int src_set_state(void *blk, unsigned int state)
188 struct src_rsc_ctrl_blk *ctl = blk;
190 set_field(&ctl->ctl, SRCCTL_STATE, state);
191 ctl->dirty.bf.ctl = 1;
192 return 0;
195 static int src_set_bm(void *blk, unsigned int bm)
197 struct src_rsc_ctrl_blk *ctl = blk;
199 set_field(&ctl->ctl, SRCCTL_BM, bm);
200 ctl->dirty.bf.ctl = 1;
201 return 0;
204 static int src_set_rsr(void *blk, unsigned int rsr)
206 struct src_rsc_ctrl_blk *ctl = blk;
208 set_field(&ctl->ctl, SRCCTL_RSR, rsr);
209 ctl->dirty.bf.ctl = 1;
210 return 0;
213 static int src_set_sf(void *blk, unsigned int sf)
215 struct src_rsc_ctrl_blk *ctl = blk;
217 set_field(&ctl->ctl, SRCCTL_SF, sf);
218 ctl->dirty.bf.ctl = 1;
219 return 0;
222 static int src_set_wr(void *blk, unsigned int wr)
224 struct src_rsc_ctrl_blk *ctl = blk;
226 set_field(&ctl->ctl, SRCCTL_WR, wr);
227 ctl->dirty.bf.ctl = 1;
228 return 0;
231 static int src_set_pm(void *blk, unsigned int pm)
233 struct src_rsc_ctrl_blk *ctl = blk;
235 set_field(&ctl->ctl, SRCCTL_PM, pm);
236 ctl->dirty.bf.ctl = 1;
237 return 0;
240 static int src_set_rom(void *blk, unsigned int rom)
242 struct src_rsc_ctrl_blk *ctl = blk;
244 set_field(&ctl->ctl, SRCCTL_ROM, rom);
245 ctl->dirty.bf.ctl = 1;
246 return 0;
249 static int src_set_vo(void *blk, unsigned int vo)
251 struct src_rsc_ctrl_blk *ctl = blk;
253 set_field(&ctl->ctl, SRCCTL_VO, vo);
254 ctl->dirty.bf.ctl = 1;
255 return 0;
258 static int src_set_st(void *blk, unsigned int st)
260 struct src_rsc_ctrl_blk *ctl = blk;
262 set_field(&ctl->ctl, SRCCTL_ST, st);
263 ctl->dirty.bf.ctl = 1;
264 return 0;
267 static int src_set_ie(void *blk, unsigned int ie)
269 struct src_rsc_ctrl_blk *ctl = blk;
271 set_field(&ctl->ctl, SRCCTL_IE, ie);
272 ctl->dirty.bf.ctl = 1;
273 return 0;
276 static int src_set_ilsz(void *blk, unsigned int ilsz)
278 struct src_rsc_ctrl_blk *ctl = blk;
280 set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz);
281 ctl->dirty.bf.ctl = 1;
282 return 0;
285 static int src_set_bp(void *blk, unsigned int bp)
287 struct src_rsc_ctrl_blk *ctl = blk;
289 set_field(&ctl->ctl, SRCCTL_BP, bp);
290 ctl->dirty.bf.ctl = 1;
291 return 0;
294 static int src_set_cisz(void *blk, unsigned int cisz)
296 struct src_rsc_ctrl_blk *ctl = blk;
298 set_field(&ctl->ccr, SRCCCR_CISZ, cisz);
299 ctl->dirty.bf.ccr = 1;
300 return 0;
303 static int src_set_ca(void *blk, unsigned int ca)
305 struct src_rsc_ctrl_blk *ctl = blk;
307 set_field(&ctl->ca, SRCCA_CA, ca);
308 ctl->dirty.bf.ca = 1;
309 return 0;
312 static int src_set_sa(void *blk, unsigned int sa)
314 struct src_rsc_ctrl_blk *ctl = blk;
316 set_field(&ctl->sa, SRCSA_SA, sa);
317 ctl->dirty.bf.sa = 1;
318 return 0;
321 static int src_set_la(void *blk, unsigned int la)
323 struct src_rsc_ctrl_blk *ctl = blk;
325 set_field(&ctl->la, SRCLA_LA, la);
326 ctl->dirty.bf.la = 1;
327 return 0;
330 static int src_set_pitch(void *blk, unsigned int pitch)
332 struct src_rsc_ctrl_blk *ctl = blk;
334 set_field(&ctl->mpr, MPRLH_PITCH, pitch);
335 ctl->dirty.bf.mpr = 1;
336 return 0;
339 static int src_set_clear_zbufs(void *blk, unsigned int clear)
341 ((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0);
342 return 0;
345 static int src_set_dirty(void *blk, unsigned int flags)
347 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
348 return 0;
351 static int src_set_dirty_all(void *blk)
353 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
354 return 0;
357 #define AR_SLOT_SIZE 4096
358 #define AR_SLOT_BLOCK_SIZE 16
359 #define AR_PTS_PITCH 6
360 #define AR_PARAM_SRC_OFFSET 0x60
362 static unsigned int src_param_pitch_mixer(unsigned int src_idx)
364 return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE
365 - AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE;
369 static int src_commit_write(struct hw *hw, unsigned int idx, void *blk)
371 struct src_rsc_ctrl_blk *ctl = blk;
372 int i;
374 if (ctl->dirty.bf.czbfs) {
375 /* Clear Z-Buffer registers */
376 for (i = 0; i < 8; i++)
377 hw_write_20kx(hw, SRC_UPZ+idx*0x100+i*0x4, 0);
379 for (i = 0; i < 4; i++)
380 hw_write_20kx(hw, SRC_DN0Z+idx*0x100+i*0x4, 0);
382 for (i = 0; i < 8; i++)
383 hw_write_20kx(hw, SRC_DN1Z+idx*0x100+i*0x4, 0);
385 ctl->dirty.bf.czbfs = 0;
387 if (ctl->dirty.bf.mpr) {
388 /* Take the parameter mixer resource in the same group as that
389 * the idx src is in for simplicity. Unlike src, all conjugate
390 * parameter mixer resources must be programmed for
391 * corresponding conjugate src resources. */
392 unsigned int pm_idx = src_param_pitch_mixer(idx);
393 hw_write_20kx(hw, MIXER_PRING_LO_HI+4*pm_idx, ctl->mpr);
394 hw_write_20kx(hw, MIXER_PMOPLO+8*pm_idx, 0x3);
395 hw_write_20kx(hw, MIXER_PMOPHI+8*pm_idx, 0x0);
396 ctl->dirty.bf.mpr = 0;
398 if (ctl->dirty.bf.sa) {
399 hw_write_20kx(hw, SRC_SA+idx*0x100, ctl->sa);
400 ctl->dirty.bf.sa = 0;
402 if (ctl->dirty.bf.la) {
403 hw_write_20kx(hw, SRC_LA+idx*0x100, ctl->la);
404 ctl->dirty.bf.la = 0;
406 if (ctl->dirty.bf.ca) {
407 hw_write_20kx(hw, SRC_CA+idx*0x100, ctl->ca);
408 ctl->dirty.bf.ca = 0;
411 /* Write srccf register */
412 hw_write_20kx(hw, SRC_CF+idx*0x100, 0x0);
414 if (ctl->dirty.bf.ccr) {
415 hw_write_20kx(hw, SRC_CCR+idx*0x100, ctl->ccr);
416 ctl->dirty.bf.ccr = 0;
418 if (ctl->dirty.bf.ctl) {
419 hw_write_20kx(hw, SRC_CTL+idx*0x100, ctl->ctl);
420 ctl->dirty.bf.ctl = 0;
423 return 0;
426 static int src_get_ca(struct hw *hw, unsigned int idx, void *blk)
428 struct src_rsc_ctrl_blk *ctl = blk;
430 ctl->ca = hw_read_20kx(hw, SRC_CA+idx*0x100);
431 ctl->dirty.bf.ca = 0;
433 return get_field(ctl->ca, SRCCA_CA);
436 static unsigned int src_get_dirty(void *blk)
438 return ((struct src_rsc_ctrl_blk *)blk)->dirty.data;
441 static unsigned int src_dirty_conj_mask(void)
443 return 0x20;
446 static int src_mgr_enbs_src(void *blk, unsigned int idx)
448 ((struct src_mgr_ctrl_blk *)blk)->enbsa |= (0x1 << ((idx%128)/4));
449 ((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1;
450 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
451 return 0;
454 static int src_mgr_enb_src(void *blk, unsigned int idx)
456 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
457 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
458 return 0;
461 static int src_mgr_dsb_src(void *blk, unsigned int idx)
463 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32));
464 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
465 return 0;
468 static int src_mgr_commit_write(struct hw *hw, void *blk)
470 struct src_mgr_ctrl_blk *ctl = blk;
471 int i;
472 unsigned int ret;
474 if (ctl->dirty.bf.enbsa) {
475 do {
476 ret = hw_read_20kx(hw, SRC_ENBSTAT);
477 } while (ret & 0x1);
478 hw_write_20kx(hw, SRC_ENBSA, ctl->enbsa);
479 ctl->dirty.bf.enbsa = 0;
481 for (i = 0; i < 8; i++) {
482 if ((ctl->dirty.data & (0x1 << i))) {
483 hw_write_20kx(hw, SRC_ENB+(i*0x100), ctl->enb[i]);
484 ctl->dirty.data &= ~(0x1 << i);
488 return 0;
491 static int src_mgr_get_ctrl_blk(void **rblk)
493 struct src_mgr_ctrl_blk *blk;
495 *rblk = NULL;
496 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
497 if (!blk)
498 return -ENOMEM;
500 *rblk = blk;
502 return 0;
505 static int src_mgr_put_ctrl_blk(void *blk)
507 kfree(blk);
509 return 0;
512 static int srcimp_mgr_get_ctrl_blk(void **rblk)
514 struct srcimp_mgr_ctrl_blk *blk;
516 *rblk = NULL;
517 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
518 if (!blk)
519 return -ENOMEM;
521 *rblk = blk;
523 return 0;
526 static int srcimp_mgr_put_ctrl_blk(void *blk)
528 kfree(blk);
530 return 0;
533 static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot)
535 struct srcimp_mgr_ctrl_blk *ctl = blk;
537 set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot);
538 ctl->dirty.bf.srcimap = 1;
539 return 0;
542 static int srcimp_mgr_set_imapuser(void *blk, unsigned int user)
544 struct srcimp_mgr_ctrl_blk *ctl = blk;
546 set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user);
547 ctl->dirty.bf.srcimap = 1;
548 return 0;
551 static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next)
553 struct srcimp_mgr_ctrl_blk *ctl = blk;
555 set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next);
556 ctl->dirty.bf.srcimap = 1;
557 return 0;
560 static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr)
562 ((struct srcimp_mgr_ctrl_blk *)blk)->srcimap.idx = addr;
563 ((struct srcimp_mgr_ctrl_blk *)blk)->dirty.bf.srcimap = 1;
564 return 0;
567 static int srcimp_mgr_commit_write(struct hw *hw, void *blk)
569 struct srcimp_mgr_ctrl_blk *ctl = blk;
571 if (ctl->dirty.bf.srcimap) {
572 hw_write_20kx(hw, SRC_IMAP+ctl->srcimap.idx*0x100,
573 ctl->srcimap.srcaim);
574 ctl->dirty.bf.srcimap = 0;
577 return 0;
581 * AMIXER control block definitions.
584 #define AMOPLO_M 0x00000003
585 #define AMOPLO_IV 0x00000004
586 #define AMOPLO_X 0x0003FFF0
587 #define AMOPLO_Y 0xFFFC0000
589 #define AMOPHI_SADR 0x000000FF
590 #define AMOPHI_SE 0x80000000
592 /* AMIXER resource register dirty flags */
593 union amixer_dirty {
594 struct {
595 u16 amoplo:1;
596 u16 amophi:1;
597 u16 rsv:14;
598 } bf;
599 u16 data;
602 /* AMIXER resource control block */
603 struct amixer_rsc_ctrl_blk {
604 unsigned int amoplo;
605 unsigned int amophi;
606 union amixer_dirty dirty;
609 static int amixer_set_mode(void *blk, unsigned int mode)
611 struct amixer_rsc_ctrl_blk *ctl = blk;
613 set_field(&ctl->amoplo, AMOPLO_M, mode);
614 ctl->dirty.bf.amoplo = 1;
615 return 0;
618 static int amixer_set_iv(void *blk, unsigned int iv)
620 struct amixer_rsc_ctrl_blk *ctl = blk;
622 set_field(&ctl->amoplo, AMOPLO_IV, iv);
623 ctl->dirty.bf.amoplo = 1;
624 return 0;
627 static int amixer_set_x(void *blk, unsigned int x)
629 struct amixer_rsc_ctrl_blk *ctl = blk;
631 set_field(&ctl->amoplo, AMOPLO_X, x);
632 ctl->dirty.bf.amoplo = 1;
633 return 0;
636 static int amixer_set_y(void *blk, unsigned int y)
638 struct amixer_rsc_ctrl_blk *ctl = blk;
640 set_field(&ctl->amoplo, AMOPLO_Y, y);
641 ctl->dirty.bf.amoplo = 1;
642 return 0;
645 static int amixer_set_sadr(void *blk, unsigned int sadr)
647 struct amixer_rsc_ctrl_blk *ctl = blk;
649 set_field(&ctl->amophi, AMOPHI_SADR, sadr);
650 ctl->dirty.bf.amophi = 1;
651 return 0;
654 static int amixer_set_se(void *blk, unsigned int se)
656 struct amixer_rsc_ctrl_blk *ctl = blk;
658 set_field(&ctl->amophi, AMOPHI_SE, se);
659 ctl->dirty.bf.amophi = 1;
660 return 0;
663 static int amixer_set_dirty(void *blk, unsigned int flags)
665 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
666 return 0;
669 static int amixer_set_dirty_all(void *blk)
671 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
672 return 0;
675 static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk)
677 struct amixer_rsc_ctrl_blk *ctl = blk;
679 if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) {
680 hw_write_20kx(hw, MIXER_AMOPLO+idx*8, ctl->amoplo);
681 ctl->dirty.bf.amoplo = 0;
682 hw_write_20kx(hw, MIXER_AMOPHI+idx*8, ctl->amophi);
683 ctl->dirty.bf.amophi = 0;
686 return 0;
689 static int amixer_get_y(void *blk)
691 struct amixer_rsc_ctrl_blk *ctl = blk;
693 return get_field(ctl->amoplo, AMOPLO_Y);
696 static unsigned int amixer_get_dirty(void *blk)
698 return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data;
701 static int amixer_rsc_get_ctrl_blk(void **rblk)
703 struct amixer_rsc_ctrl_blk *blk;
705 *rblk = NULL;
706 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
707 if (!blk)
708 return -ENOMEM;
710 *rblk = blk;
712 return 0;
715 static int amixer_rsc_put_ctrl_blk(void *blk)
717 kfree(blk);
719 return 0;
722 static int amixer_mgr_get_ctrl_blk(void **rblk)
724 *rblk = NULL;
726 return 0;
729 static int amixer_mgr_put_ctrl_blk(void *blk)
731 return 0;
735 * DAIO control block definitions.
738 /* Receiver Sample Rate Tracker Control register */
739 #define SRTCTL_SRCO 0x000000FF
740 #define SRTCTL_SRCM 0x0000FF00
741 #define SRTCTL_RSR 0x00030000
742 #define SRTCTL_DRAT 0x00300000
743 #define SRTCTL_EC 0x01000000
744 #define SRTCTL_ET 0x10000000
746 /* DAIO Receiver register dirty flags */
747 union dai_dirty {
748 struct {
749 u16 srt:1;
750 u16 rsv:15;
751 } bf;
752 u16 data;
755 /* DAIO Receiver control block */
756 struct dai_ctrl_blk {
757 unsigned int srt;
758 union dai_dirty dirty;
761 /* Audio Input Mapper RAM */
762 #define AIM_ARC 0x00000FFF
763 #define AIM_NXT 0x007F0000
765 struct daoimap {
766 unsigned int aim;
767 unsigned int idx;
770 /* Audio Transmitter Control and Status register */
771 #define ATXCTL_EN 0x00000001
772 #define ATXCTL_MODE 0x00000010
773 #define ATXCTL_CD 0x00000020
774 #define ATXCTL_RAW 0x00000100
775 #define ATXCTL_MT 0x00000200
776 #define ATXCTL_NUC 0x00003000
777 #define ATXCTL_BEN 0x00010000
778 #define ATXCTL_BMUX 0x00700000
779 #define ATXCTL_B24 0x01000000
780 #define ATXCTL_CPF 0x02000000
781 #define ATXCTL_RIV 0x10000000
782 #define ATXCTL_LIV 0x20000000
783 #define ATXCTL_RSAT 0x40000000
784 #define ATXCTL_LSAT 0x80000000
786 /* XDIF Transmitter register dirty flags */
787 union dao_dirty {
788 struct {
789 u16 atxcsl:1;
790 u16 rsv:15;
791 } bf;
792 u16 data;
795 /* XDIF Transmitter control block */
796 struct dao_ctrl_blk {
797 /* XDIF Transmitter Channel Status Low Register */
798 unsigned int atxcsl;
799 union dao_dirty dirty;
802 /* Audio Receiver Control register */
803 #define ARXCTL_EN 0x00000001
805 /* DAIO manager register dirty flags */
806 union daio_mgr_dirty {
807 struct {
808 u32 atxctl:8;
809 u32 arxctl:8;
810 u32 daoimap:1;
811 u32 rsv:15;
812 } bf;
813 u32 data;
816 /* DAIO manager control block */
817 struct daio_mgr_ctrl_blk {
818 struct daoimap daoimap;
819 unsigned int txctl[8];
820 unsigned int rxctl[8];
821 union daio_mgr_dirty dirty;
824 static int dai_srt_set_srco(void *blk, unsigned int src)
826 struct dai_ctrl_blk *ctl = blk;
828 set_field(&ctl->srt, SRTCTL_SRCO, src);
829 ctl->dirty.bf.srt = 1;
830 return 0;
833 static int dai_srt_set_srcm(void *blk, unsigned int src)
835 struct dai_ctrl_blk *ctl = blk;
837 set_field(&ctl->srt, SRTCTL_SRCM, src);
838 ctl->dirty.bf.srt = 1;
839 return 0;
842 static int dai_srt_set_rsr(void *blk, unsigned int rsr)
844 struct dai_ctrl_blk *ctl = blk;
846 set_field(&ctl->srt, SRTCTL_RSR, rsr);
847 ctl->dirty.bf.srt = 1;
848 return 0;
851 static int dai_srt_set_drat(void *blk, unsigned int drat)
853 struct dai_ctrl_blk *ctl = blk;
855 set_field(&ctl->srt, SRTCTL_DRAT, drat);
856 ctl->dirty.bf.srt = 1;
857 return 0;
860 static int dai_srt_set_ec(void *blk, unsigned int ec)
862 struct dai_ctrl_blk *ctl = blk;
864 set_field(&ctl->srt, SRTCTL_EC, ec ? 1 : 0);
865 ctl->dirty.bf.srt = 1;
866 return 0;
869 static int dai_srt_set_et(void *blk, unsigned int et)
871 struct dai_ctrl_blk *ctl = blk;
873 set_field(&ctl->srt, SRTCTL_ET, et ? 1 : 0);
874 ctl->dirty.bf.srt = 1;
875 return 0;
878 static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk)
880 struct dai_ctrl_blk *ctl = blk;
882 if (ctl->dirty.bf.srt) {
883 hw_write_20kx(hw, AUDIO_IO_RX_SRT_CTL+0x40*idx, ctl->srt);
884 ctl->dirty.bf.srt = 0;
887 return 0;
890 static int dai_get_ctrl_blk(void **rblk)
892 struct dai_ctrl_blk *blk;
894 *rblk = NULL;
895 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
896 if (!blk)
897 return -ENOMEM;
899 *rblk = blk;
901 return 0;
904 static int dai_put_ctrl_blk(void *blk)
906 kfree(blk);
908 return 0;
911 static int dao_set_spos(void *blk, unsigned int spos)
913 ((struct dao_ctrl_blk *)blk)->atxcsl = spos;
914 ((struct dao_ctrl_blk *)blk)->dirty.bf.atxcsl = 1;
915 return 0;
918 static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk)
920 struct dao_ctrl_blk *ctl = blk;
922 if (ctl->dirty.bf.atxcsl) {
923 if (idx < 4) {
924 /* S/PDIF SPOSx */
925 hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+0x40*idx,
926 ctl->atxcsl);
928 ctl->dirty.bf.atxcsl = 0;
931 return 0;
934 static int dao_get_spos(void *blk, unsigned int *spos)
936 *spos = ((struct dao_ctrl_blk *)blk)->atxcsl;
937 return 0;
940 static int dao_get_ctrl_blk(void **rblk)
942 struct dao_ctrl_blk *blk;
944 *rblk = NULL;
945 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
946 if (!blk)
947 return -ENOMEM;
949 *rblk = blk;
951 return 0;
954 static int dao_put_ctrl_blk(void *blk)
956 kfree(blk);
958 return 0;
961 static int daio_mgr_enb_dai(void *blk, unsigned int idx)
963 struct daio_mgr_ctrl_blk *ctl = blk;
965 set_field(&ctl->rxctl[idx], ARXCTL_EN, 1);
966 ctl->dirty.bf.arxctl |= (0x1 << idx);
967 return 0;
970 static int daio_mgr_dsb_dai(void *blk, unsigned int idx)
972 struct daio_mgr_ctrl_blk *ctl = blk;
974 set_field(&ctl->rxctl[idx], ARXCTL_EN, 0);
976 ctl->dirty.bf.arxctl |= (0x1 << idx);
977 return 0;
980 static int daio_mgr_enb_dao(void *blk, unsigned int idx)
982 struct daio_mgr_ctrl_blk *ctl = blk;
984 set_field(&ctl->txctl[idx], ATXCTL_EN, 1);
985 ctl->dirty.bf.atxctl |= (0x1 << idx);
986 return 0;
989 static int daio_mgr_dsb_dao(void *blk, unsigned int idx)
991 struct daio_mgr_ctrl_blk *ctl = blk;
993 set_field(&ctl->txctl[idx], ATXCTL_EN, 0);
994 ctl->dirty.bf.atxctl |= (0x1 << idx);
995 return 0;
998 static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf)
1000 struct daio_mgr_ctrl_blk *ctl = blk;
1002 if (idx < 4) {
1003 /* S/PDIF output */
1004 switch ((conf & 0x7)) {
1005 case 1:
1006 set_field(&ctl->txctl[idx], ATXCTL_NUC, 0);
1007 break;
1008 case 2:
1009 set_field(&ctl->txctl[idx], ATXCTL_NUC, 1);
1010 break;
1011 case 4:
1012 set_field(&ctl->txctl[idx], ATXCTL_NUC, 2);
1013 break;
1014 case 8:
1015 set_field(&ctl->txctl[idx], ATXCTL_NUC, 3);
1016 break;
1017 default:
1018 break;
1020 /* CDIF */
1021 set_field(&ctl->txctl[idx], ATXCTL_CD, (!(conf & 0x7)));
1022 /* Non-audio */
1023 set_field(&ctl->txctl[idx], ATXCTL_LIV, (conf >> 4) & 0x1);
1024 /* Non-audio */
1025 set_field(&ctl->txctl[idx], ATXCTL_RIV, (conf >> 4) & 0x1);
1026 set_field(&ctl->txctl[idx], ATXCTL_RAW,
1027 ((conf >> 3) & 0x1) ? 0 : 0);
1028 ctl->dirty.bf.atxctl |= (0x1 << idx);
1029 } else {
1030 /* I2S output */
1031 /*idx %= 4; */
1033 return 0;
1036 static int daio_mgr_set_imaparc(void *blk, unsigned int slot)
1038 struct daio_mgr_ctrl_blk *ctl = blk;
1040 set_field(&ctl->daoimap.aim, AIM_ARC, slot);
1041 ctl->dirty.bf.daoimap = 1;
1042 return 0;
1045 static int daio_mgr_set_imapnxt(void *blk, unsigned int next)
1047 struct daio_mgr_ctrl_blk *ctl = blk;
1049 set_field(&ctl->daoimap.aim, AIM_NXT, next);
1050 ctl->dirty.bf.daoimap = 1;
1051 return 0;
1054 static int daio_mgr_set_imapaddr(void *blk, unsigned int addr)
1056 ((struct daio_mgr_ctrl_blk *)blk)->daoimap.idx = addr;
1057 ((struct daio_mgr_ctrl_blk *)blk)->dirty.bf.daoimap = 1;
1058 return 0;
1061 static int daio_mgr_commit_write(struct hw *hw, void *blk)
1063 struct daio_mgr_ctrl_blk *ctl = blk;
1064 unsigned int data;
1065 int i;
1067 for (i = 0; i < 8; i++) {
1068 if ((ctl->dirty.bf.atxctl & (0x1 << i))) {
1069 data = ctl->txctl[i];
1070 hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1071 ctl->dirty.bf.atxctl &= ~(0x1 << i);
1072 mdelay(1);
1074 if ((ctl->dirty.bf.arxctl & (0x1 << i))) {
1075 data = ctl->rxctl[i];
1076 hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1077 ctl->dirty.bf.arxctl &= ~(0x1 << i);
1078 mdelay(1);
1081 if (ctl->dirty.bf.daoimap) {
1082 hw_write_20kx(hw, AUDIO_IO_AIM+ctl->daoimap.idx*4,
1083 ctl->daoimap.aim);
1084 ctl->dirty.bf.daoimap = 0;
1087 return 0;
1090 static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk)
1092 struct daio_mgr_ctrl_blk *blk;
1093 int i;
1095 *rblk = NULL;
1096 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
1097 if (!blk)
1098 return -ENOMEM;
1100 for (i = 0; i < 8; i++) {
1101 blk->txctl[i] = hw_read_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i));
1102 blk->rxctl[i] = hw_read_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i));
1105 *rblk = blk;
1107 return 0;
1110 static int daio_mgr_put_ctrl_blk(void *blk)
1112 kfree(blk);
1114 return 0;
1117 /* Timer interrupt */
1118 static int set_timer_irq(struct hw *hw, int enable)
1120 hw_write_20kx(hw, GIE, enable ? IT_INT : 0);
1121 return 0;
1124 static int set_timer_tick(struct hw *hw, unsigned int ticks)
1126 if (ticks)
1127 ticks |= TIMR_IE | TIMR_IP;
1128 hw_write_20kx(hw, TIMR, ticks);
1129 return 0;
1132 static unsigned int get_wc(struct hw *hw)
1134 return hw_read_20kx(hw, WC);
1137 /* Card hardware initialization block */
1138 struct dac_conf {
1139 unsigned int msr; /* master sample rate in rsrs */
1142 struct adc_conf {
1143 unsigned int msr; /* master sample rate in rsrs */
1144 unsigned char input; /* the input source of ADC */
1145 unsigned char mic20db; /* boost mic by 20db if input is microphone */
1148 struct daio_conf {
1149 unsigned int msr; /* master sample rate in rsrs */
1152 struct trn_conf {
1153 unsigned long vm_pgt_phys;
1156 static int hw_daio_init(struct hw *hw, const struct daio_conf *info)
1158 u32 data;
1159 int i;
1161 /* Program I2S with proper sample rate and enable the correct I2S
1162 * channel. ED(0/8/16/24): Enable all I2S/I2X master clock output */
1163 if (1 == info->msr) {
1164 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x01010101);
1165 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x01010101);
1166 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1167 } else if (2 == info->msr) {
1168 if (hw->model != CTSB1270) {
1169 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11111111);
1170 } else {
1171 /* PCM4220 on Titanium HD is different. */
1172 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11011111);
1174 /* Specify all playing 96khz
1175 * EA [0] - Enabled
1176 * RTA [4:5] - 96kHz
1177 * EB [8] - Enabled
1178 * RTB [12:13] - 96kHz
1179 * EC [16] - Enabled
1180 * RTC [20:21] - 96kHz
1181 * ED [24] - Enabled
1182 * RTD [28:29] - 96kHz */
1183 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x11111111);
1184 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1185 } else if ((4 == info->msr) && (hw->model == CTSB1270)) {
1186 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x21011111);
1187 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x21212121);
1188 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1189 } else {
1190 printk(KERN_ALERT "ctxfi: ERROR!!! Invalid sampling rate!!!\n");
1191 return -EINVAL;
1194 for (i = 0; i < 8; i++) {
1195 if (i <= 3) {
1196 /* This comment looks wrong since loop is over 4 */
1197 /* channels and emu20k2 supports 4 spdif IOs. */
1198 /* 1st 3 channels are SPDIFs (SB0960) */
1199 if (i == 3)
1200 data = 0x1001001;
1201 else
1202 data = 0x1000001;
1204 hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1205 hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1207 /* Initialize the SPDIF Out Channel status registers.
1208 * The value specified here is based on the typical
1209 * values provided in the specification, namely: Clock
1210 * Accuracy of 1000ppm, Sample Rate of 48KHz,
1211 * unspecified source number, Generation status = 1,
1212 * Category code = 0x12 (Digital Signal Mixer),
1213 * Mode = 0, Emph = 0, Copy Permitted, AN = 0
1214 * (indicating that we're transmitting digital audio,
1215 * and the Professional Use bit is 0. */
1217 hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+(0x40*i),
1218 0x02109204); /* Default to 48kHz */
1220 hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_H+(0x40*i), 0x0B);
1221 } else {
1222 /* Again, loop is over 4 channels not 5. */
1223 /* Next 5 channels are I2S (SB0960) */
1224 data = 0x11;
1225 hw_write_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i), data);
1226 if (2 == info->msr) {
1227 /* Four channels per sample period */
1228 data |= 0x1000;
1229 } else if (4 == info->msr) {
1230 /* FIXME: check this against the chip spec */
1231 data |= 0x2000;
1233 hw_write_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i), data);
1237 return 0;
1240 /* TRANSPORT operations */
1241 static int hw_trn_init(struct hw *hw, const struct trn_conf *info)
1243 u32 vmctl, data;
1244 u32 ptp_phys_low, ptp_phys_high;
1245 int i;
1247 /* Set up device page table */
1248 if ((~0UL) == info->vm_pgt_phys) {
1249 printk(KERN_ALERT "ctxfi: "
1250 "Wrong device page table page address!!!\n");
1251 return -1;
1254 vmctl = 0x80000C0F; /* 32-bit, 4k-size page */
1255 ptp_phys_low = (u32)info->vm_pgt_phys;
1256 ptp_phys_high = upper_32_bits(info->vm_pgt_phys);
1257 if (sizeof(void *) == 8) /* 64bit address */
1258 vmctl |= (3 << 8);
1259 /* Write page table physical address to all PTPAL registers */
1260 for (i = 0; i < 64; i++) {
1261 hw_write_20kx(hw, VMEM_PTPAL+(16*i), ptp_phys_low);
1262 hw_write_20kx(hw, VMEM_PTPAH+(16*i), ptp_phys_high);
1264 /* Enable virtual memory transfer */
1265 hw_write_20kx(hw, VMEM_CTL, vmctl);
1266 /* Enable transport bus master and queueing of request */
1267 hw_write_20kx(hw, TRANSPORT_CTL, 0x03);
1268 hw_write_20kx(hw, TRANSPORT_INT, 0x200c01);
1269 /* Enable transport ring */
1270 data = hw_read_20kx(hw, TRANSPORT_ENB);
1271 hw_write_20kx(hw, TRANSPORT_ENB, (data | 0x03));
1273 return 0;
1276 /* Card initialization */
1277 #define GCTL_AIE 0x00000001
1278 #define GCTL_UAA 0x00000002
1279 #define GCTL_DPC 0x00000004
1280 #define GCTL_DBP 0x00000008
1281 #define GCTL_ABP 0x00000010
1282 #define GCTL_TBP 0x00000020
1283 #define GCTL_SBP 0x00000040
1284 #define GCTL_FBP 0x00000080
1285 #define GCTL_ME 0x00000100
1286 #define GCTL_AID 0x00001000
1288 #define PLLCTL_SRC 0x00000007
1289 #define PLLCTL_SPE 0x00000008
1290 #define PLLCTL_RD 0x000000F0
1291 #define PLLCTL_FD 0x0001FF00
1292 #define PLLCTL_OD 0x00060000
1293 #define PLLCTL_B 0x00080000
1294 #define PLLCTL_AS 0x00100000
1295 #define PLLCTL_LF 0x03E00000
1296 #define PLLCTL_SPS 0x1C000000
1297 #define PLLCTL_AD 0x60000000
1299 #define PLLSTAT_CCS 0x00000007
1300 #define PLLSTAT_SPL 0x00000008
1301 #define PLLSTAT_CRD 0x000000F0
1302 #define PLLSTAT_CFD 0x0001FF00
1303 #define PLLSTAT_SL 0x00020000
1304 #define PLLSTAT_FAS 0x00040000
1305 #define PLLSTAT_B 0x00080000
1306 #define PLLSTAT_PD 0x00100000
1307 #define PLLSTAT_OCA 0x00200000
1308 #define PLLSTAT_NCA 0x00400000
1310 static int hw_pll_init(struct hw *hw, unsigned int rsr)
1312 unsigned int pllenb;
1313 unsigned int pllctl;
1314 unsigned int pllstat;
1315 int i;
1317 pllenb = 0xB;
1318 hw_write_20kx(hw, PLL_ENB, pllenb);
1319 pllctl = 0x20C00000;
1320 set_field(&pllctl, PLLCTL_B, 0);
1321 set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 4 : 147 - 4);
1322 set_field(&pllctl, PLLCTL_RD, 48000 == rsr ? 1 - 1 : 10 - 1);
1323 hw_write_20kx(hw, PLL_CTL, pllctl);
1324 mdelay(40);
1326 pllctl = hw_read_20kx(hw, PLL_CTL);
1327 set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 2 : 147 - 2);
1328 hw_write_20kx(hw, PLL_CTL, pllctl);
1329 mdelay(40);
1331 for (i = 0; i < 1000; i++) {
1332 pllstat = hw_read_20kx(hw, PLL_STAT);
1333 if (get_field(pllstat, PLLSTAT_PD))
1334 continue;
1336 if (get_field(pllstat, PLLSTAT_B) !=
1337 get_field(pllctl, PLLCTL_B))
1338 continue;
1340 if (get_field(pllstat, PLLSTAT_CCS) !=
1341 get_field(pllctl, PLLCTL_SRC))
1342 continue;
1344 if (get_field(pllstat, PLLSTAT_CRD) !=
1345 get_field(pllctl, PLLCTL_RD))
1346 continue;
1348 if (get_field(pllstat, PLLSTAT_CFD) !=
1349 get_field(pllctl, PLLCTL_FD))
1350 continue;
1352 break;
1354 if (i >= 1000) {
1355 printk(KERN_ALERT "ctxfi: PLL initialization failed!!!\n");
1356 return -EBUSY;
1359 return 0;
1362 static int hw_auto_init(struct hw *hw)
1364 unsigned int gctl;
1365 int i;
1367 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1368 set_field(&gctl, GCTL_AIE, 0);
1369 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1370 set_field(&gctl, GCTL_AIE, 1);
1371 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1372 mdelay(10);
1373 for (i = 0; i < 400000; i++) {
1374 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1375 if (get_field(gctl, GCTL_AID))
1376 break;
1378 if (!get_field(gctl, GCTL_AID)) {
1379 printk(KERN_ALERT "ctxfi: Card Auto-init failed!!!\n");
1380 return -EBUSY;
1383 return 0;
1386 /* DAC operations */
1388 #define CS4382_MC1 0x1
1389 #define CS4382_MC2 0x2
1390 #define CS4382_MC3 0x3
1391 #define CS4382_FC 0x4
1392 #define CS4382_IC 0x5
1393 #define CS4382_XC1 0x6
1394 #define CS4382_VCA1 0x7
1395 #define CS4382_VCB1 0x8
1396 #define CS4382_XC2 0x9
1397 #define CS4382_VCA2 0xA
1398 #define CS4382_VCB2 0xB
1399 #define CS4382_XC3 0xC
1400 #define CS4382_VCA3 0xD
1401 #define CS4382_VCB3 0xE
1402 #define CS4382_XC4 0xF
1403 #define CS4382_VCA4 0x10
1404 #define CS4382_VCB4 0x11
1405 #define CS4382_CREV 0x12
1407 /* I2C status */
1408 #define STATE_LOCKED 0x00
1409 #define STATE_UNLOCKED 0xAA
1410 #define DATA_READY 0x800000 /* Used with I2C_IF_STATUS */
1411 #define DATA_ABORT 0x10000 /* Used with I2C_IF_STATUS */
1413 #define I2C_STATUS_DCM 0x00000001
1414 #define I2C_STATUS_BC 0x00000006
1415 #define I2C_STATUS_APD 0x00000008
1416 #define I2C_STATUS_AB 0x00010000
1417 #define I2C_STATUS_DR 0x00800000
1419 #define I2C_ADDRESS_PTAD 0x0000FFFF
1420 #define I2C_ADDRESS_SLAD 0x007F0000
1422 struct regs_cs4382 {
1423 u32 mode_control_1;
1424 u32 mode_control_2;
1425 u32 mode_control_3;
1427 u32 filter_control;
1428 u32 invert_control;
1430 u32 mix_control_P1;
1431 u32 vol_control_A1;
1432 u32 vol_control_B1;
1434 u32 mix_control_P2;
1435 u32 vol_control_A2;
1436 u32 vol_control_B2;
1438 u32 mix_control_P3;
1439 u32 vol_control_A3;
1440 u32 vol_control_B3;
1442 u32 mix_control_P4;
1443 u32 vol_control_A4;
1444 u32 vol_control_B4;
1447 static int hw20k2_i2c_unlock_full_access(struct hw *hw)
1449 u8 UnlockKeySequence_FLASH_FULLACCESS_MODE[2] = {0xB3, 0xD4};
1451 /* Send keys for forced BIOS mode */
1452 hw_write_20kx(hw, I2C_IF_WLOCK,
1453 UnlockKeySequence_FLASH_FULLACCESS_MODE[0]);
1454 hw_write_20kx(hw, I2C_IF_WLOCK,
1455 UnlockKeySequence_FLASH_FULLACCESS_MODE[1]);
1456 /* Check whether the chip is unlocked */
1457 if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_UNLOCKED)
1458 return 0;
1460 return -1;
1463 static int hw20k2_i2c_lock_chip(struct hw *hw)
1465 /* Write twice */
1466 hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1467 hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1468 if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_LOCKED)
1469 return 0;
1471 return -1;
1474 static int hw20k2_i2c_init(struct hw *hw, u8 dev_id, u8 addr_size, u8 data_size)
1476 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1477 int err;
1478 unsigned int i2c_status;
1479 unsigned int i2c_addr;
1481 err = hw20k2_i2c_unlock_full_access(hw);
1482 if (err < 0)
1483 return err;
1485 hw20k2->addr_size = addr_size;
1486 hw20k2->data_size = data_size;
1487 hw20k2->dev_id = dev_id;
1489 i2c_addr = 0;
1490 set_field(&i2c_addr, I2C_ADDRESS_SLAD, dev_id);
1492 hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1494 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1496 set_field(&i2c_status, I2C_STATUS_DCM, 1); /* Direct control mode */
1498 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1500 return 0;
1503 static int hw20k2_i2c_uninit(struct hw *hw)
1505 unsigned int i2c_status;
1506 unsigned int i2c_addr;
1508 i2c_addr = 0;
1509 set_field(&i2c_addr, I2C_ADDRESS_SLAD, 0x57); /* I2C id */
1511 hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1513 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1515 set_field(&i2c_status, I2C_STATUS_DCM, 0); /* I2C mode */
1517 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1519 return hw20k2_i2c_lock_chip(hw);
1522 static int hw20k2_i2c_wait_data_ready(struct hw *hw)
1524 int i = 0x400000;
1525 unsigned int ret;
1527 do {
1528 ret = hw_read_20kx(hw, I2C_IF_STATUS);
1529 } while ((!(ret & DATA_READY)) && --i);
1531 return i;
1534 static int hw20k2_i2c_read(struct hw *hw, u16 addr, u32 *datap)
1536 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1537 unsigned int i2c_status;
1539 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1540 set_field(&i2c_status, I2C_STATUS_BC,
1541 (4 == hw20k2->addr_size) ? 0 : hw20k2->addr_size);
1542 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1543 if (!hw20k2_i2c_wait_data_ready(hw))
1544 return -1;
1546 hw_write_20kx(hw, I2C_IF_WDATA, addr);
1547 if (!hw20k2_i2c_wait_data_ready(hw))
1548 return -1;
1550 /* Force a read operation */
1551 hw_write_20kx(hw, I2C_IF_RDATA, 0);
1552 if (!hw20k2_i2c_wait_data_ready(hw))
1553 return -1;
1555 *datap = hw_read_20kx(hw, I2C_IF_RDATA);
1557 return 0;
1560 static int hw20k2_i2c_write(struct hw *hw, u16 addr, u32 data)
1562 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1563 unsigned int i2c_data = (data << (hw20k2->addr_size * 8)) | addr;
1564 unsigned int i2c_status;
1566 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1568 set_field(&i2c_status, I2C_STATUS_BC,
1569 (4 == (hw20k2->addr_size + hw20k2->data_size)) ?
1570 0 : (hw20k2->addr_size + hw20k2->data_size));
1572 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1573 hw20k2_i2c_wait_data_ready(hw);
1574 /* Dummy write to trigger the write operation */
1575 hw_write_20kx(hw, I2C_IF_WDATA, 0);
1576 hw20k2_i2c_wait_data_ready(hw);
1578 /* This is the real data */
1579 hw_write_20kx(hw, I2C_IF_WDATA, i2c_data);
1580 hw20k2_i2c_wait_data_ready(hw);
1582 return 0;
1585 static void hw_dac_stop(struct hw *hw)
1587 u32 data;
1588 data = hw_read_20kx(hw, GPIO_DATA);
1589 data &= 0xFFFFFFFD;
1590 hw_write_20kx(hw, GPIO_DATA, data);
1591 mdelay(10);
1594 static void hw_dac_start(struct hw *hw)
1596 u32 data;
1597 data = hw_read_20kx(hw, GPIO_DATA);
1598 data |= 0x2;
1599 hw_write_20kx(hw, GPIO_DATA, data);
1600 mdelay(50);
1603 static void hw_dac_reset(struct hw *hw)
1605 hw_dac_stop(hw);
1606 hw_dac_start(hw);
1609 static int hw_dac_init(struct hw *hw, const struct dac_conf *info)
1611 int err;
1612 u32 data;
1613 int i;
1614 struct regs_cs4382 cs_read = {0};
1615 struct regs_cs4382 cs_def = {
1616 0x00000001, /* Mode Control 1 */
1617 0x00000000, /* Mode Control 2 */
1618 0x00000084, /* Mode Control 3 */
1619 0x00000000, /* Filter Control */
1620 0x00000000, /* Invert Control */
1621 0x00000024, /* Mixing Control Pair 1 */
1622 0x00000000, /* Vol Control A1 */
1623 0x00000000, /* Vol Control B1 */
1624 0x00000024, /* Mixing Control Pair 2 */
1625 0x00000000, /* Vol Control A2 */
1626 0x00000000, /* Vol Control B2 */
1627 0x00000024, /* Mixing Control Pair 3 */
1628 0x00000000, /* Vol Control A3 */
1629 0x00000000, /* Vol Control B3 */
1630 0x00000024, /* Mixing Control Pair 4 */
1631 0x00000000, /* Vol Control A4 */
1632 0x00000000 /* Vol Control B4 */
1635 if (hw->model == CTSB1270) {
1636 hw_dac_stop(hw);
1637 data = hw_read_20kx(hw, GPIO_DATA);
1638 data &= ~0x0600;
1639 if (1 == info->msr)
1640 data |= 0x0000; /* Single Speed Mode 0-50kHz */
1641 else if (2 == info->msr)
1642 data |= 0x0200; /* Double Speed Mode 50-100kHz */
1643 else
1644 data |= 0x0600; /* Quad Speed Mode 100-200kHz */
1645 hw_write_20kx(hw, GPIO_DATA, data);
1646 hw_dac_start(hw);
1647 return 0;
1650 /* Set DAC reset bit as output */
1651 data = hw_read_20kx(hw, GPIO_CTRL);
1652 data |= 0x02;
1653 hw_write_20kx(hw, GPIO_CTRL, data);
1655 err = hw20k2_i2c_init(hw, 0x18, 1, 1);
1656 if (err < 0)
1657 goto End;
1659 for (i = 0; i < 2; i++) {
1660 /* Reset DAC twice just in-case the chip
1661 * didn't initialized properly */
1662 hw_dac_reset(hw);
1663 hw_dac_reset(hw);
1665 if (hw20k2_i2c_read(hw, CS4382_MC1, &cs_read.mode_control_1))
1666 continue;
1668 if (hw20k2_i2c_read(hw, CS4382_MC2, &cs_read.mode_control_2))
1669 continue;
1671 if (hw20k2_i2c_read(hw, CS4382_MC3, &cs_read.mode_control_3))
1672 continue;
1674 if (hw20k2_i2c_read(hw, CS4382_FC, &cs_read.filter_control))
1675 continue;
1677 if (hw20k2_i2c_read(hw, CS4382_IC, &cs_read.invert_control))
1678 continue;
1680 if (hw20k2_i2c_read(hw, CS4382_XC1, &cs_read.mix_control_P1))
1681 continue;
1683 if (hw20k2_i2c_read(hw, CS4382_VCA1, &cs_read.vol_control_A1))
1684 continue;
1686 if (hw20k2_i2c_read(hw, CS4382_VCB1, &cs_read.vol_control_B1))
1687 continue;
1689 if (hw20k2_i2c_read(hw, CS4382_XC2, &cs_read.mix_control_P2))
1690 continue;
1692 if (hw20k2_i2c_read(hw, CS4382_VCA2, &cs_read.vol_control_A2))
1693 continue;
1695 if (hw20k2_i2c_read(hw, CS4382_VCB2, &cs_read.vol_control_B2))
1696 continue;
1698 if (hw20k2_i2c_read(hw, CS4382_XC3, &cs_read.mix_control_P3))
1699 continue;
1701 if (hw20k2_i2c_read(hw, CS4382_VCA3, &cs_read.vol_control_A3))
1702 continue;
1704 if (hw20k2_i2c_read(hw, CS4382_VCB3, &cs_read.vol_control_B3))
1705 continue;
1707 if (hw20k2_i2c_read(hw, CS4382_XC4, &cs_read.mix_control_P4))
1708 continue;
1710 if (hw20k2_i2c_read(hw, CS4382_VCA4, &cs_read.vol_control_A4))
1711 continue;
1713 if (hw20k2_i2c_read(hw, CS4382_VCB4, &cs_read.vol_control_B4))
1714 continue;
1716 if (memcmp(&cs_read, &cs_def, sizeof(cs_read)))
1717 continue;
1718 else
1719 break;
1722 if (i >= 2)
1723 goto End;
1725 /* Note: Every I2C write must have some delay.
1726 * This is not a requirement but the delay works here... */
1727 hw20k2_i2c_write(hw, CS4382_MC1, 0x80);
1728 hw20k2_i2c_write(hw, CS4382_MC2, 0x10);
1729 if (1 == info->msr) {
1730 hw20k2_i2c_write(hw, CS4382_XC1, 0x24);
1731 hw20k2_i2c_write(hw, CS4382_XC2, 0x24);
1732 hw20k2_i2c_write(hw, CS4382_XC3, 0x24);
1733 hw20k2_i2c_write(hw, CS4382_XC4, 0x24);
1734 } else if (2 == info->msr) {
1735 hw20k2_i2c_write(hw, CS4382_XC1, 0x25);
1736 hw20k2_i2c_write(hw, CS4382_XC2, 0x25);
1737 hw20k2_i2c_write(hw, CS4382_XC3, 0x25);
1738 hw20k2_i2c_write(hw, CS4382_XC4, 0x25);
1739 } else {
1740 hw20k2_i2c_write(hw, CS4382_XC1, 0x26);
1741 hw20k2_i2c_write(hw, CS4382_XC2, 0x26);
1742 hw20k2_i2c_write(hw, CS4382_XC3, 0x26);
1743 hw20k2_i2c_write(hw, CS4382_XC4, 0x26);
1746 return 0;
1747 End:
1749 hw20k2_i2c_uninit(hw);
1750 return -1;
1753 /* ADC operations */
1754 #define MAKE_WM8775_ADDR(addr, data) (u32)(((addr<<1)&0xFE)|((data>>8)&0x1))
1755 #define MAKE_WM8775_DATA(data) (u32)(data&0xFF)
1757 #define WM8775_IC 0x0B
1758 #define WM8775_MMC 0x0C
1759 #define WM8775_AADCL 0x0E
1760 #define WM8775_AADCR 0x0F
1761 #define WM8775_ADCMC 0x15
1762 #define WM8775_RESET 0x17
1764 static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type)
1766 u32 data;
1767 if (hw->model == CTSB1270) {
1768 /* Titanium HD has two ADC chips, one for line in and one */
1769 /* for MIC. We don't need to switch the ADC input. */
1770 return 1;
1772 data = hw_read_20kx(hw, GPIO_DATA);
1773 switch (type) {
1774 case ADC_MICIN:
1775 data = (data & (0x1 << 14)) ? 1 : 0;
1776 break;
1777 case ADC_LINEIN:
1778 data = (data & (0x1 << 14)) ? 0 : 1;
1779 break;
1780 default:
1781 data = 0;
1783 return data;
1786 #define MIC_BOOST_0DB 0xCF
1787 #define MIC_BOOST_STEPS_PER_DB 2
1789 static void hw_wm8775_input_select(struct hw *hw, u8 input, s8 gain_in_db)
1791 u32 adcmc, gain;
1793 if (input > 3)
1794 input = 3;
1796 adcmc = ((u32)1 << input) | 0x100; /* Link L+R gain... */
1798 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, adcmc),
1799 MAKE_WM8775_DATA(adcmc));
1801 if (gain_in_db < -103)
1802 gain_in_db = -103;
1803 if (gain_in_db > 24)
1804 gain_in_db = 24;
1806 gain = gain_in_db * MIC_BOOST_STEPS_PER_DB + MIC_BOOST_0DB;
1808 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, gain),
1809 MAKE_WM8775_DATA(gain));
1810 /* ...so there should be no need for the following. */
1811 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, gain),
1812 MAKE_WM8775_DATA(gain));
1815 static int hw_adc_input_select(struct hw *hw, enum ADCSRC type)
1817 u32 data;
1818 data = hw_read_20kx(hw, GPIO_DATA);
1819 switch (type) {
1820 case ADC_MICIN:
1821 data |= (0x1 << 14);
1822 hw_write_20kx(hw, GPIO_DATA, data);
1823 hw_wm8775_input_select(hw, 0, 20); /* Mic, 20dB */
1824 break;
1825 case ADC_LINEIN:
1826 data &= ~(0x1 << 14);
1827 hw_write_20kx(hw, GPIO_DATA, data);
1828 hw_wm8775_input_select(hw, 1, 0); /* Line-in, 0dB */
1829 break;
1830 default:
1831 break;
1834 return 0;
1837 static int hw_adc_init(struct hw *hw, const struct adc_conf *info)
1839 int err;
1840 u32 data, ctl;
1842 /* Set ADC reset bit as output */
1843 data = hw_read_20kx(hw, GPIO_CTRL);
1844 data |= (0x1 << 15);
1845 hw_write_20kx(hw, GPIO_CTRL, data);
1847 /* Initialize I2C */
1848 err = hw20k2_i2c_init(hw, 0x1A, 1, 1);
1849 if (err < 0) {
1850 printk(KERN_ALERT "ctxfi: Failure to acquire I2C!!!\n");
1851 goto error;
1854 /* Reset the ADC (reset is active low). */
1855 data = hw_read_20kx(hw, GPIO_DATA);
1856 data &= ~(0x1 << 15);
1857 hw_write_20kx(hw, GPIO_DATA, data);
1859 if (hw->model == CTSB1270) {
1860 /* Set up the PCM4220 ADC on Titanium HD */
1861 data &= ~0x0C;
1862 if (1 == info->msr)
1863 data |= 0x00; /* Single Speed Mode 32-50kHz */
1864 else if (2 == info->msr)
1865 data |= 0x08; /* Double Speed Mode 50-108kHz */
1866 else
1867 data |= 0x04; /* Quad Speed Mode 108kHz-216kHz */
1868 hw_write_20kx(hw, GPIO_DATA, data);
1871 mdelay(10);
1872 /* Return the ADC to normal operation. */
1873 data |= (0x1 << 15);
1874 hw_write_20kx(hw, GPIO_DATA, data);
1875 mdelay(50);
1877 /* I2C write to register offset 0x0B to set ADC LRCLK polarity */
1878 /* invert bit, interface format to I2S, word length to 24-bit, */
1879 /* enable ADC high pass filter. Fixes bug 5323? */
1880 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_IC, 0x26),
1881 MAKE_WM8775_DATA(0x26));
1883 /* Set the master mode (256fs) */
1884 if (1 == info->msr) {
1885 /* slave mode, 128x oversampling 256fs */
1886 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x02),
1887 MAKE_WM8775_DATA(0x02));
1888 } else if ((2 == info->msr) || (4 == info->msr)) {
1889 /* slave mode, 64x oversampling, 256fs */
1890 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x0A),
1891 MAKE_WM8775_DATA(0x0A));
1892 } else {
1893 printk(KERN_ALERT "ctxfi: Invalid master sampling "
1894 "rate (msr %d)!!!\n", info->msr);
1895 err = -EINVAL;
1896 goto error;
1899 if (hw->model != CTSB1270) {
1900 /* Configure GPIO bit 14 change to line-in/mic-in */
1901 ctl = hw_read_20kx(hw, GPIO_CTRL);
1902 ctl |= 0x1 << 14;
1903 hw_write_20kx(hw, GPIO_CTRL, ctl);
1904 hw_adc_input_select(hw, ADC_LINEIN);
1905 } else {
1906 hw_wm8775_input_select(hw, 0, 0);
1909 return 0;
1910 error:
1911 hw20k2_i2c_uninit(hw);
1912 return err;
1915 static struct capabilities hw_capabilities(struct hw *hw)
1917 struct capabilities cap;
1919 cap.digit_io_switch = 0;
1920 cap.dedicated_mic = hw->model == CTSB1270;
1921 cap.output_switch = hw->model == CTSB1270;
1922 cap.mic_source_switch = hw->model == CTSB1270;
1924 return cap;
1927 static int hw_output_switch_get(struct hw *hw)
1929 u32 data = hw_read_20kx(hw, GPIO_EXT_DATA);
1931 switch (data & 0x30) {
1932 case 0x00:
1933 return 0;
1934 case 0x10:
1935 return 1;
1936 case 0x20:
1937 return 2;
1938 default:
1939 return 3;
1943 static int hw_output_switch_put(struct hw *hw, int position)
1945 u32 data;
1947 if (position == hw_output_switch_get(hw))
1948 return 0;
1950 /* Mute line and headphones (intended for anti-pop). */
1951 data = hw_read_20kx(hw, GPIO_DATA);
1952 data |= (0x03 << 11);
1953 hw_write_20kx(hw, GPIO_DATA, data);
1955 data = hw_read_20kx(hw, GPIO_EXT_DATA) & ~0x30;
1956 switch (position) {
1957 case 0:
1958 break;
1959 case 1:
1960 data |= 0x10;
1961 break;
1962 default:
1963 data |= 0x20;
1965 hw_write_20kx(hw, GPIO_EXT_DATA, data);
1967 /* Unmute line and headphones. */
1968 data = hw_read_20kx(hw, GPIO_DATA);
1969 data &= ~(0x03 << 11);
1970 hw_write_20kx(hw, GPIO_DATA, data);
1972 return 1;
1975 static int hw_mic_source_switch_get(struct hw *hw)
1977 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1979 return hw20k2->mic_source;
1982 static int hw_mic_source_switch_put(struct hw *hw, int position)
1984 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1986 if (position == hw20k2->mic_source)
1987 return 0;
1989 switch (position) {
1990 case 0:
1991 hw_wm8775_input_select(hw, 0, 0); /* Mic, 0dB */
1992 break;
1993 case 1:
1994 hw_wm8775_input_select(hw, 1, 0); /* FP Mic, 0dB */
1995 break;
1996 case 2:
1997 hw_wm8775_input_select(hw, 3, 0); /* Aux Ext, 0dB */
1998 break;
1999 default:
2000 return 0;
2003 hw20k2->mic_source = position;
2005 return 1;
2008 static irqreturn_t ct_20k2_interrupt(int irq, void *dev_id)
2010 struct hw *hw = dev_id;
2011 unsigned int status;
2013 status = hw_read_20kx(hw, GIP);
2014 if (!status)
2015 return IRQ_NONE;
2017 if (hw->irq_callback)
2018 hw->irq_callback(hw->irq_callback_data, status);
2020 hw_write_20kx(hw, GIP, status);
2021 return IRQ_HANDLED;
2024 static int hw_card_start(struct hw *hw)
2026 int err = 0;
2027 struct pci_dev *pci = hw->pci;
2028 unsigned int gctl;
2030 err = pci_enable_device(pci);
2031 if (err < 0)
2032 return err;
2034 /* Set DMA transfer mask */
2035 if (pci_set_dma_mask(pci, CT_XFI_DMA_MASK) < 0 ||
2036 pci_set_consistent_dma_mask(pci, CT_XFI_DMA_MASK) < 0) {
2037 printk(KERN_ERR "ctxfi: architecture does not support PCI "
2038 "busmaster DMA with mask 0x%llx\n", CT_XFI_DMA_MASK);
2039 err = -ENXIO;
2040 goto error1;
2043 if (!hw->io_base) {
2044 err = pci_request_regions(pci, "XFi");
2045 if (err < 0)
2046 goto error1;
2048 hw->io_base = pci_resource_start(hw->pci, 2);
2049 hw->mem_base = (unsigned long)ioremap(hw->io_base,
2050 pci_resource_len(hw->pci, 2));
2051 if (!hw->mem_base) {
2052 err = -ENOENT;
2053 goto error2;
2057 /* Switch to 20k2 mode from UAA mode. */
2058 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2059 set_field(&gctl, GCTL_UAA, 0);
2060 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2062 if (hw->irq < 0) {
2063 err = request_irq(pci->irq, ct_20k2_interrupt, IRQF_SHARED,
2064 KBUILD_MODNAME, hw);
2065 if (err < 0) {
2066 printk(KERN_ERR "XFi: Cannot get irq %d\n", pci->irq);
2067 goto error2;
2069 hw->irq = pci->irq;
2072 pci_set_master(pci);
2074 return 0;
2076 /*error3:
2077 iounmap((void *)hw->mem_base);
2078 hw->mem_base = (unsigned long)NULL;*/
2079 error2:
2080 pci_release_regions(pci);
2081 hw->io_base = 0;
2082 error1:
2083 pci_disable_device(pci);
2084 return err;
2087 static int hw_card_stop(struct hw *hw)
2089 unsigned int data;
2091 /* disable transport bus master and queueing of request */
2092 hw_write_20kx(hw, TRANSPORT_CTL, 0x00);
2094 /* disable pll */
2095 data = hw_read_20kx(hw, PLL_ENB);
2096 hw_write_20kx(hw, PLL_ENB, (data & (~0x07)));
2098 /* TODO: Disable interrupt and so on... */
2099 return 0;
2102 static int hw_card_shutdown(struct hw *hw)
2104 if (hw->irq >= 0)
2105 free_irq(hw->irq, hw);
2107 hw->irq = -1;
2109 if (hw->mem_base)
2110 iounmap((void *)hw->mem_base);
2112 hw->mem_base = (unsigned long)NULL;
2114 if (hw->io_base)
2115 pci_release_regions(hw->pci);
2117 hw->io_base = 0;
2119 pci_disable_device(hw->pci);
2121 return 0;
2124 static int hw_card_init(struct hw *hw, struct card_conf *info)
2126 int err;
2127 unsigned int gctl;
2128 u32 data = 0;
2129 struct dac_conf dac_info = {0};
2130 struct adc_conf adc_info = {0};
2131 struct daio_conf daio_info = {0};
2132 struct trn_conf trn_info = {0};
2134 /* Get PCI io port/memory base address and
2135 * do 20kx core switch if needed. */
2136 err = hw_card_start(hw);
2137 if (err)
2138 return err;
2140 /* PLL init */
2141 err = hw_pll_init(hw, info->rsr);
2142 if (err < 0)
2143 return err;
2145 /* kick off auto-init */
2146 err = hw_auto_init(hw);
2147 if (err < 0)
2148 return err;
2150 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2151 set_field(&gctl, GCTL_DBP, 1);
2152 set_field(&gctl, GCTL_TBP, 1);
2153 set_field(&gctl, GCTL_FBP, 1);
2154 set_field(&gctl, GCTL_DPC, 0);
2155 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2157 /* Reset all global pending interrupts */
2158 hw_write_20kx(hw, GIE, 0);
2159 /* Reset all SRC pending interrupts */
2160 hw_write_20kx(hw, SRC_IP, 0);
2162 if (hw->model != CTSB1270) {
2163 /* TODO: detect the card ID and configure GPIO accordingly. */
2164 /* Configures GPIO (0xD802 0x98028) */
2165 /*hw_write_20kx(hw, GPIO_CTRL, 0x7F07);*/
2166 /* Configures GPIO (SB0880) */
2167 /*hw_write_20kx(hw, GPIO_CTRL, 0xFF07);*/
2168 hw_write_20kx(hw, GPIO_CTRL, 0xD802);
2169 } else {
2170 hw_write_20kx(hw, GPIO_CTRL, 0x9E5F);
2172 /* Enable audio ring */
2173 hw_write_20kx(hw, MIXER_AR_ENABLE, 0x01);
2175 trn_info.vm_pgt_phys = info->vm_pgt_phys;
2176 err = hw_trn_init(hw, &trn_info);
2177 if (err < 0)
2178 return err;
2180 daio_info.msr = info->msr;
2181 err = hw_daio_init(hw, &daio_info);
2182 if (err < 0)
2183 return err;
2185 dac_info.msr = info->msr;
2186 err = hw_dac_init(hw, &dac_info);
2187 if (err < 0)
2188 return err;
2190 adc_info.msr = info->msr;
2191 adc_info.input = ADC_LINEIN;
2192 adc_info.mic20db = 0;
2193 err = hw_adc_init(hw, &adc_info);
2194 if (err < 0)
2195 return err;
2197 data = hw_read_20kx(hw, SRC_MCTL);
2198 data |= 0x1; /* Enables input from the audio ring */
2199 hw_write_20kx(hw, SRC_MCTL, data);
2201 return 0;
2204 #ifdef CONFIG_PM
2205 static int hw_suspend(struct hw *hw, pm_message_t state)
2207 struct pci_dev *pci = hw->pci;
2209 hw_card_stop(hw);
2211 pci_disable_device(pci);
2212 pci_save_state(pci);
2213 pci_set_power_state(pci, pci_choose_state(pci, state));
2215 return 0;
2218 static int hw_resume(struct hw *hw, struct card_conf *info)
2220 struct pci_dev *pci = hw->pci;
2222 pci_set_power_state(pci, PCI_D0);
2223 pci_restore_state(pci);
2225 /* Re-initialize card hardware. */
2226 return hw_card_init(hw, info);
2228 #endif
2230 static u32 hw_read_20kx(struct hw *hw, u32 reg)
2232 return readl((void *)(hw->mem_base + reg));
2235 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data)
2237 writel(data, (void *)(hw->mem_base + reg));
2240 static struct hw ct20k2_preset __devinitdata = {
2241 .irq = -1,
2243 .card_init = hw_card_init,
2244 .card_stop = hw_card_stop,
2245 .pll_init = hw_pll_init,
2246 .is_adc_source_selected = hw_is_adc_input_selected,
2247 .select_adc_source = hw_adc_input_select,
2248 .capabilities = hw_capabilities,
2249 .output_switch_get = hw_output_switch_get,
2250 .output_switch_put = hw_output_switch_put,
2251 .mic_source_switch_get = hw_mic_source_switch_get,
2252 .mic_source_switch_put = hw_mic_source_switch_put,
2253 #ifdef CONFIG_PM
2254 .suspend = hw_suspend,
2255 .resume = hw_resume,
2256 #endif
2258 .src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk,
2259 .src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk,
2260 .src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk,
2261 .src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk,
2262 .src_set_state = src_set_state,
2263 .src_set_bm = src_set_bm,
2264 .src_set_rsr = src_set_rsr,
2265 .src_set_sf = src_set_sf,
2266 .src_set_wr = src_set_wr,
2267 .src_set_pm = src_set_pm,
2268 .src_set_rom = src_set_rom,
2269 .src_set_vo = src_set_vo,
2270 .src_set_st = src_set_st,
2271 .src_set_ie = src_set_ie,
2272 .src_set_ilsz = src_set_ilsz,
2273 .src_set_bp = src_set_bp,
2274 .src_set_cisz = src_set_cisz,
2275 .src_set_ca = src_set_ca,
2276 .src_set_sa = src_set_sa,
2277 .src_set_la = src_set_la,
2278 .src_set_pitch = src_set_pitch,
2279 .src_set_dirty = src_set_dirty,
2280 .src_set_clear_zbufs = src_set_clear_zbufs,
2281 .src_set_dirty_all = src_set_dirty_all,
2282 .src_commit_write = src_commit_write,
2283 .src_get_ca = src_get_ca,
2284 .src_get_dirty = src_get_dirty,
2285 .src_dirty_conj_mask = src_dirty_conj_mask,
2286 .src_mgr_enbs_src = src_mgr_enbs_src,
2287 .src_mgr_enb_src = src_mgr_enb_src,
2288 .src_mgr_dsb_src = src_mgr_dsb_src,
2289 .src_mgr_commit_write = src_mgr_commit_write,
2291 .srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk,
2292 .srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk,
2293 .srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc,
2294 .srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser,
2295 .srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt,
2296 .srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr,
2297 .srcimp_mgr_commit_write = srcimp_mgr_commit_write,
2299 .amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk,
2300 .amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk,
2301 .amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk,
2302 .amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk,
2303 .amixer_set_mode = amixer_set_mode,
2304 .amixer_set_iv = amixer_set_iv,
2305 .amixer_set_x = amixer_set_x,
2306 .amixer_set_y = amixer_set_y,
2307 .amixer_set_sadr = amixer_set_sadr,
2308 .amixer_set_se = amixer_set_se,
2309 .amixer_set_dirty = amixer_set_dirty,
2310 .amixer_set_dirty_all = amixer_set_dirty_all,
2311 .amixer_commit_write = amixer_commit_write,
2312 .amixer_get_y = amixer_get_y,
2313 .amixer_get_dirty = amixer_get_dirty,
2315 .dai_get_ctrl_blk = dai_get_ctrl_blk,
2316 .dai_put_ctrl_blk = dai_put_ctrl_blk,
2317 .dai_srt_set_srco = dai_srt_set_srco,
2318 .dai_srt_set_srcm = dai_srt_set_srcm,
2319 .dai_srt_set_rsr = dai_srt_set_rsr,
2320 .dai_srt_set_drat = dai_srt_set_drat,
2321 .dai_srt_set_ec = dai_srt_set_ec,
2322 .dai_srt_set_et = dai_srt_set_et,
2323 .dai_commit_write = dai_commit_write,
2325 .dao_get_ctrl_blk = dao_get_ctrl_blk,
2326 .dao_put_ctrl_blk = dao_put_ctrl_blk,
2327 .dao_set_spos = dao_set_spos,
2328 .dao_commit_write = dao_commit_write,
2329 .dao_get_spos = dao_get_spos,
2331 .daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk,
2332 .daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk,
2333 .daio_mgr_enb_dai = daio_mgr_enb_dai,
2334 .daio_mgr_dsb_dai = daio_mgr_dsb_dai,
2335 .daio_mgr_enb_dao = daio_mgr_enb_dao,
2336 .daio_mgr_dsb_dao = daio_mgr_dsb_dao,
2337 .daio_mgr_dao_init = daio_mgr_dao_init,
2338 .daio_mgr_set_imaparc = daio_mgr_set_imaparc,
2339 .daio_mgr_set_imapnxt = daio_mgr_set_imapnxt,
2340 .daio_mgr_set_imapaddr = daio_mgr_set_imapaddr,
2341 .daio_mgr_commit_write = daio_mgr_commit_write,
2343 .set_timer_irq = set_timer_irq,
2344 .set_timer_tick = set_timer_tick,
2345 .get_wc = get_wc,
2348 int __devinit create_20k2_hw_obj(struct hw **rhw)
2350 struct hw20k2 *hw20k2;
2352 *rhw = NULL;
2353 hw20k2 = kzalloc(sizeof(*hw20k2), GFP_KERNEL);
2354 if (!hw20k2)
2355 return -ENOMEM;
2357 hw20k2->hw = ct20k2_preset;
2358 *rhw = &hw20k2->hw;
2360 return 0;
2363 int destroy_20k2_hw_obj(struct hw *hw)
2365 if (hw->io_base)
2366 hw_card_shutdown(hw);
2368 kfree(hw);
2369 return 0;