Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / sound / soc / fsl / fsl_ssi.c
blob06ac2b92faf33926a174b111a09daa0eee45ddf7
1 /*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
4 * Author: Timur Tabi <timur@freescale.com>
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/interrupt.h>
16 #include <linux/device.h>
17 #include <linux/delay.h>
18 #include <linux/slab.h>
19 #include <linux/of_platform.h>
21 #include <sound/core.h>
22 #include <sound/pcm.h>
23 #include <sound/pcm_params.h>
24 #include <sound/initval.h>
25 #include <sound/soc.h>
27 #include "fsl_ssi.h"
29 /**
30 * FSLSSI_I2S_RATES: sample rates supported by the I2S
32 * This driver currently only supports the SSI running in I2S slave mode,
33 * which means the codec determines the sample rate. Therefore, we tell
34 * ALSA that we support all rates and let the codec driver decide what rates
35 * are really supported.
37 #define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
38 SNDRV_PCM_RATE_CONTINUOUS)
40 /**
41 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
43 * This driver currently only supports the SSI running in I2S slave mode.
45 * The SSI has a limitation in that the samples must be in the same byte
46 * order as the host CPU. This is because when multiple bytes are written
47 * to the STX register, the bytes and bits must be written in the same
48 * order. The STX is a shift register, so all the bits need to be aligned
49 * (bit-endianness must match byte-endianness). Processors typically write
50 * the bits within a byte in the same order that the bytes of a word are
51 * written in. So if the host CPU is big-endian, then only big-endian
52 * samples will be written to STX properly.
54 #ifdef __BIG_ENDIAN
55 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
56 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
57 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
58 #else
59 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
60 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
61 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
62 #endif
64 /* SIER bitflag of interrupts to enable */
65 #define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
66 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
67 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
68 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
69 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)
71 /**
72 * fsl_ssi_private: per-SSI private data
74 * @ssi: pointer to the SSI's registers
75 * @ssi_phys: physical address of the SSI registers
76 * @irq: IRQ of this SSI
77 * @first_stream: pointer to the stream that was opened first
78 * @second_stream: pointer to second stream
79 * @playback: the number of playback streams opened
80 * @capture: the number of capture streams opened
81 * @asynchronous: 0=synchronous mode, 1=asynchronous mode
82 * @cpu_dai: the CPU DAI for this device
83 * @dev_attr: the sysfs device attribute structure
84 * @stats: SSI statistics
85 * @name: name for this device
87 struct fsl_ssi_private {
88 struct ccsr_ssi __iomem *ssi;
89 dma_addr_t ssi_phys;
90 unsigned int irq;
91 struct snd_pcm_substream *first_stream;
92 struct snd_pcm_substream *second_stream;
93 unsigned int playback;
94 unsigned int capture;
95 int asynchronous;
96 unsigned int fifo_depth;
97 struct snd_soc_dai_driver cpu_dai_drv;
98 struct device_attribute dev_attr;
99 struct platform_device *pdev;
101 struct {
102 unsigned int rfrc;
103 unsigned int tfrc;
104 unsigned int cmdau;
105 unsigned int cmddu;
106 unsigned int rxt;
107 unsigned int rdr1;
108 unsigned int rdr0;
109 unsigned int tde1;
110 unsigned int tde0;
111 unsigned int roe1;
112 unsigned int roe0;
113 unsigned int tue1;
114 unsigned int tue0;
115 unsigned int tfs;
116 unsigned int rfs;
117 unsigned int tls;
118 unsigned int rls;
119 unsigned int rff1;
120 unsigned int rff0;
121 unsigned int tfe1;
122 unsigned int tfe0;
123 } stats;
125 char name[1];
129 * fsl_ssi_isr: SSI interrupt handler
131 * Although it's possible to use the interrupt handler to send and receive
132 * data to/from the SSI, we use the DMA instead. Programming is more
133 * complicated, but the performance is much better.
135 * This interrupt handler is used only to gather statistics.
137 * @irq: IRQ of the SSI device
138 * @dev_id: pointer to the ssi_private structure for this SSI device
140 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
142 struct fsl_ssi_private *ssi_private = dev_id;
143 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
144 irqreturn_t ret = IRQ_NONE;
145 __be32 sisr;
146 __be32 sisr2 = 0;
148 /* We got an interrupt, so read the status register to see what we
149 were interrupted for. We mask it with the Interrupt Enable register
150 so that we only check for events that we're interested in.
152 sisr = in_be32(&ssi->sisr) & SIER_FLAGS;
154 if (sisr & CCSR_SSI_SISR_RFRC) {
155 ssi_private->stats.rfrc++;
156 sisr2 |= CCSR_SSI_SISR_RFRC;
157 ret = IRQ_HANDLED;
160 if (sisr & CCSR_SSI_SISR_TFRC) {
161 ssi_private->stats.tfrc++;
162 sisr2 |= CCSR_SSI_SISR_TFRC;
163 ret = IRQ_HANDLED;
166 if (sisr & CCSR_SSI_SISR_CMDAU) {
167 ssi_private->stats.cmdau++;
168 ret = IRQ_HANDLED;
171 if (sisr & CCSR_SSI_SISR_CMDDU) {
172 ssi_private->stats.cmddu++;
173 ret = IRQ_HANDLED;
176 if (sisr & CCSR_SSI_SISR_RXT) {
177 ssi_private->stats.rxt++;
178 ret = IRQ_HANDLED;
181 if (sisr & CCSR_SSI_SISR_RDR1) {
182 ssi_private->stats.rdr1++;
183 ret = IRQ_HANDLED;
186 if (sisr & CCSR_SSI_SISR_RDR0) {
187 ssi_private->stats.rdr0++;
188 ret = IRQ_HANDLED;
191 if (sisr & CCSR_SSI_SISR_TDE1) {
192 ssi_private->stats.tde1++;
193 ret = IRQ_HANDLED;
196 if (sisr & CCSR_SSI_SISR_TDE0) {
197 ssi_private->stats.tde0++;
198 ret = IRQ_HANDLED;
201 if (sisr & CCSR_SSI_SISR_ROE1) {
202 ssi_private->stats.roe1++;
203 sisr2 |= CCSR_SSI_SISR_ROE1;
204 ret = IRQ_HANDLED;
207 if (sisr & CCSR_SSI_SISR_ROE0) {
208 ssi_private->stats.roe0++;
209 sisr2 |= CCSR_SSI_SISR_ROE0;
210 ret = IRQ_HANDLED;
213 if (sisr & CCSR_SSI_SISR_TUE1) {
214 ssi_private->stats.tue1++;
215 sisr2 |= CCSR_SSI_SISR_TUE1;
216 ret = IRQ_HANDLED;
219 if (sisr & CCSR_SSI_SISR_TUE0) {
220 ssi_private->stats.tue0++;
221 sisr2 |= CCSR_SSI_SISR_TUE0;
222 ret = IRQ_HANDLED;
225 if (sisr & CCSR_SSI_SISR_TFS) {
226 ssi_private->stats.tfs++;
227 ret = IRQ_HANDLED;
230 if (sisr & CCSR_SSI_SISR_RFS) {
231 ssi_private->stats.rfs++;
232 ret = IRQ_HANDLED;
235 if (sisr & CCSR_SSI_SISR_TLS) {
236 ssi_private->stats.tls++;
237 ret = IRQ_HANDLED;
240 if (sisr & CCSR_SSI_SISR_RLS) {
241 ssi_private->stats.rls++;
242 ret = IRQ_HANDLED;
245 if (sisr & CCSR_SSI_SISR_RFF1) {
246 ssi_private->stats.rff1++;
247 ret = IRQ_HANDLED;
250 if (sisr & CCSR_SSI_SISR_RFF0) {
251 ssi_private->stats.rff0++;
252 ret = IRQ_HANDLED;
255 if (sisr & CCSR_SSI_SISR_TFE1) {
256 ssi_private->stats.tfe1++;
257 ret = IRQ_HANDLED;
260 if (sisr & CCSR_SSI_SISR_TFE0) {
261 ssi_private->stats.tfe0++;
262 ret = IRQ_HANDLED;
265 /* Clear the bits that we set */
266 if (sisr2)
267 out_be32(&ssi->sisr, sisr2);
269 return ret;
273 * fsl_ssi_startup: create a new substream
275 * This is the first function called when a stream is opened.
277 * If this is the first stream open, then grab the IRQ and program most of
278 * the SSI registers.
280 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
281 struct snd_soc_dai *dai)
283 struct snd_soc_pcm_runtime *rtd = substream->private_data;
284 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
287 * If this is the first stream opened, then request the IRQ
288 * and initialize the SSI registers.
290 if (!ssi_private->playback && !ssi_private->capture) {
291 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
294 * Section 16.5 of the MPC8610 reference manual says that the
295 * SSI needs to be disabled before updating the registers we set
296 * here.
298 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
301 * Program the SSI into I2S Slave Non-Network Synchronous mode.
302 * Also enable the transmit and receive FIFO.
304 * FIXME: Little-endian samples require a different shift dir
306 clrsetbits_be32(&ssi->scr,
307 CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
308 CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
309 | (ssi_private->asynchronous ? 0 : CCSR_SSI_SCR_SYN));
311 out_be32(&ssi->stcr,
312 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
313 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
314 CCSR_SSI_STCR_TSCKP);
316 out_be32(&ssi->srcr,
317 CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
318 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
319 CCSR_SSI_SRCR_RSCKP);
322 * The DC and PM bits are only used if the SSI is the clock
323 * master.
326 /* 4. Enable the interrupts and DMA requests */
327 out_be32(&ssi->sier, SIER_FLAGS);
330 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
331 * don't use FIFO 1. We program the transmit water to signal a
332 * DMA transfer if there are only two (or fewer) elements left
333 * in the FIFO. Two elements equals one frame (left channel,
334 * right channel). This value, however, depends on the depth of
335 * the transmit buffer.
337 * We program the receive FIFO to notify us if at least two
338 * elements (one frame) have been written to the FIFO. We could
339 * make this value larger (and maybe we should), but this way
340 * data will be written to memory as soon as it's available.
342 out_be32(&ssi->sfcsr,
343 CCSR_SSI_SFCSR_TFWM0(ssi_private->fifo_depth - 2) |
344 CCSR_SSI_SFCSR_RFWM0(ssi_private->fifo_depth - 2));
347 * We keep the SSI disabled because if we enable it, then the
348 * DMA controller will start. It's not supposed to start until
349 * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The
350 * DMA controller will transfer one "BWC" of data (i.e. the
351 * amount of data that the MR.BWC bits are set to). The reason
352 * this is bad is because at this point, the PCM driver has not
353 * finished initializing the DMA controller.
357 if (!ssi_private->first_stream)
358 ssi_private->first_stream = substream;
359 else {
360 /* This is the second stream open, so we need to impose sample
361 * rate and maybe sample size constraints. Note that this can
362 * cause a race condition if the second stream is opened before
363 * the first stream is fully initialized.
365 * We provide some protection by checking to make sure the first
366 * stream is initialized, but it's not perfect. ALSA sometimes
367 * re-initializes the driver with a different sample rate or
368 * size. If the second stream is opened before the first stream
369 * has received its final parameters, then the second stream may
370 * be constrained to the wrong sample rate or size.
372 * FIXME: This code does not handle opening and closing streams
373 * repeatedly. If you open two streams and then close the first
374 * one, you may not be able to open another stream until you
375 * close the second one as well.
377 struct snd_pcm_runtime *first_runtime =
378 ssi_private->first_stream->runtime;
380 if (!first_runtime->sample_bits) {
381 dev_err(substream->pcm->card->dev,
382 "set sample size in %s stream first\n",
383 substream->stream == SNDRV_PCM_STREAM_PLAYBACK
384 ? "capture" : "playback");
385 return -EAGAIN;
388 /* If we're in synchronous mode, then we need to constrain
389 * the sample size as well. We don't support independent sample
390 * rates in asynchronous mode.
392 if (!ssi_private->asynchronous)
393 snd_pcm_hw_constraint_minmax(substream->runtime,
394 SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
395 first_runtime->sample_bits,
396 first_runtime->sample_bits);
398 ssi_private->second_stream = substream;
401 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
402 ssi_private->playback++;
404 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
405 ssi_private->capture++;
407 return 0;
411 * fsl_ssi_hw_params - program the sample size
413 * Most of the SSI registers have been programmed in the startup function,
414 * but the word length must be programmed here. Unfortunately, programming
415 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
416 * cause a problem with supporting simultaneous playback and capture. If
417 * the SSI is already playing a stream, then that stream may be temporarily
418 * stopped when you start capture.
420 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
421 * clock master.
423 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
424 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
426 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
428 if (substream == ssi_private->first_stream) {
429 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
430 unsigned int sample_size =
431 snd_pcm_format_width(params_format(hw_params));
432 u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
434 /* The SSI should always be disabled at this points (SSIEN=0) */
436 /* In synchronous mode, the SSI uses STCCR for capture */
437 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
438 !ssi_private->asynchronous)
439 clrsetbits_be32(&ssi->stccr,
440 CCSR_SSI_SxCCR_WL_MASK, wl);
441 else
442 clrsetbits_be32(&ssi->srccr,
443 CCSR_SSI_SxCCR_WL_MASK, wl);
446 return 0;
450 * fsl_ssi_trigger: start and stop the DMA transfer.
452 * This function is called by ALSA to start, stop, pause, and resume the DMA
453 * transfer of data.
455 * The DMA channel is in external master start and pause mode, which
456 * means the SSI completely controls the flow of data.
458 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
459 struct snd_soc_dai *dai)
461 struct snd_soc_pcm_runtime *rtd = substream->private_data;
462 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
463 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
465 switch (cmd) {
466 case SNDRV_PCM_TRIGGER_START:
467 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
468 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
469 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
470 setbits32(&ssi->scr,
471 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
472 else
473 setbits32(&ssi->scr,
474 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
475 break;
477 case SNDRV_PCM_TRIGGER_STOP:
478 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
479 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
480 clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
481 else
482 clrbits32(&ssi->scr, CCSR_SSI_SCR_RE);
483 break;
485 default:
486 return -EINVAL;
489 return 0;
493 * fsl_ssi_shutdown: shutdown the SSI
495 * Shutdown the SSI if there are no other substreams open.
497 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
498 struct snd_soc_dai *dai)
500 struct snd_soc_pcm_runtime *rtd = substream->private_data;
501 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
503 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
504 ssi_private->playback--;
506 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
507 ssi_private->capture--;
509 if (ssi_private->first_stream == substream)
510 ssi_private->first_stream = ssi_private->second_stream;
512 ssi_private->second_stream = NULL;
515 * If this is the last active substream, disable the SSI.
517 if (!ssi_private->playback && !ssi_private->capture) {
518 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
520 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
524 static struct snd_soc_dai_ops fsl_ssi_dai_ops = {
525 .startup = fsl_ssi_startup,
526 .hw_params = fsl_ssi_hw_params,
527 .shutdown = fsl_ssi_shutdown,
528 .trigger = fsl_ssi_trigger,
531 /* Template for the CPU dai driver structure */
532 static struct snd_soc_dai_driver fsl_ssi_dai_template = {
533 .playback = {
534 /* The SSI does not support monaural audio. */
535 .channels_min = 2,
536 .channels_max = 2,
537 .rates = FSLSSI_I2S_RATES,
538 .formats = FSLSSI_I2S_FORMATS,
540 .capture = {
541 .channels_min = 2,
542 .channels_max = 2,
543 .rates = FSLSSI_I2S_RATES,
544 .formats = FSLSSI_I2S_FORMATS,
546 .ops = &fsl_ssi_dai_ops,
549 /* Show the statistics of a flag only if its interrupt is enabled. The
550 * compiler will optimze this code to a no-op if the interrupt is not
551 * enabled.
553 #define SIER_SHOW(flag, name) \
554 do { \
555 if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
556 length += sprintf(buf + length, #name "=%u\n", \
557 ssi_private->stats.name); \
558 } while (0)
562 * fsl_sysfs_ssi_show: display SSI statistics
564 * Display the statistics for the current SSI device. To avoid confusion,
565 * we only show those counts that are enabled.
567 static ssize_t fsl_sysfs_ssi_show(struct device *dev,
568 struct device_attribute *attr, char *buf)
570 struct fsl_ssi_private *ssi_private =
571 container_of(attr, struct fsl_ssi_private, dev_attr);
572 ssize_t length = 0;
574 SIER_SHOW(RFRC_EN, rfrc);
575 SIER_SHOW(TFRC_EN, tfrc);
576 SIER_SHOW(CMDAU_EN, cmdau);
577 SIER_SHOW(CMDDU_EN, cmddu);
578 SIER_SHOW(RXT_EN, rxt);
579 SIER_SHOW(RDR1_EN, rdr1);
580 SIER_SHOW(RDR0_EN, rdr0);
581 SIER_SHOW(TDE1_EN, tde1);
582 SIER_SHOW(TDE0_EN, tde0);
583 SIER_SHOW(ROE1_EN, roe1);
584 SIER_SHOW(ROE0_EN, roe0);
585 SIER_SHOW(TUE1_EN, tue1);
586 SIER_SHOW(TUE0_EN, tue0);
587 SIER_SHOW(TFS_EN, tfs);
588 SIER_SHOW(RFS_EN, rfs);
589 SIER_SHOW(TLS_EN, tls);
590 SIER_SHOW(RLS_EN, rls);
591 SIER_SHOW(RFF1_EN, rff1);
592 SIER_SHOW(RFF0_EN, rff0);
593 SIER_SHOW(TFE1_EN, tfe1);
594 SIER_SHOW(TFE0_EN, tfe0);
596 return length;
600 * Make every character in a string lower-case
602 static void make_lowercase(char *s)
604 char *p = s;
605 char c;
607 while ((c = *p)) {
608 if ((c >= 'A') && (c <= 'Z'))
609 *p = c + ('a' - 'A');
610 p++;
614 static int __devinit fsl_ssi_probe(struct platform_device *pdev)
616 struct fsl_ssi_private *ssi_private;
617 int ret = 0;
618 struct device_attribute *dev_attr = NULL;
619 struct device_node *np = pdev->dev.of_node;
620 const char *p, *sprop;
621 const uint32_t *iprop;
622 struct resource res;
623 char name[64];
625 /* SSIs that are not connected on the board should have a
626 * status = "disabled"
627 * property in their device tree nodes.
629 if (!of_device_is_available(np))
630 return -ENODEV;
632 /* Check for a codec-handle property. */
633 if (!of_get_property(np, "codec-handle", NULL)) {
634 dev_err(&pdev->dev, "missing codec-handle property\n");
635 return -ENODEV;
638 /* We only support the SSI in "I2S Slave" mode */
639 sprop = of_get_property(np, "fsl,mode", NULL);
640 if (!sprop || strcmp(sprop, "i2s-slave")) {
641 dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
642 return -ENODEV;
645 /* The DAI name is the last part of the full name of the node. */
646 p = strrchr(np->full_name, '/') + 1;
647 ssi_private = kzalloc(sizeof(struct fsl_ssi_private) + strlen(p),
648 GFP_KERNEL);
649 if (!ssi_private) {
650 dev_err(&pdev->dev, "could not allocate DAI object\n");
651 return -ENOMEM;
654 strcpy(ssi_private->name, p);
656 /* Initialize this copy of the CPU DAI driver structure */
657 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
658 sizeof(fsl_ssi_dai_template));
659 ssi_private->cpu_dai_drv.name = ssi_private->name;
661 /* Get the addresses and IRQ */
662 ret = of_address_to_resource(np, 0, &res);
663 if (ret) {
664 dev_err(&pdev->dev, "could not determine device resources\n");
665 goto error_kmalloc;
667 ssi_private->ssi = of_iomap(np, 0);
668 if (!ssi_private->ssi) {
669 dev_err(&pdev->dev, "could not map device resources\n");
670 ret = -ENOMEM;
671 goto error_kmalloc;
673 ssi_private->ssi_phys = res.start;
675 ssi_private->irq = irq_of_parse_and_map(np, 0);
676 if (ssi_private->irq == NO_IRQ) {
677 dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
678 ret = -ENXIO;
679 goto error_iomap;
682 /* The 'name' should not have any slashes in it. */
683 ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, ssi_private->name,
684 ssi_private);
685 if (ret < 0) {
686 dev_err(&pdev->dev, "could not claim irq %u\n", ssi_private->irq);
687 goto error_irqmap;
690 /* Are the RX and the TX clocks locked? */
691 if (of_find_property(np, "fsl,ssi-asynchronous", NULL))
692 ssi_private->asynchronous = 1;
693 else
694 ssi_private->cpu_dai_drv.symmetric_rates = 1;
696 /* Determine the FIFO depth. */
697 iprop = of_get_property(np, "fsl,fifo-depth", NULL);
698 if (iprop)
699 ssi_private->fifo_depth = be32_to_cpup(iprop);
700 else
701 /* Older 8610 DTs didn't have the fifo-depth property */
702 ssi_private->fifo_depth = 8;
704 /* Initialize the the device_attribute structure */
705 dev_attr = &ssi_private->dev_attr;
706 dev_attr->attr.name = "statistics";
707 dev_attr->attr.mode = S_IRUGO;
708 dev_attr->show = fsl_sysfs_ssi_show;
710 ret = device_create_file(&pdev->dev, dev_attr);
711 if (ret) {
712 dev_err(&pdev->dev, "could not create sysfs %s file\n",
713 ssi_private->dev_attr.attr.name);
714 goto error_irq;
717 /* Register with ASoC */
718 dev_set_drvdata(&pdev->dev, ssi_private);
720 ret = snd_soc_register_dai(&pdev->dev, &ssi_private->cpu_dai_drv);
721 if (ret) {
722 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
723 goto error_dev;
726 /* Trigger the machine driver's probe function. The platform driver
727 * name of the machine driver is taken from the /model property of the
728 * device tree. We also pass the address of the CPU DAI driver
729 * structure.
731 sprop = of_get_property(of_find_node_by_path("/"), "model", NULL);
732 /* Sometimes the model name has a "fsl," prefix, so we strip that. */
733 p = strrchr(sprop, ',');
734 if (p)
735 sprop = p + 1;
736 snprintf(name, sizeof(name), "snd-soc-%s", sprop);
737 make_lowercase(name);
739 ssi_private->pdev =
740 platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
741 if (IS_ERR(ssi_private->pdev)) {
742 ret = PTR_ERR(ssi_private->pdev);
743 dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
744 goto error_dai;
747 return 0;
749 error_dai:
750 snd_soc_unregister_dai(&pdev->dev);
752 error_dev:
753 dev_set_drvdata(&pdev->dev, NULL);
754 device_remove_file(&pdev->dev, dev_attr);
756 error_irq:
757 free_irq(ssi_private->irq, ssi_private);
759 error_irqmap:
760 irq_dispose_mapping(ssi_private->irq);
762 error_iomap:
763 iounmap(ssi_private->ssi);
765 error_kmalloc:
766 kfree(ssi_private);
768 return ret;
771 static int fsl_ssi_remove(struct platform_device *pdev)
773 struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
775 platform_device_unregister(ssi_private->pdev);
776 snd_soc_unregister_dai(&pdev->dev);
777 device_remove_file(&pdev->dev, &ssi_private->dev_attr);
779 free_irq(ssi_private->irq, ssi_private);
780 irq_dispose_mapping(ssi_private->irq);
782 kfree(ssi_private);
783 dev_set_drvdata(&pdev->dev, NULL);
785 return 0;
788 static const struct of_device_id fsl_ssi_ids[] = {
789 { .compatible = "fsl,mpc8610-ssi", },
792 MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
794 static struct platform_driver fsl_ssi_driver = {
795 .driver = {
796 .name = "fsl-ssi-dai",
797 .owner = THIS_MODULE,
798 .of_match_table = fsl_ssi_ids,
800 .probe = fsl_ssi_probe,
801 .remove = fsl_ssi_remove,
804 static int __init fsl_ssi_init(void)
806 printk(KERN_INFO "Freescale Synchronous Serial Interface (SSI) ASoC Driver\n");
808 return platform_driver_register(&fsl_ssi_driver);
811 static void __exit fsl_ssi_exit(void)
813 platform_driver_unregister(&fsl_ssi_driver);
816 module_init(fsl_ssi_init);
817 module_exit(fsl_ssi_exit);
819 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
820 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
821 MODULE_LICENSE("GPL v2");