Merge remote-tracking branch 'net/master'
[linux-2.6/next.git] / arch / x86 / mm / tlb.c
blobd6c0418c3e4711795158b52e57b2fa337848d03c
1 #include <linux/init.h>
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/module.h>
8 #include <linux/cpu.h>
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
16 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
17 = { &init_mm, 0, };
20 * Smarter SMP flushing macros.
21 * c/o Linus Torvalds.
23 * These mean you can really definitely utterly forget about
24 * writing to user space from interrupts. (Its not allowed anyway).
26 * Optimizations Manfred Spraul <manfred@colorfullife.com>
28 * More scalable flush, from Andi Kleen
30 * To avoid global state use 8 different call vectors.
31 * Each CPU uses a specific vector to trigger flushes on other
32 * CPUs. Depending on the received vector the target CPUs look into
33 * the right array slot for the flush data.
35 * With more than 8 CPUs they are hashed to the 8 available
36 * vectors. The limited global vector space forces us to this right now.
37 * In future when interrupts are split into per CPU domains this could be
38 * fixed, at the cost of triggering multiple IPIs in some cases.
41 union smp_flush_state {
42 struct {
43 struct mm_struct *flush_mm;
44 unsigned long flush_va;
45 raw_spinlock_t tlbstate_lock;
46 DECLARE_BITMAP(flush_cpumask, NR_CPUS);
48 char pad[INTERNODE_CACHE_BYTES];
49 } ____cacheline_internodealigned_in_smp;
51 /* State is put into the per CPU data section, but padded
52 to a full cache line because other CPUs can access it and we don't
53 want false sharing in the per cpu data segment. */
54 static union smp_flush_state flush_state[NUM_INVALIDATE_TLB_VECTORS];
56 static DEFINE_PER_CPU_READ_MOSTLY(int, tlb_vector_offset);
59 * We cannot call mmdrop() because we are in interrupt context,
60 * instead update mm->cpu_vm_mask.
62 void leave_mm(int cpu)
64 if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
65 BUG();
66 cpumask_clear_cpu(cpu,
67 mm_cpumask(percpu_read(cpu_tlbstate.active_mm)));
68 load_cr3(swapper_pg_dir);
70 EXPORT_SYMBOL_GPL(leave_mm);
74 * The flush IPI assumes that a thread switch happens in this order:
75 * [cpu0: the cpu that switches]
76 * 1) switch_mm() either 1a) or 1b)
77 * 1a) thread switch to a different mm
78 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
79 * Stop ipi delivery for the old mm. This is not synchronized with
80 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
81 * for the wrong mm, and in the worst case we perform a superfluous
82 * tlb flush.
83 * 1a2) set cpu mmu_state to TLBSTATE_OK
84 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
85 * was in lazy tlb mode.
86 * 1a3) update cpu active_mm
87 * Now cpu0 accepts tlb flushes for the new mm.
88 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
89 * Now the other cpus will send tlb flush ipis.
90 * 1a4) change cr3.
91 * 1b) thread switch without mm change
92 * cpu active_mm is correct, cpu0 already handles
93 * flush ipis.
94 * 1b1) set cpu mmu_state to TLBSTATE_OK
95 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
96 * Atomically set the bit [other cpus will start sending flush ipis],
97 * and test the bit.
98 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
99 * 2) switch %%esp, ie current
101 * The interrupt must handle 2 special cases:
102 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
103 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
104 * runs in kernel space, the cpu could load tlb entries for user space
105 * pages.
107 * The good news is that cpu mmu_state is local to each cpu, no
108 * write/read ordering problems.
112 * TLB flush IPI:
114 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
115 * 2) Leave the mm if we are in the lazy tlb mode.
117 * Interrupts are disabled.
121 * FIXME: use of asmlinkage is not consistent. On x86_64 it's noop
122 * but still used for documentation purpose but the usage is slightly
123 * inconsistent. On x86_32, asmlinkage is regparm(0) but interrupt
124 * entry calls in with the first parameter in %eax. Maybe define
125 * intrlinkage?
127 #ifdef CONFIG_X86_64
128 asmlinkage
129 #endif
130 void smp_invalidate_interrupt(struct pt_regs *regs)
132 unsigned int cpu;
133 unsigned int sender;
134 union smp_flush_state *f;
136 cpu = smp_processor_id();
138 * orig_rax contains the negated interrupt vector.
139 * Use that to determine where the sender put the data.
141 sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START;
142 f = &flush_state[sender];
144 if (!cpumask_test_cpu(cpu, to_cpumask(f->flush_cpumask)))
145 goto out;
147 * This was a BUG() but until someone can quote me the
148 * line from the intel manual that guarantees an IPI to
149 * multiple CPUs is retried _only_ on the erroring CPUs
150 * its staying as a return
152 * BUG();
155 if (f->flush_mm == percpu_read(cpu_tlbstate.active_mm)) {
156 if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
157 if (f->flush_va == TLB_FLUSH_ALL)
158 local_flush_tlb();
159 else
160 __flush_tlb_one(f->flush_va);
161 } else
162 leave_mm(cpu);
164 out:
165 ack_APIC_irq();
166 smp_mb__before_clear_bit();
167 cpumask_clear_cpu(cpu, to_cpumask(f->flush_cpumask));
168 smp_mb__after_clear_bit();
169 inc_irq_stat(irq_tlb_count);
172 static void flush_tlb_others_ipi(const struct cpumask *cpumask,
173 struct mm_struct *mm, unsigned long va)
175 unsigned int sender;
176 union smp_flush_state *f;
178 /* Caller has disabled preemption */
179 sender = this_cpu_read(tlb_vector_offset);
180 f = &flush_state[sender];
182 if (nr_cpu_ids > NUM_INVALIDATE_TLB_VECTORS)
183 raw_spin_lock(&f->tlbstate_lock);
185 f->flush_mm = mm;
186 f->flush_va = va;
187 if (cpumask_andnot(to_cpumask(f->flush_cpumask), cpumask, cpumask_of(smp_processor_id()))) {
189 * We have to send the IPI only to
190 * CPUs affected.
192 apic->send_IPI_mask(to_cpumask(f->flush_cpumask),
193 INVALIDATE_TLB_VECTOR_START + sender);
195 while (!cpumask_empty(to_cpumask(f->flush_cpumask)))
196 cpu_relax();
199 f->flush_mm = NULL;
200 f->flush_va = 0;
201 if (nr_cpu_ids > NUM_INVALIDATE_TLB_VECTORS)
202 raw_spin_unlock(&f->tlbstate_lock);
205 void native_flush_tlb_others(const struct cpumask *cpumask,
206 struct mm_struct *mm, unsigned long va)
208 if (is_uv_system()) {
209 unsigned int cpu;
211 cpu = smp_processor_id();
212 cpumask = uv_flush_tlb_others(cpumask, mm, va, cpu);
213 if (cpumask)
214 flush_tlb_others_ipi(cpumask, mm, va);
215 return;
217 flush_tlb_others_ipi(cpumask, mm, va);
220 static void __cpuinit calculate_tlb_offset(void)
222 int cpu, node, nr_node_vecs, idx = 0;
224 * we are changing tlb_vector_offset for each CPU in runtime, but this
225 * will not cause inconsistency, as the write is atomic under X86. we
226 * might see more lock contentions in a short time, but after all CPU's
227 * tlb_vector_offset are changed, everything should go normal
229 * Note: if NUM_INVALIDATE_TLB_VECTORS % nr_online_nodes !=0, we might
230 * waste some vectors.
232 if (nr_online_nodes > NUM_INVALIDATE_TLB_VECTORS)
233 nr_node_vecs = 1;
234 else
235 nr_node_vecs = NUM_INVALIDATE_TLB_VECTORS/nr_online_nodes;
237 for_each_online_node(node) {
238 int node_offset = (idx % NUM_INVALIDATE_TLB_VECTORS) *
239 nr_node_vecs;
240 int cpu_offset = 0;
241 for_each_cpu(cpu, cpumask_of_node(node)) {
242 per_cpu(tlb_vector_offset, cpu) = node_offset +
243 cpu_offset;
244 cpu_offset++;
245 cpu_offset = cpu_offset % nr_node_vecs;
247 idx++;
251 static int __cpuinit tlb_cpuhp_notify(struct notifier_block *n,
252 unsigned long action, void *hcpu)
254 switch (action & 0xf) {
255 case CPU_ONLINE:
256 case CPU_DEAD:
257 calculate_tlb_offset();
259 return NOTIFY_OK;
262 static int __cpuinit init_smp_flush(void)
264 int i;
266 for (i = 0; i < ARRAY_SIZE(flush_state); i++)
267 raw_spin_lock_init(&flush_state[i].tlbstate_lock);
269 calculate_tlb_offset();
270 hotcpu_notifier(tlb_cpuhp_notify, 0);
271 return 0;
273 core_initcall(init_smp_flush);
275 void flush_tlb_current_task(void)
277 struct mm_struct *mm = current->mm;
279 preempt_disable();
281 local_flush_tlb();
282 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
283 flush_tlb_others(mm_cpumask(mm), mm, TLB_FLUSH_ALL);
284 preempt_enable();
287 void flush_tlb_mm(struct mm_struct *mm)
289 preempt_disable();
291 if (current->active_mm == mm) {
292 if (current->mm)
293 local_flush_tlb();
294 else
295 leave_mm(smp_processor_id());
297 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
298 flush_tlb_others(mm_cpumask(mm), mm, TLB_FLUSH_ALL);
300 preempt_enable();
303 void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
305 struct mm_struct *mm = vma->vm_mm;
307 preempt_disable();
309 if (current->active_mm == mm) {
310 if (current->mm)
311 __flush_tlb_one(va);
312 else
313 leave_mm(smp_processor_id());
316 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
317 flush_tlb_others(mm_cpumask(mm), mm, va);
319 preempt_enable();
322 static void do_flush_tlb_all(void *info)
324 __flush_tlb_all();
325 if (percpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
326 leave_mm(smp_processor_id());
329 void flush_tlb_all(void)
331 on_each_cpu(do_flush_tlb_all, NULL, 1);