4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
105 * Helpers for converting nanosecond timing to jiffy resolution
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
113 * These are the 'tuning knobs' of the scheduler:
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
118 #define DEF_TIMESLICE (100 * HZ / 1000)
121 * single value that denotes runtime == period, ie unlimited time.
123 #define RUNTIME_INF ((u64)~0ULL)
125 static inline int rt_policy(int policy
)
127 if (policy
== SCHED_FIFO
|| policy
== SCHED_RR
)
132 static inline int task_has_rt_policy(struct task_struct
*p
)
134 return rt_policy(p
->policy
);
138 * This is the priority-queue data structure of the RT scheduling class:
140 struct rt_prio_array
{
141 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
142 struct list_head queue
[MAX_RT_PRIO
];
145 struct rt_bandwidth
{
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock
;
150 struct hrtimer rt_period_timer
;
153 static struct rt_bandwidth def_rt_bandwidth
;
155 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
157 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
159 struct rt_bandwidth
*rt_b
=
160 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
166 now
= hrtimer_cb_get_time(timer
);
167 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
172 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
175 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
179 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
181 rt_b
->rt_period
= ns_to_ktime(period
);
182 rt_b
->rt_runtime
= runtime
;
184 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
186 hrtimer_init(&rt_b
->rt_period_timer
,
187 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
188 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
191 static inline int rt_bandwidth_enabled(void)
193 return sysctl_sched_rt_runtime
>= 0;
196 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
200 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
203 if (hrtimer_active(&rt_b
->rt_period_timer
))
206 raw_spin_lock(&rt_b
->rt_runtime_lock
);
211 if (hrtimer_active(&rt_b
->rt_period_timer
))
214 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
215 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
217 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
218 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
219 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
220 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
221 HRTIMER_MODE_ABS_PINNED
, 0);
223 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
229 hrtimer_cancel(&rt_b
->rt_period_timer
);
234 * sched_domains_mutex serializes calls to init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
237 static DEFINE_MUTEX(sched_domains_mutex
);
239 #ifdef CONFIG_CGROUP_SCHED
241 #include <linux/cgroup.h>
245 static LIST_HEAD(task_groups
);
247 /* task group related information */
249 struct cgroup_subsys_state css
;
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity
**se
;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq
**cfs_rq
;
256 unsigned long shares
;
258 atomic_t load_weight
;
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity
**rt_se
;
263 struct rt_rq
**rt_rq
;
265 struct rt_bandwidth rt_bandwidth
;
269 struct list_head list
;
271 struct task_group
*parent
;
272 struct list_head siblings
;
273 struct list_head children
;
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup
*autogroup
;
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock
);
283 #ifdef CONFIG_FAIR_GROUP_SCHED
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
296 #define MAX_SHARES (1UL << (18 + SCHED_LOAD_RESOLUTION))
298 static int root_task_group_load
= ROOT_TASK_GROUP_LOAD
;
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
304 struct task_group root_task_group
;
306 #endif /* CONFIG_CGROUP_SCHED */
308 /* CFS-related fields in a runqueue */
310 struct load_weight load
;
311 unsigned long nr_running
;
316 u64 min_vruntime_copy
;
319 struct rb_root tasks_timeline
;
320 struct rb_node
*rb_leftmost
;
322 struct list_head tasks
;
323 struct list_head
*balance_iterator
;
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
329 struct sched_entity
*curr
, *next
, *last
, *skip
;
331 #ifdef CONFIG_SCHED_DEBUG
332 unsigned int nr_spread_over
;
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
339 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
340 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
341 * (like users, containers etc.)
343 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
344 * list is used during load balance.
347 struct list_head leaf_cfs_rq_list
;
348 struct task_group
*tg
; /* group that "owns" this runqueue */
352 * the part of load.weight contributed by tasks
354 unsigned long task_weight
;
357 * h_load = weight * f(tg)
359 * Where f(tg) is the recursive weight fraction assigned to
362 unsigned long h_load
;
365 * Maintaining per-cpu shares distribution for group scheduling
367 * load_stamp is the last time we updated the load average
368 * load_last is the last time we updated the load average and saw load
369 * load_unacc_exec_time is currently unaccounted execution time
373 u64 load_stamp
, load_last
, load_unacc_exec_time
;
375 unsigned long load_contribution
;
380 /* Real-Time classes' related field in a runqueue: */
382 struct rt_prio_array active
;
383 unsigned long rt_nr_running
;
384 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
386 int curr
; /* highest queued rt task prio */
388 int next
; /* next highest */
393 unsigned long rt_nr_migratory
;
394 unsigned long rt_nr_total
;
396 struct plist_head pushable_tasks
;
401 /* Nests inside the rq lock: */
402 raw_spinlock_t rt_runtime_lock
;
404 #ifdef CONFIG_RT_GROUP_SCHED
405 unsigned long rt_nr_boosted
;
408 struct list_head leaf_rt_rq_list
;
409 struct task_group
*tg
;
416 * We add the notion of a root-domain which will be used to define per-domain
417 * variables. Each exclusive cpuset essentially defines an island domain by
418 * fully partitioning the member cpus from any other cpuset. Whenever a new
419 * exclusive cpuset is created, we also create and attach a new root-domain
427 cpumask_var_t online
;
430 * The "RT overload" flag: it gets set if a CPU has more than
431 * one runnable RT task.
433 cpumask_var_t rto_mask
;
435 struct cpupri cpupri
;
439 * By default the system creates a single root-domain with all cpus as
440 * members (mimicking the global state we have today).
442 static struct root_domain def_root_domain
;
444 #endif /* CONFIG_SMP */
447 * This is the main, per-CPU runqueue data structure.
449 * Locking rule: those places that want to lock multiple runqueues
450 * (such as the load balancing or the thread migration code), lock
451 * acquire operations must be ordered by ascending &runqueue.
458 * nr_running and cpu_load should be in the same cacheline because
459 * remote CPUs use both these fields when doing load calculation.
461 unsigned long nr_running
;
462 #define CPU_LOAD_IDX_MAX 5
463 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
464 unsigned long last_load_update_tick
;
467 unsigned char nohz_balance_kick
;
469 int skip_clock_update
;
471 /* capture load from *all* tasks on this cpu: */
472 struct load_weight load
;
473 unsigned long nr_load_updates
;
479 #ifdef CONFIG_FAIR_GROUP_SCHED
480 /* list of leaf cfs_rq on this cpu: */
481 struct list_head leaf_cfs_rq_list
;
483 #ifdef CONFIG_RT_GROUP_SCHED
484 struct list_head leaf_rt_rq_list
;
488 * This is part of a global counter where only the total sum
489 * over all CPUs matters. A task can increase this counter on
490 * one CPU and if it got migrated afterwards it may decrease
491 * it on another CPU. Always updated under the runqueue lock:
493 unsigned long nr_uninterruptible
;
495 struct task_struct
*curr
, *idle
, *stop
;
496 unsigned long next_balance
;
497 struct mm_struct
*prev_mm
;
505 struct root_domain
*rd
;
506 struct sched_domain
*sd
;
508 unsigned long cpu_power
;
510 unsigned char idle_at_tick
;
511 /* For active balancing */
515 struct cpu_stop_work active_balance_work
;
516 /* cpu of this runqueue: */
520 unsigned long avg_load_per_task
;
528 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
532 /* calc_load related fields */
533 unsigned long calc_load_update
;
534 long calc_load_active
;
536 #ifdef CONFIG_SCHED_HRTICK
538 int hrtick_csd_pending
;
539 struct call_single_data hrtick_csd
;
541 struct hrtimer hrtick_timer
;
544 #ifdef CONFIG_SCHEDSTATS
546 struct sched_info rq_sched_info
;
547 unsigned long long rq_cpu_time
;
548 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
550 /* sys_sched_yield() stats */
551 unsigned int yld_count
;
553 /* schedule() stats */
554 unsigned int sched_switch
;
555 unsigned int sched_count
;
556 unsigned int sched_goidle
;
558 /* try_to_wake_up() stats */
559 unsigned int ttwu_count
;
560 unsigned int ttwu_local
;
564 struct task_struct
*wake_list
;
568 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
571 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
573 static inline int cpu_of(struct rq
*rq
)
582 #define rcu_dereference_check_sched_domain(p) \
583 rcu_dereference_check((p), \
584 rcu_read_lock_held() || \
585 lockdep_is_held(&sched_domains_mutex))
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589 * See detach_destroy_domains: synchronize_sched for details.
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
594 #define for_each_domain(cpu, __sd) \
595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
597 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598 #define this_rq() (&__get_cpu_var(runqueues))
599 #define task_rq(p) cpu_rq(task_cpu(p))
600 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
601 #define raw_rq() (&__raw_get_cpu_var(runqueues))
603 #ifdef CONFIG_CGROUP_SCHED
606 * Return the group to which this tasks belongs.
608 * We use task_subsys_state_check() and extend the RCU verification
609 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
613 static inline struct task_group
*task_group(struct task_struct
*p
)
615 struct task_group
*tg
;
616 struct cgroup_subsys_state
*css
;
618 css
= task_subsys_state_check(p
, cpu_cgroup_subsys_id
,
619 lockdep_is_held(&p
->pi_lock
));
620 tg
= container_of(css
, struct task_group
, css
);
622 return autogroup_task_group(p
, tg
);
625 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
626 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
628 #ifdef CONFIG_FAIR_GROUP_SCHED
629 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
630 p
->se
.parent
= task_group(p
)->se
[cpu
];
633 #ifdef CONFIG_RT_GROUP_SCHED
634 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
635 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
639 #else /* CONFIG_CGROUP_SCHED */
641 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
642 static inline struct task_group
*task_group(struct task_struct
*p
)
647 #endif /* CONFIG_CGROUP_SCHED */
649 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
651 static void update_rq_clock(struct rq
*rq
)
655 if (rq
->skip_clock_update
> 0)
658 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
660 update_rq_clock_task(rq
, delta
);
664 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
666 #ifdef CONFIG_SCHED_DEBUG
667 # define const_debug __read_mostly
669 # define const_debug static const
673 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
674 * @cpu: the processor in question.
676 * This interface allows printk to be called with the runqueue lock
677 * held and know whether or not it is OK to wake up the klogd.
679 int runqueue_is_locked(int cpu
)
681 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
685 * Debugging: various feature bits
688 #define SCHED_FEAT(name, enabled) \
689 __SCHED_FEAT_##name ,
692 #include "sched_features.h"
697 #define SCHED_FEAT(name, enabled) \
698 (1UL << __SCHED_FEAT_##name) * enabled |
700 const_debug
unsigned int sysctl_sched_features
=
701 #include "sched_features.h"
706 #ifdef CONFIG_SCHED_DEBUG
707 #define SCHED_FEAT(name, enabled) \
710 static __read_mostly
char *sched_feat_names
[] = {
711 #include "sched_features.h"
717 static int sched_feat_show(struct seq_file
*m
, void *v
)
721 for (i
= 0; sched_feat_names
[i
]; i
++) {
722 if (!(sysctl_sched_features
& (1UL << i
)))
724 seq_printf(m
, "%s ", sched_feat_names
[i
]);
732 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
733 size_t cnt
, loff_t
*ppos
)
743 if (copy_from_user(&buf
, ubuf
, cnt
))
749 if (strncmp(cmp
, "NO_", 3) == 0) {
754 for (i
= 0; sched_feat_names
[i
]; i
++) {
755 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
757 sysctl_sched_features
&= ~(1UL << i
);
759 sysctl_sched_features
|= (1UL << i
);
764 if (!sched_feat_names
[i
])
772 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
774 return single_open(filp
, sched_feat_show
, NULL
);
777 static const struct file_operations sched_feat_fops
= {
778 .open
= sched_feat_open
,
779 .write
= sched_feat_write
,
782 .release
= single_release
,
785 static __init
int sched_init_debug(void)
787 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
792 late_initcall(sched_init_debug
);
796 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
799 * Number of tasks to iterate in a single balance run.
800 * Limited because this is done with IRQs disabled.
802 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
805 * period over which we average the RT time consumption, measured
810 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
813 * period over which we measure -rt task cpu usage in us.
816 unsigned int sysctl_sched_rt_period
= 1000000;
818 static __read_mostly
int scheduler_running
;
821 * part of the period that we allow rt tasks to run in us.
824 int sysctl_sched_rt_runtime
= 950000;
826 static inline u64
global_rt_period(void)
828 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
831 static inline u64
global_rt_runtime(void)
833 if (sysctl_sched_rt_runtime
< 0)
836 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
839 #ifndef prepare_arch_switch
840 # define prepare_arch_switch(next) do { } while (0)
842 #ifndef finish_arch_switch
843 # define finish_arch_switch(prev) do { } while (0)
846 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
848 return rq
->curr
== p
;
851 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
856 return task_current(rq
, p
);
860 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
861 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
865 * We can optimise this out completely for !SMP, because the
866 * SMP rebalancing from interrupt is the only thing that cares
873 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
877 * After ->on_cpu is cleared, the task can be moved to a different CPU.
878 * We must ensure this doesn't happen until the switch is completely
884 #ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq
->lock
.owner
= current
;
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
893 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
895 raw_spin_unlock_irq(&rq
->lock
);
898 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
899 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
903 * We can optimise this out completely for !SMP, because the
904 * SMP rebalancing from interrupt is the only thing that cares
909 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
910 raw_spin_unlock_irq(&rq
->lock
);
912 raw_spin_unlock(&rq
->lock
);
916 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
920 * After ->on_cpu is cleared, the task can be moved to a different CPU.
921 * We must ensure this doesn't happen until the switch is completely
927 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
934 * __task_rq_lock - lock the rq @p resides on.
936 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
941 lockdep_assert_held(&p
->pi_lock
);
945 raw_spin_lock(&rq
->lock
);
946 if (likely(rq
== task_rq(p
)))
948 raw_spin_unlock(&rq
->lock
);
953 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
955 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
956 __acquires(p
->pi_lock
)
962 raw_spin_lock_irqsave(&p
->pi_lock
, *flags
);
964 raw_spin_lock(&rq
->lock
);
965 if (likely(rq
== task_rq(p
)))
967 raw_spin_unlock(&rq
->lock
);
968 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
972 static void __task_rq_unlock(struct rq
*rq
)
975 raw_spin_unlock(&rq
->lock
);
979 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, unsigned long *flags
)
981 __releases(p
->pi_lock
)
983 raw_spin_unlock(&rq
->lock
);
984 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
988 * this_rq_lock - lock this runqueue and disable interrupts.
990 static struct rq
*this_rq_lock(void)
997 raw_spin_lock(&rq
->lock
);
1002 #ifdef CONFIG_SCHED_HRTICK
1004 * Use HR-timers to deliver accurate preemption points.
1006 * Its all a bit involved since we cannot program an hrt while holding the
1007 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1010 * When we get rescheduled we reprogram the hrtick_timer outside of the
1016 * - enabled by features
1017 * - hrtimer is actually high res
1019 static inline int hrtick_enabled(struct rq
*rq
)
1021 if (!sched_feat(HRTICK
))
1023 if (!cpu_active(cpu_of(rq
)))
1025 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1028 static void hrtick_clear(struct rq
*rq
)
1030 if (hrtimer_active(&rq
->hrtick_timer
))
1031 hrtimer_cancel(&rq
->hrtick_timer
);
1035 * High-resolution timer tick.
1036 * Runs from hardirq context with interrupts disabled.
1038 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1040 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1042 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1044 raw_spin_lock(&rq
->lock
);
1045 update_rq_clock(rq
);
1046 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1047 raw_spin_unlock(&rq
->lock
);
1049 return HRTIMER_NORESTART
;
1054 * called from hardirq (IPI) context
1056 static void __hrtick_start(void *arg
)
1058 struct rq
*rq
= arg
;
1060 raw_spin_lock(&rq
->lock
);
1061 hrtimer_restart(&rq
->hrtick_timer
);
1062 rq
->hrtick_csd_pending
= 0;
1063 raw_spin_unlock(&rq
->lock
);
1067 * Called to set the hrtick timer state.
1069 * called with rq->lock held and irqs disabled
1071 static void hrtick_start(struct rq
*rq
, u64 delay
)
1073 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1074 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1076 hrtimer_set_expires(timer
, time
);
1078 if (rq
== this_rq()) {
1079 hrtimer_restart(timer
);
1080 } else if (!rq
->hrtick_csd_pending
) {
1081 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1082 rq
->hrtick_csd_pending
= 1;
1087 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1089 int cpu
= (int)(long)hcpu
;
1092 case CPU_UP_CANCELED
:
1093 case CPU_UP_CANCELED_FROZEN
:
1094 case CPU_DOWN_PREPARE
:
1095 case CPU_DOWN_PREPARE_FROZEN
:
1097 case CPU_DEAD_FROZEN
:
1098 hrtick_clear(cpu_rq(cpu
));
1105 static __init
void init_hrtick(void)
1107 hotcpu_notifier(hotplug_hrtick
, 0);
1111 * Called to set the hrtick timer state.
1113 * called with rq->lock held and irqs disabled
1115 static void hrtick_start(struct rq
*rq
, u64 delay
)
1117 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1118 HRTIMER_MODE_REL_PINNED
, 0);
1121 static inline void init_hrtick(void)
1124 #endif /* CONFIG_SMP */
1126 static void init_rq_hrtick(struct rq
*rq
)
1129 rq
->hrtick_csd_pending
= 0;
1131 rq
->hrtick_csd
.flags
= 0;
1132 rq
->hrtick_csd
.func
= __hrtick_start
;
1133 rq
->hrtick_csd
.info
= rq
;
1136 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1137 rq
->hrtick_timer
.function
= hrtick
;
1139 #else /* CONFIG_SCHED_HRTICK */
1140 static inline void hrtick_clear(struct rq
*rq
)
1144 static inline void init_rq_hrtick(struct rq
*rq
)
1148 static inline void init_hrtick(void)
1151 #endif /* CONFIG_SCHED_HRTICK */
1154 * resched_task - mark a task 'to be rescheduled now'.
1156 * On UP this means the setting of the need_resched flag, on SMP it
1157 * might also involve a cross-CPU call to trigger the scheduler on
1162 #ifndef tsk_is_polling
1163 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1166 static void resched_task(struct task_struct
*p
)
1170 assert_raw_spin_locked(&task_rq(p
)->lock
);
1172 if (test_tsk_need_resched(p
))
1175 set_tsk_need_resched(p
);
1178 if (cpu
== smp_processor_id())
1181 /* NEED_RESCHED must be visible before we test polling */
1183 if (!tsk_is_polling(p
))
1184 smp_send_reschedule(cpu
);
1187 static void resched_cpu(int cpu
)
1189 struct rq
*rq
= cpu_rq(cpu
);
1190 unsigned long flags
;
1192 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1194 resched_task(cpu_curr(cpu
));
1195 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1200 * In the semi idle case, use the nearest busy cpu for migrating timers
1201 * from an idle cpu. This is good for power-savings.
1203 * We don't do similar optimization for completely idle system, as
1204 * selecting an idle cpu will add more delays to the timers than intended
1205 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1207 int get_nohz_timer_target(void)
1209 int cpu
= smp_processor_id();
1211 struct sched_domain
*sd
;
1214 for_each_domain(cpu
, sd
) {
1215 for_each_cpu(i
, sched_domain_span(sd
)) {
1227 * When add_timer_on() enqueues a timer into the timer wheel of an
1228 * idle CPU then this timer might expire before the next timer event
1229 * which is scheduled to wake up that CPU. In case of a completely
1230 * idle system the next event might even be infinite time into the
1231 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1232 * leaves the inner idle loop so the newly added timer is taken into
1233 * account when the CPU goes back to idle and evaluates the timer
1234 * wheel for the next timer event.
1236 void wake_up_idle_cpu(int cpu
)
1238 struct rq
*rq
= cpu_rq(cpu
);
1240 if (cpu
== smp_processor_id())
1244 * This is safe, as this function is called with the timer
1245 * wheel base lock of (cpu) held. When the CPU is on the way
1246 * to idle and has not yet set rq->curr to idle then it will
1247 * be serialized on the timer wheel base lock and take the new
1248 * timer into account automatically.
1250 if (rq
->curr
!= rq
->idle
)
1254 * We can set TIF_RESCHED on the idle task of the other CPU
1255 * lockless. The worst case is that the other CPU runs the
1256 * idle task through an additional NOOP schedule()
1258 set_tsk_need_resched(rq
->idle
);
1260 /* NEED_RESCHED must be visible before we test polling */
1262 if (!tsk_is_polling(rq
->idle
))
1263 smp_send_reschedule(cpu
);
1266 #endif /* CONFIG_NO_HZ */
1268 static u64
sched_avg_period(void)
1270 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1273 static void sched_avg_update(struct rq
*rq
)
1275 s64 period
= sched_avg_period();
1277 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1279 * Inline assembly required to prevent the compiler
1280 * optimising this loop into a divmod call.
1281 * See __iter_div_u64_rem() for another example of this.
1283 asm("" : "+rm" (rq
->age_stamp
));
1284 rq
->age_stamp
+= period
;
1289 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1291 rq
->rt_avg
+= rt_delta
;
1292 sched_avg_update(rq
);
1295 #else /* !CONFIG_SMP */
1296 static void resched_task(struct task_struct
*p
)
1298 assert_raw_spin_locked(&task_rq(p
)->lock
);
1299 set_tsk_need_resched(p
);
1302 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1306 static void sched_avg_update(struct rq
*rq
)
1309 #endif /* CONFIG_SMP */
1311 #if BITS_PER_LONG == 32
1312 # define WMULT_CONST (~0UL)
1314 # define WMULT_CONST (1UL << 32)
1317 #define WMULT_SHIFT 32
1320 * Shift right and round:
1322 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1325 * delta *= weight / lw
1327 static unsigned long
1328 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1329 struct load_weight
*lw
)
1334 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1335 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1336 * 2^SCHED_LOAD_RESOLUTION.
1338 if (likely(weight
> (1UL << SCHED_LOAD_RESOLUTION
)))
1339 tmp
= (u64
)delta_exec
* scale_load_down(weight
);
1341 tmp
= (u64
)delta_exec
;
1343 if (!lw
->inv_weight
) {
1344 unsigned long w
= scale_load_down(lw
->weight
);
1346 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
1348 else if (unlikely(!w
))
1349 lw
->inv_weight
= WMULT_CONST
;
1351 lw
->inv_weight
= WMULT_CONST
/ w
;
1355 * Check whether we'd overflow the 64-bit multiplication:
1357 if (unlikely(tmp
> WMULT_CONST
))
1358 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1361 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1363 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1366 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1372 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1378 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
1385 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1386 * of tasks with abnormal "nice" values across CPUs the contribution that
1387 * each task makes to its run queue's load is weighted according to its
1388 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1389 * scaled version of the new time slice allocation that they receive on time
1393 #define WEIGHT_IDLEPRIO 3
1394 #define WMULT_IDLEPRIO 1431655765
1397 * Nice levels are multiplicative, with a gentle 10% change for every
1398 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1399 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1400 * that remained on nice 0.
1402 * The "10% effect" is relative and cumulative: from _any_ nice level,
1403 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1404 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1405 * If a task goes up by ~10% and another task goes down by ~10% then
1406 * the relative distance between them is ~25%.)
1408 static const int prio_to_weight
[40] = {
1409 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1410 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1411 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1412 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1413 /* 0 */ 1024, 820, 655, 526, 423,
1414 /* 5 */ 335, 272, 215, 172, 137,
1415 /* 10 */ 110, 87, 70, 56, 45,
1416 /* 15 */ 36, 29, 23, 18, 15,
1420 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1422 * In cases where the weight does not change often, we can use the
1423 * precalculated inverse to speed up arithmetics by turning divisions
1424 * into multiplications:
1426 static const u32 prio_to_wmult
[40] = {
1427 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1428 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1429 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1430 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1431 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1432 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1433 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1434 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1437 /* Time spent by the tasks of the cpu accounting group executing in ... */
1438 enum cpuacct_stat_index
{
1439 CPUACCT_STAT_USER
, /* ... user mode */
1440 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1442 CPUACCT_STAT_NSTATS
,
1445 #ifdef CONFIG_CGROUP_CPUACCT
1446 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1447 static void cpuacct_update_stats(struct task_struct
*tsk
,
1448 enum cpuacct_stat_index idx
, cputime_t val
);
1450 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1451 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1452 enum cpuacct_stat_index idx
, cputime_t val
) {}
1455 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1457 update_load_add(&rq
->load
, load
);
1460 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1462 update_load_sub(&rq
->load
, load
);
1465 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1466 typedef int (*tg_visitor
)(struct task_group
*, void *);
1469 * Iterate the full tree, calling @down when first entering a node and @up when
1470 * leaving it for the final time.
1472 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1474 struct task_group
*parent
, *child
;
1478 parent
= &root_task_group
;
1480 ret
= (*down
)(parent
, data
);
1483 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1490 ret
= (*up
)(parent
, data
);
1495 parent
= parent
->parent
;
1504 static int tg_nop(struct task_group
*tg
, void *data
)
1511 /* Used instead of source_load when we know the type == 0 */
1512 static unsigned long weighted_cpuload(const int cpu
)
1514 return cpu_rq(cpu
)->load
.weight
;
1518 * Return a low guess at the load of a migration-source cpu weighted
1519 * according to the scheduling class and "nice" value.
1521 * We want to under-estimate the load of migration sources, to
1522 * balance conservatively.
1524 static unsigned long source_load(int cpu
, int type
)
1526 struct rq
*rq
= cpu_rq(cpu
);
1527 unsigned long total
= weighted_cpuload(cpu
);
1529 if (type
== 0 || !sched_feat(LB_BIAS
))
1532 return min(rq
->cpu_load
[type
-1], total
);
1536 * Return a high guess at the load of a migration-target cpu weighted
1537 * according to the scheduling class and "nice" value.
1539 static unsigned long target_load(int cpu
, int type
)
1541 struct rq
*rq
= cpu_rq(cpu
);
1542 unsigned long total
= weighted_cpuload(cpu
);
1544 if (type
== 0 || !sched_feat(LB_BIAS
))
1547 return max(rq
->cpu_load
[type
-1], total
);
1550 static unsigned long power_of(int cpu
)
1552 return cpu_rq(cpu
)->cpu_power
;
1555 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1557 static unsigned long cpu_avg_load_per_task(int cpu
)
1559 struct rq
*rq
= cpu_rq(cpu
);
1560 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1563 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1565 rq
->avg_load_per_task
= 0;
1567 return rq
->avg_load_per_task
;
1570 #ifdef CONFIG_FAIR_GROUP_SCHED
1573 * Compute the cpu's hierarchical load factor for each task group.
1574 * This needs to be done in a top-down fashion because the load of a child
1575 * group is a fraction of its parents load.
1577 static int tg_load_down(struct task_group
*tg
, void *data
)
1580 long cpu
= (long)data
;
1583 load
= cpu_rq(cpu
)->load
.weight
;
1585 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1586 load
*= tg
->se
[cpu
]->load
.weight
;
1587 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1590 tg
->cfs_rq
[cpu
]->h_load
= load
;
1595 static void update_h_load(long cpu
)
1597 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1602 #ifdef CONFIG_PREEMPT
1604 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1607 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1608 * way at the expense of forcing extra atomic operations in all
1609 * invocations. This assures that the double_lock is acquired using the
1610 * same underlying policy as the spinlock_t on this architecture, which
1611 * reduces latency compared to the unfair variant below. However, it
1612 * also adds more overhead and therefore may reduce throughput.
1614 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1615 __releases(this_rq
->lock
)
1616 __acquires(busiest
->lock
)
1617 __acquires(this_rq
->lock
)
1619 raw_spin_unlock(&this_rq
->lock
);
1620 double_rq_lock(this_rq
, busiest
);
1627 * Unfair double_lock_balance: Optimizes throughput at the expense of
1628 * latency by eliminating extra atomic operations when the locks are
1629 * already in proper order on entry. This favors lower cpu-ids and will
1630 * grant the double lock to lower cpus over higher ids under contention,
1631 * regardless of entry order into the function.
1633 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1634 __releases(this_rq
->lock
)
1635 __acquires(busiest
->lock
)
1636 __acquires(this_rq
->lock
)
1640 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1641 if (busiest
< this_rq
) {
1642 raw_spin_unlock(&this_rq
->lock
);
1643 raw_spin_lock(&busiest
->lock
);
1644 raw_spin_lock_nested(&this_rq
->lock
,
1645 SINGLE_DEPTH_NESTING
);
1648 raw_spin_lock_nested(&busiest
->lock
,
1649 SINGLE_DEPTH_NESTING
);
1654 #endif /* CONFIG_PREEMPT */
1657 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1659 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1661 if (unlikely(!irqs_disabled())) {
1662 /* printk() doesn't work good under rq->lock */
1663 raw_spin_unlock(&this_rq
->lock
);
1667 return _double_lock_balance(this_rq
, busiest
);
1670 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1671 __releases(busiest
->lock
)
1673 raw_spin_unlock(&busiest
->lock
);
1674 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1678 * double_rq_lock - safely lock two runqueues
1680 * Note this does not disable interrupts like task_rq_lock,
1681 * you need to do so manually before calling.
1683 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1684 __acquires(rq1
->lock
)
1685 __acquires(rq2
->lock
)
1687 BUG_ON(!irqs_disabled());
1689 raw_spin_lock(&rq1
->lock
);
1690 __acquire(rq2
->lock
); /* Fake it out ;) */
1693 raw_spin_lock(&rq1
->lock
);
1694 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1696 raw_spin_lock(&rq2
->lock
);
1697 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1703 * double_rq_unlock - safely unlock two runqueues
1705 * Note this does not restore interrupts like task_rq_unlock,
1706 * you need to do so manually after calling.
1708 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1709 __releases(rq1
->lock
)
1710 __releases(rq2
->lock
)
1712 raw_spin_unlock(&rq1
->lock
);
1714 raw_spin_unlock(&rq2
->lock
);
1716 __release(rq2
->lock
);
1719 #else /* CONFIG_SMP */
1722 * double_rq_lock - safely lock two runqueues
1724 * Note this does not disable interrupts like task_rq_lock,
1725 * you need to do so manually before calling.
1727 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1728 __acquires(rq1
->lock
)
1729 __acquires(rq2
->lock
)
1731 BUG_ON(!irqs_disabled());
1733 raw_spin_lock(&rq1
->lock
);
1734 __acquire(rq2
->lock
); /* Fake it out ;) */
1738 * double_rq_unlock - safely unlock two runqueues
1740 * Note this does not restore interrupts like task_rq_unlock,
1741 * you need to do so manually after calling.
1743 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1744 __releases(rq1
->lock
)
1745 __releases(rq2
->lock
)
1748 raw_spin_unlock(&rq1
->lock
);
1749 __release(rq2
->lock
);
1754 static void calc_load_account_idle(struct rq
*this_rq
);
1755 static void update_sysctl(void);
1756 static int get_update_sysctl_factor(void);
1757 static void update_cpu_load(struct rq
*this_rq
);
1759 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1761 set_task_rq(p
, cpu
);
1764 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1765 * successfuly executed on another CPU. We must ensure that updates of
1766 * per-task data have been completed by this moment.
1769 task_thread_info(p
)->cpu
= cpu
;
1773 static const struct sched_class rt_sched_class
;
1775 #define sched_class_highest (&stop_sched_class)
1776 #define for_each_class(class) \
1777 for (class = sched_class_highest; class; class = class->next)
1779 #include "sched_stats.h"
1781 static void inc_nr_running(struct rq
*rq
)
1786 static void dec_nr_running(struct rq
*rq
)
1791 static void set_load_weight(struct task_struct
*p
)
1793 int prio
= p
->static_prio
- MAX_RT_PRIO
;
1794 struct load_weight
*load
= &p
->se
.load
;
1797 * SCHED_IDLE tasks get minimal weight:
1799 if (p
->policy
== SCHED_IDLE
) {
1800 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
1801 load
->inv_weight
= WMULT_IDLEPRIO
;
1805 load
->weight
= scale_load(prio_to_weight
[prio
]);
1806 load
->inv_weight
= prio_to_wmult
[prio
];
1809 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1811 update_rq_clock(rq
);
1812 sched_info_queued(p
);
1813 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1816 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1818 update_rq_clock(rq
);
1819 sched_info_dequeued(p
);
1820 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1824 * activate_task - move a task to the runqueue.
1826 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1828 if (task_contributes_to_load(p
))
1829 rq
->nr_uninterruptible
--;
1831 enqueue_task(rq
, p
, flags
);
1836 * deactivate_task - remove a task from the runqueue.
1838 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1840 if (task_contributes_to_load(p
))
1841 rq
->nr_uninterruptible
++;
1843 dequeue_task(rq
, p
, flags
);
1847 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1850 * There are no locks covering percpu hardirq/softirq time.
1851 * They are only modified in account_system_vtime, on corresponding CPU
1852 * with interrupts disabled. So, writes are safe.
1853 * They are read and saved off onto struct rq in update_rq_clock().
1854 * This may result in other CPU reading this CPU's irq time and can
1855 * race with irq/account_system_vtime on this CPU. We would either get old
1856 * or new value with a side effect of accounting a slice of irq time to wrong
1857 * task when irq is in progress while we read rq->clock. That is a worthy
1858 * compromise in place of having locks on each irq in account_system_time.
1860 static DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
1861 static DEFINE_PER_CPU(u64
, cpu_softirq_time
);
1863 static DEFINE_PER_CPU(u64
, irq_start_time
);
1864 static int sched_clock_irqtime
;
1866 void enable_sched_clock_irqtime(void)
1868 sched_clock_irqtime
= 1;
1871 void disable_sched_clock_irqtime(void)
1873 sched_clock_irqtime
= 0;
1876 #ifndef CONFIG_64BIT
1877 static DEFINE_PER_CPU(seqcount_t
, irq_time_seq
);
1879 static inline void irq_time_write_begin(void)
1881 __this_cpu_inc(irq_time_seq
.sequence
);
1885 static inline void irq_time_write_end(void)
1888 __this_cpu_inc(irq_time_seq
.sequence
);
1891 static inline u64
irq_time_read(int cpu
)
1897 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
1898 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
1899 per_cpu(cpu_hardirq_time
, cpu
);
1900 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
1904 #else /* CONFIG_64BIT */
1905 static inline void irq_time_write_begin(void)
1909 static inline void irq_time_write_end(void)
1913 static inline u64
irq_time_read(int cpu
)
1915 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
1917 #endif /* CONFIG_64BIT */
1920 * Called before incrementing preempt_count on {soft,}irq_enter
1921 * and before decrementing preempt_count on {soft,}irq_exit.
1923 void account_system_vtime(struct task_struct
*curr
)
1925 unsigned long flags
;
1929 if (!sched_clock_irqtime
)
1932 local_irq_save(flags
);
1934 cpu
= smp_processor_id();
1935 delta
= sched_clock_cpu(cpu
) - __this_cpu_read(irq_start_time
);
1936 __this_cpu_add(irq_start_time
, delta
);
1938 irq_time_write_begin();
1940 * We do not account for softirq time from ksoftirqd here.
1941 * We want to continue accounting softirq time to ksoftirqd thread
1942 * in that case, so as not to confuse scheduler with a special task
1943 * that do not consume any time, but still wants to run.
1945 if (hardirq_count())
1946 __this_cpu_add(cpu_hardirq_time
, delta
);
1947 else if (in_serving_softirq() && curr
!= this_cpu_ksoftirqd())
1948 __this_cpu_add(cpu_softirq_time
, delta
);
1950 irq_time_write_end();
1951 local_irq_restore(flags
);
1953 EXPORT_SYMBOL_GPL(account_system_vtime
);
1955 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
1959 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
1962 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1963 * this case when a previous update_rq_clock() happened inside a
1964 * {soft,}irq region.
1966 * When this happens, we stop ->clock_task and only update the
1967 * prev_irq_time stamp to account for the part that fit, so that a next
1968 * update will consume the rest. This ensures ->clock_task is
1971 * It does however cause some slight miss-attribution of {soft,}irq
1972 * time, a more accurate solution would be to update the irq_time using
1973 * the current rq->clock timestamp, except that would require using
1976 if (irq_delta
> delta
)
1979 rq
->prev_irq_time
+= irq_delta
;
1981 rq
->clock_task
+= delta
;
1983 if (irq_delta
&& sched_feat(NONIRQ_POWER
))
1984 sched_rt_avg_update(rq
, irq_delta
);
1987 static int irqtime_account_hi_update(void)
1989 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
1990 unsigned long flags
;
1994 local_irq_save(flags
);
1995 latest_ns
= this_cpu_read(cpu_hardirq_time
);
1996 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->irq
))
1998 local_irq_restore(flags
);
2002 static int irqtime_account_si_update(void)
2004 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2005 unsigned long flags
;
2009 local_irq_save(flags
);
2010 latest_ns
= this_cpu_read(cpu_softirq_time
);
2011 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->softirq
))
2013 local_irq_restore(flags
);
2017 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2019 #define sched_clock_irqtime (0)
2021 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
2023 rq
->clock_task
+= delta
;
2026 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2028 #include "sched_idletask.c"
2029 #include "sched_fair.c"
2030 #include "sched_rt.c"
2031 #include "sched_autogroup.c"
2032 #include "sched_stoptask.c"
2033 #ifdef CONFIG_SCHED_DEBUG
2034 # include "sched_debug.c"
2037 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
2039 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
2040 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
2044 * Make it appear like a SCHED_FIFO task, its something
2045 * userspace knows about and won't get confused about.
2047 * Also, it will make PI more or less work without too
2048 * much confusion -- but then, stop work should not
2049 * rely on PI working anyway.
2051 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
2053 stop
->sched_class
= &stop_sched_class
;
2056 cpu_rq(cpu
)->stop
= stop
;
2060 * Reset it back to a normal scheduling class so that
2061 * it can die in pieces.
2063 old_stop
->sched_class
= &rt_sched_class
;
2068 * __normal_prio - return the priority that is based on the static prio
2070 static inline int __normal_prio(struct task_struct
*p
)
2072 return p
->static_prio
;
2076 * Calculate the expected normal priority: i.e. priority
2077 * without taking RT-inheritance into account. Might be
2078 * boosted by interactivity modifiers. Changes upon fork,
2079 * setprio syscalls, and whenever the interactivity
2080 * estimator recalculates.
2082 static inline int normal_prio(struct task_struct
*p
)
2086 if (task_has_rt_policy(p
))
2087 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
2089 prio
= __normal_prio(p
);
2094 * Calculate the current priority, i.e. the priority
2095 * taken into account by the scheduler. This value might
2096 * be boosted by RT tasks, or might be boosted by
2097 * interactivity modifiers. Will be RT if the task got
2098 * RT-boosted. If not then it returns p->normal_prio.
2100 static int effective_prio(struct task_struct
*p
)
2102 p
->normal_prio
= normal_prio(p
);
2104 * If we are RT tasks or we were boosted to RT priority,
2105 * keep the priority unchanged. Otherwise, update priority
2106 * to the normal priority:
2108 if (!rt_prio(p
->prio
))
2109 return p
->normal_prio
;
2114 * task_curr - is this task currently executing on a CPU?
2115 * @p: the task in question.
2117 inline int task_curr(const struct task_struct
*p
)
2119 return cpu_curr(task_cpu(p
)) == p
;
2122 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
2123 const struct sched_class
*prev_class
,
2126 if (prev_class
!= p
->sched_class
) {
2127 if (prev_class
->switched_from
)
2128 prev_class
->switched_from(rq
, p
);
2129 p
->sched_class
->switched_to(rq
, p
);
2130 } else if (oldprio
!= p
->prio
)
2131 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
2134 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
2136 const struct sched_class
*class;
2138 if (p
->sched_class
== rq
->curr
->sched_class
) {
2139 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
2141 for_each_class(class) {
2142 if (class == rq
->curr
->sched_class
)
2144 if (class == p
->sched_class
) {
2145 resched_task(rq
->curr
);
2152 * A queue event has occurred, and we're going to schedule. In
2153 * this case, we can save a useless back to back clock update.
2155 if (rq
->curr
->on_rq
&& test_tsk_need_resched(rq
->curr
))
2156 rq
->skip_clock_update
= 1;
2161 * Is this task likely cache-hot:
2164 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2168 if (p
->sched_class
!= &fair_sched_class
)
2171 if (unlikely(p
->policy
== SCHED_IDLE
))
2175 * Buddy candidates are cache hot:
2177 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2178 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2179 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2182 if (sysctl_sched_migration_cost
== -1)
2184 if (sysctl_sched_migration_cost
== 0)
2187 delta
= now
- p
->se
.exec_start
;
2189 return delta
< (s64
)sysctl_sched_migration_cost
;
2192 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2194 #ifdef CONFIG_SCHED_DEBUG
2196 * We should never call set_task_cpu() on a blocked task,
2197 * ttwu() will sort out the placement.
2199 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2200 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2202 #ifdef CONFIG_LOCKDEP
2203 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
2204 lockdep_is_held(&task_rq(p
)->lock
)));
2208 trace_sched_migrate_task(p
, new_cpu
);
2210 if (task_cpu(p
) != new_cpu
) {
2211 p
->se
.nr_migrations
++;
2212 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2215 __set_task_cpu(p
, new_cpu
);
2218 struct migration_arg
{
2219 struct task_struct
*task
;
2223 static int migration_cpu_stop(void *data
);
2226 * wait_task_inactive - wait for a thread to unschedule.
2228 * If @match_state is nonzero, it's the @p->state value just checked and
2229 * not expected to change. If it changes, i.e. @p might have woken up,
2230 * then return zero. When we succeed in waiting for @p to be off its CPU,
2231 * we return a positive number (its total switch count). If a second call
2232 * a short while later returns the same number, the caller can be sure that
2233 * @p has remained unscheduled the whole time.
2235 * The caller must ensure that the task *will* unschedule sometime soon,
2236 * else this function might spin for a *long* time. This function can't
2237 * be called with interrupts off, or it may introduce deadlock with
2238 * smp_call_function() if an IPI is sent by the same process we are
2239 * waiting to become inactive.
2241 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2243 unsigned long flags
;
2250 * We do the initial early heuristics without holding
2251 * any task-queue locks at all. We'll only try to get
2252 * the runqueue lock when things look like they will
2258 * If the task is actively running on another CPU
2259 * still, just relax and busy-wait without holding
2262 * NOTE! Since we don't hold any locks, it's not
2263 * even sure that "rq" stays as the right runqueue!
2264 * But we don't care, since "task_running()" will
2265 * return false if the runqueue has changed and p
2266 * is actually now running somewhere else!
2268 while (task_running(rq
, p
)) {
2269 if (match_state
&& unlikely(p
->state
!= match_state
))
2275 * Ok, time to look more closely! We need the rq
2276 * lock now, to be *sure*. If we're wrong, we'll
2277 * just go back and repeat.
2279 rq
= task_rq_lock(p
, &flags
);
2280 trace_sched_wait_task(p
);
2281 running
= task_running(rq
, p
);
2284 if (!match_state
|| p
->state
== match_state
)
2285 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2286 task_rq_unlock(rq
, p
, &flags
);
2289 * If it changed from the expected state, bail out now.
2291 if (unlikely(!ncsw
))
2295 * Was it really running after all now that we
2296 * checked with the proper locks actually held?
2298 * Oops. Go back and try again..
2300 if (unlikely(running
)) {
2306 * It's not enough that it's not actively running,
2307 * it must be off the runqueue _entirely_, and not
2310 * So if it was still runnable (but just not actively
2311 * running right now), it's preempted, and we should
2312 * yield - it could be a while.
2314 if (unlikely(on_rq
)) {
2315 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
2317 set_current_state(TASK_UNINTERRUPTIBLE
);
2318 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
2323 * Ahh, all good. It wasn't running, and it wasn't
2324 * runnable, which means that it will never become
2325 * running in the future either. We're all done!
2334 * kick_process - kick a running thread to enter/exit the kernel
2335 * @p: the to-be-kicked thread
2337 * Cause a process which is running on another CPU to enter
2338 * kernel-mode, without any delay. (to get signals handled.)
2340 * NOTE: this function doesn't have to take the runqueue lock,
2341 * because all it wants to ensure is that the remote task enters
2342 * the kernel. If the IPI races and the task has been migrated
2343 * to another CPU then no harm is done and the purpose has been
2346 void kick_process(struct task_struct
*p
)
2352 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2353 smp_send_reschedule(cpu
);
2356 EXPORT_SYMBOL_GPL(kick_process
);
2357 #endif /* CONFIG_SMP */
2361 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2363 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2366 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2368 /* Look for allowed, online CPU in same node. */
2369 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2370 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2373 /* Any allowed, online CPU? */
2374 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2375 if (dest_cpu
< nr_cpu_ids
)
2378 /* No more Mr. Nice Guy. */
2379 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2381 * Don't tell them about moving exiting tasks or
2382 * kernel threads (both mm NULL), since they never
2385 if (p
->mm
&& printk_ratelimit()) {
2386 printk(KERN_INFO
"process %d (%s) no longer affine to cpu%d\n",
2387 task_pid_nr(p
), p
->comm
, cpu
);
2394 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2397 int select_task_rq(struct task_struct
*p
, int sd_flags
, int wake_flags
)
2399 int cpu
= p
->sched_class
->select_task_rq(p
, sd_flags
, wake_flags
);
2402 * In order not to call set_task_cpu() on a blocking task we need
2403 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2406 * Since this is common to all placement strategies, this lives here.
2408 * [ this allows ->select_task() to simply return task_cpu(p) and
2409 * not worry about this generic constraint ]
2411 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2413 cpu
= select_fallback_rq(task_cpu(p
), p
);
2418 static void update_avg(u64
*avg
, u64 sample
)
2420 s64 diff
= sample
- *avg
;
2426 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
2428 #ifdef CONFIG_SCHEDSTATS
2429 struct rq
*rq
= this_rq();
2432 int this_cpu
= smp_processor_id();
2434 if (cpu
== this_cpu
) {
2435 schedstat_inc(rq
, ttwu_local
);
2436 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2438 struct sched_domain
*sd
;
2440 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2442 for_each_domain(this_cpu
, sd
) {
2443 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2444 schedstat_inc(sd
, ttwu_wake_remote
);
2451 if (wake_flags
& WF_MIGRATED
)
2452 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2454 #endif /* CONFIG_SMP */
2456 schedstat_inc(rq
, ttwu_count
);
2457 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2459 if (wake_flags
& WF_SYNC
)
2460 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2462 #endif /* CONFIG_SCHEDSTATS */
2465 static void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
2467 activate_task(rq
, p
, en_flags
);
2470 /* if a worker is waking up, notify workqueue */
2471 if (p
->flags
& PF_WQ_WORKER
)
2472 wq_worker_waking_up(p
, cpu_of(rq
));
2476 * Mark the task runnable and perform wakeup-preemption.
2479 ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2481 trace_sched_wakeup(p
, true);
2482 check_preempt_curr(rq
, p
, wake_flags
);
2484 p
->state
= TASK_RUNNING
;
2486 if (p
->sched_class
->task_woken
)
2487 p
->sched_class
->task_woken(rq
, p
);
2489 if (rq
->idle_stamp
) {
2490 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2491 u64 max
= 2*sysctl_sched_migration_cost
;
2496 update_avg(&rq
->avg_idle
, delta
);
2503 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2506 if (p
->sched_contributes_to_load
)
2507 rq
->nr_uninterruptible
--;
2510 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_WAKING
);
2511 ttwu_do_wakeup(rq
, p
, wake_flags
);
2515 * Called in case the task @p isn't fully descheduled from its runqueue,
2516 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2517 * since all we need to do is flip p->state to TASK_RUNNING, since
2518 * the task is still ->on_rq.
2520 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
2525 rq
= __task_rq_lock(p
);
2527 ttwu_do_wakeup(rq
, p
, wake_flags
);
2530 __task_rq_unlock(rq
);
2536 static void sched_ttwu_pending(void)
2538 struct rq
*rq
= this_rq();
2539 struct task_struct
*list
= xchg(&rq
->wake_list
, NULL
);
2544 raw_spin_lock(&rq
->lock
);
2547 struct task_struct
*p
= list
;
2548 list
= list
->wake_entry
;
2549 ttwu_do_activate(rq
, p
, 0);
2552 raw_spin_unlock(&rq
->lock
);
2555 void scheduler_ipi(void)
2557 sched_ttwu_pending();
2560 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
)
2562 struct rq
*rq
= cpu_rq(cpu
);
2563 struct task_struct
*next
= rq
->wake_list
;
2566 struct task_struct
*old
= next
;
2568 p
->wake_entry
= next
;
2569 next
= cmpxchg(&rq
->wake_list
, old
, p
);
2575 smp_send_reschedule(cpu
);
2578 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2579 static int ttwu_activate_remote(struct task_struct
*p
, int wake_flags
)
2584 rq
= __task_rq_lock(p
);
2586 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
2587 ttwu_do_wakeup(rq
, p
, wake_flags
);
2590 __task_rq_unlock(rq
);
2595 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2596 #endif /* CONFIG_SMP */
2598 static void ttwu_queue(struct task_struct
*p
, int cpu
)
2600 struct rq
*rq
= cpu_rq(cpu
);
2602 #if defined(CONFIG_SMP)
2603 if (sched_feat(TTWU_QUEUE
) && cpu
!= smp_processor_id()) {
2604 sched_clock_cpu(cpu
); /* sync clocks x-cpu */
2605 ttwu_queue_remote(p
, cpu
);
2610 raw_spin_lock(&rq
->lock
);
2611 ttwu_do_activate(rq
, p
, 0);
2612 raw_spin_unlock(&rq
->lock
);
2616 * try_to_wake_up - wake up a thread
2617 * @p: the thread to be awakened
2618 * @state: the mask of task states that can be woken
2619 * @wake_flags: wake modifier flags (WF_*)
2621 * Put it on the run-queue if it's not already there. The "current"
2622 * thread is always on the run-queue (except when the actual
2623 * re-schedule is in progress), and as such you're allowed to do
2624 * the simpler "current->state = TASK_RUNNING" to mark yourself
2625 * runnable without the overhead of this.
2627 * Returns %true if @p was woken up, %false if it was already running
2628 * or @state didn't match @p's state.
2631 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
2633 unsigned long flags
;
2634 int cpu
, success
= 0;
2637 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2638 if (!(p
->state
& state
))
2641 success
= 1; /* we're going to change ->state */
2644 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
2649 * If the owning (remote) cpu is still in the middle of schedule() with
2650 * this task as prev, wait until its done referencing the task.
2653 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2655 * In case the architecture enables interrupts in
2656 * context_switch(), we cannot busy wait, since that
2657 * would lead to deadlocks when an interrupt hits and
2658 * tries to wake up @prev. So bail and do a complete
2661 if (ttwu_activate_remote(p
, wake_flags
))
2668 * Pairs with the smp_wmb() in finish_lock_switch().
2672 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
2673 p
->state
= TASK_WAKING
;
2675 if (p
->sched_class
->task_waking
)
2676 p
->sched_class
->task_waking(p
);
2678 cpu
= select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
2679 if (task_cpu(p
) != cpu
) {
2680 wake_flags
|= WF_MIGRATED
;
2681 set_task_cpu(p
, cpu
);
2683 #endif /* CONFIG_SMP */
2687 ttwu_stat(p
, cpu
, wake_flags
);
2689 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2695 * try_to_wake_up_local - try to wake up a local task with rq lock held
2696 * @p: the thread to be awakened
2698 * Put @p on the run-queue if it's not already there. The caller must
2699 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2702 static void try_to_wake_up_local(struct task_struct
*p
)
2704 struct rq
*rq
= task_rq(p
);
2706 BUG_ON(rq
!= this_rq());
2707 BUG_ON(p
== current
);
2708 lockdep_assert_held(&rq
->lock
);
2710 if (!raw_spin_trylock(&p
->pi_lock
)) {
2711 raw_spin_unlock(&rq
->lock
);
2712 raw_spin_lock(&p
->pi_lock
);
2713 raw_spin_lock(&rq
->lock
);
2716 if (!(p
->state
& TASK_NORMAL
))
2720 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
2722 ttwu_do_wakeup(rq
, p
, 0);
2723 ttwu_stat(p
, smp_processor_id(), 0);
2725 raw_spin_unlock(&p
->pi_lock
);
2729 * wake_up_process - Wake up a specific process
2730 * @p: The process to be woken up.
2732 * Attempt to wake up the nominated process and move it to the set of runnable
2733 * processes. Returns 1 if the process was woken up, 0 if it was already
2736 * It may be assumed that this function implies a write memory barrier before
2737 * changing the task state if and only if any tasks are woken up.
2739 int wake_up_process(struct task_struct
*p
)
2741 return try_to_wake_up(p
, TASK_ALL
, 0);
2743 EXPORT_SYMBOL(wake_up_process
);
2745 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2747 return try_to_wake_up(p
, state
, 0);
2751 * Perform scheduler related setup for a newly forked process p.
2752 * p is forked by current.
2754 * __sched_fork() is basic setup used by init_idle() too:
2756 static void __sched_fork(struct task_struct
*p
)
2761 p
->se
.exec_start
= 0;
2762 p
->se
.sum_exec_runtime
= 0;
2763 p
->se
.prev_sum_exec_runtime
= 0;
2764 p
->se
.nr_migrations
= 0;
2766 INIT_LIST_HEAD(&p
->se
.group_node
);
2768 #ifdef CONFIG_SCHEDSTATS
2769 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2772 INIT_LIST_HEAD(&p
->rt
.run_list
);
2774 #ifdef CONFIG_PREEMPT_NOTIFIERS
2775 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2780 * fork()/clone()-time setup:
2782 void sched_fork(struct task_struct
*p
)
2784 unsigned long flags
;
2785 int cpu
= get_cpu();
2789 * We mark the process as running here. This guarantees that
2790 * nobody will actually run it, and a signal or other external
2791 * event cannot wake it up and insert it on the runqueue either.
2793 p
->state
= TASK_RUNNING
;
2796 * Revert to default priority/policy on fork if requested.
2798 if (unlikely(p
->sched_reset_on_fork
)) {
2799 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2800 p
->policy
= SCHED_NORMAL
;
2801 p
->normal_prio
= p
->static_prio
;
2804 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2805 p
->static_prio
= NICE_TO_PRIO(0);
2806 p
->normal_prio
= p
->static_prio
;
2811 * We don't need the reset flag anymore after the fork. It has
2812 * fulfilled its duty:
2814 p
->sched_reset_on_fork
= 0;
2818 * Make sure we do not leak PI boosting priority to the child.
2820 p
->prio
= current
->normal_prio
;
2822 if (!rt_prio(p
->prio
))
2823 p
->sched_class
= &fair_sched_class
;
2825 if (p
->sched_class
->task_fork
)
2826 p
->sched_class
->task_fork(p
);
2829 * The child is not yet in the pid-hash so no cgroup attach races,
2830 * and the cgroup is pinned to this child due to cgroup_fork()
2831 * is ran before sched_fork().
2833 * Silence PROVE_RCU.
2835 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2836 set_task_cpu(p
, cpu
);
2837 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2839 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2840 if (likely(sched_info_on()))
2841 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2843 #if defined(CONFIG_SMP)
2846 #ifdef CONFIG_PREEMPT
2847 /* Want to start with kernel preemption disabled. */
2848 task_thread_info(p
)->preempt_count
= 1;
2851 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2858 * wake_up_new_task - wake up a newly created task for the first time.
2860 * This function will do some initial scheduler statistics housekeeping
2861 * that must be done for every newly created context, then puts the task
2862 * on the runqueue and wakes it.
2864 void wake_up_new_task(struct task_struct
*p
)
2866 unsigned long flags
;
2869 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2872 * Fork balancing, do it here and not earlier because:
2873 * - cpus_allowed can change in the fork path
2874 * - any previously selected cpu might disappear through hotplug
2876 set_task_cpu(p
, select_task_rq(p
, SD_BALANCE_FORK
, 0));
2879 rq
= __task_rq_lock(p
);
2880 activate_task(rq
, p
, 0);
2882 trace_sched_wakeup_new(p
, true);
2883 check_preempt_curr(rq
, p
, WF_FORK
);
2885 if (p
->sched_class
->task_woken
)
2886 p
->sched_class
->task_woken(rq
, p
);
2888 task_rq_unlock(rq
, p
, &flags
);
2891 #ifdef CONFIG_PREEMPT_NOTIFIERS
2894 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2895 * @notifier: notifier struct to register
2897 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2899 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2901 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2904 * preempt_notifier_unregister - no longer interested in preemption notifications
2905 * @notifier: notifier struct to unregister
2907 * This is safe to call from within a preemption notifier.
2909 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2911 hlist_del(¬ifier
->link
);
2913 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2915 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2917 struct preempt_notifier
*notifier
;
2918 struct hlist_node
*node
;
2920 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2921 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2925 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2926 struct task_struct
*next
)
2928 struct preempt_notifier
*notifier
;
2929 struct hlist_node
*node
;
2931 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2932 notifier
->ops
->sched_out(notifier
, next
);
2935 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2937 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2942 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2943 struct task_struct
*next
)
2947 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2950 * prepare_task_switch - prepare to switch tasks
2951 * @rq: the runqueue preparing to switch
2952 * @prev: the current task that is being switched out
2953 * @next: the task we are going to switch to.
2955 * This is called with the rq lock held and interrupts off. It must
2956 * be paired with a subsequent finish_task_switch after the context
2959 * prepare_task_switch sets up locking and calls architecture specific
2963 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2964 struct task_struct
*next
)
2966 sched_info_switch(prev
, next
);
2967 perf_event_task_sched_out(prev
, next
);
2968 fire_sched_out_preempt_notifiers(prev
, next
);
2969 prepare_lock_switch(rq
, next
);
2970 prepare_arch_switch(next
);
2971 trace_sched_switch(prev
, next
);
2975 * finish_task_switch - clean up after a task-switch
2976 * @rq: runqueue associated with task-switch
2977 * @prev: the thread we just switched away from.
2979 * finish_task_switch must be called after the context switch, paired
2980 * with a prepare_task_switch call before the context switch.
2981 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2982 * and do any other architecture-specific cleanup actions.
2984 * Note that we may have delayed dropping an mm in context_switch(). If
2985 * so, we finish that here outside of the runqueue lock. (Doing it
2986 * with the lock held can cause deadlocks; see schedule() for
2989 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2990 __releases(rq
->lock
)
2992 struct mm_struct
*mm
= rq
->prev_mm
;
2998 * A task struct has one reference for the use as "current".
2999 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3000 * schedule one last time. The schedule call will never return, and
3001 * the scheduled task must drop that reference.
3002 * The test for TASK_DEAD must occur while the runqueue locks are
3003 * still held, otherwise prev could be scheduled on another cpu, die
3004 * there before we look at prev->state, and then the reference would
3006 * Manfred Spraul <manfred@colorfullife.com>
3008 prev_state
= prev
->state
;
3009 finish_arch_switch(prev
);
3010 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3011 local_irq_disable();
3012 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3013 perf_event_task_sched_in(current
);
3014 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3016 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3017 finish_lock_switch(rq
, prev
);
3019 fire_sched_in_preempt_notifiers(current
);
3022 if (unlikely(prev_state
== TASK_DEAD
)) {
3024 * Remove function-return probe instances associated with this
3025 * task and put them back on the free list.
3027 kprobe_flush_task(prev
);
3028 put_task_struct(prev
);
3034 /* assumes rq->lock is held */
3035 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
3037 if (prev
->sched_class
->pre_schedule
)
3038 prev
->sched_class
->pre_schedule(rq
, prev
);
3041 /* rq->lock is NOT held, but preemption is disabled */
3042 static inline void post_schedule(struct rq
*rq
)
3044 if (rq
->post_schedule
) {
3045 unsigned long flags
;
3047 raw_spin_lock_irqsave(&rq
->lock
, flags
);
3048 if (rq
->curr
->sched_class
->post_schedule
)
3049 rq
->curr
->sched_class
->post_schedule(rq
);
3050 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
3052 rq
->post_schedule
= 0;
3058 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
3062 static inline void post_schedule(struct rq
*rq
)
3069 * schedule_tail - first thing a freshly forked thread must call.
3070 * @prev: the thread we just switched away from.
3072 asmlinkage
void schedule_tail(struct task_struct
*prev
)
3073 __releases(rq
->lock
)
3075 struct rq
*rq
= this_rq();
3077 finish_task_switch(rq
, prev
);
3080 * FIXME: do we need to worry about rq being invalidated by the
3085 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3086 /* In this case, finish_task_switch does not reenable preemption */
3089 if (current
->set_child_tid
)
3090 put_user(task_pid_vnr(current
), current
->set_child_tid
);
3094 * context_switch - switch to the new MM and the new
3095 * thread's register state.
3098 context_switch(struct rq
*rq
, struct task_struct
*prev
,
3099 struct task_struct
*next
)
3101 struct mm_struct
*mm
, *oldmm
;
3103 prepare_task_switch(rq
, prev
, next
);
3106 oldmm
= prev
->active_mm
;
3108 * For paravirt, this is coupled with an exit in switch_to to
3109 * combine the page table reload and the switch backend into
3112 arch_start_context_switch(prev
);
3115 next
->active_mm
= oldmm
;
3116 atomic_inc(&oldmm
->mm_count
);
3117 enter_lazy_tlb(oldmm
, next
);
3119 switch_mm(oldmm
, mm
, next
);
3122 prev
->active_mm
= NULL
;
3123 rq
->prev_mm
= oldmm
;
3126 * Since the runqueue lock will be released by the next
3127 * task (which is an invalid locking op but in the case
3128 * of the scheduler it's an obvious special-case), so we
3129 * do an early lockdep release here:
3131 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3132 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
3135 /* Here we just switch the register state and the stack. */
3136 switch_to(prev
, next
, prev
);
3140 * this_rq must be evaluated again because prev may have moved
3141 * CPUs since it called schedule(), thus the 'rq' on its stack
3142 * frame will be invalid.
3144 finish_task_switch(this_rq(), prev
);
3148 * nr_running, nr_uninterruptible and nr_context_switches:
3150 * externally visible scheduler statistics: current number of runnable
3151 * threads, current number of uninterruptible-sleeping threads, total
3152 * number of context switches performed since bootup.
3154 unsigned long nr_running(void)
3156 unsigned long i
, sum
= 0;
3158 for_each_online_cpu(i
)
3159 sum
+= cpu_rq(i
)->nr_running
;
3164 unsigned long nr_uninterruptible(void)
3166 unsigned long i
, sum
= 0;
3168 for_each_possible_cpu(i
)
3169 sum
+= cpu_rq(i
)->nr_uninterruptible
;
3172 * Since we read the counters lockless, it might be slightly
3173 * inaccurate. Do not allow it to go below zero though:
3175 if (unlikely((long)sum
< 0))
3181 unsigned long long nr_context_switches(void)
3184 unsigned long long sum
= 0;
3186 for_each_possible_cpu(i
)
3187 sum
+= cpu_rq(i
)->nr_switches
;
3192 unsigned long nr_iowait(void)
3194 unsigned long i
, sum
= 0;
3196 for_each_possible_cpu(i
)
3197 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
3202 unsigned long nr_iowait_cpu(int cpu
)
3204 struct rq
*this = cpu_rq(cpu
);
3205 return atomic_read(&this->nr_iowait
);
3208 unsigned long this_cpu_load(void)
3210 struct rq
*this = this_rq();
3211 return this->cpu_load
[0];
3215 /* Variables and functions for calc_load */
3216 static atomic_long_t calc_load_tasks
;
3217 static unsigned long calc_load_update
;
3218 unsigned long avenrun
[3];
3219 EXPORT_SYMBOL(avenrun
);
3221 static long calc_load_fold_active(struct rq
*this_rq
)
3223 long nr_active
, delta
= 0;
3225 nr_active
= this_rq
->nr_running
;
3226 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3228 if (nr_active
!= this_rq
->calc_load_active
) {
3229 delta
= nr_active
- this_rq
->calc_load_active
;
3230 this_rq
->calc_load_active
= nr_active
;
3236 static unsigned long
3237 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3240 load
+= active
* (FIXED_1
- exp
);
3241 load
+= 1UL << (FSHIFT
- 1);
3242 return load
>> FSHIFT
;
3247 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3249 * When making the ILB scale, we should try to pull this in as well.
3251 static atomic_long_t calc_load_tasks_idle
;
3253 static void calc_load_account_idle(struct rq
*this_rq
)
3257 delta
= calc_load_fold_active(this_rq
);
3259 atomic_long_add(delta
, &calc_load_tasks_idle
);
3262 static long calc_load_fold_idle(void)
3267 * Its got a race, we don't care...
3269 if (atomic_long_read(&calc_load_tasks_idle
))
3270 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
3276 * fixed_power_int - compute: x^n, in O(log n) time
3278 * @x: base of the power
3279 * @frac_bits: fractional bits of @x
3280 * @n: power to raise @x to.
3282 * By exploiting the relation between the definition of the natural power
3283 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3284 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3285 * (where: n_i \elem {0, 1}, the binary vector representing n),
3286 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3287 * of course trivially computable in O(log_2 n), the length of our binary
3290 static unsigned long
3291 fixed_power_int(unsigned long x
, unsigned int frac_bits
, unsigned int n
)
3293 unsigned long result
= 1UL << frac_bits
;
3298 result
+= 1UL << (frac_bits
- 1);
3299 result
>>= frac_bits
;
3305 x
+= 1UL << (frac_bits
- 1);
3313 * a1 = a0 * e + a * (1 - e)
3315 * a2 = a1 * e + a * (1 - e)
3316 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3317 * = a0 * e^2 + a * (1 - e) * (1 + e)
3319 * a3 = a2 * e + a * (1 - e)
3320 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3321 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3325 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3326 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3327 * = a0 * e^n + a * (1 - e^n)
3329 * [1] application of the geometric series:
3332 * S_n := \Sum x^i = -------------
3335 static unsigned long
3336 calc_load_n(unsigned long load
, unsigned long exp
,
3337 unsigned long active
, unsigned int n
)
3340 return calc_load(load
, fixed_power_int(exp
, FSHIFT
, n
), active
);
3344 * NO_HZ can leave us missing all per-cpu ticks calling
3345 * calc_load_account_active(), but since an idle CPU folds its delta into
3346 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3347 * in the pending idle delta if our idle period crossed a load cycle boundary.
3349 * Once we've updated the global active value, we need to apply the exponential
3350 * weights adjusted to the number of cycles missed.
3352 static void calc_global_nohz(unsigned long ticks
)
3354 long delta
, active
, n
;
3356 if (time_before(jiffies
, calc_load_update
))
3360 * If we crossed a calc_load_update boundary, make sure to fold
3361 * any pending idle changes, the respective CPUs might have
3362 * missed the tick driven calc_load_account_active() update
3365 delta
= calc_load_fold_idle();
3367 atomic_long_add(delta
, &calc_load_tasks
);
3370 * If we were idle for multiple load cycles, apply them.
3372 if (ticks
>= LOAD_FREQ
) {
3373 n
= ticks
/ LOAD_FREQ
;
3375 active
= atomic_long_read(&calc_load_tasks
);
3376 active
= active
> 0 ? active
* FIXED_1
: 0;
3378 avenrun
[0] = calc_load_n(avenrun
[0], EXP_1
, active
, n
);
3379 avenrun
[1] = calc_load_n(avenrun
[1], EXP_5
, active
, n
);
3380 avenrun
[2] = calc_load_n(avenrun
[2], EXP_15
, active
, n
);
3382 calc_load_update
+= n
* LOAD_FREQ
;
3386 * Its possible the remainder of the above division also crosses
3387 * a LOAD_FREQ period, the regular check in calc_global_load()
3388 * which comes after this will take care of that.
3390 * Consider us being 11 ticks before a cycle completion, and us
3391 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3392 * age us 4 cycles, and the test in calc_global_load() will
3393 * pick up the final one.
3397 static void calc_load_account_idle(struct rq
*this_rq
)
3401 static inline long calc_load_fold_idle(void)
3406 static void calc_global_nohz(unsigned long ticks
)
3412 * get_avenrun - get the load average array
3413 * @loads: pointer to dest load array
3414 * @offset: offset to add
3415 * @shift: shift count to shift the result left
3417 * These values are estimates at best, so no need for locking.
3419 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3421 loads
[0] = (avenrun
[0] + offset
) << shift
;
3422 loads
[1] = (avenrun
[1] + offset
) << shift
;
3423 loads
[2] = (avenrun
[2] + offset
) << shift
;
3427 * calc_load - update the avenrun load estimates 10 ticks after the
3428 * CPUs have updated calc_load_tasks.
3430 void calc_global_load(unsigned long ticks
)
3434 calc_global_nohz(ticks
);
3436 if (time_before(jiffies
, calc_load_update
+ 10))
3439 active
= atomic_long_read(&calc_load_tasks
);
3440 active
= active
> 0 ? active
* FIXED_1
: 0;
3442 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3443 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3444 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3446 calc_load_update
+= LOAD_FREQ
;
3450 * Called from update_cpu_load() to periodically update this CPU's
3453 static void calc_load_account_active(struct rq
*this_rq
)
3457 if (time_before(jiffies
, this_rq
->calc_load_update
))
3460 delta
= calc_load_fold_active(this_rq
);
3461 delta
+= calc_load_fold_idle();
3463 atomic_long_add(delta
, &calc_load_tasks
);
3465 this_rq
->calc_load_update
+= LOAD_FREQ
;
3469 * The exact cpuload at various idx values, calculated at every tick would be
3470 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3472 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3473 * on nth tick when cpu may be busy, then we have:
3474 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3475 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3477 * decay_load_missed() below does efficient calculation of
3478 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3479 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3481 * The calculation is approximated on a 128 point scale.
3482 * degrade_zero_ticks is the number of ticks after which load at any
3483 * particular idx is approximated to be zero.
3484 * degrade_factor is a precomputed table, a row for each load idx.
3485 * Each column corresponds to degradation factor for a power of two ticks,
3486 * based on 128 point scale.
3488 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3489 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3491 * With this power of 2 load factors, we can degrade the load n times
3492 * by looking at 1 bits in n and doing as many mult/shift instead of
3493 * n mult/shifts needed by the exact degradation.
3495 #define DEGRADE_SHIFT 7
3496 static const unsigned char
3497 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
3498 static const unsigned char
3499 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
3500 {0, 0, 0, 0, 0, 0, 0, 0},
3501 {64, 32, 8, 0, 0, 0, 0, 0},
3502 {96, 72, 40, 12, 1, 0, 0},
3503 {112, 98, 75, 43, 15, 1, 0},
3504 {120, 112, 98, 76, 45, 16, 2} };
3507 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3508 * would be when CPU is idle and so we just decay the old load without
3509 * adding any new load.
3511 static unsigned long
3512 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
3516 if (!missed_updates
)
3519 if (missed_updates
>= degrade_zero_ticks
[idx
])
3523 return load
>> missed_updates
;
3525 while (missed_updates
) {
3526 if (missed_updates
% 2)
3527 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
3529 missed_updates
>>= 1;
3536 * Update rq->cpu_load[] statistics. This function is usually called every
3537 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3538 * every tick. We fix it up based on jiffies.
3540 static void update_cpu_load(struct rq
*this_rq
)
3542 unsigned long this_load
= this_rq
->load
.weight
;
3543 unsigned long curr_jiffies
= jiffies
;
3544 unsigned long pending_updates
;
3547 this_rq
->nr_load_updates
++;
3549 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3550 if (curr_jiffies
== this_rq
->last_load_update_tick
)
3553 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
3554 this_rq
->last_load_update_tick
= curr_jiffies
;
3556 /* Update our load: */
3557 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
3558 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3559 unsigned long old_load
, new_load
;
3561 /* scale is effectively 1 << i now, and >> i divides by scale */
3563 old_load
= this_rq
->cpu_load
[i
];
3564 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
3565 new_load
= this_load
;
3567 * Round up the averaging division if load is increasing. This
3568 * prevents us from getting stuck on 9 if the load is 10, for
3571 if (new_load
> old_load
)
3572 new_load
+= scale
- 1;
3574 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
3577 sched_avg_update(this_rq
);
3580 static void update_cpu_load_active(struct rq
*this_rq
)
3582 update_cpu_load(this_rq
);
3584 calc_load_account_active(this_rq
);
3590 * sched_exec - execve() is a valuable balancing opportunity, because at
3591 * this point the task has the smallest effective memory and cache footprint.
3593 void sched_exec(void)
3595 struct task_struct
*p
= current
;
3596 unsigned long flags
;
3599 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
3600 dest_cpu
= p
->sched_class
->select_task_rq(p
, SD_BALANCE_EXEC
, 0);
3601 if (dest_cpu
== smp_processor_id())
3604 if (likely(cpu_active(dest_cpu
))) {
3605 struct migration_arg arg
= { p
, dest_cpu
};
3607 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3608 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
3612 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3617 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3619 EXPORT_PER_CPU_SYMBOL(kstat
);
3622 * Return any ns on the sched_clock that have not yet been accounted in
3623 * @p in case that task is currently running.
3625 * Called with task_rq_lock() held on @rq.
3627 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3631 if (task_current(rq
, p
)) {
3632 update_rq_clock(rq
);
3633 ns
= rq
->clock_task
- p
->se
.exec_start
;
3641 unsigned long long task_delta_exec(struct task_struct
*p
)
3643 unsigned long flags
;
3647 rq
= task_rq_lock(p
, &flags
);
3648 ns
= do_task_delta_exec(p
, rq
);
3649 task_rq_unlock(rq
, p
, &flags
);
3655 * Return accounted runtime for the task.
3656 * In case the task is currently running, return the runtime plus current's
3657 * pending runtime that have not been accounted yet.
3659 unsigned long long task_sched_runtime(struct task_struct
*p
)
3661 unsigned long flags
;
3665 rq
= task_rq_lock(p
, &flags
);
3666 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3667 task_rq_unlock(rq
, p
, &flags
);
3673 * Return sum_exec_runtime for the thread group.
3674 * In case the task is currently running, return the sum plus current's
3675 * pending runtime that have not been accounted yet.
3677 * Note that the thread group might have other running tasks as well,
3678 * so the return value not includes other pending runtime that other
3679 * running tasks might have.
3681 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3683 struct task_cputime totals
;
3684 unsigned long flags
;
3688 rq
= task_rq_lock(p
, &flags
);
3689 thread_group_cputime(p
, &totals
);
3690 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3691 task_rq_unlock(rq
, p
, &flags
);
3697 * Account user cpu time to a process.
3698 * @p: the process that the cpu time gets accounted to
3699 * @cputime: the cpu time spent in user space since the last update
3700 * @cputime_scaled: cputime scaled by cpu frequency
3702 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3703 cputime_t cputime_scaled
)
3705 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3708 /* Add user time to process. */
3709 p
->utime
= cputime_add(p
->utime
, cputime
);
3710 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3711 account_group_user_time(p
, cputime
);
3713 /* Add user time to cpustat. */
3714 tmp
= cputime_to_cputime64(cputime
);
3715 if (TASK_NICE(p
) > 0)
3716 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3718 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3720 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3721 /* Account for user time used */
3722 acct_update_integrals(p
);
3726 * Account guest cpu time to a process.
3727 * @p: the process that the cpu time gets accounted to
3728 * @cputime: the cpu time spent in virtual machine since the last update
3729 * @cputime_scaled: cputime scaled by cpu frequency
3731 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3732 cputime_t cputime_scaled
)
3735 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3737 tmp
= cputime_to_cputime64(cputime
);
3739 /* Add guest time to process. */
3740 p
->utime
= cputime_add(p
->utime
, cputime
);
3741 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3742 account_group_user_time(p
, cputime
);
3743 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3745 /* Add guest time to cpustat. */
3746 if (TASK_NICE(p
) > 0) {
3747 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3748 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3750 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3751 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3756 * Account system cpu time to a process and desired cpustat field
3757 * @p: the process that the cpu time gets accounted to
3758 * @cputime: the cpu time spent in kernel space since the last update
3759 * @cputime_scaled: cputime scaled by cpu frequency
3760 * @target_cputime64: pointer to cpustat field that has to be updated
3763 void __account_system_time(struct task_struct
*p
, cputime_t cputime
,
3764 cputime_t cputime_scaled
, cputime64_t
*target_cputime64
)
3766 cputime64_t tmp
= cputime_to_cputime64(cputime
);
3768 /* Add system time to process. */
3769 p
->stime
= cputime_add(p
->stime
, cputime
);
3770 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3771 account_group_system_time(p
, cputime
);
3773 /* Add system time to cpustat. */
3774 *target_cputime64
= cputime64_add(*target_cputime64
, tmp
);
3775 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3777 /* Account for system time used */
3778 acct_update_integrals(p
);
3782 * Account system cpu time to a process.
3783 * @p: the process that the cpu time gets accounted to
3784 * @hardirq_offset: the offset to subtract from hardirq_count()
3785 * @cputime: the cpu time spent in kernel space since the last update
3786 * @cputime_scaled: cputime scaled by cpu frequency
3788 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3789 cputime_t cputime
, cputime_t cputime_scaled
)
3791 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3792 cputime64_t
*target_cputime64
;
3794 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3795 account_guest_time(p
, cputime
, cputime_scaled
);
3799 if (hardirq_count() - hardirq_offset
)
3800 target_cputime64
= &cpustat
->irq
;
3801 else if (in_serving_softirq())
3802 target_cputime64
= &cpustat
->softirq
;
3804 target_cputime64
= &cpustat
->system
;
3806 __account_system_time(p
, cputime
, cputime_scaled
, target_cputime64
);
3810 * Account for involuntary wait time.
3811 * @cputime: the cpu time spent in involuntary wait
3813 void account_steal_time(cputime_t cputime
)
3815 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3816 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3818 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3822 * Account for idle time.
3823 * @cputime: the cpu time spent in idle wait
3825 void account_idle_time(cputime_t cputime
)
3827 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3828 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3829 struct rq
*rq
= this_rq();
3831 if (atomic_read(&rq
->nr_iowait
) > 0)
3832 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3834 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3837 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3839 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3841 * Account a tick to a process and cpustat
3842 * @p: the process that the cpu time gets accounted to
3843 * @user_tick: is the tick from userspace
3844 * @rq: the pointer to rq
3846 * Tick demultiplexing follows the order
3847 * - pending hardirq update
3848 * - pending softirq update
3852 * - check for guest_time
3853 * - else account as system_time
3855 * Check for hardirq is done both for system and user time as there is
3856 * no timer going off while we are on hardirq and hence we may never get an
3857 * opportunity to update it solely in system time.
3858 * p->stime and friends are only updated on system time and not on irq
3859 * softirq as those do not count in task exec_runtime any more.
3861 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
3864 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3865 cputime64_t tmp
= cputime_to_cputime64(cputime_one_jiffy
);
3866 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3868 if (irqtime_account_hi_update()) {
3869 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3870 } else if (irqtime_account_si_update()) {
3871 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3872 } else if (this_cpu_ksoftirqd() == p
) {
3874 * ksoftirqd time do not get accounted in cpu_softirq_time.
3875 * So, we have to handle it separately here.
3876 * Also, p->stime needs to be updated for ksoftirqd.
3878 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
3880 } else if (user_tick
) {
3881 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3882 } else if (p
== rq
->idle
) {
3883 account_idle_time(cputime_one_jiffy
);
3884 } else if (p
->flags
& PF_VCPU
) { /* System time or guest time */
3885 account_guest_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3887 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
3892 static void irqtime_account_idle_ticks(int ticks
)
3895 struct rq
*rq
= this_rq();
3897 for (i
= 0; i
< ticks
; i
++)
3898 irqtime_account_process_tick(current
, 0, rq
);
3900 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3901 static void irqtime_account_idle_ticks(int ticks
) {}
3902 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
3904 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3907 * Account a single tick of cpu time.
3908 * @p: the process that the cpu time gets accounted to
3909 * @user_tick: indicates if the tick is a user or a system tick
3911 void account_process_tick(struct task_struct
*p
, int user_tick
)
3913 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3914 struct rq
*rq
= this_rq();
3916 if (sched_clock_irqtime
) {
3917 irqtime_account_process_tick(p
, user_tick
, rq
);
3922 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3923 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
3924 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
3927 account_idle_time(cputime_one_jiffy
);
3931 * Account multiple ticks of steal time.
3932 * @p: the process from which the cpu time has been stolen
3933 * @ticks: number of stolen ticks
3935 void account_steal_ticks(unsigned long ticks
)
3937 account_steal_time(jiffies_to_cputime(ticks
));
3941 * Account multiple ticks of idle time.
3942 * @ticks: number of stolen ticks
3944 void account_idle_ticks(unsigned long ticks
)
3947 if (sched_clock_irqtime
) {
3948 irqtime_account_idle_ticks(ticks
);
3952 account_idle_time(jiffies_to_cputime(ticks
));
3958 * Use precise platform statistics if available:
3960 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3961 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3967 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3969 struct task_cputime cputime
;
3971 thread_group_cputime(p
, &cputime
);
3973 *ut
= cputime
.utime
;
3974 *st
= cputime
.stime
;
3978 #ifndef nsecs_to_cputime
3979 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3982 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3984 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
3987 * Use CFS's precise accounting:
3989 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3995 do_div(temp
, total
);
3996 utime
= (cputime_t
)temp
;
4001 * Compare with previous values, to keep monotonicity:
4003 p
->prev_utime
= max(p
->prev_utime
, utime
);
4004 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
4006 *ut
= p
->prev_utime
;
4007 *st
= p
->prev_stime
;
4011 * Must be called with siglock held.
4013 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4015 struct signal_struct
*sig
= p
->signal
;
4016 struct task_cputime cputime
;
4017 cputime_t rtime
, utime
, total
;
4019 thread_group_cputime(p
, &cputime
);
4021 total
= cputime_add(cputime
.utime
, cputime
.stime
);
4022 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
4027 temp
*= cputime
.utime
;
4028 do_div(temp
, total
);
4029 utime
= (cputime_t
)temp
;
4033 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
4034 sig
->prev_stime
= max(sig
->prev_stime
,
4035 cputime_sub(rtime
, sig
->prev_utime
));
4037 *ut
= sig
->prev_utime
;
4038 *st
= sig
->prev_stime
;
4043 * This function gets called by the timer code, with HZ frequency.
4044 * We call it with interrupts disabled.
4046 void scheduler_tick(void)
4048 int cpu
= smp_processor_id();
4049 struct rq
*rq
= cpu_rq(cpu
);
4050 struct task_struct
*curr
= rq
->curr
;
4054 raw_spin_lock(&rq
->lock
);
4055 update_rq_clock(rq
);
4056 update_cpu_load_active(rq
);
4057 curr
->sched_class
->task_tick(rq
, curr
, 0);
4058 raw_spin_unlock(&rq
->lock
);
4060 perf_event_task_tick();
4063 rq
->idle_at_tick
= idle_cpu(cpu
);
4064 trigger_load_balance(rq
, cpu
);
4068 notrace
unsigned long get_parent_ip(unsigned long addr
)
4070 if (in_lock_functions(addr
)) {
4071 addr
= CALLER_ADDR2
;
4072 if (in_lock_functions(addr
))
4073 addr
= CALLER_ADDR3
;
4078 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4079 defined(CONFIG_PREEMPT_TRACER))
4081 void __kprobes
add_preempt_count(int val
)
4083 #ifdef CONFIG_DEBUG_PREEMPT
4087 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4090 preempt_count() += val
;
4091 #ifdef CONFIG_DEBUG_PREEMPT
4093 * Spinlock count overflowing soon?
4095 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4098 if (preempt_count() == val
)
4099 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4101 EXPORT_SYMBOL(add_preempt_count
);
4103 void __kprobes
sub_preempt_count(int val
)
4105 #ifdef CONFIG_DEBUG_PREEMPT
4109 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4112 * Is the spinlock portion underflowing?
4114 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4115 !(preempt_count() & PREEMPT_MASK
)))
4119 if (preempt_count() == val
)
4120 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4121 preempt_count() -= val
;
4123 EXPORT_SYMBOL(sub_preempt_count
);
4128 * Print scheduling while atomic bug:
4130 static noinline
void __schedule_bug(struct task_struct
*prev
)
4132 struct pt_regs
*regs
= get_irq_regs();
4134 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4135 prev
->comm
, prev
->pid
, preempt_count());
4137 debug_show_held_locks(prev
);
4139 if (irqs_disabled())
4140 print_irqtrace_events(prev
);
4149 * Various schedule()-time debugging checks and statistics:
4151 static inline void schedule_debug(struct task_struct
*prev
)
4154 * Test if we are atomic. Since do_exit() needs to call into
4155 * schedule() atomically, we ignore that path for now.
4156 * Otherwise, whine if we are scheduling when we should not be.
4158 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4159 __schedule_bug(prev
);
4161 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4163 schedstat_inc(this_rq(), sched_count
);
4166 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
4168 if (prev
->on_rq
|| rq
->skip_clock_update
< 0)
4169 update_rq_clock(rq
);
4170 prev
->sched_class
->put_prev_task(rq
, prev
);
4174 * Pick up the highest-prio task:
4176 static inline struct task_struct
*
4177 pick_next_task(struct rq
*rq
)
4179 const struct sched_class
*class;
4180 struct task_struct
*p
;
4183 * Optimization: we know that if all tasks are in
4184 * the fair class we can call that function directly:
4186 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4187 p
= fair_sched_class
.pick_next_task(rq
);
4192 for_each_class(class) {
4193 p
= class->pick_next_task(rq
);
4198 BUG(); /* the idle class will always have a runnable task */
4202 * schedule() is the main scheduler function.
4204 asmlinkage
void __sched
schedule(void)
4206 struct task_struct
*prev
, *next
;
4207 unsigned long *switch_count
;
4213 cpu
= smp_processor_id();
4215 rcu_note_context_switch(cpu
);
4218 schedule_debug(prev
);
4220 if (sched_feat(HRTICK
))
4223 raw_spin_lock_irq(&rq
->lock
);
4225 switch_count
= &prev
->nivcsw
;
4226 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4227 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
4228 prev
->state
= TASK_RUNNING
;
4230 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
4234 * If a worker went to sleep, notify and ask workqueue
4235 * whether it wants to wake up a task to maintain
4238 if (prev
->flags
& PF_WQ_WORKER
) {
4239 struct task_struct
*to_wakeup
;
4241 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
4243 try_to_wake_up_local(to_wakeup
);
4247 * If we are going to sleep and we have plugged IO
4248 * queued, make sure to submit it to avoid deadlocks.
4250 if (blk_needs_flush_plug(prev
)) {
4251 raw_spin_unlock(&rq
->lock
);
4252 blk_schedule_flush_plug(prev
);
4253 raw_spin_lock(&rq
->lock
);
4256 switch_count
= &prev
->nvcsw
;
4259 pre_schedule(rq
, prev
);
4261 if (unlikely(!rq
->nr_running
))
4262 idle_balance(cpu
, rq
);
4264 put_prev_task(rq
, prev
);
4265 next
= pick_next_task(rq
);
4266 clear_tsk_need_resched(prev
);
4267 rq
->skip_clock_update
= 0;
4269 if (likely(prev
!= next
)) {
4274 context_switch(rq
, prev
, next
); /* unlocks the rq */
4276 * The context switch have flipped the stack from under us
4277 * and restored the local variables which were saved when
4278 * this task called schedule() in the past. prev == current
4279 * is still correct, but it can be moved to another cpu/rq.
4281 cpu
= smp_processor_id();
4284 raw_spin_unlock_irq(&rq
->lock
);
4288 preempt_enable_no_resched();
4292 EXPORT_SYMBOL(schedule
);
4294 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4296 static inline bool owner_running(struct mutex
*lock
, struct task_struct
*owner
)
4301 if (lock
->owner
!= owner
)
4305 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4306 * lock->owner still matches owner, if that fails, owner might
4307 * point to free()d memory, if it still matches, the rcu_read_lock()
4308 * ensures the memory stays valid.
4312 ret
= owner
->on_cpu
;
4320 * Look out! "owner" is an entirely speculative pointer
4321 * access and not reliable.
4323 int mutex_spin_on_owner(struct mutex
*lock
, struct task_struct
*owner
)
4325 if (!sched_feat(OWNER_SPIN
))
4328 while (owner_running(lock
, owner
)) {
4332 arch_mutex_cpu_relax();
4336 * If the owner changed to another task there is likely
4337 * heavy contention, stop spinning.
4346 #ifdef CONFIG_PREEMPT
4348 * this is the entry point to schedule() from in-kernel preemption
4349 * off of preempt_enable. Kernel preemptions off return from interrupt
4350 * occur there and call schedule directly.
4352 asmlinkage
void __sched notrace
preempt_schedule(void)
4354 struct thread_info
*ti
= current_thread_info();
4357 * If there is a non-zero preempt_count or interrupts are disabled,
4358 * we do not want to preempt the current task. Just return..
4360 if (likely(ti
->preempt_count
|| irqs_disabled()))
4364 add_preempt_count_notrace(PREEMPT_ACTIVE
);
4366 sub_preempt_count_notrace(PREEMPT_ACTIVE
);
4369 * Check again in case we missed a preemption opportunity
4370 * between schedule and now.
4373 } while (need_resched());
4375 EXPORT_SYMBOL(preempt_schedule
);
4378 * this is the entry point to schedule() from kernel preemption
4379 * off of irq context.
4380 * Note, that this is called and return with irqs disabled. This will
4381 * protect us against recursive calling from irq.
4383 asmlinkage
void __sched
preempt_schedule_irq(void)
4385 struct thread_info
*ti
= current_thread_info();
4387 /* Catch callers which need to be fixed */
4388 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4391 add_preempt_count(PREEMPT_ACTIVE
);
4394 local_irq_disable();
4395 sub_preempt_count(PREEMPT_ACTIVE
);
4398 * Check again in case we missed a preemption opportunity
4399 * between schedule and now.
4402 } while (need_resched());
4405 #endif /* CONFIG_PREEMPT */
4407 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
4410 return try_to_wake_up(curr
->private, mode
, wake_flags
);
4412 EXPORT_SYMBOL(default_wake_function
);
4415 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4416 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4417 * number) then we wake all the non-exclusive tasks and one exclusive task.
4419 * There are circumstances in which we can try to wake a task which has already
4420 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4421 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4423 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4424 int nr_exclusive
, int wake_flags
, void *key
)
4426 wait_queue_t
*curr
, *next
;
4428 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4429 unsigned flags
= curr
->flags
;
4431 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
4432 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4438 * __wake_up - wake up threads blocked on a waitqueue.
4440 * @mode: which threads
4441 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4442 * @key: is directly passed to the wakeup function
4444 * It may be assumed that this function implies a write memory barrier before
4445 * changing the task state if and only if any tasks are woken up.
4447 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4448 int nr_exclusive
, void *key
)
4450 unsigned long flags
;
4452 spin_lock_irqsave(&q
->lock
, flags
);
4453 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4454 spin_unlock_irqrestore(&q
->lock
, flags
);
4456 EXPORT_SYMBOL(__wake_up
);
4459 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4461 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4463 __wake_up_common(q
, mode
, 1, 0, NULL
);
4465 EXPORT_SYMBOL_GPL(__wake_up_locked
);
4467 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
4469 __wake_up_common(q
, mode
, 1, 0, key
);
4471 EXPORT_SYMBOL_GPL(__wake_up_locked_key
);
4474 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4476 * @mode: which threads
4477 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4478 * @key: opaque value to be passed to wakeup targets
4480 * The sync wakeup differs that the waker knows that it will schedule
4481 * away soon, so while the target thread will be woken up, it will not
4482 * be migrated to another CPU - ie. the two threads are 'synchronized'
4483 * with each other. This can prevent needless bouncing between CPUs.
4485 * On UP it can prevent extra preemption.
4487 * It may be assumed that this function implies a write memory barrier before
4488 * changing the task state if and only if any tasks are woken up.
4490 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
4491 int nr_exclusive
, void *key
)
4493 unsigned long flags
;
4494 int wake_flags
= WF_SYNC
;
4499 if (unlikely(!nr_exclusive
))
4502 spin_lock_irqsave(&q
->lock
, flags
);
4503 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
4504 spin_unlock_irqrestore(&q
->lock
, flags
);
4506 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
4509 * __wake_up_sync - see __wake_up_sync_key()
4511 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4513 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
4515 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4518 * complete: - signals a single thread waiting on this completion
4519 * @x: holds the state of this particular completion
4521 * This will wake up a single thread waiting on this completion. Threads will be
4522 * awakened in the same order in which they were queued.
4524 * See also complete_all(), wait_for_completion() and related routines.
4526 * It may be assumed that this function implies a write memory barrier before
4527 * changing the task state if and only if any tasks are woken up.
4529 void complete(struct completion
*x
)
4531 unsigned long flags
;
4533 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4535 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4536 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4538 EXPORT_SYMBOL(complete
);
4541 * complete_all: - signals all threads waiting on this completion
4542 * @x: holds the state of this particular completion
4544 * This will wake up all threads waiting on this particular completion event.
4546 * It may be assumed that this function implies a write memory barrier before
4547 * changing the task state if and only if any tasks are woken up.
4549 void complete_all(struct completion
*x
)
4551 unsigned long flags
;
4553 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4554 x
->done
+= UINT_MAX
/2;
4555 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4556 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4558 EXPORT_SYMBOL(complete_all
);
4560 static inline long __sched
4561 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4564 DECLARE_WAITQUEUE(wait
, current
);
4566 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
4568 if (signal_pending_state(state
, current
)) {
4569 timeout
= -ERESTARTSYS
;
4572 __set_current_state(state
);
4573 spin_unlock_irq(&x
->wait
.lock
);
4574 timeout
= schedule_timeout(timeout
);
4575 spin_lock_irq(&x
->wait
.lock
);
4576 } while (!x
->done
&& timeout
);
4577 __remove_wait_queue(&x
->wait
, &wait
);
4582 return timeout
?: 1;
4586 wait_for_common(struct completion
*x
, long timeout
, int state
)
4590 spin_lock_irq(&x
->wait
.lock
);
4591 timeout
= do_wait_for_common(x
, timeout
, state
);
4592 spin_unlock_irq(&x
->wait
.lock
);
4597 * wait_for_completion: - waits for completion of a task
4598 * @x: holds the state of this particular completion
4600 * This waits to be signaled for completion of a specific task. It is NOT
4601 * interruptible and there is no timeout.
4603 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4604 * and interrupt capability. Also see complete().
4606 void __sched
wait_for_completion(struct completion
*x
)
4608 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4610 EXPORT_SYMBOL(wait_for_completion
);
4613 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4614 * @x: holds the state of this particular completion
4615 * @timeout: timeout value in jiffies
4617 * This waits for either a completion of a specific task to be signaled or for a
4618 * specified timeout to expire. The timeout is in jiffies. It is not
4621 unsigned long __sched
4622 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4624 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4626 EXPORT_SYMBOL(wait_for_completion_timeout
);
4629 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4630 * @x: holds the state of this particular completion
4632 * This waits for completion of a specific task to be signaled. It is
4635 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4637 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4638 if (t
== -ERESTARTSYS
)
4642 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4645 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4646 * @x: holds the state of this particular completion
4647 * @timeout: timeout value in jiffies
4649 * This waits for either a completion of a specific task to be signaled or for a
4650 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4653 wait_for_completion_interruptible_timeout(struct completion
*x
,
4654 unsigned long timeout
)
4656 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4658 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4661 * wait_for_completion_killable: - waits for completion of a task (killable)
4662 * @x: holds the state of this particular completion
4664 * This waits to be signaled for completion of a specific task. It can be
4665 * interrupted by a kill signal.
4667 int __sched
wait_for_completion_killable(struct completion
*x
)
4669 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4670 if (t
== -ERESTARTSYS
)
4674 EXPORT_SYMBOL(wait_for_completion_killable
);
4677 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4678 * @x: holds the state of this particular completion
4679 * @timeout: timeout value in jiffies
4681 * This waits for either a completion of a specific task to be
4682 * signaled or for a specified timeout to expire. It can be
4683 * interrupted by a kill signal. The timeout is in jiffies.
4686 wait_for_completion_killable_timeout(struct completion
*x
,
4687 unsigned long timeout
)
4689 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
4691 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
4694 * try_wait_for_completion - try to decrement a completion without blocking
4695 * @x: completion structure
4697 * Returns: 0 if a decrement cannot be done without blocking
4698 * 1 if a decrement succeeded.
4700 * If a completion is being used as a counting completion,
4701 * attempt to decrement the counter without blocking. This
4702 * enables us to avoid waiting if the resource the completion
4703 * is protecting is not available.
4705 bool try_wait_for_completion(struct completion
*x
)
4707 unsigned long flags
;
4710 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4715 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4718 EXPORT_SYMBOL(try_wait_for_completion
);
4721 * completion_done - Test to see if a completion has any waiters
4722 * @x: completion structure
4724 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4725 * 1 if there are no waiters.
4728 bool completion_done(struct completion
*x
)
4730 unsigned long flags
;
4733 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4736 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4739 EXPORT_SYMBOL(completion_done
);
4742 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4744 unsigned long flags
;
4747 init_waitqueue_entry(&wait
, current
);
4749 __set_current_state(state
);
4751 spin_lock_irqsave(&q
->lock
, flags
);
4752 __add_wait_queue(q
, &wait
);
4753 spin_unlock(&q
->lock
);
4754 timeout
= schedule_timeout(timeout
);
4755 spin_lock_irq(&q
->lock
);
4756 __remove_wait_queue(q
, &wait
);
4757 spin_unlock_irqrestore(&q
->lock
, flags
);
4762 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4764 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4766 EXPORT_SYMBOL(interruptible_sleep_on
);
4769 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4771 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4773 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4775 void __sched
sleep_on(wait_queue_head_t
*q
)
4777 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4779 EXPORT_SYMBOL(sleep_on
);
4781 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4783 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4785 EXPORT_SYMBOL(sleep_on_timeout
);
4787 #ifdef CONFIG_RT_MUTEXES
4790 * rt_mutex_setprio - set the current priority of a task
4792 * @prio: prio value (kernel-internal form)
4794 * This function changes the 'effective' priority of a task. It does
4795 * not touch ->normal_prio like __setscheduler().
4797 * Used by the rt_mutex code to implement priority inheritance logic.
4799 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4801 int oldprio
, on_rq
, running
;
4803 const struct sched_class
*prev_class
;
4805 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4807 rq
= __task_rq_lock(p
);
4809 trace_sched_pi_setprio(p
, prio
);
4811 prev_class
= p
->sched_class
;
4813 running
= task_current(rq
, p
);
4815 dequeue_task(rq
, p
, 0);
4817 p
->sched_class
->put_prev_task(rq
, p
);
4820 p
->sched_class
= &rt_sched_class
;
4822 p
->sched_class
= &fair_sched_class
;
4827 p
->sched_class
->set_curr_task(rq
);
4829 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
4831 check_class_changed(rq
, p
, prev_class
, oldprio
);
4832 __task_rq_unlock(rq
);
4837 void set_user_nice(struct task_struct
*p
, long nice
)
4839 int old_prio
, delta
, on_rq
;
4840 unsigned long flags
;
4843 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4846 * We have to be careful, if called from sys_setpriority(),
4847 * the task might be in the middle of scheduling on another CPU.
4849 rq
= task_rq_lock(p
, &flags
);
4851 * The RT priorities are set via sched_setscheduler(), but we still
4852 * allow the 'normal' nice value to be set - but as expected
4853 * it wont have any effect on scheduling until the task is
4854 * SCHED_FIFO/SCHED_RR:
4856 if (task_has_rt_policy(p
)) {
4857 p
->static_prio
= NICE_TO_PRIO(nice
);
4862 dequeue_task(rq
, p
, 0);
4864 p
->static_prio
= NICE_TO_PRIO(nice
);
4867 p
->prio
= effective_prio(p
);
4868 delta
= p
->prio
- old_prio
;
4871 enqueue_task(rq
, p
, 0);
4873 * If the task increased its priority or is running and
4874 * lowered its priority, then reschedule its CPU:
4876 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4877 resched_task(rq
->curr
);
4880 task_rq_unlock(rq
, p
, &flags
);
4882 EXPORT_SYMBOL(set_user_nice
);
4885 * can_nice - check if a task can reduce its nice value
4889 int can_nice(const struct task_struct
*p
, const int nice
)
4891 /* convert nice value [19,-20] to rlimit style value [1,40] */
4892 int nice_rlim
= 20 - nice
;
4894 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4895 capable(CAP_SYS_NICE
));
4898 #ifdef __ARCH_WANT_SYS_NICE
4901 * sys_nice - change the priority of the current process.
4902 * @increment: priority increment
4904 * sys_setpriority is a more generic, but much slower function that
4905 * does similar things.
4907 SYSCALL_DEFINE1(nice
, int, increment
)
4912 * Setpriority might change our priority at the same moment.
4913 * We don't have to worry. Conceptually one call occurs first
4914 * and we have a single winner.
4916 if (increment
< -40)
4921 nice
= TASK_NICE(current
) + increment
;
4927 if (increment
< 0 && !can_nice(current
, nice
))
4930 retval
= security_task_setnice(current
, nice
);
4934 set_user_nice(current
, nice
);
4941 * task_prio - return the priority value of a given task.
4942 * @p: the task in question.
4944 * This is the priority value as seen by users in /proc.
4945 * RT tasks are offset by -200. Normal tasks are centered
4946 * around 0, value goes from -16 to +15.
4948 int task_prio(const struct task_struct
*p
)
4950 return p
->prio
- MAX_RT_PRIO
;
4954 * task_nice - return the nice value of a given task.
4955 * @p: the task in question.
4957 int task_nice(const struct task_struct
*p
)
4959 return TASK_NICE(p
);
4961 EXPORT_SYMBOL(task_nice
);
4964 * idle_cpu - is a given cpu idle currently?
4965 * @cpu: the processor in question.
4967 int idle_cpu(int cpu
)
4969 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4973 * idle_task - return the idle task for a given cpu.
4974 * @cpu: the processor in question.
4976 struct task_struct
*idle_task(int cpu
)
4978 return cpu_rq(cpu
)->idle
;
4982 * find_process_by_pid - find a process with a matching PID value.
4983 * @pid: the pid in question.
4985 static struct task_struct
*find_process_by_pid(pid_t pid
)
4987 return pid
? find_task_by_vpid(pid
) : current
;
4990 /* Actually do priority change: must hold rq lock. */
4992 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4995 p
->rt_priority
= prio
;
4996 p
->normal_prio
= normal_prio(p
);
4997 /* we are holding p->pi_lock already */
4998 p
->prio
= rt_mutex_getprio(p
);
4999 if (rt_prio(p
->prio
))
5000 p
->sched_class
= &rt_sched_class
;
5002 p
->sched_class
= &fair_sched_class
;
5007 * check the target process has a UID that matches the current process's
5009 static bool check_same_owner(struct task_struct
*p
)
5011 const struct cred
*cred
= current_cred(), *pcred
;
5015 pcred
= __task_cred(p
);
5016 if (cred
->user
->user_ns
== pcred
->user
->user_ns
)
5017 match
= (cred
->euid
== pcred
->euid
||
5018 cred
->euid
== pcred
->uid
);
5025 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
5026 const struct sched_param
*param
, bool user
)
5028 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5029 unsigned long flags
;
5030 const struct sched_class
*prev_class
;
5034 /* may grab non-irq protected spin_locks */
5035 BUG_ON(in_interrupt());
5037 /* double check policy once rq lock held */
5039 reset_on_fork
= p
->sched_reset_on_fork
;
5040 policy
= oldpolicy
= p
->policy
;
5042 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
5043 policy
&= ~SCHED_RESET_ON_FORK
;
5045 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5046 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5047 policy
!= SCHED_IDLE
)
5052 * Valid priorities for SCHED_FIFO and SCHED_RR are
5053 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5054 * SCHED_BATCH and SCHED_IDLE is 0.
5056 if (param
->sched_priority
< 0 ||
5057 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5058 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5060 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5064 * Allow unprivileged RT tasks to decrease priority:
5066 if (user
&& !capable(CAP_SYS_NICE
)) {
5067 if (rt_policy(policy
)) {
5068 unsigned long rlim_rtprio
=
5069 task_rlimit(p
, RLIMIT_RTPRIO
);
5071 /* can't set/change the rt policy */
5072 if (policy
!= p
->policy
&& !rlim_rtprio
)
5075 /* can't increase priority */
5076 if (param
->sched_priority
> p
->rt_priority
&&
5077 param
->sched_priority
> rlim_rtprio
)
5082 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5083 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5085 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
5086 if (!can_nice(p
, TASK_NICE(p
)))
5090 /* can't change other user's priorities */
5091 if (!check_same_owner(p
))
5094 /* Normal users shall not reset the sched_reset_on_fork flag */
5095 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
5100 retval
= security_task_setscheduler(p
);
5106 * make sure no PI-waiters arrive (or leave) while we are
5107 * changing the priority of the task:
5109 * To be able to change p->policy safely, the appropriate
5110 * runqueue lock must be held.
5112 rq
= task_rq_lock(p
, &flags
);
5115 * Changing the policy of the stop threads its a very bad idea
5117 if (p
== rq
->stop
) {
5118 task_rq_unlock(rq
, p
, &flags
);
5123 * If not changing anything there's no need to proceed further:
5125 if (unlikely(policy
== p
->policy
&& (!rt_policy(policy
) ||
5126 param
->sched_priority
== p
->rt_priority
))) {
5128 __task_rq_unlock(rq
);
5129 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5133 #ifdef CONFIG_RT_GROUP_SCHED
5136 * Do not allow realtime tasks into groups that have no runtime
5139 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5140 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
5141 !task_group_is_autogroup(task_group(p
))) {
5142 task_rq_unlock(rq
, p
, &flags
);
5148 /* recheck policy now with rq lock held */
5149 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5150 policy
= oldpolicy
= -1;
5151 task_rq_unlock(rq
, p
, &flags
);
5155 running
= task_current(rq
, p
);
5157 deactivate_task(rq
, p
, 0);
5159 p
->sched_class
->put_prev_task(rq
, p
);
5161 p
->sched_reset_on_fork
= reset_on_fork
;
5164 prev_class
= p
->sched_class
;
5165 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5168 p
->sched_class
->set_curr_task(rq
);
5170 activate_task(rq
, p
, 0);
5172 check_class_changed(rq
, p
, prev_class
, oldprio
);
5173 task_rq_unlock(rq
, p
, &flags
);
5175 rt_mutex_adjust_pi(p
);
5181 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5182 * @p: the task in question.
5183 * @policy: new policy.
5184 * @param: structure containing the new RT priority.
5186 * NOTE that the task may be already dead.
5188 int sched_setscheduler(struct task_struct
*p
, int policy
,
5189 const struct sched_param
*param
)
5191 return __sched_setscheduler(p
, policy
, param
, true);
5193 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5196 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5197 * @p: the task in question.
5198 * @policy: new policy.
5199 * @param: structure containing the new RT priority.
5201 * Just like sched_setscheduler, only don't bother checking if the
5202 * current context has permission. For example, this is needed in
5203 * stop_machine(): we create temporary high priority worker threads,
5204 * but our caller might not have that capability.
5206 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5207 const struct sched_param
*param
)
5209 return __sched_setscheduler(p
, policy
, param
, false);
5213 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5215 struct sched_param lparam
;
5216 struct task_struct
*p
;
5219 if (!param
|| pid
< 0)
5221 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5226 p
= find_process_by_pid(pid
);
5228 retval
= sched_setscheduler(p
, policy
, &lparam
);
5235 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5236 * @pid: the pid in question.
5237 * @policy: new policy.
5238 * @param: structure containing the new RT priority.
5240 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
5241 struct sched_param __user
*, param
)
5243 /* negative values for policy are not valid */
5247 return do_sched_setscheduler(pid
, policy
, param
);
5251 * sys_sched_setparam - set/change the RT priority of a thread
5252 * @pid: the pid in question.
5253 * @param: structure containing the new RT priority.
5255 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5257 return do_sched_setscheduler(pid
, -1, param
);
5261 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5262 * @pid: the pid in question.
5264 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
5266 struct task_struct
*p
;
5274 p
= find_process_by_pid(pid
);
5276 retval
= security_task_getscheduler(p
);
5279 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
5286 * sys_sched_getparam - get the RT priority of a thread
5287 * @pid: the pid in question.
5288 * @param: structure containing the RT priority.
5290 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5292 struct sched_param lp
;
5293 struct task_struct
*p
;
5296 if (!param
|| pid
< 0)
5300 p
= find_process_by_pid(pid
);
5305 retval
= security_task_getscheduler(p
);
5309 lp
.sched_priority
= p
->rt_priority
;
5313 * This one might sleep, we cannot do it with a spinlock held ...
5315 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5324 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5326 cpumask_var_t cpus_allowed
, new_mask
;
5327 struct task_struct
*p
;
5333 p
= find_process_by_pid(pid
);
5340 /* Prevent p going away */
5344 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5348 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5350 goto out_free_cpus_allowed
;
5353 if (!check_same_owner(p
) && !task_ns_capable(p
, CAP_SYS_NICE
))
5356 retval
= security_task_setscheduler(p
);
5360 cpuset_cpus_allowed(p
, cpus_allowed
);
5361 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5363 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5366 cpuset_cpus_allowed(p
, cpus_allowed
);
5367 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5369 * We must have raced with a concurrent cpuset
5370 * update. Just reset the cpus_allowed to the
5371 * cpuset's cpus_allowed
5373 cpumask_copy(new_mask
, cpus_allowed
);
5378 free_cpumask_var(new_mask
);
5379 out_free_cpus_allowed
:
5380 free_cpumask_var(cpus_allowed
);
5387 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5388 struct cpumask
*new_mask
)
5390 if (len
< cpumask_size())
5391 cpumask_clear(new_mask
);
5392 else if (len
> cpumask_size())
5393 len
= cpumask_size();
5395 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5399 * sys_sched_setaffinity - set the cpu affinity of a process
5400 * @pid: pid of the process
5401 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5402 * @user_mask_ptr: user-space pointer to the new cpu mask
5404 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5405 unsigned long __user
*, user_mask_ptr
)
5407 cpumask_var_t new_mask
;
5410 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5413 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5415 retval
= sched_setaffinity(pid
, new_mask
);
5416 free_cpumask_var(new_mask
);
5420 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5422 struct task_struct
*p
;
5423 unsigned long flags
;
5430 p
= find_process_by_pid(pid
);
5434 retval
= security_task_getscheduler(p
);
5438 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
5439 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5440 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5450 * sys_sched_getaffinity - get the cpu affinity of a process
5451 * @pid: pid of the process
5452 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5453 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5455 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5456 unsigned long __user
*, user_mask_ptr
)
5461 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
5463 if (len
& (sizeof(unsigned long)-1))
5466 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5469 ret
= sched_getaffinity(pid
, mask
);
5471 size_t retlen
= min_t(size_t, len
, cpumask_size());
5473 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
5478 free_cpumask_var(mask
);
5484 * sys_sched_yield - yield the current processor to other threads.
5486 * This function yields the current CPU to other tasks. If there are no
5487 * other threads running on this CPU then this function will return.
5489 SYSCALL_DEFINE0(sched_yield
)
5491 struct rq
*rq
= this_rq_lock();
5493 schedstat_inc(rq
, yld_count
);
5494 current
->sched_class
->yield_task(rq
);
5497 * Since we are going to call schedule() anyway, there's
5498 * no need to preempt or enable interrupts:
5500 __release(rq
->lock
);
5501 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5502 do_raw_spin_unlock(&rq
->lock
);
5503 preempt_enable_no_resched();
5510 static inline int should_resched(void)
5512 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
5515 static void __cond_resched(void)
5517 add_preempt_count(PREEMPT_ACTIVE
);
5519 sub_preempt_count(PREEMPT_ACTIVE
);
5522 int __sched
_cond_resched(void)
5524 if (should_resched()) {
5530 EXPORT_SYMBOL(_cond_resched
);
5533 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5534 * call schedule, and on return reacquire the lock.
5536 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5537 * operations here to prevent schedule() from being called twice (once via
5538 * spin_unlock(), once by hand).
5540 int __cond_resched_lock(spinlock_t
*lock
)
5542 int resched
= should_resched();
5545 lockdep_assert_held(lock
);
5547 if (spin_needbreak(lock
) || resched
) {
5558 EXPORT_SYMBOL(__cond_resched_lock
);
5560 int __sched
__cond_resched_softirq(void)
5562 BUG_ON(!in_softirq());
5564 if (should_resched()) {
5572 EXPORT_SYMBOL(__cond_resched_softirq
);
5575 * yield - yield the current processor to other threads.
5577 * This is a shortcut for kernel-space yielding - it marks the
5578 * thread runnable and calls sys_sched_yield().
5580 void __sched
yield(void)
5582 set_current_state(TASK_RUNNING
);
5585 EXPORT_SYMBOL(yield
);
5588 * yield_to - yield the current processor to another thread in
5589 * your thread group, or accelerate that thread toward the
5590 * processor it's on.
5592 * @preempt: whether task preemption is allowed or not
5594 * It's the caller's job to ensure that the target task struct
5595 * can't go away on us before we can do any checks.
5597 * Returns true if we indeed boosted the target task.
5599 bool __sched
yield_to(struct task_struct
*p
, bool preempt
)
5601 struct task_struct
*curr
= current
;
5602 struct rq
*rq
, *p_rq
;
5603 unsigned long flags
;
5606 local_irq_save(flags
);
5611 double_rq_lock(rq
, p_rq
);
5612 while (task_rq(p
) != p_rq
) {
5613 double_rq_unlock(rq
, p_rq
);
5617 if (!curr
->sched_class
->yield_to_task
)
5620 if (curr
->sched_class
!= p
->sched_class
)
5623 if (task_running(p_rq
, p
) || p
->state
)
5626 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
5628 schedstat_inc(rq
, yld_count
);
5630 * Make p's CPU reschedule; pick_next_entity takes care of
5633 if (preempt
&& rq
!= p_rq
)
5634 resched_task(p_rq
->curr
);
5638 double_rq_unlock(rq
, p_rq
);
5639 local_irq_restore(flags
);
5646 EXPORT_SYMBOL_GPL(yield_to
);
5649 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5650 * that process accounting knows that this is a task in IO wait state.
5652 void __sched
io_schedule(void)
5654 struct rq
*rq
= raw_rq();
5656 delayacct_blkio_start();
5657 atomic_inc(&rq
->nr_iowait
);
5658 blk_flush_plug(current
);
5659 current
->in_iowait
= 1;
5661 current
->in_iowait
= 0;
5662 atomic_dec(&rq
->nr_iowait
);
5663 delayacct_blkio_end();
5665 EXPORT_SYMBOL(io_schedule
);
5667 long __sched
io_schedule_timeout(long timeout
)
5669 struct rq
*rq
= raw_rq();
5672 delayacct_blkio_start();
5673 atomic_inc(&rq
->nr_iowait
);
5674 blk_flush_plug(current
);
5675 current
->in_iowait
= 1;
5676 ret
= schedule_timeout(timeout
);
5677 current
->in_iowait
= 0;
5678 atomic_dec(&rq
->nr_iowait
);
5679 delayacct_blkio_end();
5684 * sys_sched_get_priority_max - return maximum RT priority.
5685 * @policy: scheduling class.
5687 * this syscall returns the maximum rt_priority that can be used
5688 * by a given scheduling class.
5690 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5697 ret
= MAX_USER_RT_PRIO
-1;
5709 * sys_sched_get_priority_min - return minimum RT priority.
5710 * @policy: scheduling class.
5712 * this syscall returns the minimum rt_priority that can be used
5713 * by a given scheduling class.
5715 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5733 * sys_sched_rr_get_interval - return the default timeslice of a process.
5734 * @pid: pid of the process.
5735 * @interval: userspace pointer to the timeslice value.
5737 * this syscall writes the default timeslice value of a given process
5738 * into the user-space timespec buffer. A value of '0' means infinity.
5740 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5741 struct timespec __user
*, interval
)
5743 struct task_struct
*p
;
5744 unsigned int time_slice
;
5745 unsigned long flags
;
5755 p
= find_process_by_pid(pid
);
5759 retval
= security_task_getscheduler(p
);
5763 rq
= task_rq_lock(p
, &flags
);
5764 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5765 task_rq_unlock(rq
, p
, &flags
);
5768 jiffies_to_timespec(time_slice
, &t
);
5769 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5777 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5779 void sched_show_task(struct task_struct
*p
)
5781 unsigned long free
= 0;
5784 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5785 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
5786 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5787 #if BITS_PER_LONG == 32
5788 if (state
== TASK_RUNNING
)
5789 printk(KERN_CONT
" running ");
5791 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5793 if (state
== TASK_RUNNING
)
5794 printk(KERN_CONT
" running task ");
5796 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5798 #ifdef CONFIG_DEBUG_STACK_USAGE
5799 free
= stack_not_used(p
);
5801 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5802 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5803 (unsigned long)task_thread_info(p
)->flags
);
5805 show_stack(p
, NULL
);
5808 void show_state_filter(unsigned long state_filter
)
5810 struct task_struct
*g
, *p
;
5812 #if BITS_PER_LONG == 32
5814 " task PC stack pid father\n");
5817 " task PC stack pid father\n");
5819 read_lock(&tasklist_lock
);
5820 do_each_thread(g
, p
) {
5822 * reset the NMI-timeout, listing all files on a slow
5823 * console might take a lot of time:
5825 touch_nmi_watchdog();
5826 if (!state_filter
|| (p
->state
& state_filter
))
5828 } while_each_thread(g
, p
);
5830 touch_all_softlockup_watchdogs();
5832 #ifdef CONFIG_SCHED_DEBUG
5833 sysrq_sched_debug_show();
5835 read_unlock(&tasklist_lock
);
5837 * Only show locks if all tasks are dumped:
5840 debug_show_all_locks();
5843 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5845 idle
->sched_class
= &idle_sched_class
;
5849 * init_idle - set up an idle thread for a given CPU
5850 * @idle: task in question
5851 * @cpu: cpu the idle task belongs to
5853 * NOTE: this function does not set the idle thread's NEED_RESCHED
5854 * flag, to make booting more robust.
5856 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5858 struct rq
*rq
= cpu_rq(cpu
);
5859 unsigned long flags
;
5861 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5864 idle
->state
= TASK_RUNNING
;
5865 idle
->se
.exec_start
= sched_clock();
5867 do_set_cpus_allowed(idle
, cpumask_of(cpu
));
5869 * We're having a chicken and egg problem, even though we are
5870 * holding rq->lock, the cpu isn't yet set to this cpu so the
5871 * lockdep check in task_group() will fail.
5873 * Similar case to sched_fork(). / Alternatively we could
5874 * use task_rq_lock() here and obtain the other rq->lock.
5879 __set_task_cpu(idle
, cpu
);
5882 rq
->curr
= rq
->idle
= idle
;
5883 #if defined(CONFIG_SMP)
5886 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5888 /* Set the preempt count _outside_ the spinlocks! */
5889 task_thread_info(idle
)->preempt_count
= 0;
5892 * The idle tasks have their own, simple scheduling class:
5894 idle
->sched_class
= &idle_sched_class
;
5895 ftrace_graph_init_idle_task(idle
, cpu
);
5899 * In a system that switches off the HZ timer nohz_cpu_mask
5900 * indicates which cpus entered this state. This is used
5901 * in the rcu update to wait only for active cpus. For system
5902 * which do not switch off the HZ timer nohz_cpu_mask should
5903 * always be CPU_BITS_NONE.
5905 cpumask_var_t nohz_cpu_mask
;
5908 * Increase the granularity value when there are more CPUs,
5909 * because with more CPUs the 'effective latency' as visible
5910 * to users decreases. But the relationship is not linear,
5911 * so pick a second-best guess by going with the log2 of the
5914 * This idea comes from the SD scheduler of Con Kolivas:
5916 static int get_update_sysctl_factor(void)
5918 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5919 unsigned int factor
;
5921 switch (sysctl_sched_tunable_scaling
) {
5922 case SCHED_TUNABLESCALING_NONE
:
5925 case SCHED_TUNABLESCALING_LINEAR
:
5928 case SCHED_TUNABLESCALING_LOG
:
5930 factor
= 1 + ilog2(cpus
);
5937 static void update_sysctl(void)
5939 unsigned int factor
= get_update_sysctl_factor();
5941 #define SET_SYSCTL(name) \
5942 (sysctl_##name = (factor) * normalized_sysctl_##name)
5943 SET_SYSCTL(sched_min_granularity
);
5944 SET_SYSCTL(sched_latency
);
5945 SET_SYSCTL(sched_wakeup_granularity
);
5949 static inline void sched_init_granularity(void)
5955 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
5957 if (p
->sched_class
&& p
->sched_class
->set_cpus_allowed
)
5958 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5960 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5961 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
5966 * This is how migration works:
5968 * 1) we invoke migration_cpu_stop() on the target CPU using
5970 * 2) stopper starts to run (implicitly forcing the migrated thread
5972 * 3) it checks whether the migrated task is still in the wrong runqueue.
5973 * 4) if it's in the wrong runqueue then the migration thread removes
5974 * it and puts it into the right queue.
5975 * 5) stopper completes and stop_one_cpu() returns and the migration
5980 * Change a given task's CPU affinity. Migrate the thread to a
5981 * proper CPU and schedule it away if the CPU it's executing on
5982 * is removed from the allowed bitmask.
5984 * NOTE: the caller must have a valid reference to the task, the
5985 * task must not exit() & deallocate itself prematurely. The
5986 * call is not atomic; no spinlocks may be held.
5988 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5990 unsigned long flags
;
5992 unsigned int dest_cpu
;
5995 rq
= task_rq_lock(p
, &flags
);
5997 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
6000 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
6005 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
)) {
6010 do_set_cpus_allowed(p
, new_mask
);
6012 /* Can the task run on the task's current CPU? If so, we're done */
6013 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
6016 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
6018 struct migration_arg arg
= { p
, dest_cpu
};
6019 /* Need help from migration thread: drop lock and wait. */
6020 task_rq_unlock(rq
, p
, &flags
);
6021 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
6022 tlb_migrate_finish(p
->mm
);
6026 task_rq_unlock(rq
, p
, &flags
);
6030 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6033 * Move (not current) task off this cpu, onto dest cpu. We're doing
6034 * this because either it can't run here any more (set_cpus_allowed()
6035 * away from this CPU, or CPU going down), or because we're
6036 * attempting to rebalance this task on exec (sched_exec).
6038 * So we race with normal scheduler movements, but that's OK, as long
6039 * as the task is no longer on this CPU.
6041 * Returns non-zero if task was successfully migrated.
6043 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6045 struct rq
*rq_dest
, *rq_src
;
6048 if (unlikely(!cpu_active(dest_cpu
)))
6051 rq_src
= cpu_rq(src_cpu
);
6052 rq_dest
= cpu_rq(dest_cpu
);
6054 raw_spin_lock(&p
->pi_lock
);
6055 double_rq_lock(rq_src
, rq_dest
);
6056 /* Already moved. */
6057 if (task_cpu(p
) != src_cpu
)
6059 /* Affinity changed (again). */
6060 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
6064 * If we're not on a rq, the next wake-up will ensure we're
6068 deactivate_task(rq_src
, p
, 0);
6069 set_task_cpu(p
, dest_cpu
);
6070 activate_task(rq_dest
, p
, 0);
6071 check_preempt_curr(rq_dest
, p
, 0);
6076 double_rq_unlock(rq_src
, rq_dest
);
6077 raw_spin_unlock(&p
->pi_lock
);
6082 * migration_cpu_stop - this will be executed by a highprio stopper thread
6083 * and performs thread migration by bumping thread off CPU then
6084 * 'pushing' onto another runqueue.
6086 static int migration_cpu_stop(void *data
)
6088 struct migration_arg
*arg
= data
;
6091 * The original target cpu might have gone down and we might
6092 * be on another cpu but it doesn't matter.
6094 local_irq_disable();
6095 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
6100 #ifdef CONFIG_HOTPLUG_CPU
6103 * Ensures that the idle task is using init_mm right before its cpu goes
6106 void idle_task_exit(void)
6108 struct mm_struct
*mm
= current
->active_mm
;
6110 BUG_ON(cpu_online(smp_processor_id()));
6113 switch_mm(mm
, &init_mm
, current
);
6118 * While a dead CPU has no uninterruptible tasks queued at this point,
6119 * it might still have a nonzero ->nr_uninterruptible counter, because
6120 * for performance reasons the counter is not stricly tracking tasks to
6121 * their home CPUs. So we just add the counter to another CPU's counter,
6122 * to keep the global sum constant after CPU-down:
6124 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6126 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
6128 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6129 rq_src
->nr_uninterruptible
= 0;
6133 * remove the tasks which were accounted by rq from calc_load_tasks.
6135 static void calc_global_load_remove(struct rq
*rq
)
6137 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
6138 rq
->calc_load_active
= 0;
6142 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6143 * try_to_wake_up()->select_task_rq().
6145 * Called with rq->lock held even though we'er in stop_machine() and
6146 * there's no concurrency possible, we hold the required locks anyway
6147 * because of lock validation efforts.
6149 static void migrate_tasks(unsigned int dead_cpu
)
6151 struct rq
*rq
= cpu_rq(dead_cpu
);
6152 struct task_struct
*next
, *stop
= rq
->stop
;
6156 * Fudge the rq selection such that the below task selection loop
6157 * doesn't get stuck on the currently eligible stop task.
6159 * We're currently inside stop_machine() and the rq is either stuck
6160 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6161 * either way we should never end up calling schedule() until we're
6168 * There's this thread running, bail when that's the only
6171 if (rq
->nr_running
== 1)
6174 next
= pick_next_task(rq
);
6176 next
->sched_class
->put_prev_task(rq
, next
);
6178 /* Find suitable destination for @next, with force if needed. */
6179 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
6180 raw_spin_unlock(&rq
->lock
);
6182 __migrate_task(next
, dead_cpu
, dest_cpu
);
6184 raw_spin_lock(&rq
->lock
);
6190 #endif /* CONFIG_HOTPLUG_CPU */
6192 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6194 static struct ctl_table sd_ctl_dir
[] = {
6196 .procname
= "sched_domain",
6202 static struct ctl_table sd_ctl_root
[] = {
6204 .procname
= "kernel",
6206 .child
= sd_ctl_dir
,
6211 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6213 struct ctl_table
*entry
=
6214 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6219 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6221 struct ctl_table
*entry
;
6224 * In the intermediate directories, both the child directory and
6225 * procname are dynamically allocated and could fail but the mode
6226 * will always be set. In the lowest directory the names are
6227 * static strings and all have proc handlers.
6229 for (entry
= *tablep
; entry
->mode
; entry
++) {
6231 sd_free_ctl_entry(&entry
->child
);
6232 if (entry
->proc_handler
== NULL
)
6233 kfree(entry
->procname
);
6241 set_table_entry(struct ctl_table
*entry
,
6242 const char *procname
, void *data
, int maxlen
,
6243 mode_t mode
, proc_handler
*proc_handler
)
6245 entry
->procname
= procname
;
6247 entry
->maxlen
= maxlen
;
6249 entry
->proc_handler
= proc_handler
;
6252 static struct ctl_table
*
6253 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6255 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6260 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6261 sizeof(long), 0644, proc_doulongvec_minmax
);
6262 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6263 sizeof(long), 0644, proc_doulongvec_minmax
);
6264 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6265 sizeof(int), 0644, proc_dointvec_minmax
);
6266 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6267 sizeof(int), 0644, proc_dointvec_minmax
);
6268 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6269 sizeof(int), 0644, proc_dointvec_minmax
);
6270 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6271 sizeof(int), 0644, proc_dointvec_minmax
);
6272 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6273 sizeof(int), 0644, proc_dointvec_minmax
);
6274 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6275 sizeof(int), 0644, proc_dointvec_minmax
);
6276 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6277 sizeof(int), 0644, proc_dointvec_minmax
);
6278 set_table_entry(&table
[9], "cache_nice_tries",
6279 &sd
->cache_nice_tries
,
6280 sizeof(int), 0644, proc_dointvec_minmax
);
6281 set_table_entry(&table
[10], "flags", &sd
->flags
,
6282 sizeof(int), 0644, proc_dointvec_minmax
);
6283 set_table_entry(&table
[11], "name", sd
->name
,
6284 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6285 /* &table[12] is terminator */
6290 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6292 struct ctl_table
*entry
, *table
;
6293 struct sched_domain
*sd
;
6294 int domain_num
= 0, i
;
6297 for_each_domain(cpu
, sd
)
6299 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6304 for_each_domain(cpu
, sd
) {
6305 snprintf(buf
, 32, "domain%d", i
);
6306 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6308 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6315 static struct ctl_table_header
*sd_sysctl_header
;
6316 static void register_sched_domain_sysctl(void)
6318 int i
, cpu_num
= num_possible_cpus();
6319 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6322 WARN_ON(sd_ctl_dir
[0].child
);
6323 sd_ctl_dir
[0].child
= entry
;
6328 for_each_possible_cpu(i
) {
6329 snprintf(buf
, 32, "cpu%d", i
);
6330 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6332 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6336 WARN_ON(sd_sysctl_header
);
6337 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6340 /* may be called multiple times per register */
6341 static void unregister_sched_domain_sysctl(void)
6343 if (sd_sysctl_header
)
6344 unregister_sysctl_table(sd_sysctl_header
);
6345 sd_sysctl_header
= NULL
;
6346 if (sd_ctl_dir
[0].child
)
6347 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6350 static void register_sched_domain_sysctl(void)
6353 static void unregister_sched_domain_sysctl(void)
6358 static void set_rq_online(struct rq
*rq
)
6361 const struct sched_class
*class;
6363 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6366 for_each_class(class) {
6367 if (class->rq_online
)
6368 class->rq_online(rq
);
6373 static void set_rq_offline(struct rq
*rq
)
6376 const struct sched_class
*class;
6378 for_each_class(class) {
6379 if (class->rq_offline
)
6380 class->rq_offline(rq
);
6383 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6389 * migration_call - callback that gets triggered when a CPU is added.
6390 * Here we can start up the necessary migration thread for the new CPU.
6392 static int __cpuinit
6393 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6395 int cpu
= (long)hcpu
;
6396 unsigned long flags
;
6397 struct rq
*rq
= cpu_rq(cpu
);
6399 switch (action
& ~CPU_TASKS_FROZEN
) {
6401 case CPU_UP_PREPARE
:
6402 rq
->calc_load_update
= calc_load_update
;
6406 /* Update our root-domain */
6407 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6409 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6413 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6416 #ifdef CONFIG_HOTPLUG_CPU
6418 sched_ttwu_pending();
6419 /* Update our root-domain */
6420 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6422 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6426 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
6427 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6429 migrate_nr_uninterruptible(rq
);
6430 calc_global_load_remove(rq
);
6435 update_max_interval();
6441 * Register at high priority so that task migration (migrate_all_tasks)
6442 * happens before everything else. This has to be lower priority than
6443 * the notifier in the perf_event subsystem, though.
6445 static struct notifier_block __cpuinitdata migration_notifier
= {
6446 .notifier_call
= migration_call
,
6447 .priority
= CPU_PRI_MIGRATION
,
6450 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
6451 unsigned long action
, void *hcpu
)
6453 switch (action
& ~CPU_TASKS_FROZEN
) {
6455 case CPU_DOWN_FAILED
:
6456 set_cpu_active((long)hcpu
, true);
6463 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
6464 unsigned long action
, void *hcpu
)
6466 switch (action
& ~CPU_TASKS_FROZEN
) {
6467 case CPU_DOWN_PREPARE
:
6468 set_cpu_active((long)hcpu
, false);
6475 static int __init
migration_init(void)
6477 void *cpu
= (void *)(long)smp_processor_id();
6480 /* Initialize migration for the boot CPU */
6481 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6482 BUG_ON(err
== NOTIFY_BAD
);
6483 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6484 register_cpu_notifier(&migration_notifier
);
6486 /* Register cpu active notifiers */
6487 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
6488 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
6492 early_initcall(migration_init
);
6497 static cpumask_var_t sched_domains_tmpmask
; /* sched_domains_mutex */
6499 #ifdef CONFIG_SCHED_DEBUG
6501 static __read_mostly
int sched_domain_debug_enabled
;
6503 static int __init
sched_domain_debug_setup(char *str
)
6505 sched_domain_debug_enabled
= 1;
6509 early_param("sched_debug", sched_domain_debug_setup
);
6511 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6512 struct cpumask
*groupmask
)
6514 struct sched_group
*group
= sd
->groups
;
6517 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6518 cpumask_clear(groupmask
);
6520 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6522 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6523 printk("does not load-balance\n");
6525 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6530 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6532 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6533 printk(KERN_ERR
"ERROR: domain->span does not contain "
6536 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6537 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6541 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6545 printk(KERN_ERR
"ERROR: group is NULL\n");
6549 if (!group
->cpu_power
) {
6550 printk(KERN_CONT
"\n");
6551 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6556 if (!cpumask_weight(sched_group_cpus(group
))) {
6557 printk(KERN_CONT
"\n");
6558 printk(KERN_ERR
"ERROR: empty group\n");
6562 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6563 printk(KERN_CONT
"\n");
6564 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6568 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6570 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6572 printk(KERN_CONT
" %s", str
);
6573 if (group
->cpu_power
!= SCHED_POWER_SCALE
) {
6574 printk(KERN_CONT
" (cpu_power = %d)",
6578 group
= group
->next
;
6579 } while (group
!= sd
->groups
);
6580 printk(KERN_CONT
"\n");
6582 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6583 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6586 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6587 printk(KERN_ERR
"ERROR: parent span is not a superset "
6588 "of domain->span\n");
6592 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6596 if (!sched_domain_debug_enabled
)
6600 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6604 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6607 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
6615 #else /* !CONFIG_SCHED_DEBUG */
6616 # define sched_domain_debug(sd, cpu) do { } while (0)
6617 #endif /* CONFIG_SCHED_DEBUG */
6619 static int sd_degenerate(struct sched_domain
*sd
)
6621 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6624 /* Following flags need at least 2 groups */
6625 if (sd
->flags
& (SD_LOAD_BALANCE
|
6626 SD_BALANCE_NEWIDLE
|
6630 SD_SHARE_PKG_RESOURCES
)) {
6631 if (sd
->groups
!= sd
->groups
->next
)
6635 /* Following flags don't use groups */
6636 if (sd
->flags
& (SD_WAKE_AFFINE
))
6643 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6645 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6647 if (sd_degenerate(parent
))
6650 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6653 /* Flags needing groups don't count if only 1 group in parent */
6654 if (parent
->groups
== parent
->groups
->next
) {
6655 pflags
&= ~(SD_LOAD_BALANCE
|
6656 SD_BALANCE_NEWIDLE
|
6660 SD_SHARE_PKG_RESOURCES
);
6661 if (nr_node_ids
== 1)
6662 pflags
&= ~SD_SERIALIZE
;
6664 if (~cflags
& pflags
)
6670 static void free_rootdomain(struct rcu_head
*rcu
)
6672 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
6674 cpupri_cleanup(&rd
->cpupri
);
6675 free_cpumask_var(rd
->rto_mask
);
6676 free_cpumask_var(rd
->online
);
6677 free_cpumask_var(rd
->span
);
6681 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6683 struct root_domain
*old_rd
= NULL
;
6684 unsigned long flags
;
6686 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6691 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6694 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6697 * If we dont want to free the old_rt yet then
6698 * set old_rd to NULL to skip the freeing later
6701 if (!atomic_dec_and_test(&old_rd
->refcount
))
6705 atomic_inc(&rd
->refcount
);
6708 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6709 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6712 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6715 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
6718 static int init_rootdomain(struct root_domain
*rd
)
6720 memset(rd
, 0, sizeof(*rd
));
6722 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
6724 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
6726 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
6729 if (cpupri_init(&rd
->cpupri
) != 0)
6734 free_cpumask_var(rd
->rto_mask
);
6736 free_cpumask_var(rd
->online
);
6738 free_cpumask_var(rd
->span
);
6743 static void init_defrootdomain(void)
6745 init_rootdomain(&def_root_domain
);
6747 atomic_set(&def_root_domain
.refcount
, 1);
6750 static struct root_domain
*alloc_rootdomain(void)
6752 struct root_domain
*rd
;
6754 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6758 if (init_rootdomain(rd
) != 0) {
6766 static void free_sched_domain(struct rcu_head
*rcu
)
6768 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
6769 if (atomic_dec_and_test(&sd
->groups
->ref
))
6774 static void destroy_sched_domain(struct sched_domain
*sd
, int cpu
)
6776 call_rcu(&sd
->rcu
, free_sched_domain
);
6779 static void destroy_sched_domains(struct sched_domain
*sd
, int cpu
)
6781 for (; sd
; sd
= sd
->parent
)
6782 destroy_sched_domain(sd
, cpu
);
6786 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6787 * hold the hotplug lock.
6790 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6792 struct rq
*rq
= cpu_rq(cpu
);
6793 struct sched_domain
*tmp
;
6795 /* Remove the sched domains which do not contribute to scheduling. */
6796 for (tmp
= sd
; tmp
; ) {
6797 struct sched_domain
*parent
= tmp
->parent
;
6801 if (sd_parent_degenerate(tmp
, parent
)) {
6802 tmp
->parent
= parent
->parent
;
6804 parent
->parent
->child
= tmp
;
6805 destroy_sched_domain(parent
, cpu
);
6810 if (sd
&& sd_degenerate(sd
)) {
6813 destroy_sched_domain(tmp
, cpu
);
6818 sched_domain_debug(sd
, cpu
);
6820 rq_attach_root(rq
, rd
);
6822 rcu_assign_pointer(rq
->sd
, sd
);
6823 destroy_sched_domains(tmp
, cpu
);
6826 /* cpus with isolated domains */
6827 static cpumask_var_t cpu_isolated_map
;
6829 /* Setup the mask of cpus configured for isolated domains */
6830 static int __init
isolated_cpu_setup(char *str
)
6832 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6833 cpulist_parse(str
, cpu_isolated_map
);
6837 __setup("isolcpus=", isolated_cpu_setup
);
6839 #define SD_NODES_PER_DOMAIN 16
6844 * find_next_best_node - find the next node to include in a sched_domain
6845 * @node: node whose sched_domain we're building
6846 * @used_nodes: nodes already in the sched_domain
6848 * Find the next node to include in a given scheduling domain. Simply
6849 * finds the closest node not already in the @used_nodes map.
6851 * Should use nodemask_t.
6853 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6855 int i
, n
, val
, min_val
, best_node
= -1;
6859 for (i
= 0; i
< nr_node_ids
; i
++) {
6860 /* Start at @node */
6861 n
= (node
+ i
) % nr_node_ids
;
6863 if (!nr_cpus_node(n
))
6866 /* Skip already used nodes */
6867 if (node_isset(n
, *used_nodes
))
6870 /* Simple min distance search */
6871 val
= node_distance(node
, n
);
6873 if (val
< min_val
) {
6879 if (best_node
!= -1)
6880 node_set(best_node
, *used_nodes
);
6885 * sched_domain_node_span - get a cpumask for a node's sched_domain
6886 * @node: node whose cpumask we're constructing
6887 * @span: resulting cpumask
6889 * Given a node, construct a good cpumask for its sched_domain to span. It
6890 * should be one that prevents unnecessary balancing, but also spreads tasks
6893 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6895 nodemask_t used_nodes
;
6898 cpumask_clear(span
);
6899 nodes_clear(used_nodes
);
6901 cpumask_or(span
, span
, cpumask_of_node(node
));
6902 node_set(node
, used_nodes
);
6904 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6905 int next_node
= find_next_best_node(node
, &used_nodes
);
6908 cpumask_or(span
, span
, cpumask_of_node(next_node
));
6912 static const struct cpumask
*cpu_node_mask(int cpu
)
6914 lockdep_assert_held(&sched_domains_mutex
);
6916 sched_domain_node_span(cpu_to_node(cpu
), sched_domains_tmpmask
);
6918 return sched_domains_tmpmask
;
6921 static const struct cpumask
*cpu_allnodes_mask(int cpu
)
6923 return cpu_possible_mask
;
6925 #endif /* CONFIG_NUMA */
6927 static const struct cpumask
*cpu_cpu_mask(int cpu
)
6929 return cpumask_of_node(cpu_to_node(cpu
));
6932 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6935 struct sched_domain
**__percpu sd
;
6936 struct sched_group
**__percpu sg
;
6940 struct sched_domain
** __percpu sd
;
6941 struct root_domain
*rd
;
6951 struct sched_domain_topology_level
;
6953 typedef struct sched_domain
*(*sched_domain_init_f
)(struct sched_domain_topology_level
*tl
, int cpu
);
6954 typedef const struct cpumask
*(*sched_domain_mask_f
)(int cpu
);
6956 struct sched_domain_topology_level
{
6957 sched_domain_init_f init
;
6958 sched_domain_mask_f mask
;
6959 struct sd_data data
;
6963 * Assumes the sched_domain tree is fully constructed
6965 static int get_group(int cpu
, struct sd_data
*sdd
, struct sched_group
**sg
)
6967 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
6968 struct sched_domain
*child
= sd
->child
;
6971 cpu
= cpumask_first(sched_domain_span(child
));
6974 *sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
6980 * build_sched_groups takes the cpumask we wish to span, and a pointer
6981 * to a function which identifies what group(along with sched group) a CPU
6982 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6983 * (due to the fact that we keep track of groups covered with a struct cpumask).
6985 * build_sched_groups will build a circular linked list of the groups
6986 * covered by the given span, and will set each group's ->cpumask correctly,
6987 * and ->cpu_power to 0.
6990 build_sched_groups(struct sched_domain
*sd
)
6992 struct sched_group
*first
= NULL
, *last
= NULL
;
6993 struct sd_data
*sdd
= sd
->private;
6994 const struct cpumask
*span
= sched_domain_span(sd
);
6995 struct cpumask
*covered
;
6998 lockdep_assert_held(&sched_domains_mutex
);
6999 covered
= sched_domains_tmpmask
;
7001 cpumask_clear(covered
);
7003 for_each_cpu(i
, span
) {
7004 struct sched_group
*sg
;
7005 int group
= get_group(i
, sdd
, &sg
);
7008 if (cpumask_test_cpu(i
, covered
))
7011 cpumask_clear(sched_group_cpus(sg
));
7014 for_each_cpu(j
, span
) {
7015 if (get_group(j
, sdd
, NULL
) != group
)
7018 cpumask_set_cpu(j
, covered
);
7019 cpumask_set_cpu(j
, sched_group_cpus(sg
));
7032 * Initialize sched groups cpu_power.
7034 * cpu_power indicates the capacity of sched group, which is used while
7035 * distributing the load between different sched groups in a sched domain.
7036 * Typically cpu_power for all the groups in a sched domain will be same unless
7037 * there are asymmetries in the topology. If there are asymmetries, group
7038 * having more cpu_power will pickup more load compared to the group having
7041 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7043 WARN_ON(!sd
|| !sd
->groups
);
7045 if (cpu
!= group_first_cpu(sd
->groups
))
7048 sd
->groups
->group_weight
= cpumask_weight(sched_group_cpus(sd
->groups
));
7050 update_group_power(sd
, cpu
);
7054 * Initializers for schedule domains
7055 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7058 #ifdef CONFIG_SCHED_DEBUG
7059 # define SD_INIT_NAME(sd, type) sd->name = #type
7061 # define SD_INIT_NAME(sd, type) do { } while (0)
7064 #define SD_INIT_FUNC(type) \
7065 static noinline struct sched_domain * \
7066 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7068 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7069 *sd = SD_##type##_INIT; \
7070 SD_INIT_NAME(sd, type); \
7071 sd->private = &tl->data; \
7077 SD_INIT_FUNC(ALLNODES
)
7080 #ifdef CONFIG_SCHED_SMT
7081 SD_INIT_FUNC(SIBLING
)
7083 #ifdef CONFIG_SCHED_MC
7086 #ifdef CONFIG_SCHED_BOOK
7090 static int default_relax_domain_level
= -1;
7091 int sched_domain_level_max
;
7093 static int __init
setup_relax_domain_level(char *str
)
7097 val
= simple_strtoul(str
, NULL
, 0);
7098 if (val
< sched_domain_level_max
)
7099 default_relax_domain_level
= val
;
7103 __setup("relax_domain_level=", setup_relax_domain_level
);
7105 static void set_domain_attribute(struct sched_domain
*sd
,
7106 struct sched_domain_attr
*attr
)
7110 if (!attr
|| attr
->relax_domain_level
< 0) {
7111 if (default_relax_domain_level
< 0)
7114 request
= default_relax_domain_level
;
7116 request
= attr
->relax_domain_level
;
7117 if (request
< sd
->level
) {
7118 /* turn off idle balance on this domain */
7119 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7121 /* turn on idle balance on this domain */
7122 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7126 static void __sdt_free(const struct cpumask
*cpu_map
);
7127 static int __sdt_alloc(const struct cpumask
*cpu_map
);
7129 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
7130 const struct cpumask
*cpu_map
)
7134 if (!atomic_read(&d
->rd
->refcount
))
7135 free_rootdomain(&d
->rd
->rcu
); /* fall through */
7137 free_percpu(d
->sd
); /* fall through */
7139 __sdt_free(cpu_map
); /* fall through */
7145 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
7146 const struct cpumask
*cpu_map
)
7148 memset(d
, 0, sizeof(*d
));
7150 if (__sdt_alloc(cpu_map
))
7151 return sa_sd_storage
;
7152 d
->sd
= alloc_percpu(struct sched_domain
*);
7154 return sa_sd_storage
;
7155 d
->rd
= alloc_rootdomain();
7158 return sa_rootdomain
;
7162 * NULL the sd_data elements we've used to build the sched_domain and
7163 * sched_group structure so that the subsequent __free_domain_allocs()
7164 * will not free the data we're using.
7166 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
7168 struct sd_data
*sdd
= sd
->private;
7169 struct sched_group
*sg
= sd
->groups
;
7171 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
7172 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
7174 if (cpu
== cpumask_first(sched_group_cpus(sg
))) {
7175 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sg
, cpu
) != sg
);
7176 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
7180 #ifdef CONFIG_SCHED_SMT
7181 static const struct cpumask
*cpu_smt_mask(int cpu
)
7183 return topology_thread_cpumask(cpu
);
7188 * Topology list, bottom-up.
7190 static struct sched_domain_topology_level default_topology
[] = {
7191 #ifdef CONFIG_SCHED_SMT
7192 { sd_init_SIBLING
, cpu_smt_mask
, },
7194 #ifdef CONFIG_SCHED_MC
7195 { sd_init_MC
, cpu_coregroup_mask
, },
7197 #ifdef CONFIG_SCHED_BOOK
7198 { sd_init_BOOK
, cpu_book_mask
, },
7200 { sd_init_CPU
, cpu_cpu_mask
, },
7202 { sd_init_NODE
, cpu_node_mask
, },
7203 { sd_init_ALLNODES
, cpu_allnodes_mask
, },
7208 static struct sched_domain_topology_level
*sched_domain_topology
= default_topology
;
7210 static int __sdt_alloc(const struct cpumask
*cpu_map
)
7212 struct sched_domain_topology_level
*tl
;
7215 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7216 struct sd_data
*sdd
= &tl
->data
;
7218 sdd
->sd
= alloc_percpu(struct sched_domain
*);
7222 sdd
->sg
= alloc_percpu(struct sched_group
*);
7226 for_each_cpu(j
, cpu_map
) {
7227 struct sched_domain
*sd
;
7228 struct sched_group
*sg
;
7230 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
7231 GFP_KERNEL
, cpu_to_node(j
));
7235 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
7237 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7238 GFP_KERNEL
, cpu_to_node(j
));
7242 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
7249 static void __sdt_free(const struct cpumask
*cpu_map
)
7251 struct sched_domain_topology_level
*tl
;
7254 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7255 struct sd_data
*sdd
= &tl
->data
;
7257 for_each_cpu(j
, cpu_map
) {
7258 kfree(*per_cpu_ptr(sdd
->sd
, j
));
7259 kfree(*per_cpu_ptr(sdd
->sg
, j
));
7261 free_percpu(sdd
->sd
);
7262 free_percpu(sdd
->sg
);
7266 struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
7267 struct s_data
*d
, const struct cpumask
*cpu_map
,
7268 struct sched_domain_attr
*attr
, struct sched_domain
*child
,
7271 struct sched_domain
*sd
= tl
->init(tl
, cpu
);
7275 set_domain_attribute(sd
, attr
);
7276 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
7278 sd
->level
= child
->level
+ 1;
7279 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
7288 * Build sched domains for a given set of cpus and attach the sched domains
7289 * to the individual cpus
7291 static int build_sched_domains(const struct cpumask
*cpu_map
,
7292 struct sched_domain_attr
*attr
)
7294 enum s_alloc alloc_state
= sa_none
;
7295 struct sched_domain
*sd
;
7297 int i
, ret
= -ENOMEM
;
7299 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7300 if (alloc_state
!= sa_rootdomain
)
7303 /* Set up domains for cpus specified by the cpu_map. */
7304 for_each_cpu(i
, cpu_map
) {
7305 struct sched_domain_topology_level
*tl
;
7308 for (tl
= sched_domain_topology
; tl
->init
; tl
++)
7309 sd
= build_sched_domain(tl
, &d
, cpu_map
, attr
, sd
, i
);
7314 *per_cpu_ptr(d
.sd
, i
) = sd
;
7317 /* Build the groups for the domains */
7318 for_each_cpu(i
, cpu_map
) {
7319 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7320 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
7321 get_group(i
, sd
->private, &sd
->groups
);
7322 atomic_inc(&sd
->groups
->ref
);
7324 if (i
!= cpumask_first(sched_domain_span(sd
)))
7327 build_sched_groups(sd
);
7331 /* Calculate CPU power for physical packages and nodes */
7332 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
7333 if (!cpumask_test_cpu(i
, cpu_map
))
7336 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7337 claim_allocations(i
, sd
);
7338 init_sched_groups_power(i
, sd
);
7342 /* Attach the domains */
7344 for_each_cpu(i
, cpu_map
) {
7345 sd
= *per_cpu_ptr(d
.sd
, i
);
7346 cpu_attach_domain(sd
, d
.rd
, i
);
7352 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7356 static cpumask_var_t
*doms_cur
; /* current sched domains */
7357 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7358 static struct sched_domain_attr
*dattr_cur
;
7359 /* attribues of custom domains in 'doms_cur' */
7362 * Special case: If a kmalloc of a doms_cur partition (array of
7363 * cpumask) fails, then fallback to a single sched domain,
7364 * as determined by the single cpumask fallback_doms.
7366 static cpumask_var_t fallback_doms
;
7369 * arch_update_cpu_topology lets virtualized architectures update the
7370 * cpu core maps. It is supposed to return 1 if the topology changed
7371 * or 0 if it stayed the same.
7373 int __attribute__((weak
)) arch_update_cpu_topology(void)
7378 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7381 cpumask_var_t
*doms
;
7383 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7386 for (i
= 0; i
< ndoms
; i
++) {
7387 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7388 free_sched_domains(doms
, i
);
7395 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7398 for (i
= 0; i
< ndoms
; i
++)
7399 free_cpumask_var(doms
[i
]);
7404 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7405 * For now this just excludes isolated cpus, but could be used to
7406 * exclude other special cases in the future.
7408 static int init_sched_domains(const struct cpumask
*cpu_map
)
7412 arch_update_cpu_topology();
7414 doms_cur
= alloc_sched_domains(ndoms_cur
);
7416 doms_cur
= &fallback_doms
;
7417 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7419 err
= build_sched_domains(doms_cur
[0], NULL
);
7420 register_sched_domain_sysctl();
7426 * Detach sched domains from a group of cpus specified in cpu_map
7427 * These cpus will now be attached to the NULL domain
7429 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7434 for_each_cpu(i
, cpu_map
)
7435 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7439 /* handle null as "default" */
7440 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7441 struct sched_domain_attr
*new, int idx_new
)
7443 struct sched_domain_attr tmp
;
7450 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7451 new ? (new + idx_new
) : &tmp
,
7452 sizeof(struct sched_domain_attr
));
7456 * Partition sched domains as specified by the 'ndoms_new'
7457 * cpumasks in the array doms_new[] of cpumasks. This compares
7458 * doms_new[] to the current sched domain partitioning, doms_cur[].
7459 * It destroys each deleted domain and builds each new domain.
7461 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7462 * The masks don't intersect (don't overlap.) We should setup one
7463 * sched domain for each mask. CPUs not in any of the cpumasks will
7464 * not be load balanced. If the same cpumask appears both in the
7465 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7468 * The passed in 'doms_new' should be allocated using
7469 * alloc_sched_domains. This routine takes ownership of it and will
7470 * free_sched_domains it when done with it. If the caller failed the
7471 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7472 * and partition_sched_domains() will fallback to the single partition
7473 * 'fallback_doms', it also forces the domains to be rebuilt.
7475 * If doms_new == NULL it will be replaced with cpu_online_mask.
7476 * ndoms_new == 0 is a special case for destroying existing domains,
7477 * and it will not create the default domain.
7479 * Call with hotplug lock held
7481 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7482 struct sched_domain_attr
*dattr_new
)
7487 mutex_lock(&sched_domains_mutex
);
7489 /* always unregister in case we don't destroy any domains */
7490 unregister_sched_domain_sysctl();
7492 /* Let architecture update cpu core mappings. */
7493 new_topology
= arch_update_cpu_topology();
7495 n
= doms_new
? ndoms_new
: 0;
7497 /* Destroy deleted domains */
7498 for (i
= 0; i
< ndoms_cur
; i
++) {
7499 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7500 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7501 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7504 /* no match - a current sched domain not in new doms_new[] */
7505 detach_destroy_domains(doms_cur
[i
]);
7510 if (doms_new
== NULL
) {
7512 doms_new
= &fallback_doms
;
7513 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7514 WARN_ON_ONCE(dattr_new
);
7517 /* Build new domains */
7518 for (i
= 0; i
< ndoms_new
; i
++) {
7519 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7520 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7521 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7524 /* no match - add a new doms_new */
7525 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
7530 /* Remember the new sched domains */
7531 if (doms_cur
!= &fallback_doms
)
7532 free_sched_domains(doms_cur
, ndoms_cur
);
7533 kfree(dattr_cur
); /* kfree(NULL) is safe */
7534 doms_cur
= doms_new
;
7535 dattr_cur
= dattr_new
;
7536 ndoms_cur
= ndoms_new
;
7538 register_sched_domain_sysctl();
7540 mutex_unlock(&sched_domains_mutex
);
7543 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7544 static void reinit_sched_domains(void)
7548 /* Destroy domains first to force the rebuild */
7549 partition_sched_domains(0, NULL
, NULL
);
7551 rebuild_sched_domains();
7555 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7557 unsigned int level
= 0;
7559 if (sscanf(buf
, "%u", &level
) != 1)
7563 * level is always be positive so don't check for
7564 * level < POWERSAVINGS_BALANCE_NONE which is 0
7565 * What happens on 0 or 1 byte write,
7566 * need to check for count as well?
7569 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7573 sched_smt_power_savings
= level
;
7575 sched_mc_power_savings
= level
;
7577 reinit_sched_domains();
7582 #ifdef CONFIG_SCHED_MC
7583 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7584 struct sysdev_class_attribute
*attr
,
7587 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7589 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7590 struct sysdev_class_attribute
*attr
,
7591 const char *buf
, size_t count
)
7593 return sched_power_savings_store(buf
, count
, 0);
7595 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7596 sched_mc_power_savings_show
,
7597 sched_mc_power_savings_store
);
7600 #ifdef CONFIG_SCHED_SMT
7601 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7602 struct sysdev_class_attribute
*attr
,
7605 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7607 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7608 struct sysdev_class_attribute
*attr
,
7609 const char *buf
, size_t count
)
7611 return sched_power_savings_store(buf
, count
, 1);
7613 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7614 sched_smt_power_savings_show
,
7615 sched_smt_power_savings_store
);
7618 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7622 #ifdef CONFIG_SCHED_SMT
7624 err
= sysfs_create_file(&cls
->kset
.kobj
,
7625 &attr_sched_smt_power_savings
.attr
);
7627 #ifdef CONFIG_SCHED_MC
7628 if (!err
&& mc_capable())
7629 err
= sysfs_create_file(&cls
->kset
.kobj
,
7630 &attr_sched_mc_power_savings
.attr
);
7634 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7637 * Update cpusets according to cpu_active mask. If cpusets are
7638 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7639 * around partition_sched_domains().
7641 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
7644 switch (action
& ~CPU_TASKS_FROZEN
) {
7646 case CPU_DOWN_FAILED
:
7647 cpuset_update_active_cpus();
7654 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
7657 switch (action
& ~CPU_TASKS_FROZEN
) {
7658 case CPU_DOWN_PREPARE
:
7659 cpuset_update_active_cpus();
7666 static int update_runtime(struct notifier_block
*nfb
,
7667 unsigned long action
, void *hcpu
)
7669 int cpu
= (int)(long)hcpu
;
7672 case CPU_DOWN_PREPARE
:
7673 case CPU_DOWN_PREPARE_FROZEN
:
7674 disable_runtime(cpu_rq(cpu
));
7677 case CPU_DOWN_FAILED
:
7678 case CPU_DOWN_FAILED_FROZEN
:
7680 case CPU_ONLINE_FROZEN
:
7681 enable_runtime(cpu_rq(cpu
));
7689 void __init
sched_init_smp(void)
7691 cpumask_var_t non_isolated_cpus
;
7693 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7694 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7697 mutex_lock(&sched_domains_mutex
);
7698 init_sched_domains(cpu_active_mask
);
7699 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7700 if (cpumask_empty(non_isolated_cpus
))
7701 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7702 mutex_unlock(&sched_domains_mutex
);
7705 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
7706 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
7708 /* RT runtime code needs to handle some hotplug events */
7709 hotcpu_notifier(update_runtime
, 0);
7713 /* Move init over to a non-isolated CPU */
7714 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7716 sched_init_granularity();
7717 free_cpumask_var(non_isolated_cpus
);
7719 init_sched_rt_class();
7722 void __init
sched_init_smp(void)
7724 sched_init_granularity();
7726 #endif /* CONFIG_SMP */
7728 const_debug
unsigned int sysctl_timer_migration
= 1;
7730 int in_sched_functions(unsigned long addr
)
7732 return in_lock_functions(addr
) ||
7733 (addr
>= (unsigned long)__sched_text_start
7734 && addr
< (unsigned long)__sched_text_end
);
7737 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7739 cfs_rq
->tasks_timeline
= RB_ROOT
;
7740 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7741 #ifdef CONFIG_FAIR_GROUP_SCHED
7743 /* allow initial update_cfs_load() to truncate */
7745 cfs_rq
->load_stamp
= 1;
7748 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7751 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7753 struct rt_prio_array
*array
;
7756 array
= &rt_rq
->active
;
7757 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7758 INIT_LIST_HEAD(array
->queue
+ i
);
7759 __clear_bit(i
, array
->bitmap
);
7761 /* delimiter for bitsearch: */
7762 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7764 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7765 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
7767 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
7771 rt_rq
->rt_nr_migratory
= 0;
7772 rt_rq
->overloaded
= 0;
7773 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
7777 rt_rq
->rt_throttled
= 0;
7778 rt_rq
->rt_runtime
= 0;
7779 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
7781 #ifdef CONFIG_RT_GROUP_SCHED
7782 rt_rq
->rt_nr_boosted
= 0;
7787 #ifdef CONFIG_FAIR_GROUP_SCHED
7788 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7789 struct sched_entity
*se
, int cpu
,
7790 struct sched_entity
*parent
)
7792 struct rq
*rq
= cpu_rq(cpu
);
7793 tg
->cfs_rq
[cpu
] = cfs_rq
;
7794 init_cfs_rq(cfs_rq
, rq
);
7798 /* se could be NULL for root_task_group */
7803 se
->cfs_rq
= &rq
->cfs
;
7805 se
->cfs_rq
= parent
->my_q
;
7808 update_load_set(&se
->load
, 0);
7809 se
->parent
= parent
;
7813 #ifdef CONFIG_RT_GROUP_SCHED
7814 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7815 struct sched_rt_entity
*rt_se
, int cpu
,
7816 struct sched_rt_entity
*parent
)
7818 struct rq
*rq
= cpu_rq(cpu
);
7820 tg
->rt_rq
[cpu
] = rt_rq
;
7821 init_rt_rq(rt_rq
, rq
);
7823 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7825 tg
->rt_se
[cpu
] = rt_se
;
7830 rt_se
->rt_rq
= &rq
->rt
;
7832 rt_se
->rt_rq
= parent
->my_q
;
7834 rt_se
->my_q
= rt_rq
;
7835 rt_se
->parent
= parent
;
7836 INIT_LIST_HEAD(&rt_se
->run_list
);
7840 void __init
sched_init(void)
7843 unsigned long alloc_size
= 0, ptr
;
7845 #ifdef CONFIG_FAIR_GROUP_SCHED
7846 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7848 #ifdef CONFIG_RT_GROUP_SCHED
7849 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7851 #ifdef CONFIG_CPUMASK_OFFSTACK
7852 alloc_size
+= num_possible_cpus() * cpumask_size();
7855 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7857 #ifdef CONFIG_FAIR_GROUP_SCHED
7858 root_task_group
.se
= (struct sched_entity
**)ptr
;
7859 ptr
+= nr_cpu_ids
* sizeof(void **);
7861 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7862 ptr
+= nr_cpu_ids
* sizeof(void **);
7864 #endif /* CONFIG_FAIR_GROUP_SCHED */
7865 #ifdef CONFIG_RT_GROUP_SCHED
7866 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7867 ptr
+= nr_cpu_ids
* sizeof(void **);
7869 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7870 ptr
+= nr_cpu_ids
* sizeof(void **);
7872 #endif /* CONFIG_RT_GROUP_SCHED */
7873 #ifdef CONFIG_CPUMASK_OFFSTACK
7874 for_each_possible_cpu(i
) {
7875 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
7876 ptr
+= cpumask_size();
7878 #endif /* CONFIG_CPUMASK_OFFSTACK */
7882 init_defrootdomain();
7885 init_rt_bandwidth(&def_rt_bandwidth
,
7886 global_rt_period(), global_rt_runtime());
7888 #ifdef CONFIG_RT_GROUP_SCHED
7889 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
7890 global_rt_period(), global_rt_runtime());
7891 #endif /* CONFIG_RT_GROUP_SCHED */
7893 #ifdef CONFIG_CGROUP_SCHED
7894 list_add(&root_task_group
.list
, &task_groups
);
7895 INIT_LIST_HEAD(&root_task_group
.children
);
7896 autogroup_init(&init_task
);
7897 #endif /* CONFIG_CGROUP_SCHED */
7899 for_each_possible_cpu(i
) {
7903 raw_spin_lock_init(&rq
->lock
);
7905 rq
->calc_load_active
= 0;
7906 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7907 init_cfs_rq(&rq
->cfs
, rq
);
7908 init_rt_rq(&rq
->rt
, rq
);
7909 #ifdef CONFIG_FAIR_GROUP_SCHED
7910 root_task_group
.shares
= root_task_group_load
;
7911 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7913 * How much cpu bandwidth does root_task_group get?
7915 * In case of task-groups formed thr' the cgroup filesystem, it
7916 * gets 100% of the cpu resources in the system. This overall
7917 * system cpu resource is divided among the tasks of
7918 * root_task_group and its child task-groups in a fair manner,
7919 * based on each entity's (task or task-group's) weight
7920 * (se->load.weight).
7922 * In other words, if root_task_group has 10 tasks of weight
7923 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7924 * then A0's share of the cpu resource is:
7926 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7928 * We achieve this by letting root_task_group's tasks sit
7929 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7931 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
7932 #endif /* CONFIG_FAIR_GROUP_SCHED */
7934 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7935 #ifdef CONFIG_RT_GROUP_SCHED
7936 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7937 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
7940 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7941 rq
->cpu_load
[j
] = 0;
7943 rq
->last_load_update_tick
= jiffies
;
7948 rq
->cpu_power
= SCHED_POWER_SCALE
;
7949 rq
->post_schedule
= 0;
7950 rq
->active_balance
= 0;
7951 rq
->next_balance
= jiffies
;
7956 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7957 rq_attach_root(rq
, &def_root_domain
);
7959 rq
->nohz_balance_kick
= 0;
7960 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb
, i
));
7964 atomic_set(&rq
->nr_iowait
, 0);
7967 set_load_weight(&init_task
);
7969 #ifdef CONFIG_PREEMPT_NOTIFIERS
7970 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7974 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
7977 #ifdef CONFIG_RT_MUTEXES
7978 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7982 * The boot idle thread does lazy MMU switching as well:
7984 atomic_inc(&init_mm
.mm_count
);
7985 enter_lazy_tlb(&init_mm
, current
);
7988 * Make us the idle thread. Technically, schedule() should not be
7989 * called from this thread, however somewhere below it might be,
7990 * but because we are the idle thread, we just pick up running again
7991 * when this runqueue becomes "idle".
7993 init_idle(current
, smp_processor_id());
7995 calc_load_update
= jiffies
+ LOAD_FREQ
;
7998 * During early bootup we pretend to be a normal task:
8000 current
->sched_class
= &fair_sched_class
;
8002 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8003 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
8005 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_NOWAIT
);
8007 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
8008 alloc_cpumask_var(&nohz
.grp_idle_mask
, GFP_NOWAIT
);
8009 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
8010 atomic_set(&nohz
.first_pick_cpu
, nr_cpu_ids
);
8011 atomic_set(&nohz
.second_pick_cpu
, nr_cpu_ids
);
8013 /* May be allocated at isolcpus cmdline parse time */
8014 if (cpu_isolated_map
== NULL
)
8015 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
8018 scheduler_running
= 1;
8021 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8022 static inline int preempt_count_equals(int preempt_offset
)
8024 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
8026 return (nested
== preempt_offset
);
8029 void __might_sleep(const char *file
, int line
, int preempt_offset
)
8032 static unsigned long prev_jiffy
; /* ratelimiting */
8034 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
8035 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8037 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8039 prev_jiffy
= jiffies
;
8042 "BUG: sleeping function called from invalid context at %s:%d\n",
8045 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8046 in_atomic(), irqs_disabled(),
8047 current
->pid
, current
->comm
);
8049 debug_show_held_locks(current
);
8050 if (irqs_disabled())
8051 print_irqtrace_events(current
);
8055 EXPORT_SYMBOL(__might_sleep
);
8058 #ifdef CONFIG_MAGIC_SYSRQ
8059 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8061 const struct sched_class
*prev_class
= p
->sched_class
;
8062 int old_prio
= p
->prio
;
8067 deactivate_task(rq
, p
, 0);
8068 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8070 activate_task(rq
, p
, 0);
8071 resched_task(rq
->curr
);
8074 check_class_changed(rq
, p
, prev_class
, old_prio
);
8077 void normalize_rt_tasks(void)
8079 struct task_struct
*g
, *p
;
8080 unsigned long flags
;
8083 read_lock_irqsave(&tasklist_lock
, flags
);
8084 do_each_thread(g
, p
) {
8086 * Only normalize user tasks:
8091 p
->se
.exec_start
= 0;
8092 #ifdef CONFIG_SCHEDSTATS
8093 p
->se
.statistics
.wait_start
= 0;
8094 p
->se
.statistics
.sleep_start
= 0;
8095 p
->se
.statistics
.block_start
= 0;
8100 * Renice negative nice level userspace
8103 if (TASK_NICE(p
) < 0 && p
->mm
)
8104 set_user_nice(p
, 0);
8108 raw_spin_lock(&p
->pi_lock
);
8109 rq
= __task_rq_lock(p
);
8111 normalize_task(rq
, p
);
8113 __task_rq_unlock(rq
);
8114 raw_spin_unlock(&p
->pi_lock
);
8115 } while_each_thread(g
, p
);
8117 read_unlock_irqrestore(&tasklist_lock
, flags
);
8120 #endif /* CONFIG_MAGIC_SYSRQ */
8122 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8124 * These functions are only useful for the IA64 MCA handling, or kdb.
8126 * They can only be called when the whole system has been
8127 * stopped - every CPU needs to be quiescent, and no scheduling
8128 * activity can take place. Using them for anything else would
8129 * be a serious bug, and as a result, they aren't even visible
8130 * under any other configuration.
8134 * curr_task - return the current task for a given cpu.
8135 * @cpu: the processor in question.
8137 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8139 struct task_struct
*curr_task(int cpu
)
8141 return cpu_curr(cpu
);
8144 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8148 * set_curr_task - set the current task for a given cpu.
8149 * @cpu: the processor in question.
8150 * @p: the task pointer to set.
8152 * Description: This function must only be used when non-maskable interrupts
8153 * are serviced on a separate stack. It allows the architecture to switch the
8154 * notion of the current task on a cpu in a non-blocking manner. This function
8155 * must be called with all CPU's synchronized, and interrupts disabled, the
8156 * and caller must save the original value of the current task (see
8157 * curr_task() above) and restore that value before reenabling interrupts and
8158 * re-starting the system.
8160 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8162 void set_curr_task(int cpu
, struct task_struct
*p
)
8169 #ifdef CONFIG_FAIR_GROUP_SCHED
8170 static void free_fair_sched_group(struct task_group
*tg
)
8174 for_each_possible_cpu(i
) {
8176 kfree(tg
->cfs_rq
[i
]);
8186 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8188 struct cfs_rq
*cfs_rq
;
8189 struct sched_entity
*se
;
8192 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8195 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8199 tg
->shares
= NICE_0_LOAD
;
8201 for_each_possible_cpu(i
) {
8202 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8203 GFP_KERNEL
, cpu_to_node(i
));
8207 se
= kzalloc_node(sizeof(struct sched_entity
),
8208 GFP_KERNEL
, cpu_to_node(i
));
8212 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
8223 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8225 struct rq
*rq
= cpu_rq(cpu
);
8226 unsigned long flags
;
8229 * Only empty task groups can be destroyed; so we can speculatively
8230 * check on_list without danger of it being re-added.
8232 if (!tg
->cfs_rq
[cpu
]->on_list
)
8235 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8236 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
8237 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8239 #else /* !CONFG_FAIR_GROUP_SCHED */
8240 static inline void free_fair_sched_group(struct task_group
*tg
)
8245 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8250 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8253 #endif /* CONFIG_FAIR_GROUP_SCHED */
8255 #ifdef CONFIG_RT_GROUP_SCHED
8256 static void free_rt_sched_group(struct task_group
*tg
)
8260 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8262 for_each_possible_cpu(i
) {
8264 kfree(tg
->rt_rq
[i
]);
8266 kfree(tg
->rt_se
[i
]);
8274 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8276 struct rt_rq
*rt_rq
;
8277 struct sched_rt_entity
*rt_se
;
8280 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8283 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8287 init_rt_bandwidth(&tg
->rt_bandwidth
,
8288 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8290 for_each_possible_cpu(i
) {
8291 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8292 GFP_KERNEL
, cpu_to_node(i
));
8296 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8297 GFP_KERNEL
, cpu_to_node(i
));
8301 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
8311 #else /* !CONFIG_RT_GROUP_SCHED */
8312 static inline void free_rt_sched_group(struct task_group
*tg
)
8317 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8321 #endif /* CONFIG_RT_GROUP_SCHED */
8323 #ifdef CONFIG_CGROUP_SCHED
8324 static void free_sched_group(struct task_group
*tg
)
8326 free_fair_sched_group(tg
);
8327 free_rt_sched_group(tg
);
8332 /* allocate runqueue etc for a new task group */
8333 struct task_group
*sched_create_group(struct task_group
*parent
)
8335 struct task_group
*tg
;
8336 unsigned long flags
;
8338 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8340 return ERR_PTR(-ENOMEM
);
8342 if (!alloc_fair_sched_group(tg
, parent
))
8345 if (!alloc_rt_sched_group(tg
, parent
))
8348 spin_lock_irqsave(&task_group_lock
, flags
);
8349 list_add_rcu(&tg
->list
, &task_groups
);
8351 WARN_ON(!parent
); /* root should already exist */
8353 tg
->parent
= parent
;
8354 INIT_LIST_HEAD(&tg
->children
);
8355 list_add_rcu(&tg
->siblings
, &parent
->children
);
8356 spin_unlock_irqrestore(&task_group_lock
, flags
);
8361 free_sched_group(tg
);
8362 return ERR_PTR(-ENOMEM
);
8365 /* rcu callback to free various structures associated with a task group */
8366 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8368 /* now it should be safe to free those cfs_rqs */
8369 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8372 /* Destroy runqueue etc associated with a task group */
8373 void sched_destroy_group(struct task_group
*tg
)
8375 unsigned long flags
;
8378 /* end participation in shares distribution */
8379 for_each_possible_cpu(i
)
8380 unregister_fair_sched_group(tg
, i
);
8382 spin_lock_irqsave(&task_group_lock
, flags
);
8383 list_del_rcu(&tg
->list
);
8384 list_del_rcu(&tg
->siblings
);
8385 spin_unlock_irqrestore(&task_group_lock
, flags
);
8387 /* wait for possible concurrent references to cfs_rqs complete */
8388 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8391 /* change task's runqueue when it moves between groups.
8392 * The caller of this function should have put the task in its new group
8393 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8394 * reflect its new group.
8396 void sched_move_task(struct task_struct
*tsk
)
8399 unsigned long flags
;
8402 rq
= task_rq_lock(tsk
, &flags
);
8404 running
= task_current(rq
, tsk
);
8408 dequeue_task(rq
, tsk
, 0);
8409 if (unlikely(running
))
8410 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8412 #ifdef CONFIG_FAIR_GROUP_SCHED
8413 if (tsk
->sched_class
->task_move_group
)
8414 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
8417 set_task_rq(tsk
, task_cpu(tsk
));
8419 if (unlikely(running
))
8420 tsk
->sched_class
->set_curr_task(rq
);
8422 enqueue_task(rq
, tsk
, 0);
8424 task_rq_unlock(rq
, tsk
, &flags
);
8426 #endif /* CONFIG_CGROUP_SCHED */
8428 #ifdef CONFIG_FAIR_GROUP_SCHED
8429 static DEFINE_MUTEX(shares_mutex
);
8431 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8434 unsigned long flags
;
8437 * We can't change the weight of the root cgroup.
8442 if (shares
< MIN_SHARES
)
8443 shares
= MIN_SHARES
;
8444 else if (shares
> MAX_SHARES
)
8445 shares
= MAX_SHARES
;
8447 mutex_lock(&shares_mutex
);
8448 if (tg
->shares
== shares
)
8451 tg
->shares
= shares
;
8452 for_each_possible_cpu(i
) {
8453 struct rq
*rq
= cpu_rq(i
);
8454 struct sched_entity
*se
;
8457 /* Propagate contribution to hierarchy */
8458 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8459 for_each_sched_entity(se
)
8460 update_cfs_shares(group_cfs_rq(se
));
8461 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8465 mutex_unlock(&shares_mutex
);
8469 unsigned long sched_group_shares(struct task_group
*tg
)
8475 #ifdef CONFIG_RT_GROUP_SCHED
8477 * Ensure that the real time constraints are schedulable.
8479 static DEFINE_MUTEX(rt_constraints_mutex
);
8481 static unsigned long to_ratio(u64 period
, u64 runtime
)
8483 if (runtime
== RUNTIME_INF
)
8486 return div64_u64(runtime
<< 20, period
);
8489 /* Must be called with tasklist_lock held */
8490 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8492 struct task_struct
*g
, *p
;
8494 do_each_thread(g
, p
) {
8495 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8497 } while_each_thread(g
, p
);
8502 struct rt_schedulable_data
{
8503 struct task_group
*tg
;
8508 static int tg_schedulable(struct task_group
*tg
, void *data
)
8510 struct rt_schedulable_data
*d
= data
;
8511 struct task_group
*child
;
8512 unsigned long total
, sum
= 0;
8513 u64 period
, runtime
;
8515 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8516 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8519 period
= d
->rt_period
;
8520 runtime
= d
->rt_runtime
;
8524 * Cannot have more runtime than the period.
8526 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8530 * Ensure we don't starve existing RT tasks.
8532 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8535 total
= to_ratio(period
, runtime
);
8538 * Nobody can have more than the global setting allows.
8540 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8544 * The sum of our children's runtime should not exceed our own.
8546 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8547 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8548 runtime
= child
->rt_bandwidth
.rt_runtime
;
8550 if (child
== d
->tg
) {
8551 period
= d
->rt_period
;
8552 runtime
= d
->rt_runtime
;
8555 sum
+= to_ratio(period
, runtime
);
8564 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8566 struct rt_schedulable_data data
= {
8568 .rt_period
= period
,
8569 .rt_runtime
= runtime
,
8572 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8575 static int tg_set_bandwidth(struct task_group
*tg
,
8576 u64 rt_period
, u64 rt_runtime
)
8580 mutex_lock(&rt_constraints_mutex
);
8581 read_lock(&tasklist_lock
);
8582 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8586 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8587 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8588 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8590 for_each_possible_cpu(i
) {
8591 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8593 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8594 rt_rq
->rt_runtime
= rt_runtime
;
8595 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8597 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8599 read_unlock(&tasklist_lock
);
8600 mutex_unlock(&rt_constraints_mutex
);
8605 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8607 u64 rt_runtime
, rt_period
;
8609 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8610 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8611 if (rt_runtime_us
< 0)
8612 rt_runtime
= RUNTIME_INF
;
8614 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8617 long sched_group_rt_runtime(struct task_group
*tg
)
8621 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8624 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8625 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8626 return rt_runtime_us
;
8629 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8631 u64 rt_runtime
, rt_period
;
8633 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8634 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8639 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8642 long sched_group_rt_period(struct task_group
*tg
)
8646 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8647 do_div(rt_period_us
, NSEC_PER_USEC
);
8648 return rt_period_us
;
8651 static int sched_rt_global_constraints(void)
8653 u64 runtime
, period
;
8656 if (sysctl_sched_rt_period
<= 0)
8659 runtime
= global_rt_runtime();
8660 period
= global_rt_period();
8663 * Sanity check on the sysctl variables.
8665 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8668 mutex_lock(&rt_constraints_mutex
);
8669 read_lock(&tasklist_lock
);
8670 ret
= __rt_schedulable(NULL
, 0, 0);
8671 read_unlock(&tasklist_lock
);
8672 mutex_unlock(&rt_constraints_mutex
);
8677 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8679 /* Don't accept realtime tasks when there is no way for them to run */
8680 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8686 #else /* !CONFIG_RT_GROUP_SCHED */
8687 static int sched_rt_global_constraints(void)
8689 unsigned long flags
;
8692 if (sysctl_sched_rt_period
<= 0)
8696 * There's always some RT tasks in the root group
8697 * -- migration, kstopmachine etc..
8699 if (sysctl_sched_rt_runtime
== 0)
8702 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8703 for_each_possible_cpu(i
) {
8704 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8706 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8707 rt_rq
->rt_runtime
= global_rt_runtime();
8708 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8710 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8714 #endif /* CONFIG_RT_GROUP_SCHED */
8716 int sched_rt_handler(struct ctl_table
*table
, int write
,
8717 void __user
*buffer
, size_t *lenp
,
8721 int old_period
, old_runtime
;
8722 static DEFINE_MUTEX(mutex
);
8725 old_period
= sysctl_sched_rt_period
;
8726 old_runtime
= sysctl_sched_rt_runtime
;
8728 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8730 if (!ret
&& write
) {
8731 ret
= sched_rt_global_constraints();
8733 sysctl_sched_rt_period
= old_period
;
8734 sysctl_sched_rt_runtime
= old_runtime
;
8736 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8737 def_rt_bandwidth
.rt_period
=
8738 ns_to_ktime(global_rt_period());
8741 mutex_unlock(&mutex
);
8746 #ifdef CONFIG_CGROUP_SCHED
8748 /* return corresponding task_group object of a cgroup */
8749 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8751 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8752 struct task_group
, css
);
8755 static struct cgroup_subsys_state
*
8756 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8758 struct task_group
*tg
, *parent
;
8760 if (!cgrp
->parent
) {
8761 /* This is early initialization for the top cgroup */
8762 return &root_task_group
.css
;
8765 parent
= cgroup_tg(cgrp
->parent
);
8766 tg
= sched_create_group(parent
);
8768 return ERR_PTR(-ENOMEM
);
8774 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8776 struct task_group
*tg
= cgroup_tg(cgrp
);
8778 sched_destroy_group(tg
);
8782 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8784 #ifdef CONFIG_RT_GROUP_SCHED
8785 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
8788 /* We don't support RT-tasks being in separate groups */
8789 if (tsk
->sched_class
!= &fair_sched_class
)
8796 cpu_cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8798 sched_move_task(tsk
);
8802 cpu_cgroup_exit(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8803 struct cgroup
*old_cgrp
, struct task_struct
*task
)
8806 * cgroup_exit() is called in the copy_process() failure path.
8807 * Ignore this case since the task hasn't ran yet, this avoids
8808 * trying to poke a half freed task state from generic code.
8810 if (!(task
->flags
& PF_EXITING
))
8813 sched_move_task(task
);
8816 #ifdef CONFIG_FAIR_GROUP_SCHED
8817 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8820 return sched_group_set_shares(cgroup_tg(cgrp
), scale_load(shareval
));
8823 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8825 struct task_group
*tg
= cgroup_tg(cgrp
);
8827 return (u64
) scale_load_down(tg
->shares
);
8829 #endif /* CONFIG_FAIR_GROUP_SCHED */
8831 #ifdef CONFIG_RT_GROUP_SCHED
8832 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8835 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8838 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8840 return sched_group_rt_runtime(cgroup_tg(cgrp
));
8843 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8846 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
8849 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8851 return sched_group_rt_period(cgroup_tg(cgrp
));
8853 #endif /* CONFIG_RT_GROUP_SCHED */
8855 static struct cftype cpu_files
[] = {
8856 #ifdef CONFIG_FAIR_GROUP_SCHED
8859 .read_u64
= cpu_shares_read_u64
,
8860 .write_u64
= cpu_shares_write_u64
,
8863 #ifdef CONFIG_RT_GROUP_SCHED
8865 .name
= "rt_runtime_us",
8866 .read_s64
= cpu_rt_runtime_read
,
8867 .write_s64
= cpu_rt_runtime_write
,
8870 .name
= "rt_period_us",
8871 .read_u64
= cpu_rt_period_read_uint
,
8872 .write_u64
= cpu_rt_period_write_uint
,
8877 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8879 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8882 struct cgroup_subsys cpu_cgroup_subsys
= {
8884 .create
= cpu_cgroup_create
,
8885 .destroy
= cpu_cgroup_destroy
,
8886 .can_attach_task
= cpu_cgroup_can_attach_task
,
8887 .attach_task
= cpu_cgroup_attach_task
,
8888 .exit
= cpu_cgroup_exit
,
8889 .populate
= cpu_cgroup_populate
,
8890 .subsys_id
= cpu_cgroup_subsys_id
,
8894 #endif /* CONFIG_CGROUP_SCHED */
8896 #ifdef CONFIG_CGROUP_CPUACCT
8899 * CPU accounting code for task groups.
8901 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8902 * (balbir@in.ibm.com).
8905 /* track cpu usage of a group of tasks and its child groups */
8907 struct cgroup_subsys_state css
;
8908 /* cpuusage holds pointer to a u64-type object on every cpu */
8909 u64 __percpu
*cpuusage
;
8910 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
8911 struct cpuacct
*parent
;
8914 struct cgroup_subsys cpuacct_subsys
;
8916 /* return cpu accounting group corresponding to this container */
8917 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
8919 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
8920 struct cpuacct
, css
);
8923 /* return cpu accounting group to which this task belongs */
8924 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8926 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8927 struct cpuacct
, css
);
8930 /* create a new cpu accounting group */
8931 static struct cgroup_subsys_state
*cpuacct_create(
8932 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8934 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8940 ca
->cpuusage
= alloc_percpu(u64
);
8944 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8945 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
8946 goto out_free_counters
;
8949 ca
->parent
= cgroup_ca(cgrp
->parent
);
8955 percpu_counter_destroy(&ca
->cpustat
[i
]);
8956 free_percpu(ca
->cpuusage
);
8960 return ERR_PTR(-ENOMEM
);
8963 /* destroy an existing cpu accounting group */
8965 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8967 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8970 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8971 percpu_counter_destroy(&ca
->cpustat
[i
]);
8972 free_percpu(ca
->cpuusage
);
8976 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
8978 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8981 #ifndef CONFIG_64BIT
8983 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8985 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8987 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8995 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
8997 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8999 #ifndef CONFIG_64BIT
9001 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9003 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9005 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9011 /* return total cpu usage (in nanoseconds) of a group */
9012 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9014 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9015 u64 totalcpuusage
= 0;
9018 for_each_present_cpu(i
)
9019 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9021 return totalcpuusage
;
9024 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9027 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9036 for_each_present_cpu(i
)
9037 cpuacct_cpuusage_write(ca
, i
, 0);
9043 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9046 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9050 for_each_present_cpu(i
) {
9051 percpu
= cpuacct_cpuusage_read(ca
, i
);
9052 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9054 seq_printf(m
, "\n");
9058 static const char *cpuacct_stat_desc
[] = {
9059 [CPUACCT_STAT_USER
] = "user",
9060 [CPUACCT_STAT_SYSTEM
] = "system",
9063 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9064 struct cgroup_map_cb
*cb
)
9066 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9069 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
9070 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
9071 val
= cputime64_to_clock_t(val
);
9072 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
9077 static struct cftype files
[] = {
9080 .read_u64
= cpuusage_read
,
9081 .write_u64
= cpuusage_write
,
9084 .name
= "usage_percpu",
9085 .read_seq_string
= cpuacct_percpu_seq_read
,
9089 .read_map
= cpuacct_stats_show
,
9093 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9095 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9099 * charge this task's execution time to its accounting group.
9101 * called with rq->lock held.
9103 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9108 if (unlikely(!cpuacct_subsys
.active
))
9111 cpu
= task_cpu(tsk
);
9117 for (; ca
; ca
= ca
->parent
) {
9118 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9119 *cpuusage
+= cputime
;
9126 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9127 * in cputime_t units. As a result, cpuacct_update_stats calls
9128 * percpu_counter_add with values large enough to always overflow the
9129 * per cpu batch limit causing bad SMP scalability.
9131 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9132 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9133 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9136 #define CPUACCT_BATCH \
9137 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9139 #define CPUACCT_BATCH 0
9143 * Charge the system/user time to the task's accounting group.
9145 static void cpuacct_update_stats(struct task_struct
*tsk
,
9146 enum cpuacct_stat_index idx
, cputime_t val
)
9149 int batch
= CPUACCT_BATCH
;
9151 if (unlikely(!cpuacct_subsys
.active
))
9158 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
9164 struct cgroup_subsys cpuacct_subsys
= {
9166 .create
= cpuacct_create
,
9167 .destroy
= cpuacct_destroy
,
9168 .populate
= cpuacct_populate
,
9169 .subsys_id
= cpuacct_subsys_id
,
9171 #endif /* CONFIG_CGROUP_CPUACCT */