2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
24 #include "kvm_cache_regs.h"
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
40 #include <asm/cmpxchg.h>
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
51 bool tdp_enabled
= false;
55 AUDIT_POST_PAGE_FAULT
,
62 char *audit_point_name
[] = {
75 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
76 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
80 #define pgprintk(x...) do { } while (0)
81 #define rmap_printk(x...) do { } while (0)
87 module_param(dbg
, bool, 0644);
90 static int oos_shadow
= 1;
91 module_param(oos_shadow
, bool, 0644);
94 #define ASSERT(x) do { } while (0)
98 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
99 __FILE__, __LINE__, #x); \
103 #define PTE_PREFETCH_NUM 8
105 #define PT_FIRST_AVAIL_BITS_SHIFT 9
106 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
108 #define PT64_LEVEL_BITS 9
110 #define PT64_LEVEL_SHIFT(level) \
111 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
113 #define PT64_INDEX(address, level)\
114 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
117 #define PT32_LEVEL_BITS 10
119 #define PT32_LEVEL_SHIFT(level) \
120 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
122 #define PT32_LVL_OFFSET_MASK(level) \
123 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT32_LEVEL_BITS))) - 1))
126 #define PT32_INDEX(address, level)\
127 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
130 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
131 #define PT64_DIR_BASE_ADDR_MASK \
132 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
133 #define PT64_LVL_ADDR_MASK(level) \
134 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
135 * PT64_LEVEL_BITS))) - 1))
136 #define PT64_LVL_OFFSET_MASK(level) \
137 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
138 * PT64_LEVEL_BITS))) - 1))
140 #define PT32_BASE_ADDR_MASK PAGE_MASK
141 #define PT32_DIR_BASE_ADDR_MASK \
142 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
143 #define PT32_LVL_ADDR_MASK(level) \
144 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
145 * PT32_LEVEL_BITS))) - 1))
147 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
150 #define PTE_LIST_EXT 4
152 #define ACC_EXEC_MASK 1
153 #define ACC_WRITE_MASK PT_WRITABLE_MASK
154 #define ACC_USER_MASK PT_USER_MASK
155 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
157 #include <trace/events/kvm.h>
159 #define CREATE_TRACE_POINTS
160 #include "mmutrace.h"
162 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
164 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
166 struct pte_list_desc
{
167 u64
*sptes
[PTE_LIST_EXT
];
168 struct pte_list_desc
*more
;
171 struct kvm_shadow_walk_iterator
{
179 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
180 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
181 shadow_walk_okay(&(_walker)); \
182 shadow_walk_next(&(_walker)))
184 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
185 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
186 shadow_walk_okay(&(_walker)) && \
187 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
188 __shadow_walk_next(&(_walker), spte))
190 static struct kmem_cache
*pte_list_desc_cache
;
191 static struct kmem_cache
*mmu_page_header_cache
;
192 static struct percpu_counter kvm_total_used_mmu_pages
;
194 static u64 __read_mostly shadow_nx_mask
;
195 static u64 __read_mostly shadow_x_mask
; /* mutual exclusive with nx_mask */
196 static u64 __read_mostly shadow_user_mask
;
197 static u64 __read_mostly shadow_accessed_mask
;
198 static u64 __read_mostly shadow_dirty_mask
;
199 static u64 __read_mostly shadow_mmio_mask
;
201 static void mmu_spte_set(u64
*sptep
, u64 spte
);
203 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask
)
205 shadow_mmio_mask
= mmio_mask
;
207 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask
);
209 static void mark_mmio_spte(u64
*sptep
, u64 gfn
, unsigned access
)
211 access
&= ACC_WRITE_MASK
| ACC_USER_MASK
;
213 trace_mark_mmio_spte(sptep
, gfn
, access
);
214 mmu_spte_set(sptep
, shadow_mmio_mask
| access
| gfn
<< PAGE_SHIFT
);
217 static bool is_mmio_spte(u64 spte
)
219 return (spte
& shadow_mmio_mask
) == shadow_mmio_mask
;
222 static gfn_t
get_mmio_spte_gfn(u64 spte
)
224 return (spte
& ~shadow_mmio_mask
) >> PAGE_SHIFT
;
227 static unsigned get_mmio_spte_access(u64 spte
)
229 return (spte
& ~shadow_mmio_mask
) & ~PAGE_MASK
;
232 static bool set_mmio_spte(u64
*sptep
, gfn_t gfn
, pfn_t pfn
, unsigned access
)
234 if (unlikely(is_noslot_pfn(pfn
))) {
235 mark_mmio_spte(sptep
, gfn
, access
);
242 static inline u64
rsvd_bits(int s
, int e
)
244 return ((1ULL << (e
- s
+ 1)) - 1) << s
;
247 void kvm_mmu_set_mask_ptes(u64 user_mask
, u64 accessed_mask
,
248 u64 dirty_mask
, u64 nx_mask
, u64 x_mask
)
250 shadow_user_mask
= user_mask
;
251 shadow_accessed_mask
= accessed_mask
;
252 shadow_dirty_mask
= dirty_mask
;
253 shadow_nx_mask
= nx_mask
;
254 shadow_x_mask
= x_mask
;
256 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes
);
258 static int is_cpuid_PSE36(void)
263 static int is_nx(struct kvm_vcpu
*vcpu
)
265 return vcpu
->arch
.efer
& EFER_NX
;
268 static int is_shadow_present_pte(u64 pte
)
270 return pte
& PT_PRESENT_MASK
&& !is_mmio_spte(pte
);
273 static int is_large_pte(u64 pte
)
275 return pte
& PT_PAGE_SIZE_MASK
;
278 static int is_dirty_gpte(unsigned long pte
)
280 return pte
& PT_DIRTY_MASK
;
283 static int is_rmap_spte(u64 pte
)
285 return is_shadow_present_pte(pte
);
288 static int is_last_spte(u64 pte
, int level
)
290 if (level
== PT_PAGE_TABLE_LEVEL
)
292 if (is_large_pte(pte
))
297 static pfn_t
spte_to_pfn(u64 pte
)
299 return (pte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
302 static gfn_t
pse36_gfn_delta(u32 gpte
)
304 int shift
= 32 - PT32_DIR_PSE36_SHIFT
- PAGE_SHIFT
;
306 return (gpte
& PT32_DIR_PSE36_MASK
) << shift
;
310 static void __set_spte(u64
*sptep
, u64 spte
)
315 static void __update_clear_spte_fast(u64
*sptep
, u64 spte
)
320 static u64
__update_clear_spte_slow(u64
*sptep
, u64 spte
)
322 return xchg(sptep
, spte
);
325 static u64
__get_spte_lockless(u64
*sptep
)
327 return ACCESS_ONCE(*sptep
);
330 static bool __check_direct_spte_mmio_pf(u64 spte
)
332 /* It is valid if the spte is zapped. */
344 static void count_spte_clear(u64
*sptep
, u64 spte
)
346 struct kvm_mmu_page
*sp
= page_header(__pa(sptep
));
348 if (is_shadow_present_pte(spte
))
351 /* Ensure the spte is completely set before we increase the count */
353 sp
->clear_spte_count
++;
356 static void __set_spte(u64
*sptep
, u64 spte
)
358 union split_spte
*ssptep
, sspte
;
360 ssptep
= (union split_spte
*)sptep
;
361 sspte
= (union split_spte
)spte
;
363 ssptep
->spte_high
= sspte
.spte_high
;
366 * If we map the spte from nonpresent to present, We should store
367 * the high bits firstly, then set present bit, so cpu can not
368 * fetch this spte while we are setting the spte.
372 ssptep
->spte_low
= sspte
.spte_low
;
375 static void __update_clear_spte_fast(u64
*sptep
, u64 spte
)
377 union split_spte
*ssptep
, sspte
;
379 ssptep
= (union split_spte
*)sptep
;
380 sspte
= (union split_spte
)spte
;
382 ssptep
->spte_low
= sspte
.spte_low
;
385 * If we map the spte from present to nonpresent, we should clear
386 * present bit firstly to avoid vcpu fetch the old high bits.
390 ssptep
->spte_high
= sspte
.spte_high
;
391 count_spte_clear(sptep
, spte
);
394 static u64
__update_clear_spte_slow(u64
*sptep
, u64 spte
)
396 union split_spte
*ssptep
, sspte
, orig
;
398 ssptep
= (union split_spte
*)sptep
;
399 sspte
= (union split_spte
)spte
;
401 /* xchg acts as a barrier before the setting of the high bits */
402 orig
.spte_low
= xchg(&ssptep
->spte_low
, sspte
.spte_low
);
403 orig
.spte_high
= ssptep
->spte_high
= sspte
.spte_high
;
404 count_spte_clear(sptep
, spte
);
410 * The idea using the light way get the spte on x86_32 guest is from
411 * gup_get_pte(arch/x86/mm/gup.c).
412 * The difference is we can not catch the spte tlb flush if we leave
413 * guest mode, so we emulate it by increase clear_spte_count when spte
416 static u64
__get_spte_lockless(u64
*sptep
)
418 struct kvm_mmu_page
*sp
= page_header(__pa(sptep
));
419 union split_spte spte
, *orig
= (union split_spte
*)sptep
;
423 count
= sp
->clear_spte_count
;
426 spte
.spte_low
= orig
->spte_low
;
429 spte
.spte_high
= orig
->spte_high
;
432 if (unlikely(spte
.spte_low
!= orig
->spte_low
||
433 count
!= sp
->clear_spte_count
))
439 static bool __check_direct_spte_mmio_pf(u64 spte
)
441 union split_spte sspte
= (union split_spte
)spte
;
442 u32 high_mmio_mask
= shadow_mmio_mask
>> 32;
444 /* It is valid if the spte is zapped. */
448 /* It is valid if the spte is being zapped. */
449 if (sspte
.spte_low
== 0ull &&
450 (sspte
.spte_high
& high_mmio_mask
) == high_mmio_mask
)
457 static bool spte_has_volatile_bits(u64 spte
)
459 if (!shadow_accessed_mask
)
462 if (!is_shadow_present_pte(spte
))
465 if ((spte
& shadow_accessed_mask
) &&
466 (!is_writable_pte(spte
) || (spte
& shadow_dirty_mask
)))
472 static bool spte_is_bit_cleared(u64 old_spte
, u64 new_spte
, u64 bit_mask
)
474 return (old_spte
& bit_mask
) && !(new_spte
& bit_mask
);
477 /* Rules for using mmu_spte_set:
478 * Set the sptep from nonpresent to present.
479 * Note: the sptep being assigned *must* be either not present
480 * or in a state where the hardware will not attempt to update
483 static void mmu_spte_set(u64
*sptep
, u64 new_spte
)
485 WARN_ON(is_shadow_present_pte(*sptep
));
486 __set_spte(sptep
, new_spte
);
489 /* Rules for using mmu_spte_update:
490 * Update the state bits, it means the mapped pfn is not changged.
492 static void mmu_spte_update(u64
*sptep
, u64 new_spte
)
494 u64 mask
, old_spte
= *sptep
;
496 WARN_ON(!is_rmap_spte(new_spte
));
498 if (!is_shadow_present_pte(old_spte
))
499 return mmu_spte_set(sptep
, new_spte
);
501 new_spte
|= old_spte
& shadow_dirty_mask
;
503 mask
= shadow_accessed_mask
;
504 if (is_writable_pte(old_spte
))
505 mask
|= shadow_dirty_mask
;
507 if (!spte_has_volatile_bits(old_spte
) || (new_spte
& mask
) == mask
)
508 __update_clear_spte_fast(sptep
, new_spte
);
510 old_spte
= __update_clear_spte_slow(sptep
, new_spte
);
512 if (!shadow_accessed_mask
)
515 if (spte_is_bit_cleared(old_spte
, new_spte
, shadow_accessed_mask
))
516 kvm_set_pfn_accessed(spte_to_pfn(old_spte
));
517 if (spte_is_bit_cleared(old_spte
, new_spte
, shadow_dirty_mask
))
518 kvm_set_pfn_dirty(spte_to_pfn(old_spte
));
522 * Rules for using mmu_spte_clear_track_bits:
523 * It sets the sptep from present to nonpresent, and track the
524 * state bits, it is used to clear the last level sptep.
526 static int mmu_spte_clear_track_bits(u64
*sptep
)
529 u64 old_spte
= *sptep
;
531 if (!spte_has_volatile_bits(old_spte
))
532 __update_clear_spte_fast(sptep
, 0ull);
534 old_spte
= __update_clear_spte_slow(sptep
, 0ull);
536 if (!is_rmap_spte(old_spte
))
539 pfn
= spte_to_pfn(old_spte
);
540 if (!shadow_accessed_mask
|| old_spte
& shadow_accessed_mask
)
541 kvm_set_pfn_accessed(pfn
);
542 if (!shadow_dirty_mask
|| (old_spte
& shadow_dirty_mask
))
543 kvm_set_pfn_dirty(pfn
);
548 * Rules for using mmu_spte_clear_no_track:
549 * Directly clear spte without caring the state bits of sptep,
550 * it is used to set the upper level spte.
552 static void mmu_spte_clear_no_track(u64
*sptep
)
554 __update_clear_spte_fast(sptep
, 0ull);
557 static u64
mmu_spte_get_lockless(u64
*sptep
)
559 return __get_spte_lockless(sptep
);
562 static void walk_shadow_page_lockless_begin(struct kvm_vcpu
*vcpu
)
565 atomic_inc(&vcpu
->kvm
->arch
.reader_counter
);
567 /* Increase the counter before walking shadow page table */
568 smp_mb__after_atomic_inc();
571 static void walk_shadow_page_lockless_end(struct kvm_vcpu
*vcpu
)
573 /* Decrease the counter after walking shadow page table finished */
574 smp_mb__before_atomic_dec();
575 atomic_dec(&vcpu
->kvm
->arch
.reader_counter
);
579 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
580 struct kmem_cache
*base_cache
, int min
)
584 if (cache
->nobjs
>= min
)
586 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
587 obj
= kmem_cache_zalloc(base_cache
, GFP_KERNEL
);
590 cache
->objects
[cache
->nobjs
++] = obj
;
595 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
,
596 struct kmem_cache
*cache
)
599 kmem_cache_free(cache
, mc
->objects
[--mc
->nobjs
]);
602 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache
*cache
,
607 if (cache
->nobjs
>= min
)
609 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
610 page
= (void *)__get_free_page(GFP_KERNEL
);
613 cache
->objects
[cache
->nobjs
++] = page
;
618 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache
*mc
)
621 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
624 static int mmu_topup_memory_caches(struct kvm_vcpu
*vcpu
)
628 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_pte_list_desc_cache
,
629 pte_list_desc_cache
, 8 + PTE_PREFETCH_NUM
);
632 r
= mmu_topup_memory_cache_page(&vcpu
->arch
.mmu_page_cache
, 8);
635 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
636 mmu_page_header_cache
, 4);
641 static void mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
643 mmu_free_memory_cache(&vcpu
->arch
.mmu_pte_list_desc_cache
,
644 pte_list_desc_cache
);
645 mmu_free_memory_cache_page(&vcpu
->arch
.mmu_page_cache
);
646 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
647 mmu_page_header_cache
);
650 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
,
656 p
= mc
->objects
[--mc
->nobjs
];
660 static struct pte_list_desc
*mmu_alloc_pte_list_desc(struct kvm_vcpu
*vcpu
)
662 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_pte_list_desc_cache
,
663 sizeof(struct pte_list_desc
));
666 static void mmu_free_pte_list_desc(struct pte_list_desc
*pte_list_desc
)
668 kmem_cache_free(pte_list_desc_cache
, pte_list_desc
);
671 static gfn_t
kvm_mmu_page_get_gfn(struct kvm_mmu_page
*sp
, int index
)
673 if (!sp
->role
.direct
)
674 return sp
->gfns
[index
];
676 return sp
->gfn
+ (index
<< ((sp
->role
.level
- 1) * PT64_LEVEL_BITS
));
679 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page
*sp
, int index
, gfn_t gfn
)
682 BUG_ON(gfn
!= kvm_mmu_page_get_gfn(sp
, index
));
684 sp
->gfns
[index
] = gfn
;
688 * Return the pointer to the large page information for a given gfn,
689 * handling slots that are not large page aligned.
691 static struct kvm_lpage_info
*lpage_info_slot(gfn_t gfn
,
692 struct kvm_memory_slot
*slot
,
697 idx
= (gfn
>> KVM_HPAGE_GFN_SHIFT(level
)) -
698 (slot
->base_gfn
>> KVM_HPAGE_GFN_SHIFT(level
));
699 return &slot
->lpage_info
[level
- 2][idx
];
702 static void account_shadowed(struct kvm
*kvm
, gfn_t gfn
)
704 struct kvm_memory_slot
*slot
;
705 struct kvm_lpage_info
*linfo
;
708 slot
= gfn_to_memslot(kvm
, gfn
);
709 for (i
= PT_DIRECTORY_LEVEL
;
710 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
711 linfo
= lpage_info_slot(gfn
, slot
, i
);
712 linfo
->write_count
+= 1;
714 kvm
->arch
.indirect_shadow_pages
++;
717 static void unaccount_shadowed(struct kvm
*kvm
, gfn_t gfn
)
719 struct kvm_memory_slot
*slot
;
720 struct kvm_lpage_info
*linfo
;
723 slot
= gfn_to_memslot(kvm
, gfn
);
724 for (i
= PT_DIRECTORY_LEVEL
;
725 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
726 linfo
= lpage_info_slot(gfn
, slot
, i
);
727 linfo
->write_count
-= 1;
728 WARN_ON(linfo
->write_count
< 0);
730 kvm
->arch
.indirect_shadow_pages
--;
733 static int has_wrprotected_page(struct kvm
*kvm
,
737 struct kvm_memory_slot
*slot
;
738 struct kvm_lpage_info
*linfo
;
740 slot
= gfn_to_memslot(kvm
, gfn
);
742 linfo
= lpage_info_slot(gfn
, slot
, level
);
743 return linfo
->write_count
;
749 static int host_mapping_level(struct kvm
*kvm
, gfn_t gfn
)
751 unsigned long page_size
;
754 page_size
= kvm_host_page_size(kvm
, gfn
);
756 for (i
= PT_PAGE_TABLE_LEVEL
;
757 i
< (PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
); ++i
) {
758 if (page_size
>= KVM_HPAGE_SIZE(i
))
767 static struct kvm_memory_slot
*
768 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
771 struct kvm_memory_slot
*slot
;
773 slot
= gfn_to_memslot(vcpu
->kvm
, gfn
);
774 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
||
775 (no_dirty_log
&& slot
->dirty_bitmap
))
781 static bool mapping_level_dirty_bitmap(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
783 return !gfn_to_memslot_dirty_bitmap(vcpu
, large_gfn
, true);
786 static int mapping_level(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
788 int host_level
, level
, max_level
;
790 host_level
= host_mapping_level(vcpu
->kvm
, large_gfn
);
792 if (host_level
== PT_PAGE_TABLE_LEVEL
)
795 max_level
= kvm_x86_ops
->get_lpage_level() < host_level
?
796 kvm_x86_ops
->get_lpage_level() : host_level
;
798 for (level
= PT_DIRECTORY_LEVEL
; level
<= max_level
; ++level
)
799 if (has_wrprotected_page(vcpu
->kvm
, large_gfn
, level
))
806 * Pte mapping structures:
808 * If pte_list bit zero is zero, then pte_list point to the spte.
810 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
811 * pte_list_desc containing more mappings.
813 * Returns the number of pte entries before the spte was added or zero if
814 * the spte was not added.
817 static int pte_list_add(struct kvm_vcpu
*vcpu
, u64
*spte
,
818 unsigned long *pte_list
)
820 struct pte_list_desc
*desc
;
824 rmap_printk("pte_list_add: %p %llx 0->1\n", spte
, *spte
);
825 *pte_list
= (unsigned long)spte
;
826 } else if (!(*pte_list
& 1)) {
827 rmap_printk("pte_list_add: %p %llx 1->many\n", spte
, *spte
);
828 desc
= mmu_alloc_pte_list_desc(vcpu
);
829 desc
->sptes
[0] = (u64
*)*pte_list
;
830 desc
->sptes
[1] = spte
;
831 *pte_list
= (unsigned long)desc
| 1;
834 rmap_printk("pte_list_add: %p %llx many->many\n", spte
, *spte
);
835 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
836 while (desc
->sptes
[PTE_LIST_EXT
-1] && desc
->more
) {
838 count
+= PTE_LIST_EXT
;
840 if (desc
->sptes
[PTE_LIST_EXT
-1]) {
841 desc
->more
= mmu_alloc_pte_list_desc(vcpu
);
844 for (i
= 0; desc
->sptes
[i
]; ++i
)
846 desc
->sptes
[i
] = spte
;
851 static u64
*pte_list_next(unsigned long *pte_list
, u64
*spte
)
853 struct pte_list_desc
*desc
;
859 else if (!(*pte_list
& 1)) {
861 return (u64
*)*pte_list
;
864 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
867 for (i
= 0; i
< PTE_LIST_EXT
&& desc
->sptes
[i
]; ++i
) {
868 if (prev_spte
== spte
)
869 return desc
->sptes
[i
];
870 prev_spte
= desc
->sptes
[i
];
878 pte_list_desc_remove_entry(unsigned long *pte_list
, struct pte_list_desc
*desc
,
879 int i
, struct pte_list_desc
*prev_desc
)
883 for (j
= PTE_LIST_EXT
- 1; !desc
->sptes
[j
] && j
> i
; --j
)
885 desc
->sptes
[i
] = desc
->sptes
[j
];
886 desc
->sptes
[j
] = NULL
;
889 if (!prev_desc
&& !desc
->more
)
890 *pte_list
= (unsigned long)desc
->sptes
[0];
893 prev_desc
->more
= desc
->more
;
895 *pte_list
= (unsigned long)desc
->more
| 1;
896 mmu_free_pte_list_desc(desc
);
899 static void pte_list_remove(u64
*spte
, unsigned long *pte_list
)
901 struct pte_list_desc
*desc
;
902 struct pte_list_desc
*prev_desc
;
906 printk(KERN_ERR
"pte_list_remove: %p 0->BUG\n", spte
);
908 } else if (!(*pte_list
& 1)) {
909 rmap_printk("pte_list_remove: %p 1->0\n", spte
);
910 if ((u64
*)*pte_list
!= spte
) {
911 printk(KERN_ERR
"pte_list_remove: %p 1->BUG\n", spte
);
916 rmap_printk("pte_list_remove: %p many->many\n", spte
);
917 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
920 for (i
= 0; i
< PTE_LIST_EXT
&& desc
->sptes
[i
]; ++i
)
921 if (desc
->sptes
[i
] == spte
) {
922 pte_list_desc_remove_entry(pte_list
,
930 pr_err("pte_list_remove: %p many->many\n", spte
);
935 typedef void (*pte_list_walk_fn
) (u64
*spte
);
936 static void pte_list_walk(unsigned long *pte_list
, pte_list_walk_fn fn
)
938 struct pte_list_desc
*desc
;
944 if (!(*pte_list
& 1))
945 return fn((u64
*)*pte_list
);
947 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
949 for (i
= 0; i
< PTE_LIST_EXT
&& desc
->sptes
[i
]; ++i
)
956 * Take gfn and return the reverse mapping to it.
958 static unsigned long *gfn_to_rmap(struct kvm
*kvm
, gfn_t gfn
, int level
)
960 struct kvm_memory_slot
*slot
;
961 struct kvm_lpage_info
*linfo
;
963 slot
= gfn_to_memslot(kvm
, gfn
);
964 if (likely(level
== PT_PAGE_TABLE_LEVEL
))
965 return &slot
->rmap
[gfn
- slot
->base_gfn
];
967 linfo
= lpage_info_slot(gfn
, slot
, level
);
969 return &linfo
->rmap_pde
;
972 static int rmap_add(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
974 struct kvm_mmu_page
*sp
;
975 unsigned long *rmapp
;
977 sp
= page_header(__pa(spte
));
978 kvm_mmu_page_set_gfn(sp
, spte
- sp
->spt
, gfn
);
979 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
->role
.level
);
980 return pte_list_add(vcpu
, spte
, rmapp
);
983 static u64
*rmap_next(struct kvm
*kvm
, unsigned long *rmapp
, u64
*spte
)
985 return pte_list_next(rmapp
, spte
);
988 static void rmap_remove(struct kvm
*kvm
, u64
*spte
)
990 struct kvm_mmu_page
*sp
;
992 unsigned long *rmapp
;
994 sp
= page_header(__pa(spte
));
995 gfn
= kvm_mmu_page_get_gfn(sp
, spte
- sp
->spt
);
996 rmapp
= gfn_to_rmap(kvm
, gfn
, sp
->role
.level
);
997 pte_list_remove(spte
, rmapp
);
1000 static void drop_spte(struct kvm
*kvm
, u64
*sptep
)
1002 if (mmu_spte_clear_track_bits(sptep
))
1003 rmap_remove(kvm
, sptep
);
1006 static int rmap_write_protect(struct kvm
*kvm
, u64 gfn
)
1008 unsigned long *rmapp
;
1010 int i
, write_protected
= 0;
1012 rmapp
= gfn_to_rmap(kvm
, gfn
, PT_PAGE_TABLE_LEVEL
);
1014 spte
= rmap_next(kvm
, rmapp
, NULL
);
1017 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
1018 rmap_printk("rmap_write_protect: spte %p %llx\n", spte
, *spte
);
1019 if (is_writable_pte(*spte
)) {
1020 mmu_spte_update(spte
, *spte
& ~PT_WRITABLE_MASK
);
1021 write_protected
= 1;
1023 spte
= rmap_next(kvm
, rmapp
, spte
);
1026 /* check for huge page mappings */
1027 for (i
= PT_DIRECTORY_LEVEL
;
1028 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
1029 rmapp
= gfn_to_rmap(kvm
, gfn
, i
);
1030 spte
= rmap_next(kvm
, rmapp
, NULL
);
1033 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
1034 BUG_ON((*spte
& (PT_PAGE_SIZE_MASK
|PT_PRESENT_MASK
)) != (PT_PAGE_SIZE_MASK
|PT_PRESENT_MASK
));
1035 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte
, *spte
, gfn
);
1036 if (is_writable_pte(*spte
)) {
1037 drop_spte(kvm
, spte
);
1040 write_protected
= 1;
1042 spte
= rmap_next(kvm
, rmapp
, spte
);
1046 return write_protected
;
1049 static int kvm_unmap_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1053 int need_tlb_flush
= 0;
1055 while ((spte
= rmap_next(kvm
, rmapp
, NULL
))) {
1056 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
1057 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte
, *spte
);
1058 drop_spte(kvm
, spte
);
1061 return need_tlb_flush
;
1064 static int kvm_set_pte_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1068 u64
*spte
, new_spte
;
1069 pte_t
*ptep
= (pte_t
*)data
;
1072 WARN_ON(pte_huge(*ptep
));
1073 new_pfn
= pte_pfn(*ptep
);
1074 spte
= rmap_next(kvm
, rmapp
, NULL
);
1076 BUG_ON(!is_shadow_present_pte(*spte
));
1077 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte
, *spte
);
1079 if (pte_write(*ptep
)) {
1080 drop_spte(kvm
, spte
);
1081 spte
= rmap_next(kvm
, rmapp
, NULL
);
1083 new_spte
= *spte
&~ (PT64_BASE_ADDR_MASK
);
1084 new_spte
|= (u64
)new_pfn
<< PAGE_SHIFT
;
1086 new_spte
&= ~PT_WRITABLE_MASK
;
1087 new_spte
&= ~SPTE_HOST_WRITEABLE
;
1088 new_spte
&= ~shadow_accessed_mask
;
1089 mmu_spte_clear_track_bits(spte
);
1090 mmu_spte_set(spte
, new_spte
);
1091 spte
= rmap_next(kvm
, rmapp
, spte
);
1095 kvm_flush_remote_tlbs(kvm
);
1100 static int kvm_handle_hva(struct kvm
*kvm
, unsigned long hva
,
1102 int (*handler
)(struct kvm
*kvm
, unsigned long *rmapp
,
1103 unsigned long data
))
1108 struct kvm_memslots
*slots
;
1110 slots
= kvm_memslots(kvm
);
1112 for (i
= 0; i
< slots
->nmemslots
; i
++) {
1113 struct kvm_memory_slot
*memslot
= &slots
->memslots
[i
];
1114 unsigned long start
= memslot
->userspace_addr
;
1117 end
= start
+ (memslot
->npages
<< PAGE_SHIFT
);
1118 if (hva
>= start
&& hva
< end
) {
1119 gfn_t gfn_offset
= (hva
- start
) >> PAGE_SHIFT
;
1120 gfn_t gfn
= memslot
->base_gfn
+ gfn_offset
;
1122 ret
= handler(kvm
, &memslot
->rmap
[gfn_offset
], data
);
1124 for (j
= 0; j
< KVM_NR_PAGE_SIZES
- 1; ++j
) {
1125 struct kvm_lpage_info
*linfo
;
1127 linfo
= lpage_info_slot(gfn
, memslot
,
1128 PT_DIRECTORY_LEVEL
+ j
);
1129 ret
|= handler(kvm
, &linfo
->rmap_pde
, data
);
1131 trace_kvm_age_page(hva
, memslot
, ret
);
1139 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
1141 return kvm_handle_hva(kvm
, hva
, 0, kvm_unmap_rmapp
);
1144 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
1146 kvm_handle_hva(kvm
, hva
, (unsigned long)&pte
, kvm_set_pte_rmapp
);
1149 static int kvm_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1156 * Emulate the accessed bit for EPT, by checking if this page has
1157 * an EPT mapping, and clearing it if it does. On the next access,
1158 * a new EPT mapping will be established.
1159 * This has some overhead, but not as much as the cost of swapping
1160 * out actively used pages or breaking up actively used hugepages.
1162 if (!shadow_accessed_mask
)
1163 return kvm_unmap_rmapp(kvm
, rmapp
, data
);
1165 spte
= rmap_next(kvm
, rmapp
, NULL
);
1169 BUG_ON(!(_spte
& PT_PRESENT_MASK
));
1170 _young
= _spte
& PT_ACCESSED_MASK
;
1173 clear_bit(PT_ACCESSED_SHIFT
, (unsigned long *)spte
);
1175 spte
= rmap_next(kvm
, rmapp
, spte
);
1180 static int kvm_test_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1187 * If there's no access bit in the secondary pte set by the
1188 * hardware it's up to gup-fast/gup to set the access bit in
1189 * the primary pte or in the page structure.
1191 if (!shadow_accessed_mask
)
1194 spte
= rmap_next(kvm
, rmapp
, NULL
);
1197 BUG_ON(!(_spte
& PT_PRESENT_MASK
));
1198 young
= _spte
& PT_ACCESSED_MASK
;
1203 spte
= rmap_next(kvm
, rmapp
, spte
);
1209 #define RMAP_RECYCLE_THRESHOLD 1000
1211 static void rmap_recycle(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
1213 unsigned long *rmapp
;
1214 struct kvm_mmu_page
*sp
;
1216 sp
= page_header(__pa(spte
));
1218 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
->role
.level
);
1220 kvm_unmap_rmapp(vcpu
->kvm
, rmapp
, 0);
1221 kvm_flush_remote_tlbs(vcpu
->kvm
);
1224 int kvm_age_hva(struct kvm
*kvm
, unsigned long hva
)
1226 return kvm_handle_hva(kvm
, hva
, 0, kvm_age_rmapp
);
1229 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
1231 return kvm_handle_hva(kvm
, hva
, 0, kvm_test_age_rmapp
);
1235 static int is_empty_shadow_page(u64
*spt
)
1240 for (pos
= spt
, end
= pos
+ PAGE_SIZE
/ sizeof(u64
); pos
!= end
; pos
++)
1241 if (is_shadow_present_pte(*pos
)) {
1242 printk(KERN_ERR
"%s: %p %llx\n", __func__
,
1251 * This value is the sum of all of the kvm instances's
1252 * kvm->arch.n_used_mmu_pages values. We need a global,
1253 * aggregate version in order to make the slab shrinker
1256 static inline void kvm_mod_used_mmu_pages(struct kvm
*kvm
, int nr
)
1258 kvm
->arch
.n_used_mmu_pages
+= nr
;
1259 percpu_counter_add(&kvm_total_used_mmu_pages
, nr
);
1263 * Remove the sp from shadow page cache, after call it,
1264 * we can not find this sp from the cache, and the shadow
1265 * page table is still valid.
1266 * It should be under the protection of mmu lock.
1268 static void kvm_mmu_isolate_page(struct kvm_mmu_page
*sp
)
1270 ASSERT(is_empty_shadow_page(sp
->spt
));
1271 hlist_del(&sp
->hash_link
);
1272 if (!sp
->role
.direct
)
1273 free_page((unsigned long)sp
->gfns
);
1277 * Free the shadow page table and the sp, we can do it
1278 * out of the protection of mmu lock.
1280 static void kvm_mmu_free_page(struct kvm_mmu_page
*sp
)
1282 list_del(&sp
->link
);
1283 free_page((unsigned long)sp
->spt
);
1284 kmem_cache_free(mmu_page_header_cache
, sp
);
1287 static unsigned kvm_page_table_hashfn(gfn_t gfn
)
1289 return gfn
& ((1 << KVM_MMU_HASH_SHIFT
) - 1);
1292 static void mmu_page_add_parent_pte(struct kvm_vcpu
*vcpu
,
1293 struct kvm_mmu_page
*sp
, u64
*parent_pte
)
1298 pte_list_add(vcpu
, parent_pte
, &sp
->parent_ptes
);
1301 static void mmu_page_remove_parent_pte(struct kvm_mmu_page
*sp
,
1304 pte_list_remove(parent_pte
, &sp
->parent_ptes
);
1307 static void drop_parent_pte(struct kvm_mmu_page
*sp
,
1310 mmu_page_remove_parent_pte(sp
, parent_pte
);
1311 mmu_spte_clear_no_track(parent_pte
);
1314 static struct kvm_mmu_page
*kvm_mmu_alloc_page(struct kvm_vcpu
*vcpu
,
1315 u64
*parent_pte
, int direct
)
1317 struct kvm_mmu_page
*sp
;
1318 sp
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_header_cache
,
1320 sp
->spt
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
, PAGE_SIZE
);
1322 sp
->gfns
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
,
1324 set_page_private(virt_to_page(sp
->spt
), (unsigned long)sp
);
1325 list_add(&sp
->link
, &vcpu
->kvm
->arch
.active_mmu_pages
);
1326 bitmap_zero(sp
->slot_bitmap
, KVM_MEMORY_SLOTS
+ KVM_PRIVATE_MEM_SLOTS
);
1327 sp
->parent_ptes
= 0;
1328 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
1329 kvm_mod_used_mmu_pages(vcpu
->kvm
, +1);
1333 static void mark_unsync(u64
*spte
);
1334 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page
*sp
)
1336 pte_list_walk(&sp
->parent_ptes
, mark_unsync
);
1339 static void mark_unsync(u64
*spte
)
1341 struct kvm_mmu_page
*sp
;
1344 sp
= page_header(__pa(spte
));
1345 index
= spte
- sp
->spt
;
1346 if (__test_and_set_bit(index
, sp
->unsync_child_bitmap
))
1348 if (sp
->unsync_children
++)
1350 kvm_mmu_mark_parents_unsync(sp
);
1353 static int nonpaging_sync_page(struct kvm_vcpu
*vcpu
,
1354 struct kvm_mmu_page
*sp
)
1359 static void nonpaging_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
1363 static void nonpaging_update_pte(struct kvm_vcpu
*vcpu
,
1364 struct kvm_mmu_page
*sp
, u64
*spte
,
1370 #define KVM_PAGE_ARRAY_NR 16
1372 struct kvm_mmu_pages
{
1373 struct mmu_page_and_offset
{
1374 struct kvm_mmu_page
*sp
;
1376 } page
[KVM_PAGE_ARRAY_NR
];
1380 #define for_each_unsync_children(bitmap, idx) \
1381 for (idx = find_first_bit(bitmap, 512); \
1383 idx = find_next_bit(bitmap, 512, idx+1))
1385 static int mmu_pages_add(struct kvm_mmu_pages
*pvec
, struct kvm_mmu_page
*sp
,
1391 for (i
=0; i
< pvec
->nr
; i
++)
1392 if (pvec
->page
[i
].sp
== sp
)
1395 pvec
->page
[pvec
->nr
].sp
= sp
;
1396 pvec
->page
[pvec
->nr
].idx
= idx
;
1398 return (pvec
->nr
== KVM_PAGE_ARRAY_NR
);
1401 static int __mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1402 struct kvm_mmu_pages
*pvec
)
1404 int i
, ret
, nr_unsync_leaf
= 0;
1406 for_each_unsync_children(sp
->unsync_child_bitmap
, i
) {
1407 struct kvm_mmu_page
*child
;
1408 u64 ent
= sp
->spt
[i
];
1410 if (!is_shadow_present_pte(ent
) || is_large_pte(ent
))
1411 goto clear_child_bitmap
;
1413 child
= page_header(ent
& PT64_BASE_ADDR_MASK
);
1415 if (child
->unsync_children
) {
1416 if (mmu_pages_add(pvec
, child
, i
))
1419 ret
= __mmu_unsync_walk(child
, pvec
);
1421 goto clear_child_bitmap
;
1423 nr_unsync_leaf
+= ret
;
1426 } else if (child
->unsync
) {
1428 if (mmu_pages_add(pvec
, child
, i
))
1431 goto clear_child_bitmap
;
1436 __clear_bit(i
, sp
->unsync_child_bitmap
);
1437 sp
->unsync_children
--;
1438 WARN_ON((int)sp
->unsync_children
< 0);
1442 return nr_unsync_leaf
;
1445 static int mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1446 struct kvm_mmu_pages
*pvec
)
1448 if (!sp
->unsync_children
)
1451 mmu_pages_add(pvec
, sp
, 0);
1452 return __mmu_unsync_walk(sp
, pvec
);
1455 static void kvm_unlink_unsync_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1457 WARN_ON(!sp
->unsync
);
1458 trace_kvm_mmu_sync_page(sp
);
1460 --kvm
->stat
.mmu_unsync
;
1463 static int kvm_mmu_prepare_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
1464 struct list_head
*invalid_list
);
1465 static void kvm_mmu_commit_zap_page(struct kvm
*kvm
,
1466 struct list_head
*invalid_list
);
1468 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1469 hlist_for_each_entry(sp, pos, \
1470 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1471 if ((sp)->gfn != (gfn)) {} else
1473 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1474 hlist_for_each_entry(sp, pos, \
1475 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1476 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1477 (sp)->role.invalid) {} else
1479 /* @sp->gfn should be write-protected at the call site */
1480 static int __kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1481 struct list_head
*invalid_list
, bool clear_unsync
)
1483 if (sp
->role
.cr4_pae
!= !!is_pae(vcpu
)) {
1484 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, invalid_list
);
1489 kvm_unlink_unsync_page(vcpu
->kvm
, sp
);
1491 if (vcpu
->arch
.mmu
.sync_page(vcpu
, sp
)) {
1492 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, invalid_list
);
1496 kvm_mmu_flush_tlb(vcpu
);
1500 static int kvm_sync_page_transient(struct kvm_vcpu
*vcpu
,
1501 struct kvm_mmu_page
*sp
)
1503 LIST_HEAD(invalid_list
);
1506 ret
= __kvm_sync_page(vcpu
, sp
, &invalid_list
, false);
1508 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1513 static int kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1514 struct list_head
*invalid_list
)
1516 return __kvm_sync_page(vcpu
, sp
, invalid_list
, true);
1519 /* @gfn should be write-protected at the call site */
1520 static void kvm_sync_pages(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1522 struct kvm_mmu_page
*s
;
1523 struct hlist_node
*node
;
1524 LIST_HEAD(invalid_list
);
1527 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
, node
) {
1531 WARN_ON(s
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
1532 kvm_unlink_unsync_page(vcpu
->kvm
, s
);
1533 if ((s
->role
.cr4_pae
!= !!is_pae(vcpu
)) ||
1534 (vcpu
->arch
.mmu
.sync_page(vcpu
, s
))) {
1535 kvm_mmu_prepare_zap_page(vcpu
->kvm
, s
, &invalid_list
);
1541 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1543 kvm_mmu_flush_tlb(vcpu
);
1546 struct mmu_page_path
{
1547 struct kvm_mmu_page
*parent
[PT64_ROOT_LEVEL
-1];
1548 unsigned int idx
[PT64_ROOT_LEVEL
-1];
1551 #define for_each_sp(pvec, sp, parents, i) \
1552 for (i = mmu_pages_next(&pvec, &parents, -1), \
1553 sp = pvec.page[i].sp; \
1554 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1555 i = mmu_pages_next(&pvec, &parents, i))
1557 static int mmu_pages_next(struct kvm_mmu_pages
*pvec
,
1558 struct mmu_page_path
*parents
,
1563 for (n
= i
+1; n
< pvec
->nr
; n
++) {
1564 struct kvm_mmu_page
*sp
= pvec
->page
[n
].sp
;
1566 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
) {
1567 parents
->idx
[0] = pvec
->page
[n
].idx
;
1571 parents
->parent
[sp
->role
.level
-2] = sp
;
1572 parents
->idx
[sp
->role
.level
-1] = pvec
->page
[n
].idx
;
1578 static void mmu_pages_clear_parents(struct mmu_page_path
*parents
)
1580 struct kvm_mmu_page
*sp
;
1581 unsigned int level
= 0;
1584 unsigned int idx
= parents
->idx
[level
];
1586 sp
= parents
->parent
[level
];
1590 --sp
->unsync_children
;
1591 WARN_ON((int)sp
->unsync_children
< 0);
1592 __clear_bit(idx
, sp
->unsync_child_bitmap
);
1594 } while (level
< PT64_ROOT_LEVEL
-1 && !sp
->unsync_children
);
1597 static void kvm_mmu_pages_init(struct kvm_mmu_page
*parent
,
1598 struct mmu_page_path
*parents
,
1599 struct kvm_mmu_pages
*pvec
)
1601 parents
->parent
[parent
->role
.level
-1] = NULL
;
1605 static void mmu_sync_children(struct kvm_vcpu
*vcpu
,
1606 struct kvm_mmu_page
*parent
)
1609 struct kvm_mmu_page
*sp
;
1610 struct mmu_page_path parents
;
1611 struct kvm_mmu_pages pages
;
1612 LIST_HEAD(invalid_list
);
1614 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1615 while (mmu_unsync_walk(parent
, &pages
)) {
1618 for_each_sp(pages
, sp
, parents
, i
)
1619 protected |= rmap_write_protect(vcpu
->kvm
, sp
->gfn
);
1622 kvm_flush_remote_tlbs(vcpu
->kvm
);
1624 for_each_sp(pages
, sp
, parents
, i
) {
1625 kvm_sync_page(vcpu
, sp
, &invalid_list
);
1626 mmu_pages_clear_parents(&parents
);
1628 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1629 cond_resched_lock(&vcpu
->kvm
->mmu_lock
);
1630 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1634 static void init_shadow_page_table(struct kvm_mmu_page
*sp
)
1638 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
1642 static struct kvm_mmu_page
*kvm_mmu_get_page(struct kvm_vcpu
*vcpu
,
1650 union kvm_mmu_page_role role
;
1652 struct kvm_mmu_page
*sp
;
1653 struct hlist_node
*node
;
1654 bool need_sync
= false;
1656 role
= vcpu
->arch
.mmu
.base_role
;
1658 role
.direct
= direct
;
1661 role
.access
= access
;
1662 if (!vcpu
->arch
.mmu
.direct_map
1663 && vcpu
->arch
.mmu
.root_level
<= PT32_ROOT_LEVEL
) {
1664 quadrant
= gaddr
>> (PAGE_SHIFT
+ (PT64_PT_BITS
* level
));
1665 quadrant
&= (1 << ((PT32_PT_BITS
- PT64_PT_BITS
) * level
)) - 1;
1666 role
.quadrant
= quadrant
;
1668 for_each_gfn_sp(vcpu
->kvm
, sp
, gfn
, node
) {
1669 if (!need_sync
&& sp
->unsync
)
1672 if (sp
->role
.word
!= role
.word
)
1675 if (sp
->unsync
&& kvm_sync_page_transient(vcpu
, sp
))
1678 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
1679 if (sp
->unsync_children
) {
1680 kvm_make_request(KVM_REQ_MMU_SYNC
, vcpu
);
1681 kvm_mmu_mark_parents_unsync(sp
);
1682 } else if (sp
->unsync
)
1683 kvm_mmu_mark_parents_unsync(sp
);
1685 trace_kvm_mmu_get_page(sp
, false);
1688 ++vcpu
->kvm
->stat
.mmu_cache_miss
;
1689 sp
= kvm_mmu_alloc_page(vcpu
, parent_pte
, direct
);
1694 hlist_add_head(&sp
->hash_link
,
1695 &vcpu
->kvm
->arch
.mmu_page_hash
[kvm_page_table_hashfn(gfn
)]);
1697 if (rmap_write_protect(vcpu
->kvm
, gfn
))
1698 kvm_flush_remote_tlbs(vcpu
->kvm
);
1699 if (level
> PT_PAGE_TABLE_LEVEL
&& need_sync
)
1700 kvm_sync_pages(vcpu
, gfn
);
1702 account_shadowed(vcpu
->kvm
, gfn
);
1704 init_shadow_page_table(sp
);
1705 trace_kvm_mmu_get_page(sp
, true);
1709 static void shadow_walk_init(struct kvm_shadow_walk_iterator
*iterator
,
1710 struct kvm_vcpu
*vcpu
, u64 addr
)
1712 iterator
->addr
= addr
;
1713 iterator
->shadow_addr
= vcpu
->arch
.mmu
.root_hpa
;
1714 iterator
->level
= vcpu
->arch
.mmu
.shadow_root_level
;
1716 if (iterator
->level
== PT64_ROOT_LEVEL
&&
1717 vcpu
->arch
.mmu
.root_level
< PT64_ROOT_LEVEL
&&
1718 !vcpu
->arch
.mmu
.direct_map
)
1721 if (iterator
->level
== PT32E_ROOT_LEVEL
) {
1722 iterator
->shadow_addr
1723 = vcpu
->arch
.mmu
.pae_root
[(addr
>> 30) & 3];
1724 iterator
->shadow_addr
&= PT64_BASE_ADDR_MASK
;
1726 if (!iterator
->shadow_addr
)
1727 iterator
->level
= 0;
1731 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator
*iterator
)
1733 if (iterator
->level
< PT_PAGE_TABLE_LEVEL
)
1736 iterator
->index
= SHADOW_PT_INDEX(iterator
->addr
, iterator
->level
);
1737 iterator
->sptep
= ((u64
*)__va(iterator
->shadow_addr
)) + iterator
->index
;
1741 static void __shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
,
1744 if (is_last_spte(spte
, iterator
->level
)) {
1745 iterator
->level
= 0;
1749 iterator
->shadow_addr
= spte
& PT64_BASE_ADDR_MASK
;
1753 static void shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
)
1755 return __shadow_walk_next(iterator
, *iterator
->sptep
);
1758 static void link_shadow_page(u64
*sptep
, struct kvm_mmu_page
*sp
)
1762 spte
= __pa(sp
->spt
)
1763 | PT_PRESENT_MASK
| PT_ACCESSED_MASK
1764 | PT_WRITABLE_MASK
| PT_USER_MASK
;
1765 mmu_spte_set(sptep
, spte
);
1768 static void drop_large_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
)
1770 if (is_large_pte(*sptep
)) {
1771 drop_spte(vcpu
->kvm
, sptep
);
1772 kvm_flush_remote_tlbs(vcpu
->kvm
);
1776 static void validate_direct_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
1777 unsigned direct_access
)
1779 if (is_shadow_present_pte(*sptep
) && !is_large_pte(*sptep
)) {
1780 struct kvm_mmu_page
*child
;
1783 * For the direct sp, if the guest pte's dirty bit
1784 * changed form clean to dirty, it will corrupt the
1785 * sp's access: allow writable in the read-only sp,
1786 * so we should update the spte at this point to get
1787 * a new sp with the correct access.
1789 child
= page_header(*sptep
& PT64_BASE_ADDR_MASK
);
1790 if (child
->role
.access
== direct_access
)
1793 drop_parent_pte(child
, sptep
);
1794 kvm_flush_remote_tlbs(vcpu
->kvm
);
1798 static void mmu_page_zap_pte(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
1802 struct kvm_mmu_page
*child
;
1805 if (is_shadow_present_pte(pte
)) {
1806 if (is_last_spte(pte
, sp
->role
.level
))
1807 drop_spte(kvm
, spte
);
1809 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
1810 drop_parent_pte(child
, spte
);
1812 } else if (is_mmio_spte(pte
))
1813 mmu_spte_clear_no_track(spte
);
1815 if (is_large_pte(pte
))
1819 static void kvm_mmu_page_unlink_children(struct kvm
*kvm
,
1820 struct kvm_mmu_page
*sp
)
1824 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
1825 mmu_page_zap_pte(kvm
, sp
, sp
->spt
+ i
);
1828 static void kvm_mmu_put_page(struct kvm_mmu_page
*sp
, u64
*parent_pte
)
1830 mmu_page_remove_parent_pte(sp
, parent_pte
);
1833 static void kvm_mmu_reset_last_pte_updated(struct kvm
*kvm
)
1836 struct kvm_vcpu
*vcpu
;
1838 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1839 vcpu
->arch
.last_pte_updated
= NULL
;
1842 static void kvm_mmu_unlink_parents(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1846 while ((parent_pte
= pte_list_next(&sp
->parent_ptes
, NULL
)))
1847 drop_parent_pte(sp
, parent_pte
);
1850 static int mmu_zap_unsync_children(struct kvm
*kvm
,
1851 struct kvm_mmu_page
*parent
,
1852 struct list_head
*invalid_list
)
1855 struct mmu_page_path parents
;
1856 struct kvm_mmu_pages pages
;
1858 if (parent
->role
.level
== PT_PAGE_TABLE_LEVEL
)
1861 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1862 while (mmu_unsync_walk(parent
, &pages
)) {
1863 struct kvm_mmu_page
*sp
;
1865 for_each_sp(pages
, sp
, parents
, i
) {
1866 kvm_mmu_prepare_zap_page(kvm
, sp
, invalid_list
);
1867 mmu_pages_clear_parents(&parents
);
1870 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1876 static int kvm_mmu_prepare_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
1877 struct list_head
*invalid_list
)
1881 trace_kvm_mmu_prepare_zap_page(sp
);
1882 ++kvm
->stat
.mmu_shadow_zapped
;
1883 ret
= mmu_zap_unsync_children(kvm
, sp
, invalid_list
);
1884 kvm_mmu_page_unlink_children(kvm
, sp
);
1885 kvm_mmu_unlink_parents(kvm
, sp
);
1886 if (!sp
->role
.invalid
&& !sp
->role
.direct
)
1887 unaccount_shadowed(kvm
, sp
->gfn
);
1889 kvm_unlink_unsync_page(kvm
, sp
);
1890 if (!sp
->root_count
) {
1893 list_move(&sp
->link
, invalid_list
);
1894 kvm_mod_used_mmu_pages(kvm
, -1);
1896 list_move(&sp
->link
, &kvm
->arch
.active_mmu_pages
);
1897 kvm_reload_remote_mmus(kvm
);
1900 sp
->role
.invalid
= 1;
1901 kvm_mmu_reset_last_pte_updated(kvm
);
1905 static void kvm_mmu_isolate_pages(struct list_head
*invalid_list
)
1907 struct kvm_mmu_page
*sp
;
1909 list_for_each_entry(sp
, invalid_list
, link
)
1910 kvm_mmu_isolate_page(sp
);
1913 static void free_pages_rcu(struct rcu_head
*head
)
1915 struct kvm_mmu_page
*next
, *sp
;
1917 sp
= container_of(head
, struct kvm_mmu_page
, rcu
);
1919 if (!list_empty(&sp
->link
))
1920 next
= list_first_entry(&sp
->link
,
1921 struct kvm_mmu_page
, link
);
1924 kvm_mmu_free_page(sp
);
1929 static void kvm_mmu_commit_zap_page(struct kvm
*kvm
,
1930 struct list_head
*invalid_list
)
1932 struct kvm_mmu_page
*sp
;
1934 if (list_empty(invalid_list
))
1937 kvm_flush_remote_tlbs(kvm
);
1939 if (atomic_read(&kvm
->arch
.reader_counter
)) {
1940 kvm_mmu_isolate_pages(invalid_list
);
1941 sp
= list_first_entry(invalid_list
, struct kvm_mmu_page
, link
);
1942 list_del_init(invalid_list
);
1944 trace_kvm_mmu_delay_free_pages(sp
);
1945 call_rcu(&sp
->rcu
, free_pages_rcu
);
1950 sp
= list_first_entry(invalid_list
, struct kvm_mmu_page
, link
);
1951 WARN_ON(!sp
->role
.invalid
|| sp
->root_count
);
1952 kvm_mmu_isolate_page(sp
);
1953 kvm_mmu_free_page(sp
);
1954 } while (!list_empty(invalid_list
));
1959 * Changing the number of mmu pages allocated to the vm
1960 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1962 void kvm_mmu_change_mmu_pages(struct kvm
*kvm
, unsigned int goal_nr_mmu_pages
)
1964 LIST_HEAD(invalid_list
);
1966 * If we set the number of mmu pages to be smaller be than the
1967 * number of actived pages , we must to free some mmu pages before we
1971 if (kvm
->arch
.n_used_mmu_pages
> goal_nr_mmu_pages
) {
1972 while (kvm
->arch
.n_used_mmu_pages
> goal_nr_mmu_pages
&&
1973 !list_empty(&kvm
->arch
.active_mmu_pages
)) {
1974 struct kvm_mmu_page
*page
;
1976 page
= container_of(kvm
->arch
.active_mmu_pages
.prev
,
1977 struct kvm_mmu_page
, link
);
1978 kvm_mmu_prepare_zap_page(kvm
, page
, &invalid_list
);
1980 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
1981 goal_nr_mmu_pages
= kvm
->arch
.n_used_mmu_pages
;
1984 kvm
->arch
.n_max_mmu_pages
= goal_nr_mmu_pages
;
1987 static int kvm_mmu_unprotect_page(struct kvm
*kvm
, gfn_t gfn
)
1989 struct kvm_mmu_page
*sp
;
1990 struct hlist_node
*node
;
1991 LIST_HEAD(invalid_list
);
1994 pgprintk("%s: looking for gfn %llx\n", __func__
, gfn
);
1997 for_each_gfn_indirect_valid_sp(kvm
, sp
, gfn
, node
) {
1998 pgprintk("%s: gfn %llx role %x\n", __func__
, gfn
,
2001 kvm_mmu_prepare_zap_page(kvm
, sp
, &invalid_list
);
2003 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
2007 static void mmu_unshadow(struct kvm
*kvm
, gfn_t gfn
)
2009 struct kvm_mmu_page
*sp
;
2010 struct hlist_node
*node
;
2011 LIST_HEAD(invalid_list
);
2013 for_each_gfn_indirect_valid_sp(kvm
, sp
, gfn
, node
) {
2014 pgprintk("%s: zap %llx %x\n",
2015 __func__
, gfn
, sp
->role
.word
);
2016 kvm_mmu_prepare_zap_page(kvm
, sp
, &invalid_list
);
2018 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
2021 static void page_header_update_slot(struct kvm
*kvm
, void *pte
, gfn_t gfn
)
2023 int slot
= memslot_id(kvm
, gfn
);
2024 struct kvm_mmu_page
*sp
= page_header(__pa(pte
));
2026 __set_bit(slot
, sp
->slot_bitmap
);
2030 * The function is based on mtrr_type_lookup() in
2031 * arch/x86/kernel/cpu/mtrr/generic.c
2033 static int get_mtrr_type(struct mtrr_state_type
*mtrr_state
,
2038 u8 prev_match
, curr_match
;
2039 int num_var_ranges
= KVM_NR_VAR_MTRR
;
2041 if (!mtrr_state
->enabled
)
2044 /* Make end inclusive end, instead of exclusive */
2047 /* Look in fixed ranges. Just return the type as per start */
2048 if (mtrr_state
->have_fixed
&& (start
< 0x100000)) {
2051 if (start
< 0x80000) {
2053 idx
+= (start
>> 16);
2054 return mtrr_state
->fixed_ranges
[idx
];
2055 } else if (start
< 0xC0000) {
2057 idx
+= ((start
- 0x80000) >> 14);
2058 return mtrr_state
->fixed_ranges
[idx
];
2059 } else if (start
< 0x1000000) {
2061 idx
+= ((start
- 0xC0000) >> 12);
2062 return mtrr_state
->fixed_ranges
[idx
];
2067 * Look in variable ranges
2068 * Look of multiple ranges matching this address and pick type
2069 * as per MTRR precedence
2071 if (!(mtrr_state
->enabled
& 2))
2072 return mtrr_state
->def_type
;
2075 for (i
= 0; i
< num_var_ranges
; ++i
) {
2076 unsigned short start_state
, end_state
;
2078 if (!(mtrr_state
->var_ranges
[i
].mask_lo
& (1 << 11)))
2081 base
= (((u64
)mtrr_state
->var_ranges
[i
].base_hi
) << 32) +
2082 (mtrr_state
->var_ranges
[i
].base_lo
& PAGE_MASK
);
2083 mask
= (((u64
)mtrr_state
->var_ranges
[i
].mask_hi
) << 32) +
2084 (mtrr_state
->var_ranges
[i
].mask_lo
& PAGE_MASK
);
2086 start_state
= ((start
& mask
) == (base
& mask
));
2087 end_state
= ((end
& mask
) == (base
& mask
));
2088 if (start_state
!= end_state
)
2091 if ((start
& mask
) != (base
& mask
))
2094 curr_match
= mtrr_state
->var_ranges
[i
].base_lo
& 0xff;
2095 if (prev_match
== 0xFF) {
2096 prev_match
= curr_match
;
2100 if (prev_match
== MTRR_TYPE_UNCACHABLE
||
2101 curr_match
== MTRR_TYPE_UNCACHABLE
)
2102 return MTRR_TYPE_UNCACHABLE
;
2104 if ((prev_match
== MTRR_TYPE_WRBACK
&&
2105 curr_match
== MTRR_TYPE_WRTHROUGH
) ||
2106 (prev_match
== MTRR_TYPE_WRTHROUGH
&&
2107 curr_match
== MTRR_TYPE_WRBACK
)) {
2108 prev_match
= MTRR_TYPE_WRTHROUGH
;
2109 curr_match
= MTRR_TYPE_WRTHROUGH
;
2112 if (prev_match
!= curr_match
)
2113 return MTRR_TYPE_UNCACHABLE
;
2116 if (prev_match
!= 0xFF)
2119 return mtrr_state
->def_type
;
2122 u8
kvm_get_guest_memory_type(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2126 mtrr
= get_mtrr_type(&vcpu
->arch
.mtrr_state
, gfn
<< PAGE_SHIFT
,
2127 (gfn
<< PAGE_SHIFT
) + PAGE_SIZE
);
2128 if (mtrr
== 0xfe || mtrr
== 0xff)
2129 mtrr
= MTRR_TYPE_WRBACK
;
2132 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type
);
2134 static void __kvm_unsync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
2136 trace_kvm_mmu_unsync_page(sp
);
2137 ++vcpu
->kvm
->stat
.mmu_unsync
;
2140 kvm_mmu_mark_parents_unsync(sp
);
2143 static void kvm_unsync_pages(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2145 struct kvm_mmu_page
*s
;
2146 struct hlist_node
*node
;
2148 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
, node
) {
2151 WARN_ON(s
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
2152 __kvm_unsync_page(vcpu
, s
);
2156 static int mmu_need_write_protect(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2159 struct kvm_mmu_page
*s
;
2160 struct hlist_node
*node
;
2161 bool need_unsync
= false;
2163 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
, node
) {
2167 if (s
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
2170 if (!need_unsync
&& !s
->unsync
) {
2177 kvm_unsync_pages(vcpu
, gfn
);
2181 static int set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2182 unsigned pte_access
, int user_fault
,
2183 int write_fault
, int level
,
2184 gfn_t gfn
, pfn_t pfn
, bool speculative
,
2185 bool can_unsync
, bool host_writable
)
2187 u64 spte
, entry
= *sptep
;
2190 if (set_mmio_spte(sptep
, gfn
, pfn
, pte_access
))
2194 * We don't set the accessed bit, since we sometimes want to see
2195 * whether the guest actually used the pte (in order to detect
2198 spte
= PT_PRESENT_MASK
;
2200 spte
|= shadow_accessed_mask
;
2202 if (pte_access
& ACC_EXEC_MASK
)
2203 spte
|= shadow_x_mask
;
2205 spte
|= shadow_nx_mask
;
2206 if (pte_access
& ACC_USER_MASK
)
2207 spte
|= shadow_user_mask
;
2208 if (level
> PT_PAGE_TABLE_LEVEL
)
2209 spte
|= PT_PAGE_SIZE_MASK
;
2211 spte
|= kvm_x86_ops
->get_mt_mask(vcpu
, gfn
,
2212 kvm_is_mmio_pfn(pfn
));
2215 spte
|= SPTE_HOST_WRITEABLE
;
2217 pte_access
&= ~ACC_WRITE_MASK
;
2219 spte
|= (u64
)pfn
<< PAGE_SHIFT
;
2221 if ((pte_access
& ACC_WRITE_MASK
)
2222 || (!vcpu
->arch
.mmu
.direct_map
&& write_fault
2223 && !is_write_protection(vcpu
) && !user_fault
)) {
2225 if (level
> PT_PAGE_TABLE_LEVEL
&&
2226 has_wrprotected_page(vcpu
->kvm
, gfn
, level
)) {
2228 drop_spte(vcpu
->kvm
, sptep
);
2232 spte
|= PT_WRITABLE_MASK
;
2234 if (!vcpu
->arch
.mmu
.direct_map
2235 && !(pte_access
& ACC_WRITE_MASK
)) {
2236 spte
&= ~PT_USER_MASK
;
2238 * If we converted a user page to a kernel page,
2239 * so that the kernel can write to it when cr0.wp=0,
2240 * then we should prevent the kernel from executing it
2241 * if SMEP is enabled.
2243 if (kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
))
2244 spte
|= PT64_NX_MASK
;
2248 * Optimization: for pte sync, if spte was writable the hash
2249 * lookup is unnecessary (and expensive). Write protection
2250 * is responsibility of mmu_get_page / kvm_sync_page.
2251 * Same reasoning can be applied to dirty page accounting.
2253 if (!can_unsync
&& is_writable_pte(*sptep
))
2256 if (mmu_need_write_protect(vcpu
, gfn
, can_unsync
)) {
2257 pgprintk("%s: found shadow page for %llx, marking ro\n",
2260 pte_access
&= ~ACC_WRITE_MASK
;
2261 if (is_writable_pte(spte
))
2262 spte
&= ~PT_WRITABLE_MASK
;
2266 if (pte_access
& ACC_WRITE_MASK
)
2267 mark_page_dirty(vcpu
->kvm
, gfn
);
2270 mmu_spte_update(sptep
, spte
);
2272 * If we overwrite a writable spte with a read-only one we
2273 * should flush remote TLBs. Otherwise rmap_write_protect
2274 * will find a read-only spte, even though the writable spte
2275 * might be cached on a CPU's TLB.
2277 if (is_writable_pte(entry
) && !is_writable_pte(*sptep
))
2278 kvm_flush_remote_tlbs(vcpu
->kvm
);
2283 static void mmu_set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2284 unsigned pt_access
, unsigned pte_access
,
2285 int user_fault
, int write_fault
,
2286 int *emulate
, int level
, gfn_t gfn
,
2287 pfn_t pfn
, bool speculative
,
2290 int was_rmapped
= 0;
2293 pgprintk("%s: spte %llx access %x write_fault %d"
2294 " user_fault %d gfn %llx\n",
2295 __func__
, *sptep
, pt_access
,
2296 write_fault
, user_fault
, gfn
);
2298 if (is_rmap_spte(*sptep
)) {
2300 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2301 * the parent of the now unreachable PTE.
2303 if (level
> PT_PAGE_TABLE_LEVEL
&&
2304 !is_large_pte(*sptep
)) {
2305 struct kvm_mmu_page
*child
;
2308 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2309 drop_parent_pte(child
, sptep
);
2310 kvm_flush_remote_tlbs(vcpu
->kvm
);
2311 } else if (pfn
!= spte_to_pfn(*sptep
)) {
2312 pgprintk("hfn old %llx new %llx\n",
2313 spte_to_pfn(*sptep
), pfn
);
2314 drop_spte(vcpu
->kvm
, sptep
);
2315 kvm_flush_remote_tlbs(vcpu
->kvm
);
2320 if (set_spte(vcpu
, sptep
, pte_access
, user_fault
, write_fault
,
2321 level
, gfn
, pfn
, speculative
, true,
2325 kvm_mmu_flush_tlb(vcpu
);
2328 if (unlikely(is_mmio_spte(*sptep
) && emulate
))
2331 pgprintk("%s: setting spte %llx\n", __func__
, *sptep
);
2332 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2333 is_large_pte(*sptep
)? "2MB" : "4kB",
2334 *sptep
& PT_PRESENT_MASK
?"RW":"R", gfn
,
2336 if (!was_rmapped
&& is_large_pte(*sptep
))
2337 ++vcpu
->kvm
->stat
.lpages
;
2339 if (is_shadow_present_pte(*sptep
)) {
2340 page_header_update_slot(vcpu
->kvm
, sptep
, gfn
);
2342 rmap_count
= rmap_add(vcpu
, sptep
, gfn
);
2343 if (rmap_count
> RMAP_RECYCLE_THRESHOLD
)
2344 rmap_recycle(vcpu
, sptep
, gfn
);
2347 kvm_release_pfn_clean(pfn
);
2349 vcpu
->arch
.last_pte_updated
= sptep
;
2350 vcpu
->arch
.last_pte_gfn
= gfn
;
2354 static void nonpaging_new_cr3(struct kvm_vcpu
*vcpu
)
2358 static pfn_t
pte_prefetch_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2361 struct kvm_memory_slot
*slot
;
2364 slot
= gfn_to_memslot_dirty_bitmap(vcpu
, gfn
, no_dirty_log
);
2366 get_page(fault_page
);
2367 return page_to_pfn(fault_page
);
2370 hva
= gfn_to_hva_memslot(slot
, gfn
);
2372 return hva_to_pfn_atomic(vcpu
->kvm
, hva
);
2375 static int direct_pte_prefetch_many(struct kvm_vcpu
*vcpu
,
2376 struct kvm_mmu_page
*sp
,
2377 u64
*start
, u64
*end
)
2379 struct page
*pages
[PTE_PREFETCH_NUM
];
2380 unsigned access
= sp
->role
.access
;
2384 gfn
= kvm_mmu_page_get_gfn(sp
, start
- sp
->spt
);
2385 if (!gfn_to_memslot_dirty_bitmap(vcpu
, gfn
, access
& ACC_WRITE_MASK
))
2388 ret
= gfn_to_page_many_atomic(vcpu
->kvm
, gfn
, pages
, end
- start
);
2392 for (i
= 0; i
< ret
; i
++, gfn
++, start
++)
2393 mmu_set_spte(vcpu
, start
, ACC_ALL
,
2395 sp
->role
.level
, gfn
,
2396 page_to_pfn(pages
[i
]), true, true);
2401 static void __direct_pte_prefetch(struct kvm_vcpu
*vcpu
,
2402 struct kvm_mmu_page
*sp
, u64
*sptep
)
2404 u64
*spte
, *start
= NULL
;
2407 WARN_ON(!sp
->role
.direct
);
2409 i
= (sptep
- sp
->spt
) & ~(PTE_PREFETCH_NUM
- 1);
2412 for (i
= 0; i
< PTE_PREFETCH_NUM
; i
++, spte
++) {
2413 if (is_shadow_present_pte(*spte
) || spte
== sptep
) {
2416 if (direct_pte_prefetch_many(vcpu
, sp
, start
, spte
) < 0)
2424 static void direct_pte_prefetch(struct kvm_vcpu
*vcpu
, u64
*sptep
)
2426 struct kvm_mmu_page
*sp
;
2429 * Since it's no accessed bit on EPT, it's no way to
2430 * distinguish between actually accessed translations
2431 * and prefetched, so disable pte prefetch if EPT is
2434 if (!shadow_accessed_mask
)
2437 sp
= page_header(__pa(sptep
));
2438 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
2441 __direct_pte_prefetch(vcpu
, sp
, sptep
);
2444 static int __direct_map(struct kvm_vcpu
*vcpu
, gpa_t v
, int write
,
2445 int map_writable
, int level
, gfn_t gfn
, pfn_t pfn
,
2448 struct kvm_shadow_walk_iterator iterator
;
2449 struct kvm_mmu_page
*sp
;
2453 for_each_shadow_entry(vcpu
, (u64
)gfn
<< PAGE_SHIFT
, iterator
) {
2454 if (iterator
.level
== level
) {
2455 unsigned pte_access
= ACC_ALL
;
2457 mmu_set_spte(vcpu
, iterator
.sptep
, ACC_ALL
, pte_access
,
2459 level
, gfn
, pfn
, prefault
, map_writable
);
2460 direct_pte_prefetch(vcpu
, iterator
.sptep
);
2461 ++vcpu
->stat
.pf_fixed
;
2465 if (!is_shadow_present_pte(*iterator
.sptep
)) {
2466 u64 base_addr
= iterator
.addr
;
2468 base_addr
&= PT64_LVL_ADDR_MASK(iterator
.level
);
2469 pseudo_gfn
= base_addr
>> PAGE_SHIFT
;
2470 sp
= kvm_mmu_get_page(vcpu
, pseudo_gfn
, iterator
.addr
,
2472 1, ACC_ALL
, iterator
.sptep
);
2474 pgprintk("nonpaging_map: ENOMEM\n");
2475 kvm_release_pfn_clean(pfn
);
2479 mmu_spte_set(iterator
.sptep
,
2481 | PT_PRESENT_MASK
| PT_WRITABLE_MASK
2482 | shadow_user_mask
| shadow_x_mask
2483 | shadow_accessed_mask
);
2489 static void kvm_send_hwpoison_signal(unsigned long address
, struct task_struct
*tsk
)
2493 info
.si_signo
= SIGBUS
;
2495 info
.si_code
= BUS_MCEERR_AR
;
2496 info
.si_addr
= (void __user
*)address
;
2497 info
.si_addr_lsb
= PAGE_SHIFT
;
2499 send_sig_info(SIGBUS
, &info
, tsk
);
2502 static int kvm_handle_bad_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, pfn_t pfn
)
2504 kvm_release_pfn_clean(pfn
);
2505 if (is_hwpoison_pfn(pfn
)) {
2506 kvm_send_hwpoison_signal(gfn_to_hva(vcpu
->kvm
, gfn
), current
);
2513 static void transparent_hugepage_adjust(struct kvm_vcpu
*vcpu
,
2514 gfn_t
*gfnp
, pfn_t
*pfnp
, int *levelp
)
2518 int level
= *levelp
;
2521 * Check if it's a transparent hugepage. If this would be an
2522 * hugetlbfs page, level wouldn't be set to
2523 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2526 if (!is_error_pfn(pfn
) && !kvm_is_mmio_pfn(pfn
) &&
2527 level
== PT_PAGE_TABLE_LEVEL
&&
2528 PageTransCompound(pfn_to_page(pfn
)) &&
2529 !has_wrprotected_page(vcpu
->kvm
, gfn
, PT_DIRECTORY_LEVEL
)) {
2532 * mmu_notifier_retry was successful and we hold the
2533 * mmu_lock here, so the pmd can't become splitting
2534 * from under us, and in turn
2535 * __split_huge_page_refcount() can't run from under
2536 * us and we can safely transfer the refcount from
2537 * PG_tail to PG_head as we switch the pfn to tail to
2540 *levelp
= level
= PT_DIRECTORY_LEVEL
;
2541 mask
= KVM_PAGES_PER_HPAGE(level
) - 1;
2542 VM_BUG_ON((gfn
& mask
) != (pfn
& mask
));
2546 kvm_release_pfn_clean(pfn
);
2548 if (!get_page_unless_zero(pfn_to_page(pfn
)))
2555 static bool mmu_invalid_pfn(pfn_t pfn
)
2557 return unlikely(is_invalid_pfn(pfn
));
2560 static bool handle_abnormal_pfn(struct kvm_vcpu
*vcpu
, gva_t gva
, gfn_t gfn
,
2561 pfn_t pfn
, unsigned access
, int *ret_val
)
2565 /* The pfn is invalid, report the error! */
2566 if (unlikely(is_invalid_pfn(pfn
))) {
2567 *ret_val
= kvm_handle_bad_page(vcpu
, gfn
, pfn
);
2571 if (unlikely(is_noslot_pfn(pfn
)))
2572 vcpu_cache_mmio_info(vcpu
, gva
, gfn
, access
);
2579 static bool try_async_pf(struct kvm_vcpu
*vcpu
, bool prefault
, gfn_t gfn
,
2580 gva_t gva
, pfn_t
*pfn
, bool write
, bool *writable
);
2582 static int nonpaging_map(struct kvm_vcpu
*vcpu
, gva_t v
, int write
, gfn_t gfn
,
2589 unsigned long mmu_seq
;
2592 force_pt_level
= mapping_level_dirty_bitmap(vcpu
, gfn
);
2593 if (likely(!force_pt_level
)) {
2594 level
= mapping_level(vcpu
, gfn
);
2596 * This path builds a PAE pagetable - so we can map
2597 * 2mb pages at maximum. Therefore check if the level
2598 * is larger than that.
2600 if (level
> PT_DIRECTORY_LEVEL
)
2601 level
= PT_DIRECTORY_LEVEL
;
2603 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
2605 level
= PT_PAGE_TABLE_LEVEL
;
2607 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
2610 if (try_async_pf(vcpu
, prefault
, gfn
, v
, &pfn
, write
, &map_writable
))
2613 if (handle_abnormal_pfn(vcpu
, v
, gfn
, pfn
, ACC_ALL
, &r
))
2616 spin_lock(&vcpu
->kvm
->mmu_lock
);
2617 if (mmu_notifier_retry(vcpu
, mmu_seq
))
2619 kvm_mmu_free_some_pages(vcpu
);
2620 if (likely(!force_pt_level
))
2621 transparent_hugepage_adjust(vcpu
, &gfn
, &pfn
, &level
);
2622 r
= __direct_map(vcpu
, v
, write
, map_writable
, level
, gfn
, pfn
,
2624 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2630 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2631 kvm_release_pfn_clean(pfn
);
2636 static void mmu_free_roots(struct kvm_vcpu
*vcpu
)
2639 struct kvm_mmu_page
*sp
;
2640 LIST_HEAD(invalid_list
);
2642 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2644 spin_lock(&vcpu
->kvm
->mmu_lock
);
2645 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
&&
2646 (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
||
2647 vcpu
->arch
.mmu
.direct_map
)) {
2648 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2650 sp
= page_header(root
);
2652 if (!sp
->root_count
&& sp
->role
.invalid
) {
2653 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, &invalid_list
);
2654 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
2656 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2657 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2660 for (i
= 0; i
< 4; ++i
) {
2661 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2664 root
&= PT64_BASE_ADDR_MASK
;
2665 sp
= page_header(root
);
2667 if (!sp
->root_count
&& sp
->role
.invalid
)
2668 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
,
2671 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
2673 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
2674 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2675 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2678 static int mmu_check_root(struct kvm_vcpu
*vcpu
, gfn_t root_gfn
)
2682 if (!kvm_is_visible_gfn(vcpu
->kvm
, root_gfn
)) {
2683 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2690 static int mmu_alloc_direct_roots(struct kvm_vcpu
*vcpu
)
2692 struct kvm_mmu_page
*sp
;
2695 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
2696 spin_lock(&vcpu
->kvm
->mmu_lock
);
2697 kvm_mmu_free_some_pages(vcpu
);
2698 sp
= kvm_mmu_get_page(vcpu
, 0, 0, PT64_ROOT_LEVEL
,
2701 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2702 vcpu
->arch
.mmu
.root_hpa
= __pa(sp
->spt
);
2703 } else if (vcpu
->arch
.mmu
.shadow_root_level
== PT32E_ROOT_LEVEL
) {
2704 for (i
= 0; i
< 4; ++i
) {
2705 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2707 ASSERT(!VALID_PAGE(root
));
2708 spin_lock(&vcpu
->kvm
->mmu_lock
);
2709 kvm_mmu_free_some_pages(vcpu
);
2710 sp
= kvm_mmu_get_page(vcpu
, i
<< (30 - PAGE_SHIFT
),
2712 PT32_ROOT_LEVEL
, 1, ACC_ALL
,
2714 root
= __pa(sp
->spt
);
2716 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2717 vcpu
->arch
.mmu
.pae_root
[i
] = root
| PT_PRESENT_MASK
;
2719 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
2726 static int mmu_alloc_shadow_roots(struct kvm_vcpu
*vcpu
)
2728 struct kvm_mmu_page
*sp
;
2733 root_gfn
= vcpu
->arch
.mmu
.get_cr3(vcpu
) >> PAGE_SHIFT
;
2735 if (mmu_check_root(vcpu
, root_gfn
))
2739 * Do we shadow a long mode page table? If so we need to
2740 * write-protect the guests page table root.
2742 if (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
) {
2743 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2745 ASSERT(!VALID_PAGE(root
));
2747 spin_lock(&vcpu
->kvm
->mmu_lock
);
2748 kvm_mmu_free_some_pages(vcpu
);
2749 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, 0, PT64_ROOT_LEVEL
,
2751 root
= __pa(sp
->spt
);
2753 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2754 vcpu
->arch
.mmu
.root_hpa
= root
;
2759 * We shadow a 32 bit page table. This may be a legacy 2-level
2760 * or a PAE 3-level page table. In either case we need to be aware that
2761 * the shadow page table may be a PAE or a long mode page table.
2763 pm_mask
= PT_PRESENT_MASK
;
2764 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
)
2765 pm_mask
|= PT_ACCESSED_MASK
| PT_WRITABLE_MASK
| PT_USER_MASK
;
2767 for (i
= 0; i
< 4; ++i
) {
2768 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2770 ASSERT(!VALID_PAGE(root
));
2771 if (vcpu
->arch
.mmu
.root_level
== PT32E_ROOT_LEVEL
) {
2772 pdptr
= vcpu
->arch
.mmu
.get_pdptr(vcpu
, i
);
2773 if (!is_present_gpte(pdptr
)) {
2774 vcpu
->arch
.mmu
.pae_root
[i
] = 0;
2777 root_gfn
= pdptr
>> PAGE_SHIFT
;
2778 if (mmu_check_root(vcpu
, root_gfn
))
2781 spin_lock(&vcpu
->kvm
->mmu_lock
);
2782 kvm_mmu_free_some_pages(vcpu
);
2783 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, i
<< 30,
2786 root
= __pa(sp
->spt
);
2788 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2790 vcpu
->arch
.mmu
.pae_root
[i
] = root
| pm_mask
;
2792 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
2795 * If we shadow a 32 bit page table with a long mode page
2796 * table we enter this path.
2798 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
2799 if (vcpu
->arch
.mmu
.lm_root
== NULL
) {
2801 * The additional page necessary for this is only
2802 * allocated on demand.
2807 lm_root
= (void*)get_zeroed_page(GFP_KERNEL
);
2808 if (lm_root
== NULL
)
2811 lm_root
[0] = __pa(vcpu
->arch
.mmu
.pae_root
) | pm_mask
;
2813 vcpu
->arch
.mmu
.lm_root
= lm_root
;
2816 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.lm_root
);
2822 static int mmu_alloc_roots(struct kvm_vcpu
*vcpu
)
2824 if (vcpu
->arch
.mmu
.direct_map
)
2825 return mmu_alloc_direct_roots(vcpu
);
2827 return mmu_alloc_shadow_roots(vcpu
);
2830 static void mmu_sync_roots(struct kvm_vcpu
*vcpu
)
2833 struct kvm_mmu_page
*sp
;
2835 if (vcpu
->arch
.mmu
.direct_map
)
2838 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2841 vcpu_clear_mmio_info(vcpu
, ~0ul);
2842 trace_kvm_mmu_audit(vcpu
, AUDIT_PRE_SYNC
);
2843 if (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
) {
2844 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2845 sp
= page_header(root
);
2846 mmu_sync_children(vcpu
, sp
);
2847 trace_kvm_mmu_audit(vcpu
, AUDIT_POST_SYNC
);
2850 for (i
= 0; i
< 4; ++i
) {
2851 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2853 if (root
&& VALID_PAGE(root
)) {
2854 root
&= PT64_BASE_ADDR_MASK
;
2855 sp
= page_header(root
);
2856 mmu_sync_children(vcpu
, sp
);
2859 trace_kvm_mmu_audit(vcpu
, AUDIT_POST_SYNC
);
2862 void kvm_mmu_sync_roots(struct kvm_vcpu
*vcpu
)
2864 spin_lock(&vcpu
->kvm
->mmu_lock
);
2865 mmu_sync_roots(vcpu
);
2866 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2869 static gpa_t
nonpaging_gva_to_gpa(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
2870 u32 access
, struct x86_exception
*exception
)
2873 exception
->error_code
= 0;
2877 static gpa_t
nonpaging_gva_to_gpa_nested(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
2879 struct x86_exception
*exception
)
2882 exception
->error_code
= 0;
2883 return vcpu
->arch
.nested_mmu
.translate_gpa(vcpu
, vaddr
, access
);
2886 static bool quickly_check_mmio_pf(struct kvm_vcpu
*vcpu
, u64 addr
, bool direct
)
2889 return vcpu_match_mmio_gpa(vcpu
, addr
);
2891 return vcpu_match_mmio_gva(vcpu
, addr
);
2896 * On direct hosts, the last spte is only allows two states
2897 * for mmio page fault:
2898 * - It is the mmio spte
2899 * - It is zapped or it is being zapped.
2901 * This function completely checks the spte when the last spte
2902 * is not the mmio spte.
2904 static bool check_direct_spte_mmio_pf(u64 spte
)
2906 return __check_direct_spte_mmio_pf(spte
);
2909 static u64
walk_shadow_page_get_mmio_spte(struct kvm_vcpu
*vcpu
, u64 addr
)
2911 struct kvm_shadow_walk_iterator iterator
;
2914 walk_shadow_page_lockless_begin(vcpu
);
2915 for_each_shadow_entry_lockless(vcpu
, addr
, iterator
, spte
)
2916 if (!is_shadow_present_pte(spte
))
2918 walk_shadow_page_lockless_end(vcpu
);
2924 * If it is a real mmio page fault, return 1 and emulat the instruction
2925 * directly, return 0 to let CPU fault again on the address, -1 is
2926 * returned if bug is detected.
2928 int handle_mmio_page_fault_common(struct kvm_vcpu
*vcpu
, u64 addr
, bool direct
)
2932 if (quickly_check_mmio_pf(vcpu
, addr
, direct
))
2935 spte
= walk_shadow_page_get_mmio_spte(vcpu
, addr
);
2937 if (is_mmio_spte(spte
)) {
2938 gfn_t gfn
= get_mmio_spte_gfn(spte
);
2939 unsigned access
= get_mmio_spte_access(spte
);
2944 trace_handle_mmio_page_fault(addr
, gfn
, access
);
2945 vcpu_cache_mmio_info(vcpu
, addr
, gfn
, access
);
2950 * It's ok if the gva is remapped by other cpus on shadow guest,
2951 * it's a BUG if the gfn is not a mmio page.
2953 if (direct
&& !check_direct_spte_mmio_pf(spte
))
2957 * If the page table is zapped by other cpus, let CPU fault again on
2962 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common
);
2964 static int handle_mmio_page_fault(struct kvm_vcpu
*vcpu
, u64 addr
,
2965 u32 error_code
, bool direct
)
2969 ret
= handle_mmio_page_fault_common(vcpu
, addr
, direct
);
2974 static int nonpaging_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
,
2975 u32 error_code
, bool prefault
)
2980 pgprintk("%s: gva %lx error %x\n", __func__
, gva
, error_code
);
2982 if (unlikely(error_code
& PFERR_RSVD_MASK
))
2983 return handle_mmio_page_fault(vcpu
, gva
, error_code
, true);
2985 r
= mmu_topup_memory_caches(vcpu
);
2990 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2992 gfn
= gva
>> PAGE_SHIFT
;
2994 return nonpaging_map(vcpu
, gva
& PAGE_MASK
,
2995 error_code
& PFERR_WRITE_MASK
, gfn
, prefault
);
2998 static int kvm_arch_setup_async_pf(struct kvm_vcpu
*vcpu
, gva_t gva
, gfn_t gfn
)
3000 struct kvm_arch_async_pf arch
;
3002 arch
.token
= (vcpu
->arch
.apf
.id
++ << 12) | vcpu
->vcpu_id
;
3004 arch
.direct_map
= vcpu
->arch
.mmu
.direct_map
;
3005 arch
.cr3
= vcpu
->arch
.mmu
.get_cr3(vcpu
);
3007 return kvm_setup_async_pf(vcpu
, gva
, gfn
, &arch
);
3010 static bool can_do_async_pf(struct kvm_vcpu
*vcpu
)
3012 if (unlikely(!irqchip_in_kernel(vcpu
->kvm
) ||
3013 kvm_event_needs_reinjection(vcpu
)))
3016 return kvm_x86_ops
->interrupt_allowed(vcpu
);
3019 static bool try_async_pf(struct kvm_vcpu
*vcpu
, bool prefault
, gfn_t gfn
,
3020 gva_t gva
, pfn_t
*pfn
, bool write
, bool *writable
)
3024 *pfn
= gfn_to_pfn_async(vcpu
->kvm
, gfn
, &async
, write
, writable
);
3027 return false; /* *pfn has correct page already */
3029 put_page(pfn_to_page(*pfn
));
3031 if (!prefault
&& can_do_async_pf(vcpu
)) {
3032 trace_kvm_try_async_get_page(gva
, gfn
);
3033 if (kvm_find_async_pf_gfn(vcpu
, gfn
)) {
3034 trace_kvm_async_pf_doublefault(gva
, gfn
);
3035 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
3037 } else if (kvm_arch_setup_async_pf(vcpu
, gva
, gfn
))
3041 *pfn
= gfn_to_pfn_prot(vcpu
->kvm
, gfn
, write
, writable
);
3046 static int tdp_page_fault(struct kvm_vcpu
*vcpu
, gva_t gpa
, u32 error_code
,
3053 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
3054 unsigned long mmu_seq
;
3055 int write
= error_code
& PFERR_WRITE_MASK
;
3059 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3061 if (unlikely(error_code
& PFERR_RSVD_MASK
))
3062 return handle_mmio_page_fault(vcpu
, gpa
, error_code
, true);
3064 r
= mmu_topup_memory_caches(vcpu
);
3068 force_pt_level
= mapping_level_dirty_bitmap(vcpu
, gfn
);
3069 if (likely(!force_pt_level
)) {
3070 level
= mapping_level(vcpu
, gfn
);
3071 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
3073 level
= PT_PAGE_TABLE_LEVEL
;
3075 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
3078 if (try_async_pf(vcpu
, prefault
, gfn
, gpa
, &pfn
, write
, &map_writable
))
3081 if (handle_abnormal_pfn(vcpu
, 0, gfn
, pfn
, ACC_ALL
, &r
))
3084 spin_lock(&vcpu
->kvm
->mmu_lock
);
3085 if (mmu_notifier_retry(vcpu
, mmu_seq
))
3087 kvm_mmu_free_some_pages(vcpu
);
3088 if (likely(!force_pt_level
))
3089 transparent_hugepage_adjust(vcpu
, &gfn
, &pfn
, &level
);
3090 r
= __direct_map(vcpu
, gpa
, write
, map_writable
,
3091 level
, gfn
, pfn
, prefault
);
3092 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3097 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3098 kvm_release_pfn_clean(pfn
);
3102 static void nonpaging_free(struct kvm_vcpu
*vcpu
)
3104 mmu_free_roots(vcpu
);
3107 static int nonpaging_init_context(struct kvm_vcpu
*vcpu
,
3108 struct kvm_mmu
*context
)
3110 context
->new_cr3
= nonpaging_new_cr3
;
3111 context
->page_fault
= nonpaging_page_fault
;
3112 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
3113 context
->free
= nonpaging_free
;
3114 context
->sync_page
= nonpaging_sync_page
;
3115 context
->invlpg
= nonpaging_invlpg
;
3116 context
->update_pte
= nonpaging_update_pte
;
3117 context
->root_level
= 0;
3118 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
3119 context
->root_hpa
= INVALID_PAGE
;
3120 context
->direct_map
= true;
3121 context
->nx
= false;
3125 void kvm_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
3127 ++vcpu
->stat
.tlb_flush
;
3128 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
3131 static void paging_new_cr3(struct kvm_vcpu
*vcpu
)
3133 pgprintk("%s: cr3 %lx\n", __func__
, kvm_read_cr3(vcpu
));
3134 mmu_free_roots(vcpu
);
3137 static unsigned long get_cr3(struct kvm_vcpu
*vcpu
)
3139 return kvm_read_cr3(vcpu
);
3142 static void inject_page_fault(struct kvm_vcpu
*vcpu
,
3143 struct x86_exception
*fault
)
3145 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
3148 static void paging_free(struct kvm_vcpu
*vcpu
)
3150 nonpaging_free(vcpu
);
3153 static bool is_rsvd_bits_set(struct kvm_mmu
*mmu
, u64 gpte
, int level
)
3157 bit7
= (gpte
>> 7) & 1;
3158 return (gpte
& mmu
->rsvd_bits_mask
[bit7
][level
-1]) != 0;
3161 static bool sync_mmio_spte(u64
*sptep
, gfn_t gfn
, unsigned access
,
3164 if (unlikely(is_mmio_spte(*sptep
))) {
3165 if (gfn
!= get_mmio_spte_gfn(*sptep
)) {
3166 mmu_spte_clear_no_track(sptep
);
3171 mark_mmio_spte(sptep
, gfn
, access
);
3179 #include "paging_tmpl.h"
3183 #include "paging_tmpl.h"
3186 static void reset_rsvds_bits_mask(struct kvm_vcpu
*vcpu
,
3187 struct kvm_mmu
*context
,
3190 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
3191 u64 exb_bit_rsvd
= 0;
3194 exb_bit_rsvd
= rsvd_bits(63, 63);
3196 case PT32_ROOT_LEVEL
:
3197 /* no rsvd bits for 2 level 4K page table entries */
3198 context
->rsvd_bits_mask
[0][1] = 0;
3199 context
->rsvd_bits_mask
[0][0] = 0;
3200 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3202 if (!is_pse(vcpu
)) {
3203 context
->rsvd_bits_mask
[1][1] = 0;
3207 if (is_cpuid_PSE36())
3208 /* 36bits PSE 4MB page */
3209 context
->rsvd_bits_mask
[1][1] = rsvd_bits(17, 21);
3211 /* 32 bits PSE 4MB page */
3212 context
->rsvd_bits_mask
[1][1] = rsvd_bits(13, 21);
3214 case PT32E_ROOT_LEVEL
:
3215 context
->rsvd_bits_mask
[0][2] =
3216 rsvd_bits(maxphyaddr
, 63) |
3217 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3218 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
3219 rsvd_bits(maxphyaddr
, 62); /* PDE */
3220 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
3221 rsvd_bits(maxphyaddr
, 62); /* PTE */
3222 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
3223 rsvd_bits(maxphyaddr
, 62) |
3224 rsvd_bits(13, 20); /* large page */
3225 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3227 case PT64_ROOT_LEVEL
:
3228 context
->rsvd_bits_mask
[0][3] = exb_bit_rsvd
|
3229 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(7, 8);
3230 context
->rsvd_bits_mask
[0][2] = exb_bit_rsvd
|
3231 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(7, 8);
3232 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
3233 rsvd_bits(maxphyaddr
, 51);
3234 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
3235 rsvd_bits(maxphyaddr
, 51);
3236 context
->rsvd_bits_mask
[1][3] = context
->rsvd_bits_mask
[0][3];
3237 context
->rsvd_bits_mask
[1][2] = exb_bit_rsvd
|
3238 rsvd_bits(maxphyaddr
, 51) |
3240 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
3241 rsvd_bits(maxphyaddr
, 51) |
3242 rsvd_bits(13, 20); /* large page */
3243 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3248 static int paging64_init_context_common(struct kvm_vcpu
*vcpu
,
3249 struct kvm_mmu
*context
,
3252 context
->nx
= is_nx(vcpu
);
3254 reset_rsvds_bits_mask(vcpu
, context
, level
);
3256 ASSERT(is_pae(vcpu
));
3257 context
->new_cr3
= paging_new_cr3
;
3258 context
->page_fault
= paging64_page_fault
;
3259 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3260 context
->sync_page
= paging64_sync_page
;
3261 context
->invlpg
= paging64_invlpg
;
3262 context
->update_pte
= paging64_update_pte
;
3263 context
->free
= paging_free
;
3264 context
->root_level
= level
;
3265 context
->shadow_root_level
= level
;
3266 context
->root_hpa
= INVALID_PAGE
;
3267 context
->direct_map
= false;
3271 static int paging64_init_context(struct kvm_vcpu
*vcpu
,
3272 struct kvm_mmu
*context
)
3274 return paging64_init_context_common(vcpu
, context
, PT64_ROOT_LEVEL
);
3277 static int paging32_init_context(struct kvm_vcpu
*vcpu
,
3278 struct kvm_mmu
*context
)
3280 context
->nx
= false;
3282 reset_rsvds_bits_mask(vcpu
, context
, PT32_ROOT_LEVEL
);
3284 context
->new_cr3
= paging_new_cr3
;
3285 context
->page_fault
= paging32_page_fault
;
3286 context
->gva_to_gpa
= paging32_gva_to_gpa
;
3287 context
->free
= paging_free
;
3288 context
->sync_page
= paging32_sync_page
;
3289 context
->invlpg
= paging32_invlpg
;
3290 context
->update_pte
= paging32_update_pte
;
3291 context
->root_level
= PT32_ROOT_LEVEL
;
3292 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
3293 context
->root_hpa
= INVALID_PAGE
;
3294 context
->direct_map
= false;
3298 static int paging32E_init_context(struct kvm_vcpu
*vcpu
,
3299 struct kvm_mmu
*context
)
3301 return paging64_init_context_common(vcpu
, context
, PT32E_ROOT_LEVEL
);
3304 static int init_kvm_tdp_mmu(struct kvm_vcpu
*vcpu
)
3306 struct kvm_mmu
*context
= vcpu
->arch
.walk_mmu
;
3308 context
->base_role
.word
= 0;
3309 context
->new_cr3
= nonpaging_new_cr3
;
3310 context
->page_fault
= tdp_page_fault
;
3311 context
->free
= nonpaging_free
;
3312 context
->sync_page
= nonpaging_sync_page
;
3313 context
->invlpg
= nonpaging_invlpg
;
3314 context
->update_pte
= nonpaging_update_pte
;
3315 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
3316 context
->root_hpa
= INVALID_PAGE
;
3317 context
->direct_map
= true;
3318 context
->set_cr3
= kvm_x86_ops
->set_tdp_cr3
;
3319 context
->get_cr3
= get_cr3
;
3320 context
->get_pdptr
= kvm_pdptr_read
;
3321 context
->inject_page_fault
= kvm_inject_page_fault
;
3322 context
->nx
= is_nx(vcpu
);
3324 if (!is_paging(vcpu
)) {
3325 context
->nx
= false;
3326 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
3327 context
->root_level
= 0;
3328 } else if (is_long_mode(vcpu
)) {
3329 context
->nx
= is_nx(vcpu
);
3330 reset_rsvds_bits_mask(vcpu
, context
, PT64_ROOT_LEVEL
);
3331 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3332 context
->root_level
= PT64_ROOT_LEVEL
;
3333 } else if (is_pae(vcpu
)) {
3334 context
->nx
= is_nx(vcpu
);
3335 reset_rsvds_bits_mask(vcpu
, context
, PT32E_ROOT_LEVEL
);
3336 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3337 context
->root_level
= PT32E_ROOT_LEVEL
;
3339 context
->nx
= false;
3340 reset_rsvds_bits_mask(vcpu
, context
, PT32_ROOT_LEVEL
);
3341 context
->gva_to_gpa
= paging32_gva_to_gpa
;
3342 context
->root_level
= PT32_ROOT_LEVEL
;
3348 int kvm_init_shadow_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*context
)
3351 bool smep
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
);
3353 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3355 if (!is_paging(vcpu
))
3356 r
= nonpaging_init_context(vcpu
, context
);
3357 else if (is_long_mode(vcpu
))
3358 r
= paging64_init_context(vcpu
, context
);
3359 else if (is_pae(vcpu
))
3360 r
= paging32E_init_context(vcpu
, context
);
3362 r
= paging32_init_context(vcpu
, context
);
3364 vcpu
->arch
.mmu
.base_role
.cr4_pae
= !!is_pae(vcpu
);
3365 vcpu
->arch
.mmu
.base_role
.cr0_wp
= is_write_protection(vcpu
);
3366 vcpu
->arch
.mmu
.base_role
.smep_andnot_wp
3367 = smep
&& !is_write_protection(vcpu
);
3371 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu
);
3373 static int init_kvm_softmmu(struct kvm_vcpu
*vcpu
)
3375 int r
= kvm_init_shadow_mmu(vcpu
, vcpu
->arch
.walk_mmu
);
3377 vcpu
->arch
.walk_mmu
->set_cr3
= kvm_x86_ops
->set_cr3
;
3378 vcpu
->arch
.walk_mmu
->get_cr3
= get_cr3
;
3379 vcpu
->arch
.walk_mmu
->get_pdptr
= kvm_pdptr_read
;
3380 vcpu
->arch
.walk_mmu
->inject_page_fault
= kvm_inject_page_fault
;
3385 static int init_kvm_nested_mmu(struct kvm_vcpu
*vcpu
)
3387 struct kvm_mmu
*g_context
= &vcpu
->arch
.nested_mmu
;
3389 g_context
->get_cr3
= get_cr3
;
3390 g_context
->get_pdptr
= kvm_pdptr_read
;
3391 g_context
->inject_page_fault
= kvm_inject_page_fault
;
3394 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3395 * translation of l2_gpa to l1_gpa addresses is done using the
3396 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3397 * functions between mmu and nested_mmu are swapped.
3399 if (!is_paging(vcpu
)) {
3400 g_context
->nx
= false;
3401 g_context
->root_level
= 0;
3402 g_context
->gva_to_gpa
= nonpaging_gva_to_gpa_nested
;
3403 } else if (is_long_mode(vcpu
)) {
3404 g_context
->nx
= is_nx(vcpu
);
3405 reset_rsvds_bits_mask(vcpu
, g_context
, PT64_ROOT_LEVEL
);
3406 g_context
->root_level
= PT64_ROOT_LEVEL
;
3407 g_context
->gva_to_gpa
= paging64_gva_to_gpa_nested
;
3408 } else if (is_pae(vcpu
)) {
3409 g_context
->nx
= is_nx(vcpu
);
3410 reset_rsvds_bits_mask(vcpu
, g_context
, PT32E_ROOT_LEVEL
);
3411 g_context
->root_level
= PT32E_ROOT_LEVEL
;
3412 g_context
->gva_to_gpa
= paging64_gva_to_gpa_nested
;
3414 g_context
->nx
= false;
3415 reset_rsvds_bits_mask(vcpu
, g_context
, PT32_ROOT_LEVEL
);
3416 g_context
->root_level
= PT32_ROOT_LEVEL
;
3417 g_context
->gva_to_gpa
= paging32_gva_to_gpa_nested
;
3423 static int init_kvm_mmu(struct kvm_vcpu
*vcpu
)
3425 if (mmu_is_nested(vcpu
))
3426 return init_kvm_nested_mmu(vcpu
);
3427 else if (tdp_enabled
)
3428 return init_kvm_tdp_mmu(vcpu
);
3430 return init_kvm_softmmu(vcpu
);
3433 static void destroy_kvm_mmu(struct kvm_vcpu
*vcpu
)
3436 if (VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3437 /* mmu.free() should set root_hpa = INVALID_PAGE */
3438 vcpu
->arch
.mmu
.free(vcpu
);
3441 int kvm_mmu_reset_context(struct kvm_vcpu
*vcpu
)
3443 destroy_kvm_mmu(vcpu
);
3444 return init_kvm_mmu(vcpu
);
3446 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context
);
3448 int kvm_mmu_load(struct kvm_vcpu
*vcpu
)
3452 r
= mmu_topup_memory_caches(vcpu
);
3455 r
= mmu_alloc_roots(vcpu
);
3456 spin_lock(&vcpu
->kvm
->mmu_lock
);
3457 mmu_sync_roots(vcpu
);
3458 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3461 /* set_cr3() should ensure TLB has been flushed */
3462 vcpu
->arch
.mmu
.set_cr3(vcpu
, vcpu
->arch
.mmu
.root_hpa
);
3466 EXPORT_SYMBOL_GPL(kvm_mmu_load
);
3468 void kvm_mmu_unload(struct kvm_vcpu
*vcpu
)
3470 mmu_free_roots(vcpu
);
3472 EXPORT_SYMBOL_GPL(kvm_mmu_unload
);
3474 static void mmu_pte_write_new_pte(struct kvm_vcpu
*vcpu
,
3475 struct kvm_mmu_page
*sp
, u64
*spte
,
3478 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
) {
3479 ++vcpu
->kvm
->stat
.mmu_pde_zapped
;
3483 ++vcpu
->kvm
->stat
.mmu_pte_updated
;
3484 vcpu
->arch
.mmu
.update_pte(vcpu
, sp
, spte
, new);
3487 static bool need_remote_flush(u64 old
, u64
new)
3489 if (!is_shadow_present_pte(old
))
3491 if (!is_shadow_present_pte(new))
3493 if ((old
^ new) & PT64_BASE_ADDR_MASK
)
3495 old
^= PT64_NX_MASK
;
3496 new ^= PT64_NX_MASK
;
3497 return (old
& ~new & PT64_PERM_MASK
) != 0;
3500 static void mmu_pte_write_flush_tlb(struct kvm_vcpu
*vcpu
, bool zap_page
,
3501 bool remote_flush
, bool local_flush
)
3507 kvm_flush_remote_tlbs(vcpu
->kvm
);
3508 else if (local_flush
)
3509 kvm_mmu_flush_tlb(vcpu
);
3512 static bool last_updated_pte_accessed(struct kvm_vcpu
*vcpu
)
3514 u64
*spte
= vcpu
->arch
.last_pte_updated
;
3516 return !!(spte
&& (*spte
& shadow_accessed_mask
));
3519 static void kvm_mmu_access_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
3521 u64
*spte
= vcpu
->arch
.last_pte_updated
;
3524 && vcpu
->arch
.last_pte_gfn
== gfn
3525 && shadow_accessed_mask
3526 && !(*spte
& shadow_accessed_mask
)
3527 && is_shadow_present_pte(*spte
))
3528 set_bit(PT_ACCESSED_SHIFT
, (unsigned long *)spte
);
3531 void kvm_mmu_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3532 const u8
*new, int bytes
,
3533 bool guest_initiated
)
3535 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
3536 union kvm_mmu_page_role mask
= { .word
= 0 };
3537 struct kvm_mmu_page
*sp
;
3538 struct hlist_node
*node
;
3539 LIST_HEAD(invalid_list
);
3540 u64 entry
, gentry
, *spte
;
3541 unsigned pte_size
, page_offset
, misaligned
, quadrant
, offset
;
3542 int level
, npte
, invlpg_counter
, r
, flooded
= 0;
3543 bool remote_flush
, local_flush
, zap_page
;
3546 * If we don't have indirect shadow pages, it means no page is
3547 * write-protected, so we can exit simply.
3549 if (!ACCESS_ONCE(vcpu
->kvm
->arch
.indirect_shadow_pages
))
3552 zap_page
= remote_flush
= local_flush
= false;
3553 offset
= offset_in_page(gpa
);
3555 pgprintk("%s: gpa %llx bytes %d\n", __func__
, gpa
, bytes
);
3557 invlpg_counter
= atomic_read(&vcpu
->kvm
->arch
.invlpg_counter
);
3560 * Assume that the pte write on a page table of the same type
3561 * as the current vcpu paging mode since we update the sptes only
3562 * when they have the same mode.
3564 if ((is_pae(vcpu
) && bytes
== 4) || !new) {
3565 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3570 r
= kvm_read_guest(vcpu
->kvm
, gpa
, &gentry
, min(bytes
, 8));
3573 new = (const u8
*)&gentry
;
3578 gentry
= *(const u32
*)new;
3581 gentry
= *(const u64
*)new;
3588 spin_lock(&vcpu
->kvm
->mmu_lock
);
3589 if (atomic_read(&vcpu
->kvm
->arch
.invlpg_counter
) != invlpg_counter
)
3591 kvm_mmu_free_some_pages(vcpu
);
3592 ++vcpu
->kvm
->stat
.mmu_pte_write
;
3593 trace_kvm_mmu_audit(vcpu
, AUDIT_PRE_PTE_WRITE
);
3594 if (guest_initiated
) {
3595 kvm_mmu_access_page(vcpu
, gfn
);
3596 if (gfn
== vcpu
->arch
.last_pt_write_gfn
3597 && !last_updated_pte_accessed(vcpu
)) {
3598 ++vcpu
->arch
.last_pt_write_count
;
3599 if (vcpu
->arch
.last_pt_write_count
>= 3)
3602 vcpu
->arch
.last_pt_write_gfn
= gfn
;
3603 vcpu
->arch
.last_pt_write_count
= 1;
3604 vcpu
->arch
.last_pte_updated
= NULL
;
3608 mask
.cr0_wp
= mask
.cr4_pae
= mask
.nxe
= 1;
3609 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, sp
, gfn
, node
) {
3610 pte_size
= sp
->role
.cr4_pae
? 8 : 4;
3611 misaligned
= (offset
^ (offset
+ bytes
- 1)) & ~(pte_size
- 1);
3612 misaligned
|= bytes
< 4;
3613 if (misaligned
|| flooded
) {
3615 * Misaligned accesses are too much trouble to fix
3616 * up; also, they usually indicate a page is not used
3619 * If we're seeing too many writes to a page,
3620 * it may no longer be a page table, or we may be
3621 * forking, in which case it is better to unmap the
3624 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3625 gpa
, bytes
, sp
->role
.word
);
3626 zap_page
|= !!kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
,
3628 ++vcpu
->kvm
->stat
.mmu_flooded
;
3631 page_offset
= offset
;
3632 level
= sp
->role
.level
;
3634 if (!sp
->role
.cr4_pae
) {
3635 page_offset
<<= 1; /* 32->64 */
3637 * A 32-bit pde maps 4MB while the shadow pdes map
3638 * only 2MB. So we need to double the offset again
3639 * and zap two pdes instead of one.
3641 if (level
== PT32_ROOT_LEVEL
) {
3642 page_offset
&= ~7; /* kill rounding error */
3646 quadrant
= page_offset
>> PAGE_SHIFT
;
3647 page_offset
&= ~PAGE_MASK
;
3648 if (quadrant
!= sp
->role
.quadrant
)
3652 spte
= &sp
->spt
[page_offset
/ sizeof(*spte
)];
3655 mmu_page_zap_pte(vcpu
->kvm
, sp
, spte
);
3657 !((sp
->role
.word
^ vcpu
->arch
.mmu
.base_role
.word
)
3659 mmu_pte_write_new_pte(vcpu
, sp
, spte
, &gentry
);
3660 if (!remote_flush
&& need_remote_flush(entry
, *spte
))
3661 remote_flush
= true;
3665 mmu_pte_write_flush_tlb(vcpu
, zap_page
, remote_flush
, local_flush
);
3666 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
3667 trace_kvm_mmu_audit(vcpu
, AUDIT_POST_PTE_WRITE
);
3668 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3671 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu
*vcpu
, gva_t gva
)
3676 if (vcpu
->arch
.mmu
.direct_map
)
3679 gpa
= kvm_mmu_gva_to_gpa_read(vcpu
, gva
, NULL
);
3681 spin_lock(&vcpu
->kvm
->mmu_lock
);
3682 r
= kvm_mmu_unprotect_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
3683 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3686 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt
);
3688 void __kvm_mmu_free_some_pages(struct kvm_vcpu
*vcpu
)
3690 LIST_HEAD(invalid_list
);
3692 while (kvm_mmu_available_pages(vcpu
->kvm
) < KVM_REFILL_PAGES
&&
3693 !list_empty(&vcpu
->kvm
->arch
.active_mmu_pages
)) {
3694 struct kvm_mmu_page
*sp
;
3696 sp
= container_of(vcpu
->kvm
->arch
.active_mmu_pages
.prev
,
3697 struct kvm_mmu_page
, link
);
3698 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, &invalid_list
);
3699 ++vcpu
->kvm
->stat
.mmu_recycled
;
3701 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
3704 int kvm_mmu_page_fault(struct kvm_vcpu
*vcpu
, gva_t cr2
, u32 error_code
,
3705 void *insn
, int insn_len
)
3708 enum emulation_result er
;
3710 r
= vcpu
->arch
.mmu
.page_fault(vcpu
, cr2
, error_code
, false);
3719 r
= mmu_topup_memory_caches(vcpu
);
3723 er
= x86_emulate_instruction(vcpu
, cr2
, 0, insn
, insn_len
);
3728 case EMULATE_DO_MMIO
:
3729 ++vcpu
->stat
.mmio_exits
;
3739 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault
);
3741 void kvm_mmu_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
3743 vcpu
->arch
.mmu
.invlpg(vcpu
, gva
);
3744 kvm_mmu_flush_tlb(vcpu
);
3745 ++vcpu
->stat
.invlpg
;
3747 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg
);
3749 void kvm_enable_tdp(void)
3753 EXPORT_SYMBOL_GPL(kvm_enable_tdp
);
3755 void kvm_disable_tdp(void)
3757 tdp_enabled
= false;
3759 EXPORT_SYMBOL_GPL(kvm_disable_tdp
);
3761 static void free_mmu_pages(struct kvm_vcpu
*vcpu
)
3763 free_page((unsigned long)vcpu
->arch
.mmu
.pae_root
);
3764 if (vcpu
->arch
.mmu
.lm_root
!= NULL
)
3765 free_page((unsigned long)vcpu
->arch
.mmu
.lm_root
);
3768 static int alloc_mmu_pages(struct kvm_vcpu
*vcpu
)
3776 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3777 * Therefore we need to allocate shadow page tables in the first
3778 * 4GB of memory, which happens to fit the DMA32 zone.
3780 page
= alloc_page(GFP_KERNEL
| __GFP_DMA32
);
3784 vcpu
->arch
.mmu
.pae_root
= page_address(page
);
3785 for (i
= 0; i
< 4; ++i
)
3786 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
3791 int kvm_mmu_create(struct kvm_vcpu
*vcpu
)
3794 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3796 return alloc_mmu_pages(vcpu
);
3799 int kvm_mmu_setup(struct kvm_vcpu
*vcpu
)
3802 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3804 return init_kvm_mmu(vcpu
);
3807 void kvm_mmu_slot_remove_write_access(struct kvm
*kvm
, int slot
)
3809 struct kvm_mmu_page
*sp
;
3811 list_for_each_entry(sp
, &kvm
->arch
.active_mmu_pages
, link
) {
3815 if (!test_bit(slot
, sp
->slot_bitmap
))
3819 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
3820 if (!is_shadow_present_pte(pt
[i
]) ||
3821 !is_last_spte(pt
[i
], sp
->role
.level
))
3824 if (is_large_pte(pt
[i
])) {
3825 drop_spte(kvm
, &pt
[i
]);
3831 if (is_writable_pte(pt
[i
]))
3832 mmu_spte_update(&pt
[i
],
3833 pt
[i
] & ~PT_WRITABLE_MASK
);
3836 kvm_flush_remote_tlbs(kvm
);
3839 void kvm_mmu_zap_all(struct kvm
*kvm
)
3841 struct kvm_mmu_page
*sp
, *node
;
3842 LIST_HEAD(invalid_list
);
3844 spin_lock(&kvm
->mmu_lock
);
3846 list_for_each_entry_safe(sp
, node
, &kvm
->arch
.active_mmu_pages
, link
)
3847 if (kvm_mmu_prepare_zap_page(kvm
, sp
, &invalid_list
))
3850 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
3851 spin_unlock(&kvm
->mmu_lock
);
3854 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm
*kvm
,
3855 struct list_head
*invalid_list
)
3857 struct kvm_mmu_page
*page
;
3859 page
= container_of(kvm
->arch
.active_mmu_pages
.prev
,
3860 struct kvm_mmu_page
, link
);
3861 return kvm_mmu_prepare_zap_page(kvm
, page
, invalid_list
);
3864 static int mmu_shrink(struct shrinker
*shrink
, struct shrink_control
*sc
)
3867 struct kvm
*kvm_freed
= NULL
;
3868 int nr_to_scan
= sc
->nr_to_scan
;
3870 if (nr_to_scan
== 0)
3873 raw_spin_lock(&kvm_lock
);
3875 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3876 int idx
, freed_pages
;
3877 LIST_HEAD(invalid_list
);
3879 idx
= srcu_read_lock(&kvm
->srcu
);
3880 spin_lock(&kvm
->mmu_lock
);
3881 if (!kvm_freed
&& nr_to_scan
> 0 &&
3882 kvm
->arch
.n_used_mmu_pages
> 0) {
3883 freed_pages
= kvm_mmu_remove_some_alloc_mmu_pages(kvm
,
3889 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
3890 spin_unlock(&kvm
->mmu_lock
);
3891 srcu_read_unlock(&kvm
->srcu
, idx
);
3894 list_move_tail(&kvm_freed
->vm_list
, &vm_list
);
3896 raw_spin_unlock(&kvm_lock
);
3899 return percpu_counter_read_positive(&kvm_total_used_mmu_pages
);
3902 static struct shrinker mmu_shrinker
= {
3903 .shrink
= mmu_shrink
,
3904 .seeks
= DEFAULT_SEEKS
* 10,
3907 static void mmu_destroy_caches(void)
3909 if (pte_list_desc_cache
)
3910 kmem_cache_destroy(pte_list_desc_cache
);
3911 if (mmu_page_header_cache
)
3912 kmem_cache_destroy(mmu_page_header_cache
);
3915 int kvm_mmu_module_init(void)
3917 pte_list_desc_cache
= kmem_cache_create("pte_list_desc",
3918 sizeof(struct pte_list_desc
),
3920 if (!pte_list_desc_cache
)
3923 mmu_page_header_cache
= kmem_cache_create("kvm_mmu_page_header",
3924 sizeof(struct kvm_mmu_page
),
3926 if (!mmu_page_header_cache
)
3929 if (percpu_counter_init(&kvm_total_used_mmu_pages
, 0))
3932 register_shrinker(&mmu_shrinker
);
3937 mmu_destroy_caches();
3942 * Caculate mmu pages needed for kvm.
3944 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm
*kvm
)
3947 unsigned int nr_mmu_pages
;
3948 unsigned int nr_pages
= 0;
3949 struct kvm_memslots
*slots
;
3951 slots
= kvm_memslots(kvm
);
3953 for (i
= 0; i
< slots
->nmemslots
; i
++)
3954 nr_pages
+= slots
->memslots
[i
].npages
;
3956 nr_mmu_pages
= nr_pages
* KVM_PERMILLE_MMU_PAGES
/ 1000;
3957 nr_mmu_pages
= max(nr_mmu_pages
,
3958 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES
);
3960 return nr_mmu_pages
;
3963 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer
*buffer
,
3966 if (len
> buffer
->len
)
3971 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer
*buffer
,
3976 ret
= pv_mmu_peek_buffer(buffer
, len
);
3981 buffer
->processed
+= len
;
3985 static int kvm_pv_mmu_write(struct kvm_vcpu
*vcpu
,
3986 gpa_t addr
, gpa_t value
)
3991 if (!is_long_mode(vcpu
) && !is_pae(vcpu
))
3994 r
= mmu_topup_memory_caches(vcpu
);
3998 if (!emulator_write_phys(vcpu
, addr
, &value
, bytes
))
4004 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
4006 (void)kvm_set_cr3(vcpu
, kvm_read_cr3(vcpu
));
4010 static int kvm_pv_mmu_release_pt(struct kvm_vcpu
*vcpu
, gpa_t addr
)
4012 spin_lock(&vcpu
->kvm
->mmu_lock
);
4013 mmu_unshadow(vcpu
->kvm
, addr
>> PAGE_SHIFT
);
4014 spin_unlock(&vcpu
->kvm
->mmu_lock
);
4018 static int kvm_pv_mmu_op_one(struct kvm_vcpu
*vcpu
,
4019 struct kvm_pv_mmu_op_buffer
*buffer
)
4021 struct kvm_mmu_op_header
*header
;
4023 header
= pv_mmu_peek_buffer(buffer
, sizeof *header
);
4026 switch (header
->op
) {
4027 case KVM_MMU_OP_WRITE_PTE
: {
4028 struct kvm_mmu_op_write_pte
*wpte
;
4030 wpte
= pv_mmu_read_buffer(buffer
, sizeof *wpte
);
4033 return kvm_pv_mmu_write(vcpu
, wpte
->pte_phys
,
4036 case KVM_MMU_OP_FLUSH_TLB
: {
4037 struct kvm_mmu_op_flush_tlb
*ftlb
;
4039 ftlb
= pv_mmu_read_buffer(buffer
, sizeof *ftlb
);
4042 return kvm_pv_mmu_flush_tlb(vcpu
);
4044 case KVM_MMU_OP_RELEASE_PT
: {
4045 struct kvm_mmu_op_release_pt
*rpt
;
4047 rpt
= pv_mmu_read_buffer(buffer
, sizeof *rpt
);
4050 return kvm_pv_mmu_release_pt(vcpu
, rpt
->pt_phys
);
4056 int kvm_pv_mmu_op(struct kvm_vcpu
*vcpu
, unsigned long bytes
,
4057 gpa_t addr
, unsigned long *ret
)
4060 struct kvm_pv_mmu_op_buffer
*buffer
= &vcpu
->arch
.mmu_op_buffer
;
4062 buffer
->ptr
= buffer
->buf
;
4063 buffer
->len
= min_t(unsigned long, bytes
, sizeof buffer
->buf
);
4064 buffer
->processed
= 0;
4066 r
= kvm_read_guest(vcpu
->kvm
, addr
, buffer
->buf
, buffer
->len
);
4070 while (buffer
->len
) {
4071 r
= kvm_pv_mmu_op_one(vcpu
, buffer
);
4080 *ret
= buffer
->processed
;
4084 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu
*vcpu
, u64 addr
, u64 sptes
[4])
4086 struct kvm_shadow_walk_iterator iterator
;
4090 walk_shadow_page_lockless_begin(vcpu
);
4091 for_each_shadow_entry_lockless(vcpu
, addr
, iterator
, spte
) {
4092 sptes
[iterator
.level
-1] = spte
;
4094 if (!is_shadow_present_pte(spte
))
4097 walk_shadow_page_lockless_end(vcpu
);
4101 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy
);
4103 void kvm_mmu_destroy(struct kvm_vcpu
*vcpu
)
4107 destroy_kvm_mmu(vcpu
);
4108 free_mmu_pages(vcpu
);
4109 mmu_free_memory_caches(vcpu
);
4112 #ifdef CONFIG_KVM_MMU_AUDIT
4113 #include "mmu_audit.c"
4115 static void mmu_audit_disable(void) { }
4118 void kvm_mmu_module_exit(void)
4120 mmu_destroy_caches();
4121 percpu_counter_destroy(&kvm_total_used_mmu_pages
);
4122 unregister_shrinker(&mmu_shrinker
);
4123 mmu_audit_disable();