Adds a nolock function to the w1 interface to avoid locking the
[linux-2.6/next.git] / arch / x86 / kvm / mmu.c
blob5d7fbf0b7dface6fd91e749873411123d99ee7cd
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
51 bool tdp_enabled = false;
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
62 char *audit_point_name[] = {
63 "pre page fault",
64 "post page fault",
65 "pre pte write",
66 "post pte write",
67 "pre sync",
68 "post sync"
71 #undef MMU_DEBUG
73 #ifdef MMU_DEBUG
75 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
76 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78 #else
80 #define pgprintk(x...) do { } while (0)
81 #define rmap_printk(x...) do { } while (0)
83 #endif
85 #ifdef MMU_DEBUG
86 static int dbg = 0;
87 module_param(dbg, bool, 0644);
88 #endif
90 static int oos_shadow = 1;
91 module_param(oos_shadow, bool, 0644);
93 #ifndef MMU_DEBUG
94 #define ASSERT(x) do { } while (0)
95 #else
96 #define ASSERT(x) \
97 if (!(x)) { \
98 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
99 __FILE__, __LINE__, #x); \
101 #endif
103 #define PTE_PREFETCH_NUM 8
105 #define PT_FIRST_AVAIL_BITS_SHIFT 9
106 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
108 #define PT64_LEVEL_BITS 9
110 #define PT64_LEVEL_SHIFT(level) \
111 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
113 #define PT64_INDEX(address, level)\
114 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
117 #define PT32_LEVEL_BITS 10
119 #define PT32_LEVEL_SHIFT(level) \
120 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
122 #define PT32_LVL_OFFSET_MASK(level) \
123 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT32_LEVEL_BITS))) - 1))
126 #define PT32_INDEX(address, level)\
127 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
130 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
131 #define PT64_DIR_BASE_ADDR_MASK \
132 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
133 #define PT64_LVL_ADDR_MASK(level) \
134 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
135 * PT64_LEVEL_BITS))) - 1))
136 #define PT64_LVL_OFFSET_MASK(level) \
137 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
138 * PT64_LEVEL_BITS))) - 1))
140 #define PT32_BASE_ADDR_MASK PAGE_MASK
141 #define PT32_DIR_BASE_ADDR_MASK \
142 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
143 #define PT32_LVL_ADDR_MASK(level) \
144 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
145 * PT32_LEVEL_BITS))) - 1))
147 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
148 | PT64_NX_MASK)
150 #define PTE_LIST_EXT 4
152 #define ACC_EXEC_MASK 1
153 #define ACC_WRITE_MASK PT_WRITABLE_MASK
154 #define ACC_USER_MASK PT_USER_MASK
155 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
157 #include <trace/events/kvm.h>
159 #define CREATE_TRACE_POINTS
160 #include "mmutrace.h"
162 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
164 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
166 struct pte_list_desc {
167 u64 *sptes[PTE_LIST_EXT];
168 struct pte_list_desc *more;
171 struct kvm_shadow_walk_iterator {
172 u64 addr;
173 hpa_t shadow_addr;
174 u64 *sptep;
175 int level;
176 unsigned index;
179 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
180 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
181 shadow_walk_okay(&(_walker)); \
182 shadow_walk_next(&(_walker)))
184 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
185 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
186 shadow_walk_okay(&(_walker)) && \
187 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
188 __shadow_walk_next(&(_walker), spte))
190 static struct kmem_cache *pte_list_desc_cache;
191 static struct kmem_cache *mmu_page_header_cache;
192 static struct percpu_counter kvm_total_used_mmu_pages;
194 static u64 __read_mostly shadow_nx_mask;
195 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
196 static u64 __read_mostly shadow_user_mask;
197 static u64 __read_mostly shadow_accessed_mask;
198 static u64 __read_mostly shadow_dirty_mask;
199 static u64 __read_mostly shadow_mmio_mask;
201 static void mmu_spte_set(u64 *sptep, u64 spte);
203 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
205 shadow_mmio_mask = mmio_mask;
207 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
209 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
211 access &= ACC_WRITE_MASK | ACC_USER_MASK;
213 trace_mark_mmio_spte(sptep, gfn, access);
214 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
217 static bool is_mmio_spte(u64 spte)
219 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
222 static gfn_t get_mmio_spte_gfn(u64 spte)
224 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
227 static unsigned get_mmio_spte_access(u64 spte)
229 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
232 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
234 if (unlikely(is_noslot_pfn(pfn))) {
235 mark_mmio_spte(sptep, gfn, access);
236 return true;
239 return false;
242 static inline u64 rsvd_bits(int s, int e)
244 return ((1ULL << (e - s + 1)) - 1) << s;
247 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
248 u64 dirty_mask, u64 nx_mask, u64 x_mask)
250 shadow_user_mask = user_mask;
251 shadow_accessed_mask = accessed_mask;
252 shadow_dirty_mask = dirty_mask;
253 shadow_nx_mask = nx_mask;
254 shadow_x_mask = x_mask;
256 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
258 static int is_cpuid_PSE36(void)
260 return 1;
263 static int is_nx(struct kvm_vcpu *vcpu)
265 return vcpu->arch.efer & EFER_NX;
268 static int is_shadow_present_pte(u64 pte)
270 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
273 static int is_large_pte(u64 pte)
275 return pte & PT_PAGE_SIZE_MASK;
278 static int is_dirty_gpte(unsigned long pte)
280 return pte & PT_DIRTY_MASK;
283 static int is_rmap_spte(u64 pte)
285 return is_shadow_present_pte(pte);
288 static int is_last_spte(u64 pte, int level)
290 if (level == PT_PAGE_TABLE_LEVEL)
291 return 1;
292 if (is_large_pte(pte))
293 return 1;
294 return 0;
297 static pfn_t spte_to_pfn(u64 pte)
299 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
302 static gfn_t pse36_gfn_delta(u32 gpte)
304 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
306 return (gpte & PT32_DIR_PSE36_MASK) << shift;
309 #ifdef CONFIG_X86_64
310 static void __set_spte(u64 *sptep, u64 spte)
312 *sptep = spte;
315 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
317 *sptep = spte;
320 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
322 return xchg(sptep, spte);
325 static u64 __get_spte_lockless(u64 *sptep)
327 return ACCESS_ONCE(*sptep);
330 static bool __check_direct_spte_mmio_pf(u64 spte)
332 /* It is valid if the spte is zapped. */
333 return spte == 0ull;
335 #else
336 union split_spte {
337 struct {
338 u32 spte_low;
339 u32 spte_high;
341 u64 spte;
344 static void count_spte_clear(u64 *sptep, u64 spte)
346 struct kvm_mmu_page *sp = page_header(__pa(sptep));
348 if (is_shadow_present_pte(spte))
349 return;
351 /* Ensure the spte is completely set before we increase the count */
352 smp_wmb();
353 sp->clear_spte_count++;
356 static void __set_spte(u64 *sptep, u64 spte)
358 union split_spte *ssptep, sspte;
360 ssptep = (union split_spte *)sptep;
361 sspte = (union split_spte)spte;
363 ssptep->spte_high = sspte.spte_high;
366 * If we map the spte from nonpresent to present, We should store
367 * the high bits firstly, then set present bit, so cpu can not
368 * fetch this spte while we are setting the spte.
370 smp_wmb();
372 ssptep->spte_low = sspte.spte_low;
375 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
377 union split_spte *ssptep, sspte;
379 ssptep = (union split_spte *)sptep;
380 sspte = (union split_spte)spte;
382 ssptep->spte_low = sspte.spte_low;
385 * If we map the spte from present to nonpresent, we should clear
386 * present bit firstly to avoid vcpu fetch the old high bits.
388 smp_wmb();
390 ssptep->spte_high = sspte.spte_high;
391 count_spte_clear(sptep, spte);
394 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
396 union split_spte *ssptep, sspte, orig;
398 ssptep = (union split_spte *)sptep;
399 sspte = (union split_spte)spte;
401 /* xchg acts as a barrier before the setting of the high bits */
402 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
403 orig.spte_high = ssptep->spte_high = sspte.spte_high;
404 count_spte_clear(sptep, spte);
406 return orig.spte;
410 * The idea using the light way get the spte on x86_32 guest is from
411 * gup_get_pte(arch/x86/mm/gup.c).
412 * The difference is we can not catch the spte tlb flush if we leave
413 * guest mode, so we emulate it by increase clear_spte_count when spte
414 * is cleared.
416 static u64 __get_spte_lockless(u64 *sptep)
418 struct kvm_mmu_page *sp = page_header(__pa(sptep));
419 union split_spte spte, *orig = (union split_spte *)sptep;
420 int count;
422 retry:
423 count = sp->clear_spte_count;
424 smp_rmb();
426 spte.spte_low = orig->spte_low;
427 smp_rmb();
429 spte.spte_high = orig->spte_high;
430 smp_rmb();
432 if (unlikely(spte.spte_low != orig->spte_low ||
433 count != sp->clear_spte_count))
434 goto retry;
436 return spte.spte;
439 static bool __check_direct_spte_mmio_pf(u64 spte)
441 union split_spte sspte = (union split_spte)spte;
442 u32 high_mmio_mask = shadow_mmio_mask >> 32;
444 /* It is valid if the spte is zapped. */
445 if (spte == 0ull)
446 return true;
448 /* It is valid if the spte is being zapped. */
449 if (sspte.spte_low == 0ull &&
450 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
451 return true;
453 return false;
455 #endif
457 static bool spte_has_volatile_bits(u64 spte)
459 if (!shadow_accessed_mask)
460 return false;
462 if (!is_shadow_present_pte(spte))
463 return false;
465 if ((spte & shadow_accessed_mask) &&
466 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
467 return false;
469 return true;
472 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
474 return (old_spte & bit_mask) && !(new_spte & bit_mask);
477 /* Rules for using mmu_spte_set:
478 * Set the sptep from nonpresent to present.
479 * Note: the sptep being assigned *must* be either not present
480 * or in a state where the hardware will not attempt to update
481 * the spte.
483 static void mmu_spte_set(u64 *sptep, u64 new_spte)
485 WARN_ON(is_shadow_present_pte(*sptep));
486 __set_spte(sptep, new_spte);
489 /* Rules for using mmu_spte_update:
490 * Update the state bits, it means the mapped pfn is not changged.
492 static void mmu_spte_update(u64 *sptep, u64 new_spte)
494 u64 mask, old_spte = *sptep;
496 WARN_ON(!is_rmap_spte(new_spte));
498 if (!is_shadow_present_pte(old_spte))
499 return mmu_spte_set(sptep, new_spte);
501 new_spte |= old_spte & shadow_dirty_mask;
503 mask = shadow_accessed_mask;
504 if (is_writable_pte(old_spte))
505 mask |= shadow_dirty_mask;
507 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
508 __update_clear_spte_fast(sptep, new_spte);
509 else
510 old_spte = __update_clear_spte_slow(sptep, new_spte);
512 if (!shadow_accessed_mask)
513 return;
515 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
516 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
517 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
518 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
522 * Rules for using mmu_spte_clear_track_bits:
523 * It sets the sptep from present to nonpresent, and track the
524 * state bits, it is used to clear the last level sptep.
526 static int mmu_spte_clear_track_bits(u64 *sptep)
528 pfn_t pfn;
529 u64 old_spte = *sptep;
531 if (!spte_has_volatile_bits(old_spte))
532 __update_clear_spte_fast(sptep, 0ull);
533 else
534 old_spte = __update_clear_spte_slow(sptep, 0ull);
536 if (!is_rmap_spte(old_spte))
537 return 0;
539 pfn = spte_to_pfn(old_spte);
540 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
541 kvm_set_pfn_accessed(pfn);
542 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
543 kvm_set_pfn_dirty(pfn);
544 return 1;
548 * Rules for using mmu_spte_clear_no_track:
549 * Directly clear spte without caring the state bits of sptep,
550 * it is used to set the upper level spte.
552 static void mmu_spte_clear_no_track(u64 *sptep)
554 __update_clear_spte_fast(sptep, 0ull);
557 static u64 mmu_spte_get_lockless(u64 *sptep)
559 return __get_spte_lockless(sptep);
562 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
564 rcu_read_lock();
565 atomic_inc(&vcpu->kvm->arch.reader_counter);
567 /* Increase the counter before walking shadow page table */
568 smp_mb__after_atomic_inc();
571 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
573 /* Decrease the counter after walking shadow page table finished */
574 smp_mb__before_atomic_dec();
575 atomic_dec(&vcpu->kvm->arch.reader_counter);
576 rcu_read_unlock();
579 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
580 struct kmem_cache *base_cache, int min)
582 void *obj;
584 if (cache->nobjs >= min)
585 return 0;
586 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
587 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
588 if (!obj)
589 return -ENOMEM;
590 cache->objects[cache->nobjs++] = obj;
592 return 0;
595 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
596 struct kmem_cache *cache)
598 while (mc->nobjs)
599 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
602 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
603 int min)
605 void *page;
607 if (cache->nobjs >= min)
608 return 0;
609 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
610 page = (void *)__get_free_page(GFP_KERNEL);
611 if (!page)
612 return -ENOMEM;
613 cache->objects[cache->nobjs++] = page;
615 return 0;
618 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
620 while (mc->nobjs)
621 free_page((unsigned long)mc->objects[--mc->nobjs]);
624 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
626 int r;
628 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
629 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
630 if (r)
631 goto out;
632 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
633 if (r)
634 goto out;
635 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
636 mmu_page_header_cache, 4);
637 out:
638 return r;
641 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
643 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
644 pte_list_desc_cache);
645 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
646 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
647 mmu_page_header_cache);
650 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
651 size_t size)
653 void *p;
655 BUG_ON(!mc->nobjs);
656 p = mc->objects[--mc->nobjs];
657 return p;
660 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
662 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
663 sizeof(struct pte_list_desc));
666 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
668 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
671 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
673 if (!sp->role.direct)
674 return sp->gfns[index];
676 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
679 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
681 if (sp->role.direct)
682 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
683 else
684 sp->gfns[index] = gfn;
688 * Return the pointer to the large page information for a given gfn,
689 * handling slots that are not large page aligned.
691 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
692 struct kvm_memory_slot *slot,
693 int level)
695 unsigned long idx;
697 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
698 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
699 return &slot->lpage_info[level - 2][idx];
702 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
704 struct kvm_memory_slot *slot;
705 struct kvm_lpage_info *linfo;
706 int i;
708 slot = gfn_to_memslot(kvm, gfn);
709 for (i = PT_DIRECTORY_LEVEL;
710 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
711 linfo = lpage_info_slot(gfn, slot, i);
712 linfo->write_count += 1;
714 kvm->arch.indirect_shadow_pages++;
717 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
719 struct kvm_memory_slot *slot;
720 struct kvm_lpage_info *linfo;
721 int i;
723 slot = gfn_to_memslot(kvm, gfn);
724 for (i = PT_DIRECTORY_LEVEL;
725 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
726 linfo = lpage_info_slot(gfn, slot, i);
727 linfo->write_count -= 1;
728 WARN_ON(linfo->write_count < 0);
730 kvm->arch.indirect_shadow_pages--;
733 static int has_wrprotected_page(struct kvm *kvm,
734 gfn_t gfn,
735 int level)
737 struct kvm_memory_slot *slot;
738 struct kvm_lpage_info *linfo;
740 slot = gfn_to_memslot(kvm, gfn);
741 if (slot) {
742 linfo = lpage_info_slot(gfn, slot, level);
743 return linfo->write_count;
746 return 1;
749 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
751 unsigned long page_size;
752 int i, ret = 0;
754 page_size = kvm_host_page_size(kvm, gfn);
756 for (i = PT_PAGE_TABLE_LEVEL;
757 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
758 if (page_size >= KVM_HPAGE_SIZE(i))
759 ret = i;
760 else
761 break;
764 return ret;
767 static struct kvm_memory_slot *
768 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
769 bool no_dirty_log)
771 struct kvm_memory_slot *slot;
773 slot = gfn_to_memslot(vcpu->kvm, gfn);
774 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
775 (no_dirty_log && slot->dirty_bitmap))
776 slot = NULL;
778 return slot;
781 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
783 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
786 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
788 int host_level, level, max_level;
790 host_level = host_mapping_level(vcpu->kvm, large_gfn);
792 if (host_level == PT_PAGE_TABLE_LEVEL)
793 return host_level;
795 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
796 kvm_x86_ops->get_lpage_level() : host_level;
798 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
799 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
800 break;
802 return level - 1;
806 * Pte mapping structures:
808 * If pte_list bit zero is zero, then pte_list point to the spte.
810 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
811 * pte_list_desc containing more mappings.
813 * Returns the number of pte entries before the spte was added or zero if
814 * the spte was not added.
817 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
818 unsigned long *pte_list)
820 struct pte_list_desc *desc;
821 int i, count = 0;
823 if (!*pte_list) {
824 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
825 *pte_list = (unsigned long)spte;
826 } else if (!(*pte_list & 1)) {
827 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
828 desc = mmu_alloc_pte_list_desc(vcpu);
829 desc->sptes[0] = (u64 *)*pte_list;
830 desc->sptes[1] = spte;
831 *pte_list = (unsigned long)desc | 1;
832 ++count;
833 } else {
834 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
835 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
836 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
837 desc = desc->more;
838 count += PTE_LIST_EXT;
840 if (desc->sptes[PTE_LIST_EXT-1]) {
841 desc->more = mmu_alloc_pte_list_desc(vcpu);
842 desc = desc->more;
844 for (i = 0; desc->sptes[i]; ++i)
845 ++count;
846 desc->sptes[i] = spte;
848 return count;
851 static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
853 struct pte_list_desc *desc;
854 u64 *prev_spte;
855 int i;
857 if (!*pte_list)
858 return NULL;
859 else if (!(*pte_list & 1)) {
860 if (!spte)
861 return (u64 *)*pte_list;
862 return NULL;
864 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
865 prev_spte = NULL;
866 while (desc) {
867 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
868 if (prev_spte == spte)
869 return desc->sptes[i];
870 prev_spte = desc->sptes[i];
872 desc = desc->more;
874 return NULL;
877 static void
878 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
879 int i, struct pte_list_desc *prev_desc)
881 int j;
883 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
885 desc->sptes[i] = desc->sptes[j];
886 desc->sptes[j] = NULL;
887 if (j != 0)
888 return;
889 if (!prev_desc && !desc->more)
890 *pte_list = (unsigned long)desc->sptes[0];
891 else
892 if (prev_desc)
893 prev_desc->more = desc->more;
894 else
895 *pte_list = (unsigned long)desc->more | 1;
896 mmu_free_pte_list_desc(desc);
899 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
901 struct pte_list_desc *desc;
902 struct pte_list_desc *prev_desc;
903 int i;
905 if (!*pte_list) {
906 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
907 BUG();
908 } else if (!(*pte_list & 1)) {
909 rmap_printk("pte_list_remove: %p 1->0\n", spte);
910 if ((u64 *)*pte_list != spte) {
911 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
912 BUG();
914 *pte_list = 0;
915 } else {
916 rmap_printk("pte_list_remove: %p many->many\n", spte);
917 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
918 prev_desc = NULL;
919 while (desc) {
920 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
921 if (desc->sptes[i] == spte) {
922 pte_list_desc_remove_entry(pte_list,
923 desc, i,
924 prev_desc);
925 return;
927 prev_desc = desc;
928 desc = desc->more;
930 pr_err("pte_list_remove: %p many->many\n", spte);
931 BUG();
935 typedef void (*pte_list_walk_fn) (u64 *spte);
936 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
938 struct pte_list_desc *desc;
939 int i;
941 if (!*pte_list)
942 return;
944 if (!(*pte_list & 1))
945 return fn((u64 *)*pte_list);
947 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
948 while (desc) {
949 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
950 fn(desc->sptes[i]);
951 desc = desc->more;
956 * Take gfn and return the reverse mapping to it.
958 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
960 struct kvm_memory_slot *slot;
961 struct kvm_lpage_info *linfo;
963 slot = gfn_to_memslot(kvm, gfn);
964 if (likely(level == PT_PAGE_TABLE_LEVEL))
965 return &slot->rmap[gfn - slot->base_gfn];
967 linfo = lpage_info_slot(gfn, slot, level);
969 return &linfo->rmap_pde;
972 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
974 struct kvm_mmu_page *sp;
975 unsigned long *rmapp;
977 sp = page_header(__pa(spte));
978 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
979 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
980 return pte_list_add(vcpu, spte, rmapp);
983 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
985 return pte_list_next(rmapp, spte);
988 static void rmap_remove(struct kvm *kvm, u64 *spte)
990 struct kvm_mmu_page *sp;
991 gfn_t gfn;
992 unsigned long *rmapp;
994 sp = page_header(__pa(spte));
995 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
996 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
997 pte_list_remove(spte, rmapp);
1000 static void drop_spte(struct kvm *kvm, u64 *sptep)
1002 if (mmu_spte_clear_track_bits(sptep))
1003 rmap_remove(kvm, sptep);
1006 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1008 unsigned long *rmapp;
1009 u64 *spte;
1010 int i, write_protected = 0;
1012 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
1014 spte = rmap_next(kvm, rmapp, NULL);
1015 while (spte) {
1016 BUG_ON(!spte);
1017 BUG_ON(!(*spte & PT_PRESENT_MASK));
1018 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
1019 if (is_writable_pte(*spte)) {
1020 mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
1021 write_protected = 1;
1023 spte = rmap_next(kvm, rmapp, spte);
1026 /* check for huge page mappings */
1027 for (i = PT_DIRECTORY_LEVEL;
1028 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1029 rmapp = gfn_to_rmap(kvm, gfn, i);
1030 spte = rmap_next(kvm, rmapp, NULL);
1031 while (spte) {
1032 BUG_ON(!spte);
1033 BUG_ON(!(*spte & PT_PRESENT_MASK));
1034 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
1035 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
1036 if (is_writable_pte(*spte)) {
1037 drop_spte(kvm, spte);
1038 --kvm->stat.lpages;
1039 spte = NULL;
1040 write_protected = 1;
1042 spte = rmap_next(kvm, rmapp, spte);
1046 return write_protected;
1049 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1050 unsigned long data)
1052 u64 *spte;
1053 int need_tlb_flush = 0;
1055 while ((spte = rmap_next(kvm, rmapp, NULL))) {
1056 BUG_ON(!(*spte & PT_PRESENT_MASK));
1057 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
1058 drop_spte(kvm, spte);
1059 need_tlb_flush = 1;
1061 return need_tlb_flush;
1064 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1065 unsigned long data)
1067 int need_flush = 0;
1068 u64 *spte, new_spte;
1069 pte_t *ptep = (pte_t *)data;
1070 pfn_t new_pfn;
1072 WARN_ON(pte_huge(*ptep));
1073 new_pfn = pte_pfn(*ptep);
1074 spte = rmap_next(kvm, rmapp, NULL);
1075 while (spte) {
1076 BUG_ON(!is_shadow_present_pte(*spte));
1077 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1078 need_flush = 1;
1079 if (pte_write(*ptep)) {
1080 drop_spte(kvm, spte);
1081 spte = rmap_next(kvm, rmapp, NULL);
1082 } else {
1083 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1084 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1086 new_spte &= ~PT_WRITABLE_MASK;
1087 new_spte &= ~SPTE_HOST_WRITEABLE;
1088 new_spte &= ~shadow_accessed_mask;
1089 mmu_spte_clear_track_bits(spte);
1090 mmu_spte_set(spte, new_spte);
1091 spte = rmap_next(kvm, rmapp, spte);
1094 if (need_flush)
1095 kvm_flush_remote_tlbs(kvm);
1097 return 0;
1100 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1101 unsigned long data,
1102 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1103 unsigned long data))
1105 int i, j;
1106 int ret;
1107 int retval = 0;
1108 struct kvm_memslots *slots;
1110 slots = kvm_memslots(kvm);
1112 for (i = 0; i < slots->nmemslots; i++) {
1113 struct kvm_memory_slot *memslot = &slots->memslots[i];
1114 unsigned long start = memslot->userspace_addr;
1115 unsigned long end;
1117 end = start + (memslot->npages << PAGE_SHIFT);
1118 if (hva >= start && hva < end) {
1119 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1120 gfn_t gfn = memslot->base_gfn + gfn_offset;
1122 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1124 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1125 struct kvm_lpage_info *linfo;
1127 linfo = lpage_info_slot(gfn, memslot,
1128 PT_DIRECTORY_LEVEL + j);
1129 ret |= handler(kvm, &linfo->rmap_pde, data);
1131 trace_kvm_age_page(hva, memslot, ret);
1132 retval |= ret;
1136 return retval;
1139 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1141 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1144 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1146 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1149 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1150 unsigned long data)
1152 u64 *spte;
1153 int young = 0;
1156 * Emulate the accessed bit for EPT, by checking if this page has
1157 * an EPT mapping, and clearing it if it does. On the next access,
1158 * a new EPT mapping will be established.
1159 * This has some overhead, but not as much as the cost of swapping
1160 * out actively used pages or breaking up actively used hugepages.
1162 if (!shadow_accessed_mask)
1163 return kvm_unmap_rmapp(kvm, rmapp, data);
1165 spte = rmap_next(kvm, rmapp, NULL);
1166 while (spte) {
1167 int _young;
1168 u64 _spte = *spte;
1169 BUG_ON(!(_spte & PT_PRESENT_MASK));
1170 _young = _spte & PT_ACCESSED_MASK;
1171 if (_young) {
1172 young = 1;
1173 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1175 spte = rmap_next(kvm, rmapp, spte);
1177 return young;
1180 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1181 unsigned long data)
1183 u64 *spte;
1184 int young = 0;
1187 * If there's no access bit in the secondary pte set by the
1188 * hardware it's up to gup-fast/gup to set the access bit in
1189 * the primary pte or in the page structure.
1191 if (!shadow_accessed_mask)
1192 goto out;
1194 spte = rmap_next(kvm, rmapp, NULL);
1195 while (spte) {
1196 u64 _spte = *spte;
1197 BUG_ON(!(_spte & PT_PRESENT_MASK));
1198 young = _spte & PT_ACCESSED_MASK;
1199 if (young) {
1200 young = 1;
1201 break;
1203 spte = rmap_next(kvm, rmapp, spte);
1205 out:
1206 return young;
1209 #define RMAP_RECYCLE_THRESHOLD 1000
1211 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1213 unsigned long *rmapp;
1214 struct kvm_mmu_page *sp;
1216 sp = page_header(__pa(spte));
1218 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1220 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1221 kvm_flush_remote_tlbs(vcpu->kvm);
1224 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1226 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1229 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1231 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1234 #ifdef MMU_DEBUG
1235 static int is_empty_shadow_page(u64 *spt)
1237 u64 *pos;
1238 u64 *end;
1240 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1241 if (is_shadow_present_pte(*pos)) {
1242 printk(KERN_ERR "%s: %p %llx\n", __func__,
1243 pos, *pos);
1244 return 0;
1246 return 1;
1248 #endif
1251 * This value is the sum of all of the kvm instances's
1252 * kvm->arch.n_used_mmu_pages values. We need a global,
1253 * aggregate version in order to make the slab shrinker
1254 * faster
1256 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1258 kvm->arch.n_used_mmu_pages += nr;
1259 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1263 * Remove the sp from shadow page cache, after call it,
1264 * we can not find this sp from the cache, and the shadow
1265 * page table is still valid.
1266 * It should be under the protection of mmu lock.
1268 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1270 ASSERT(is_empty_shadow_page(sp->spt));
1271 hlist_del(&sp->hash_link);
1272 if (!sp->role.direct)
1273 free_page((unsigned long)sp->gfns);
1277 * Free the shadow page table and the sp, we can do it
1278 * out of the protection of mmu lock.
1280 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1282 list_del(&sp->link);
1283 free_page((unsigned long)sp->spt);
1284 kmem_cache_free(mmu_page_header_cache, sp);
1287 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1289 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1292 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1293 struct kvm_mmu_page *sp, u64 *parent_pte)
1295 if (!parent_pte)
1296 return;
1298 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1301 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1302 u64 *parent_pte)
1304 pte_list_remove(parent_pte, &sp->parent_ptes);
1307 static void drop_parent_pte(struct kvm_mmu_page *sp,
1308 u64 *parent_pte)
1310 mmu_page_remove_parent_pte(sp, parent_pte);
1311 mmu_spte_clear_no_track(parent_pte);
1314 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1315 u64 *parent_pte, int direct)
1317 struct kvm_mmu_page *sp;
1318 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1319 sizeof *sp);
1320 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1321 if (!direct)
1322 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1323 PAGE_SIZE);
1324 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1325 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1326 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1327 sp->parent_ptes = 0;
1328 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1329 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1330 return sp;
1333 static void mark_unsync(u64 *spte);
1334 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1336 pte_list_walk(&sp->parent_ptes, mark_unsync);
1339 static void mark_unsync(u64 *spte)
1341 struct kvm_mmu_page *sp;
1342 unsigned int index;
1344 sp = page_header(__pa(spte));
1345 index = spte - sp->spt;
1346 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1347 return;
1348 if (sp->unsync_children++)
1349 return;
1350 kvm_mmu_mark_parents_unsync(sp);
1353 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1354 struct kvm_mmu_page *sp)
1356 return 1;
1359 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1363 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1364 struct kvm_mmu_page *sp, u64 *spte,
1365 const void *pte)
1367 WARN_ON(1);
1370 #define KVM_PAGE_ARRAY_NR 16
1372 struct kvm_mmu_pages {
1373 struct mmu_page_and_offset {
1374 struct kvm_mmu_page *sp;
1375 unsigned int idx;
1376 } page[KVM_PAGE_ARRAY_NR];
1377 unsigned int nr;
1380 #define for_each_unsync_children(bitmap, idx) \
1381 for (idx = find_first_bit(bitmap, 512); \
1382 idx < 512; \
1383 idx = find_next_bit(bitmap, 512, idx+1))
1385 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1386 int idx)
1388 int i;
1390 if (sp->unsync)
1391 for (i=0; i < pvec->nr; i++)
1392 if (pvec->page[i].sp == sp)
1393 return 0;
1395 pvec->page[pvec->nr].sp = sp;
1396 pvec->page[pvec->nr].idx = idx;
1397 pvec->nr++;
1398 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1401 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1402 struct kvm_mmu_pages *pvec)
1404 int i, ret, nr_unsync_leaf = 0;
1406 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1407 struct kvm_mmu_page *child;
1408 u64 ent = sp->spt[i];
1410 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1411 goto clear_child_bitmap;
1413 child = page_header(ent & PT64_BASE_ADDR_MASK);
1415 if (child->unsync_children) {
1416 if (mmu_pages_add(pvec, child, i))
1417 return -ENOSPC;
1419 ret = __mmu_unsync_walk(child, pvec);
1420 if (!ret)
1421 goto clear_child_bitmap;
1422 else if (ret > 0)
1423 nr_unsync_leaf += ret;
1424 else
1425 return ret;
1426 } else if (child->unsync) {
1427 nr_unsync_leaf++;
1428 if (mmu_pages_add(pvec, child, i))
1429 return -ENOSPC;
1430 } else
1431 goto clear_child_bitmap;
1433 continue;
1435 clear_child_bitmap:
1436 __clear_bit(i, sp->unsync_child_bitmap);
1437 sp->unsync_children--;
1438 WARN_ON((int)sp->unsync_children < 0);
1442 return nr_unsync_leaf;
1445 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1446 struct kvm_mmu_pages *pvec)
1448 if (!sp->unsync_children)
1449 return 0;
1451 mmu_pages_add(pvec, sp, 0);
1452 return __mmu_unsync_walk(sp, pvec);
1455 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1457 WARN_ON(!sp->unsync);
1458 trace_kvm_mmu_sync_page(sp);
1459 sp->unsync = 0;
1460 --kvm->stat.mmu_unsync;
1463 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1464 struct list_head *invalid_list);
1465 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1466 struct list_head *invalid_list);
1468 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1469 hlist_for_each_entry(sp, pos, \
1470 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1471 if ((sp)->gfn != (gfn)) {} else
1473 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1474 hlist_for_each_entry(sp, pos, \
1475 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1476 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1477 (sp)->role.invalid) {} else
1479 /* @sp->gfn should be write-protected at the call site */
1480 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1481 struct list_head *invalid_list, bool clear_unsync)
1483 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1484 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1485 return 1;
1488 if (clear_unsync)
1489 kvm_unlink_unsync_page(vcpu->kvm, sp);
1491 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1492 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1493 return 1;
1496 kvm_mmu_flush_tlb(vcpu);
1497 return 0;
1500 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1501 struct kvm_mmu_page *sp)
1503 LIST_HEAD(invalid_list);
1504 int ret;
1506 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1507 if (ret)
1508 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1510 return ret;
1513 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1514 struct list_head *invalid_list)
1516 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1519 /* @gfn should be write-protected at the call site */
1520 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1522 struct kvm_mmu_page *s;
1523 struct hlist_node *node;
1524 LIST_HEAD(invalid_list);
1525 bool flush = false;
1527 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1528 if (!s->unsync)
1529 continue;
1531 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1532 kvm_unlink_unsync_page(vcpu->kvm, s);
1533 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1534 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1535 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1536 continue;
1538 flush = true;
1541 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1542 if (flush)
1543 kvm_mmu_flush_tlb(vcpu);
1546 struct mmu_page_path {
1547 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1548 unsigned int idx[PT64_ROOT_LEVEL-1];
1551 #define for_each_sp(pvec, sp, parents, i) \
1552 for (i = mmu_pages_next(&pvec, &parents, -1), \
1553 sp = pvec.page[i].sp; \
1554 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1555 i = mmu_pages_next(&pvec, &parents, i))
1557 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1558 struct mmu_page_path *parents,
1559 int i)
1561 int n;
1563 for (n = i+1; n < pvec->nr; n++) {
1564 struct kvm_mmu_page *sp = pvec->page[n].sp;
1566 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1567 parents->idx[0] = pvec->page[n].idx;
1568 return n;
1571 parents->parent[sp->role.level-2] = sp;
1572 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1575 return n;
1578 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1580 struct kvm_mmu_page *sp;
1581 unsigned int level = 0;
1583 do {
1584 unsigned int idx = parents->idx[level];
1586 sp = parents->parent[level];
1587 if (!sp)
1588 return;
1590 --sp->unsync_children;
1591 WARN_ON((int)sp->unsync_children < 0);
1592 __clear_bit(idx, sp->unsync_child_bitmap);
1593 level++;
1594 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1597 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1598 struct mmu_page_path *parents,
1599 struct kvm_mmu_pages *pvec)
1601 parents->parent[parent->role.level-1] = NULL;
1602 pvec->nr = 0;
1605 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1606 struct kvm_mmu_page *parent)
1608 int i;
1609 struct kvm_mmu_page *sp;
1610 struct mmu_page_path parents;
1611 struct kvm_mmu_pages pages;
1612 LIST_HEAD(invalid_list);
1614 kvm_mmu_pages_init(parent, &parents, &pages);
1615 while (mmu_unsync_walk(parent, &pages)) {
1616 int protected = 0;
1618 for_each_sp(pages, sp, parents, i)
1619 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1621 if (protected)
1622 kvm_flush_remote_tlbs(vcpu->kvm);
1624 for_each_sp(pages, sp, parents, i) {
1625 kvm_sync_page(vcpu, sp, &invalid_list);
1626 mmu_pages_clear_parents(&parents);
1628 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1629 cond_resched_lock(&vcpu->kvm->mmu_lock);
1630 kvm_mmu_pages_init(parent, &parents, &pages);
1634 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1636 int i;
1638 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1639 sp->spt[i] = 0ull;
1642 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1643 gfn_t gfn,
1644 gva_t gaddr,
1645 unsigned level,
1646 int direct,
1647 unsigned access,
1648 u64 *parent_pte)
1650 union kvm_mmu_page_role role;
1651 unsigned quadrant;
1652 struct kvm_mmu_page *sp;
1653 struct hlist_node *node;
1654 bool need_sync = false;
1656 role = vcpu->arch.mmu.base_role;
1657 role.level = level;
1658 role.direct = direct;
1659 if (role.direct)
1660 role.cr4_pae = 0;
1661 role.access = access;
1662 if (!vcpu->arch.mmu.direct_map
1663 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1664 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1665 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1666 role.quadrant = quadrant;
1668 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1669 if (!need_sync && sp->unsync)
1670 need_sync = true;
1672 if (sp->role.word != role.word)
1673 continue;
1675 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1676 break;
1678 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1679 if (sp->unsync_children) {
1680 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1681 kvm_mmu_mark_parents_unsync(sp);
1682 } else if (sp->unsync)
1683 kvm_mmu_mark_parents_unsync(sp);
1685 trace_kvm_mmu_get_page(sp, false);
1686 return sp;
1688 ++vcpu->kvm->stat.mmu_cache_miss;
1689 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1690 if (!sp)
1691 return sp;
1692 sp->gfn = gfn;
1693 sp->role = role;
1694 hlist_add_head(&sp->hash_link,
1695 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1696 if (!direct) {
1697 if (rmap_write_protect(vcpu->kvm, gfn))
1698 kvm_flush_remote_tlbs(vcpu->kvm);
1699 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1700 kvm_sync_pages(vcpu, gfn);
1702 account_shadowed(vcpu->kvm, gfn);
1704 init_shadow_page_table(sp);
1705 trace_kvm_mmu_get_page(sp, true);
1706 return sp;
1709 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1710 struct kvm_vcpu *vcpu, u64 addr)
1712 iterator->addr = addr;
1713 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1714 iterator->level = vcpu->arch.mmu.shadow_root_level;
1716 if (iterator->level == PT64_ROOT_LEVEL &&
1717 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1718 !vcpu->arch.mmu.direct_map)
1719 --iterator->level;
1721 if (iterator->level == PT32E_ROOT_LEVEL) {
1722 iterator->shadow_addr
1723 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1724 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1725 --iterator->level;
1726 if (!iterator->shadow_addr)
1727 iterator->level = 0;
1731 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1733 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1734 return false;
1736 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1737 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1738 return true;
1741 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1742 u64 spte)
1744 if (is_last_spte(spte, iterator->level)) {
1745 iterator->level = 0;
1746 return;
1749 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1750 --iterator->level;
1753 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1755 return __shadow_walk_next(iterator, *iterator->sptep);
1758 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1760 u64 spte;
1762 spte = __pa(sp->spt)
1763 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1764 | PT_WRITABLE_MASK | PT_USER_MASK;
1765 mmu_spte_set(sptep, spte);
1768 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1770 if (is_large_pte(*sptep)) {
1771 drop_spte(vcpu->kvm, sptep);
1772 kvm_flush_remote_tlbs(vcpu->kvm);
1776 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1777 unsigned direct_access)
1779 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1780 struct kvm_mmu_page *child;
1783 * For the direct sp, if the guest pte's dirty bit
1784 * changed form clean to dirty, it will corrupt the
1785 * sp's access: allow writable in the read-only sp,
1786 * so we should update the spte at this point to get
1787 * a new sp with the correct access.
1789 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1790 if (child->role.access == direct_access)
1791 return;
1793 drop_parent_pte(child, sptep);
1794 kvm_flush_remote_tlbs(vcpu->kvm);
1798 static void mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1799 u64 *spte)
1801 u64 pte;
1802 struct kvm_mmu_page *child;
1804 pte = *spte;
1805 if (is_shadow_present_pte(pte)) {
1806 if (is_last_spte(pte, sp->role.level))
1807 drop_spte(kvm, spte);
1808 else {
1809 child = page_header(pte & PT64_BASE_ADDR_MASK);
1810 drop_parent_pte(child, spte);
1812 } else if (is_mmio_spte(pte))
1813 mmu_spte_clear_no_track(spte);
1815 if (is_large_pte(pte))
1816 --kvm->stat.lpages;
1819 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1820 struct kvm_mmu_page *sp)
1822 unsigned i;
1824 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1825 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1828 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1830 mmu_page_remove_parent_pte(sp, parent_pte);
1833 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1835 int i;
1836 struct kvm_vcpu *vcpu;
1838 kvm_for_each_vcpu(i, vcpu, kvm)
1839 vcpu->arch.last_pte_updated = NULL;
1842 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1844 u64 *parent_pte;
1846 while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1847 drop_parent_pte(sp, parent_pte);
1850 static int mmu_zap_unsync_children(struct kvm *kvm,
1851 struct kvm_mmu_page *parent,
1852 struct list_head *invalid_list)
1854 int i, zapped = 0;
1855 struct mmu_page_path parents;
1856 struct kvm_mmu_pages pages;
1858 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1859 return 0;
1861 kvm_mmu_pages_init(parent, &parents, &pages);
1862 while (mmu_unsync_walk(parent, &pages)) {
1863 struct kvm_mmu_page *sp;
1865 for_each_sp(pages, sp, parents, i) {
1866 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1867 mmu_pages_clear_parents(&parents);
1868 zapped++;
1870 kvm_mmu_pages_init(parent, &parents, &pages);
1873 return zapped;
1876 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1877 struct list_head *invalid_list)
1879 int ret;
1881 trace_kvm_mmu_prepare_zap_page(sp);
1882 ++kvm->stat.mmu_shadow_zapped;
1883 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1884 kvm_mmu_page_unlink_children(kvm, sp);
1885 kvm_mmu_unlink_parents(kvm, sp);
1886 if (!sp->role.invalid && !sp->role.direct)
1887 unaccount_shadowed(kvm, sp->gfn);
1888 if (sp->unsync)
1889 kvm_unlink_unsync_page(kvm, sp);
1890 if (!sp->root_count) {
1891 /* Count self */
1892 ret++;
1893 list_move(&sp->link, invalid_list);
1894 kvm_mod_used_mmu_pages(kvm, -1);
1895 } else {
1896 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1897 kvm_reload_remote_mmus(kvm);
1900 sp->role.invalid = 1;
1901 kvm_mmu_reset_last_pte_updated(kvm);
1902 return ret;
1905 static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1907 struct kvm_mmu_page *sp;
1909 list_for_each_entry(sp, invalid_list, link)
1910 kvm_mmu_isolate_page(sp);
1913 static void free_pages_rcu(struct rcu_head *head)
1915 struct kvm_mmu_page *next, *sp;
1917 sp = container_of(head, struct kvm_mmu_page, rcu);
1918 while (sp) {
1919 if (!list_empty(&sp->link))
1920 next = list_first_entry(&sp->link,
1921 struct kvm_mmu_page, link);
1922 else
1923 next = NULL;
1924 kvm_mmu_free_page(sp);
1925 sp = next;
1929 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1930 struct list_head *invalid_list)
1932 struct kvm_mmu_page *sp;
1934 if (list_empty(invalid_list))
1935 return;
1937 kvm_flush_remote_tlbs(kvm);
1939 if (atomic_read(&kvm->arch.reader_counter)) {
1940 kvm_mmu_isolate_pages(invalid_list);
1941 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1942 list_del_init(invalid_list);
1944 trace_kvm_mmu_delay_free_pages(sp);
1945 call_rcu(&sp->rcu, free_pages_rcu);
1946 return;
1949 do {
1950 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1951 WARN_ON(!sp->role.invalid || sp->root_count);
1952 kvm_mmu_isolate_page(sp);
1953 kvm_mmu_free_page(sp);
1954 } while (!list_empty(invalid_list));
1959 * Changing the number of mmu pages allocated to the vm
1960 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1962 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1964 LIST_HEAD(invalid_list);
1966 * If we set the number of mmu pages to be smaller be than the
1967 * number of actived pages , we must to free some mmu pages before we
1968 * change the value
1971 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1972 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1973 !list_empty(&kvm->arch.active_mmu_pages)) {
1974 struct kvm_mmu_page *page;
1976 page = container_of(kvm->arch.active_mmu_pages.prev,
1977 struct kvm_mmu_page, link);
1978 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1980 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1981 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1984 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1987 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1989 struct kvm_mmu_page *sp;
1990 struct hlist_node *node;
1991 LIST_HEAD(invalid_list);
1992 int r;
1994 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1995 r = 0;
1997 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1998 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
1999 sp->role.word);
2000 r = 1;
2001 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2003 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2004 return r;
2007 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
2009 struct kvm_mmu_page *sp;
2010 struct hlist_node *node;
2011 LIST_HEAD(invalid_list);
2013 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2014 pgprintk("%s: zap %llx %x\n",
2015 __func__, gfn, sp->role.word);
2016 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2018 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2021 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2023 int slot = memslot_id(kvm, gfn);
2024 struct kvm_mmu_page *sp = page_header(__pa(pte));
2026 __set_bit(slot, sp->slot_bitmap);
2030 * The function is based on mtrr_type_lookup() in
2031 * arch/x86/kernel/cpu/mtrr/generic.c
2033 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2034 u64 start, u64 end)
2036 int i;
2037 u64 base, mask;
2038 u8 prev_match, curr_match;
2039 int num_var_ranges = KVM_NR_VAR_MTRR;
2041 if (!mtrr_state->enabled)
2042 return 0xFF;
2044 /* Make end inclusive end, instead of exclusive */
2045 end--;
2047 /* Look in fixed ranges. Just return the type as per start */
2048 if (mtrr_state->have_fixed && (start < 0x100000)) {
2049 int idx;
2051 if (start < 0x80000) {
2052 idx = 0;
2053 idx += (start >> 16);
2054 return mtrr_state->fixed_ranges[idx];
2055 } else if (start < 0xC0000) {
2056 idx = 1 * 8;
2057 idx += ((start - 0x80000) >> 14);
2058 return mtrr_state->fixed_ranges[idx];
2059 } else if (start < 0x1000000) {
2060 idx = 3 * 8;
2061 idx += ((start - 0xC0000) >> 12);
2062 return mtrr_state->fixed_ranges[idx];
2067 * Look in variable ranges
2068 * Look of multiple ranges matching this address and pick type
2069 * as per MTRR precedence
2071 if (!(mtrr_state->enabled & 2))
2072 return mtrr_state->def_type;
2074 prev_match = 0xFF;
2075 for (i = 0; i < num_var_ranges; ++i) {
2076 unsigned short start_state, end_state;
2078 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2079 continue;
2081 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2082 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2083 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2084 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2086 start_state = ((start & mask) == (base & mask));
2087 end_state = ((end & mask) == (base & mask));
2088 if (start_state != end_state)
2089 return 0xFE;
2091 if ((start & mask) != (base & mask))
2092 continue;
2094 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2095 if (prev_match == 0xFF) {
2096 prev_match = curr_match;
2097 continue;
2100 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2101 curr_match == MTRR_TYPE_UNCACHABLE)
2102 return MTRR_TYPE_UNCACHABLE;
2104 if ((prev_match == MTRR_TYPE_WRBACK &&
2105 curr_match == MTRR_TYPE_WRTHROUGH) ||
2106 (prev_match == MTRR_TYPE_WRTHROUGH &&
2107 curr_match == MTRR_TYPE_WRBACK)) {
2108 prev_match = MTRR_TYPE_WRTHROUGH;
2109 curr_match = MTRR_TYPE_WRTHROUGH;
2112 if (prev_match != curr_match)
2113 return MTRR_TYPE_UNCACHABLE;
2116 if (prev_match != 0xFF)
2117 return prev_match;
2119 return mtrr_state->def_type;
2122 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2124 u8 mtrr;
2126 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2127 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2128 if (mtrr == 0xfe || mtrr == 0xff)
2129 mtrr = MTRR_TYPE_WRBACK;
2130 return mtrr;
2132 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2134 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2136 trace_kvm_mmu_unsync_page(sp);
2137 ++vcpu->kvm->stat.mmu_unsync;
2138 sp->unsync = 1;
2140 kvm_mmu_mark_parents_unsync(sp);
2143 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2145 struct kvm_mmu_page *s;
2146 struct hlist_node *node;
2148 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2149 if (s->unsync)
2150 continue;
2151 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2152 __kvm_unsync_page(vcpu, s);
2156 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2157 bool can_unsync)
2159 struct kvm_mmu_page *s;
2160 struct hlist_node *node;
2161 bool need_unsync = false;
2163 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2164 if (!can_unsync)
2165 return 1;
2167 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2168 return 1;
2170 if (!need_unsync && !s->unsync) {
2171 if (!oos_shadow)
2172 return 1;
2173 need_unsync = true;
2176 if (need_unsync)
2177 kvm_unsync_pages(vcpu, gfn);
2178 return 0;
2181 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2182 unsigned pte_access, int user_fault,
2183 int write_fault, int level,
2184 gfn_t gfn, pfn_t pfn, bool speculative,
2185 bool can_unsync, bool host_writable)
2187 u64 spte, entry = *sptep;
2188 int ret = 0;
2190 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2191 return 0;
2194 * We don't set the accessed bit, since we sometimes want to see
2195 * whether the guest actually used the pte (in order to detect
2196 * demand paging).
2198 spte = PT_PRESENT_MASK;
2199 if (!speculative)
2200 spte |= shadow_accessed_mask;
2202 if (pte_access & ACC_EXEC_MASK)
2203 spte |= shadow_x_mask;
2204 else
2205 spte |= shadow_nx_mask;
2206 if (pte_access & ACC_USER_MASK)
2207 spte |= shadow_user_mask;
2208 if (level > PT_PAGE_TABLE_LEVEL)
2209 spte |= PT_PAGE_SIZE_MASK;
2210 if (tdp_enabled)
2211 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2212 kvm_is_mmio_pfn(pfn));
2214 if (host_writable)
2215 spte |= SPTE_HOST_WRITEABLE;
2216 else
2217 pte_access &= ~ACC_WRITE_MASK;
2219 spte |= (u64)pfn << PAGE_SHIFT;
2221 if ((pte_access & ACC_WRITE_MASK)
2222 || (!vcpu->arch.mmu.direct_map && write_fault
2223 && !is_write_protection(vcpu) && !user_fault)) {
2225 if (level > PT_PAGE_TABLE_LEVEL &&
2226 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2227 ret = 1;
2228 drop_spte(vcpu->kvm, sptep);
2229 goto done;
2232 spte |= PT_WRITABLE_MASK;
2234 if (!vcpu->arch.mmu.direct_map
2235 && !(pte_access & ACC_WRITE_MASK)) {
2236 spte &= ~PT_USER_MASK;
2238 * If we converted a user page to a kernel page,
2239 * so that the kernel can write to it when cr0.wp=0,
2240 * then we should prevent the kernel from executing it
2241 * if SMEP is enabled.
2243 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2244 spte |= PT64_NX_MASK;
2248 * Optimization: for pte sync, if spte was writable the hash
2249 * lookup is unnecessary (and expensive). Write protection
2250 * is responsibility of mmu_get_page / kvm_sync_page.
2251 * Same reasoning can be applied to dirty page accounting.
2253 if (!can_unsync && is_writable_pte(*sptep))
2254 goto set_pte;
2256 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2257 pgprintk("%s: found shadow page for %llx, marking ro\n",
2258 __func__, gfn);
2259 ret = 1;
2260 pte_access &= ~ACC_WRITE_MASK;
2261 if (is_writable_pte(spte))
2262 spte &= ~PT_WRITABLE_MASK;
2266 if (pte_access & ACC_WRITE_MASK)
2267 mark_page_dirty(vcpu->kvm, gfn);
2269 set_pte:
2270 mmu_spte_update(sptep, spte);
2272 * If we overwrite a writable spte with a read-only one we
2273 * should flush remote TLBs. Otherwise rmap_write_protect
2274 * will find a read-only spte, even though the writable spte
2275 * might be cached on a CPU's TLB.
2277 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2278 kvm_flush_remote_tlbs(vcpu->kvm);
2279 done:
2280 return ret;
2283 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2284 unsigned pt_access, unsigned pte_access,
2285 int user_fault, int write_fault,
2286 int *emulate, int level, gfn_t gfn,
2287 pfn_t pfn, bool speculative,
2288 bool host_writable)
2290 int was_rmapped = 0;
2291 int rmap_count;
2293 pgprintk("%s: spte %llx access %x write_fault %d"
2294 " user_fault %d gfn %llx\n",
2295 __func__, *sptep, pt_access,
2296 write_fault, user_fault, gfn);
2298 if (is_rmap_spte(*sptep)) {
2300 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2301 * the parent of the now unreachable PTE.
2303 if (level > PT_PAGE_TABLE_LEVEL &&
2304 !is_large_pte(*sptep)) {
2305 struct kvm_mmu_page *child;
2306 u64 pte = *sptep;
2308 child = page_header(pte & PT64_BASE_ADDR_MASK);
2309 drop_parent_pte(child, sptep);
2310 kvm_flush_remote_tlbs(vcpu->kvm);
2311 } else if (pfn != spte_to_pfn(*sptep)) {
2312 pgprintk("hfn old %llx new %llx\n",
2313 spte_to_pfn(*sptep), pfn);
2314 drop_spte(vcpu->kvm, sptep);
2315 kvm_flush_remote_tlbs(vcpu->kvm);
2316 } else
2317 was_rmapped = 1;
2320 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2321 level, gfn, pfn, speculative, true,
2322 host_writable)) {
2323 if (write_fault)
2324 *emulate = 1;
2325 kvm_mmu_flush_tlb(vcpu);
2328 if (unlikely(is_mmio_spte(*sptep) && emulate))
2329 *emulate = 1;
2331 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2332 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2333 is_large_pte(*sptep)? "2MB" : "4kB",
2334 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2335 *sptep, sptep);
2336 if (!was_rmapped && is_large_pte(*sptep))
2337 ++vcpu->kvm->stat.lpages;
2339 if (is_shadow_present_pte(*sptep)) {
2340 page_header_update_slot(vcpu->kvm, sptep, gfn);
2341 if (!was_rmapped) {
2342 rmap_count = rmap_add(vcpu, sptep, gfn);
2343 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2344 rmap_recycle(vcpu, sptep, gfn);
2347 kvm_release_pfn_clean(pfn);
2348 if (speculative) {
2349 vcpu->arch.last_pte_updated = sptep;
2350 vcpu->arch.last_pte_gfn = gfn;
2354 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2358 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2359 bool no_dirty_log)
2361 struct kvm_memory_slot *slot;
2362 unsigned long hva;
2364 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2365 if (!slot) {
2366 get_page(fault_page);
2367 return page_to_pfn(fault_page);
2370 hva = gfn_to_hva_memslot(slot, gfn);
2372 return hva_to_pfn_atomic(vcpu->kvm, hva);
2375 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2376 struct kvm_mmu_page *sp,
2377 u64 *start, u64 *end)
2379 struct page *pages[PTE_PREFETCH_NUM];
2380 unsigned access = sp->role.access;
2381 int i, ret;
2382 gfn_t gfn;
2384 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2385 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2386 return -1;
2388 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2389 if (ret <= 0)
2390 return -1;
2392 for (i = 0; i < ret; i++, gfn++, start++)
2393 mmu_set_spte(vcpu, start, ACC_ALL,
2394 access, 0, 0, NULL,
2395 sp->role.level, gfn,
2396 page_to_pfn(pages[i]), true, true);
2398 return 0;
2401 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2402 struct kvm_mmu_page *sp, u64 *sptep)
2404 u64 *spte, *start = NULL;
2405 int i;
2407 WARN_ON(!sp->role.direct);
2409 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2410 spte = sp->spt + i;
2412 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2413 if (is_shadow_present_pte(*spte) || spte == sptep) {
2414 if (!start)
2415 continue;
2416 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2417 break;
2418 start = NULL;
2419 } else if (!start)
2420 start = spte;
2424 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2426 struct kvm_mmu_page *sp;
2429 * Since it's no accessed bit on EPT, it's no way to
2430 * distinguish between actually accessed translations
2431 * and prefetched, so disable pte prefetch if EPT is
2432 * enabled.
2434 if (!shadow_accessed_mask)
2435 return;
2437 sp = page_header(__pa(sptep));
2438 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2439 return;
2441 __direct_pte_prefetch(vcpu, sp, sptep);
2444 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2445 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2446 bool prefault)
2448 struct kvm_shadow_walk_iterator iterator;
2449 struct kvm_mmu_page *sp;
2450 int emulate = 0;
2451 gfn_t pseudo_gfn;
2453 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2454 if (iterator.level == level) {
2455 unsigned pte_access = ACC_ALL;
2457 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2458 0, write, &emulate,
2459 level, gfn, pfn, prefault, map_writable);
2460 direct_pte_prefetch(vcpu, iterator.sptep);
2461 ++vcpu->stat.pf_fixed;
2462 break;
2465 if (!is_shadow_present_pte(*iterator.sptep)) {
2466 u64 base_addr = iterator.addr;
2468 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2469 pseudo_gfn = base_addr >> PAGE_SHIFT;
2470 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2471 iterator.level - 1,
2472 1, ACC_ALL, iterator.sptep);
2473 if (!sp) {
2474 pgprintk("nonpaging_map: ENOMEM\n");
2475 kvm_release_pfn_clean(pfn);
2476 return -ENOMEM;
2479 mmu_spte_set(iterator.sptep,
2480 __pa(sp->spt)
2481 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2482 | shadow_user_mask | shadow_x_mask
2483 | shadow_accessed_mask);
2486 return emulate;
2489 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2491 siginfo_t info;
2493 info.si_signo = SIGBUS;
2494 info.si_errno = 0;
2495 info.si_code = BUS_MCEERR_AR;
2496 info.si_addr = (void __user *)address;
2497 info.si_addr_lsb = PAGE_SHIFT;
2499 send_sig_info(SIGBUS, &info, tsk);
2502 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2504 kvm_release_pfn_clean(pfn);
2505 if (is_hwpoison_pfn(pfn)) {
2506 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2507 return 0;
2510 return -EFAULT;
2513 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2514 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2516 pfn_t pfn = *pfnp;
2517 gfn_t gfn = *gfnp;
2518 int level = *levelp;
2521 * Check if it's a transparent hugepage. If this would be an
2522 * hugetlbfs page, level wouldn't be set to
2523 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2524 * here.
2526 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2527 level == PT_PAGE_TABLE_LEVEL &&
2528 PageTransCompound(pfn_to_page(pfn)) &&
2529 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2530 unsigned long mask;
2532 * mmu_notifier_retry was successful and we hold the
2533 * mmu_lock here, so the pmd can't become splitting
2534 * from under us, and in turn
2535 * __split_huge_page_refcount() can't run from under
2536 * us and we can safely transfer the refcount from
2537 * PG_tail to PG_head as we switch the pfn to tail to
2538 * head.
2540 *levelp = level = PT_DIRECTORY_LEVEL;
2541 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2542 VM_BUG_ON((gfn & mask) != (pfn & mask));
2543 if (pfn & mask) {
2544 gfn &= ~mask;
2545 *gfnp = gfn;
2546 kvm_release_pfn_clean(pfn);
2547 pfn &= ~mask;
2548 if (!get_page_unless_zero(pfn_to_page(pfn)))
2549 BUG();
2550 *pfnp = pfn;
2555 static bool mmu_invalid_pfn(pfn_t pfn)
2557 return unlikely(is_invalid_pfn(pfn));
2560 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2561 pfn_t pfn, unsigned access, int *ret_val)
2563 bool ret = true;
2565 /* The pfn is invalid, report the error! */
2566 if (unlikely(is_invalid_pfn(pfn))) {
2567 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2568 goto exit;
2571 if (unlikely(is_noslot_pfn(pfn)))
2572 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2574 ret = false;
2575 exit:
2576 return ret;
2579 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2580 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2582 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2583 bool prefault)
2585 int r;
2586 int level;
2587 int force_pt_level;
2588 pfn_t pfn;
2589 unsigned long mmu_seq;
2590 bool map_writable;
2592 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2593 if (likely(!force_pt_level)) {
2594 level = mapping_level(vcpu, gfn);
2596 * This path builds a PAE pagetable - so we can map
2597 * 2mb pages at maximum. Therefore check if the level
2598 * is larger than that.
2600 if (level > PT_DIRECTORY_LEVEL)
2601 level = PT_DIRECTORY_LEVEL;
2603 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2604 } else
2605 level = PT_PAGE_TABLE_LEVEL;
2607 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2608 smp_rmb();
2610 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2611 return 0;
2613 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2614 return r;
2616 spin_lock(&vcpu->kvm->mmu_lock);
2617 if (mmu_notifier_retry(vcpu, mmu_seq))
2618 goto out_unlock;
2619 kvm_mmu_free_some_pages(vcpu);
2620 if (likely(!force_pt_level))
2621 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2622 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2623 prefault);
2624 spin_unlock(&vcpu->kvm->mmu_lock);
2627 return r;
2629 out_unlock:
2630 spin_unlock(&vcpu->kvm->mmu_lock);
2631 kvm_release_pfn_clean(pfn);
2632 return 0;
2636 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2638 int i;
2639 struct kvm_mmu_page *sp;
2640 LIST_HEAD(invalid_list);
2642 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2643 return;
2644 spin_lock(&vcpu->kvm->mmu_lock);
2645 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2646 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2647 vcpu->arch.mmu.direct_map)) {
2648 hpa_t root = vcpu->arch.mmu.root_hpa;
2650 sp = page_header(root);
2651 --sp->root_count;
2652 if (!sp->root_count && sp->role.invalid) {
2653 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2654 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2656 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2657 spin_unlock(&vcpu->kvm->mmu_lock);
2658 return;
2660 for (i = 0; i < 4; ++i) {
2661 hpa_t root = vcpu->arch.mmu.pae_root[i];
2663 if (root) {
2664 root &= PT64_BASE_ADDR_MASK;
2665 sp = page_header(root);
2666 --sp->root_count;
2667 if (!sp->root_count && sp->role.invalid)
2668 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2669 &invalid_list);
2671 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2673 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2674 spin_unlock(&vcpu->kvm->mmu_lock);
2675 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2678 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2680 int ret = 0;
2682 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2683 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2684 ret = 1;
2687 return ret;
2690 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2692 struct kvm_mmu_page *sp;
2693 unsigned i;
2695 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2696 spin_lock(&vcpu->kvm->mmu_lock);
2697 kvm_mmu_free_some_pages(vcpu);
2698 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2699 1, ACC_ALL, NULL);
2700 ++sp->root_count;
2701 spin_unlock(&vcpu->kvm->mmu_lock);
2702 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2703 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2704 for (i = 0; i < 4; ++i) {
2705 hpa_t root = vcpu->arch.mmu.pae_root[i];
2707 ASSERT(!VALID_PAGE(root));
2708 spin_lock(&vcpu->kvm->mmu_lock);
2709 kvm_mmu_free_some_pages(vcpu);
2710 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2711 i << 30,
2712 PT32_ROOT_LEVEL, 1, ACC_ALL,
2713 NULL);
2714 root = __pa(sp->spt);
2715 ++sp->root_count;
2716 spin_unlock(&vcpu->kvm->mmu_lock);
2717 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2719 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2720 } else
2721 BUG();
2723 return 0;
2726 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2728 struct kvm_mmu_page *sp;
2729 u64 pdptr, pm_mask;
2730 gfn_t root_gfn;
2731 int i;
2733 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2735 if (mmu_check_root(vcpu, root_gfn))
2736 return 1;
2739 * Do we shadow a long mode page table? If so we need to
2740 * write-protect the guests page table root.
2742 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2743 hpa_t root = vcpu->arch.mmu.root_hpa;
2745 ASSERT(!VALID_PAGE(root));
2747 spin_lock(&vcpu->kvm->mmu_lock);
2748 kvm_mmu_free_some_pages(vcpu);
2749 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2750 0, ACC_ALL, NULL);
2751 root = __pa(sp->spt);
2752 ++sp->root_count;
2753 spin_unlock(&vcpu->kvm->mmu_lock);
2754 vcpu->arch.mmu.root_hpa = root;
2755 return 0;
2759 * We shadow a 32 bit page table. This may be a legacy 2-level
2760 * or a PAE 3-level page table. In either case we need to be aware that
2761 * the shadow page table may be a PAE or a long mode page table.
2763 pm_mask = PT_PRESENT_MASK;
2764 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2765 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2767 for (i = 0; i < 4; ++i) {
2768 hpa_t root = vcpu->arch.mmu.pae_root[i];
2770 ASSERT(!VALID_PAGE(root));
2771 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2772 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2773 if (!is_present_gpte(pdptr)) {
2774 vcpu->arch.mmu.pae_root[i] = 0;
2775 continue;
2777 root_gfn = pdptr >> PAGE_SHIFT;
2778 if (mmu_check_root(vcpu, root_gfn))
2779 return 1;
2781 spin_lock(&vcpu->kvm->mmu_lock);
2782 kvm_mmu_free_some_pages(vcpu);
2783 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2784 PT32_ROOT_LEVEL, 0,
2785 ACC_ALL, NULL);
2786 root = __pa(sp->spt);
2787 ++sp->root_count;
2788 spin_unlock(&vcpu->kvm->mmu_lock);
2790 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2792 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2795 * If we shadow a 32 bit page table with a long mode page
2796 * table we enter this path.
2798 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2799 if (vcpu->arch.mmu.lm_root == NULL) {
2801 * The additional page necessary for this is only
2802 * allocated on demand.
2805 u64 *lm_root;
2807 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2808 if (lm_root == NULL)
2809 return 1;
2811 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2813 vcpu->arch.mmu.lm_root = lm_root;
2816 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2819 return 0;
2822 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2824 if (vcpu->arch.mmu.direct_map)
2825 return mmu_alloc_direct_roots(vcpu);
2826 else
2827 return mmu_alloc_shadow_roots(vcpu);
2830 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2832 int i;
2833 struct kvm_mmu_page *sp;
2835 if (vcpu->arch.mmu.direct_map)
2836 return;
2838 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2839 return;
2841 vcpu_clear_mmio_info(vcpu, ~0ul);
2842 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2843 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2844 hpa_t root = vcpu->arch.mmu.root_hpa;
2845 sp = page_header(root);
2846 mmu_sync_children(vcpu, sp);
2847 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2848 return;
2850 for (i = 0; i < 4; ++i) {
2851 hpa_t root = vcpu->arch.mmu.pae_root[i];
2853 if (root && VALID_PAGE(root)) {
2854 root &= PT64_BASE_ADDR_MASK;
2855 sp = page_header(root);
2856 mmu_sync_children(vcpu, sp);
2859 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2862 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2864 spin_lock(&vcpu->kvm->mmu_lock);
2865 mmu_sync_roots(vcpu);
2866 spin_unlock(&vcpu->kvm->mmu_lock);
2869 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2870 u32 access, struct x86_exception *exception)
2872 if (exception)
2873 exception->error_code = 0;
2874 return vaddr;
2877 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2878 u32 access,
2879 struct x86_exception *exception)
2881 if (exception)
2882 exception->error_code = 0;
2883 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2886 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2888 if (direct)
2889 return vcpu_match_mmio_gpa(vcpu, addr);
2891 return vcpu_match_mmio_gva(vcpu, addr);
2896 * On direct hosts, the last spte is only allows two states
2897 * for mmio page fault:
2898 * - It is the mmio spte
2899 * - It is zapped or it is being zapped.
2901 * This function completely checks the spte when the last spte
2902 * is not the mmio spte.
2904 static bool check_direct_spte_mmio_pf(u64 spte)
2906 return __check_direct_spte_mmio_pf(spte);
2909 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2911 struct kvm_shadow_walk_iterator iterator;
2912 u64 spte = 0ull;
2914 walk_shadow_page_lockless_begin(vcpu);
2915 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2916 if (!is_shadow_present_pte(spte))
2917 break;
2918 walk_shadow_page_lockless_end(vcpu);
2920 return spte;
2924 * If it is a real mmio page fault, return 1 and emulat the instruction
2925 * directly, return 0 to let CPU fault again on the address, -1 is
2926 * returned if bug is detected.
2928 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2930 u64 spte;
2932 if (quickly_check_mmio_pf(vcpu, addr, direct))
2933 return 1;
2935 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2937 if (is_mmio_spte(spte)) {
2938 gfn_t gfn = get_mmio_spte_gfn(spte);
2939 unsigned access = get_mmio_spte_access(spte);
2941 if (direct)
2942 addr = 0;
2944 trace_handle_mmio_page_fault(addr, gfn, access);
2945 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2946 return 1;
2950 * It's ok if the gva is remapped by other cpus on shadow guest,
2951 * it's a BUG if the gfn is not a mmio page.
2953 if (direct && !check_direct_spte_mmio_pf(spte))
2954 return -1;
2957 * If the page table is zapped by other cpus, let CPU fault again on
2958 * the address.
2960 return 0;
2962 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2964 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2965 u32 error_code, bool direct)
2967 int ret;
2969 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2970 WARN_ON(ret < 0);
2971 return ret;
2974 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2975 u32 error_code, bool prefault)
2977 gfn_t gfn;
2978 int r;
2980 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2982 if (unlikely(error_code & PFERR_RSVD_MASK))
2983 return handle_mmio_page_fault(vcpu, gva, error_code, true);
2985 r = mmu_topup_memory_caches(vcpu);
2986 if (r)
2987 return r;
2989 ASSERT(vcpu);
2990 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2992 gfn = gva >> PAGE_SHIFT;
2994 return nonpaging_map(vcpu, gva & PAGE_MASK,
2995 error_code & PFERR_WRITE_MASK, gfn, prefault);
2998 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3000 struct kvm_arch_async_pf arch;
3002 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3003 arch.gfn = gfn;
3004 arch.direct_map = vcpu->arch.mmu.direct_map;
3005 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3007 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3010 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3012 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3013 kvm_event_needs_reinjection(vcpu)))
3014 return false;
3016 return kvm_x86_ops->interrupt_allowed(vcpu);
3019 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3020 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3022 bool async;
3024 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3026 if (!async)
3027 return false; /* *pfn has correct page already */
3029 put_page(pfn_to_page(*pfn));
3031 if (!prefault && can_do_async_pf(vcpu)) {
3032 trace_kvm_try_async_get_page(gva, gfn);
3033 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3034 trace_kvm_async_pf_doublefault(gva, gfn);
3035 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3036 return true;
3037 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3038 return true;
3041 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3043 return false;
3046 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3047 bool prefault)
3049 pfn_t pfn;
3050 int r;
3051 int level;
3052 int force_pt_level;
3053 gfn_t gfn = gpa >> PAGE_SHIFT;
3054 unsigned long mmu_seq;
3055 int write = error_code & PFERR_WRITE_MASK;
3056 bool map_writable;
3058 ASSERT(vcpu);
3059 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3061 if (unlikely(error_code & PFERR_RSVD_MASK))
3062 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3064 r = mmu_topup_memory_caches(vcpu);
3065 if (r)
3066 return r;
3068 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3069 if (likely(!force_pt_level)) {
3070 level = mapping_level(vcpu, gfn);
3071 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3072 } else
3073 level = PT_PAGE_TABLE_LEVEL;
3075 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3076 smp_rmb();
3078 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3079 return 0;
3081 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3082 return r;
3084 spin_lock(&vcpu->kvm->mmu_lock);
3085 if (mmu_notifier_retry(vcpu, mmu_seq))
3086 goto out_unlock;
3087 kvm_mmu_free_some_pages(vcpu);
3088 if (likely(!force_pt_level))
3089 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3090 r = __direct_map(vcpu, gpa, write, map_writable,
3091 level, gfn, pfn, prefault);
3092 spin_unlock(&vcpu->kvm->mmu_lock);
3094 return r;
3096 out_unlock:
3097 spin_unlock(&vcpu->kvm->mmu_lock);
3098 kvm_release_pfn_clean(pfn);
3099 return 0;
3102 static void nonpaging_free(struct kvm_vcpu *vcpu)
3104 mmu_free_roots(vcpu);
3107 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3108 struct kvm_mmu *context)
3110 context->new_cr3 = nonpaging_new_cr3;
3111 context->page_fault = nonpaging_page_fault;
3112 context->gva_to_gpa = nonpaging_gva_to_gpa;
3113 context->free = nonpaging_free;
3114 context->sync_page = nonpaging_sync_page;
3115 context->invlpg = nonpaging_invlpg;
3116 context->update_pte = nonpaging_update_pte;
3117 context->root_level = 0;
3118 context->shadow_root_level = PT32E_ROOT_LEVEL;
3119 context->root_hpa = INVALID_PAGE;
3120 context->direct_map = true;
3121 context->nx = false;
3122 return 0;
3125 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3127 ++vcpu->stat.tlb_flush;
3128 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3131 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3133 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3134 mmu_free_roots(vcpu);
3137 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3139 return kvm_read_cr3(vcpu);
3142 static void inject_page_fault(struct kvm_vcpu *vcpu,
3143 struct x86_exception *fault)
3145 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3148 static void paging_free(struct kvm_vcpu *vcpu)
3150 nonpaging_free(vcpu);
3153 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3155 int bit7;
3157 bit7 = (gpte >> 7) & 1;
3158 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3161 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3162 int *nr_present)
3164 if (unlikely(is_mmio_spte(*sptep))) {
3165 if (gfn != get_mmio_spte_gfn(*sptep)) {
3166 mmu_spte_clear_no_track(sptep);
3167 return true;
3170 (*nr_present)++;
3171 mark_mmio_spte(sptep, gfn, access);
3172 return true;
3175 return false;
3178 #define PTTYPE 64
3179 #include "paging_tmpl.h"
3180 #undef PTTYPE
3182 #define PTTYPE 32
3183 #include "paging_tmpl.h"
3184 #undef PTTYPE
3186 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3187 struct kvm_mmu *context,
3188 int level)
3190 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3191 u64 exb_bit_rsvd = 0;
3193 if (!context->nx)
3194 exb_bit_rsvd = rsvd_bits(63, 63);
3195 switch (level) {
3196 case PT32_ROOT_LEVEL:
3197 /* no rsvd bits for 2 level 4K page table entries */
3198 context->rsvd_bits_mask[0][1] = 0;
3199 context->rsvd_bits_mask[0][0] = 0;
3200 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3202 if (!is_pse(vcpu)) {
3203 context->rsvd_bits_mask[1][1] = 0;
3204 break;
3207 if (is_cpuid_PSE36())
3208 /* 36bits PSE 4MB page */
3209 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3210 else
3211 /* 32 bits PSE 4MB page */
3212 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3213 break;
3214 case PT32E_ROOT_LEVEL:
3215 context->rsvd_bits_mask[0][2] =
3216 rsvd_bits(maxphyaddr, 63) |
3217 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3218 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3219 rsvd_bits(maxphyaddr, 62); /* PDE */
3220 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3221 rsvd_bits(maxphyaddr, 62); /* PTE */
3222 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3223 rsvd_bits(maxphyaddr, 62) |
3224 rsvd_bits(13, 20); /* large page */
3225 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3226 break;
3227 case PT64_ROOT_LEVEL:
3228 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3229 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3230 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3231 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3232 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3233 rsvd_bits(maxphyaddr, 51);
3234 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3235 rsvd_bits(maxphyaddr, 51);
3236 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3237 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3238 rsvd_bits(maxphyaddr, 51) |
3239 rsvd_bits(13, 29);
3240 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3241 rsvd_bits(maxphyaddr, 51) |
3242 rsvd_bits(13, 20); /* large page */
3243 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3244 break;
3248 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3249 struct kvm_mmu *context,
3250 int level)
3252 context->nx = is_nx(vcpu);
3254 reset_rsvds_bits_mask(vcpu, context, level);
3256 ASSERT(is_pae(vcpu));
3257 context->new_cr3 = paging_new_cr3;
3258 context->page_fault = paging64_page_fault;
3259 context->gva_to_gpa = paging64_gva_to_gpa;
3260 context->sync_page = paging64_sync_page;
3261 context->invlpg = paging64_invlpg;
3262 context->update_pte = paging64_update_pte;
3263 context->free = paging_free;
3264 context->root_level = level;
3265 context->shadow_root_level = level;
3266 context->root_hpa = INVALID_PAGE;
3267 context->direct_map = false;
3268 return 0;
3271 static int paging64_init_context(struct kvm_vcpu *vcpu,
3272 struct kvm_mmu *context)
3274 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3277 static int paging32_init_context(struct kvm_vcpu *vcpu,
3278 struct kvm_mmu *context)
3280 context->nx = false;
3282 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3284 context->new_cr3 = paging_new_cr3;
3285 context->page_fault = paging32_page_fault;
3286 context->gva_to_gpa = paging32_gva_to_gpa;
3287 context->free = paging_free;
3288 context->sync_page = paging32_sync_page;
3289 context->invlpg = paging32_invlpg;
3290 context->update_pte = paging32_update_pte;
3291 context->root_level = PT32_ROOT_LEVEL;
3292 context->shadow_root_level = PT32E_ROOT_LEVEL;
3293 context->root_hpa = INVALID_PAGE;
3294 context->direct_map = false;
3295 return 0;
3298 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3299 struct kvm_mmu *context)
3301 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3304 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3306 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3308 context->base_role.word = 0;
3309 context->new_cr3 = nonpaging_new_cr3;
3310 context->page_fault = tdp_page_fault;
3311 context->free = nonpaging_free;
3312 context->sync_page = nonpaging_sync_page;
3313 context->invlpg = nonpaging_invlpg;
3314 context->update_pte = nonpaging_update_pte;
3315 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3316 context->root_hpa = INVALID_PAGE;
3317 context->direct_map = true;
3318 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3319 context->get_cr3 = get_cr3;
3320 context->get_pdptr = kvm_pdptr_read;
3321 context->inject_page_fault = kvm_inject_page_fault;
3322 context->nx = is_nx(vcpu);
3324 if (!is_paging(vcpu)) {
3325 context->nx = false;
3326 context->gva_to_gpa = nonpaging_gva_to_gpa;
3327 context->root_level = 0;
3328 } else if (is_long_mode(vcpu)) {
3329 context->nx = is_nx(vcpu);
3330 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
3331 context->gva_to_gpa = paging64_gva_to_gpa;
3332 context->root_level = PT64_ROOT_LEVEL;
3333 } else if (is_pae(vcpu)) {
3334 context->nx = is_nx(vcpu);
3335 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
3336 context->gva_to_gpa = paging64_gva_to_gpa;
3337 context->root_level = PT32E_ROOT_LEVEL;
3338 } else {
3339 context->nx = false;
3340 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3341 context->gva_to_gpa = paging32_gva_to_gpa;
3342 context->root_level = PT32_ROOT_LEVEL;
3345 return 0;
3348 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3350 int r;
3351 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3352 ASSERT(vcpu);
3353 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3355 if (!is_paging(vcpu))
3356 r = nonpaging_init_context(vcpu, context);
3357 else if (is_long_mode(vcpu))
3358 r = paging64_init_context(vcpu, context);
3359 else if (is_pae(vcpu))
3360 r = paging32E_init_context(vcpu, context);
3361 else
3362 r = paging32_init_context(vcpu, context);
3364 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3365 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3366 vcpu->arch.mmu.base_role.smep_andnot_wp
3367 = smep && !is_write_protection(vcpu);
3369 return r;
3371 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3373 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3375 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3377 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3378 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3379 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3380 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3382 return r;
3385 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3387 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3389 g_context->get_cr3 = get_cr3;
3390 g_context->get_pdptr = kvm_pdptr_read;
3391 g_context->inject_page_fault = kvm_inject_page_fault;
3394 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3395 * translation of l2_gpa to l1_gpa addresses is done using the
3396 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3397 * functions between mmu and nested_mmu are swapped.
3399 if (!is_paging(vcpu)) {
3400 g_context->nx = false;
3401 g_context->root_level = 0;
3402 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3403 } else if (is_long_mode(vcpu)) {
3404 g_context->nx = is_nx(vcpu);
3405 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3406 g_context->root_level = PT64_ROOT_LEVEL;
3407 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3408 } else if (is_pae(vcpu)) {
3409 g_context->nx = is_nx(vcpu);
3410 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3411 g_context->root_level = PT32E_ROOT_LEVEL;
3412 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3413 } else {
3414 g_context->nx = false;
3415 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3416 g_context->root_level = PT32_ROOT_LEVEL;
3417 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3420 return 0;
3423 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3425 if (mmu_is_nested(vcpu))
3426 return init_kvm_nested_mmu(vcpu);
3427 else if (tdp_enabled)
3428 return init_kvm_tdp_mmu(vcpu);
3429 else
3430 return init_kvm_softmmu(vcpu);
3433 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3435 ASSERT(vcpu);
3436 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3437 /* mmu.free() should set root_hpa = INVALID_PAGE */
3438 vcpu->arch.mmu.free(vcpu);
3441 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3443 destroy_kvm_mmu(vcpu);
3444 return init_kvm_mmu(vcpu);
3446 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3448 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3450 int r;
3452 r = mmu_topup_memory_caches(vcpu);
3453 if (r)
3454 goto out;
3455 r = mmu_alloc_roots(vcpu);
3456 spin_lock(&vcpu->kvm->mmu_lock);
3457 mmu_sync_roots(vcpu);
3458 spin_unlock(&vcpu->kvm->mmu_lock);
3459 if (r)
3460 goto out;
3461 /* set_cr3() should ensure TLB has been flushed */
3462 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3463 out:
3464 return r;
3466 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3468 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3470 mmu_free_roots(vcpu);
3472 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3474 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3475 struct kvm_mmu_page *sp, u64 *spte,
3476 const void *new)
3478 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3479 ++vcpu->kvm->stat.mmu_pde_zapped;
3480 return;
3483 ++vcpu->kvm->stat.mmu_pte_updated;
3484 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3487 static bool need_remote_flush(u64 old, u64 new)
3489 if (!is_shadow_present_pte(old))
3490 return false;
3491 if (!is_shadow_present_pte(new))
3492 return true;
3493 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3494 return true;
3495 old ^= PT64_NX_MASK;
3496 new ^= PT64_NX_MASK;
3497 return (old & ~new & PT64_PERM_MASK) != 0;
3500 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3501 bool remote_flush, bool local_flush)
3503 if (zap_page)
3504 return;
3506 if (remote_flush)
3507 kvm_flush_remote_tlbs(vcpu->kvm);
3508 else if (local_flush)
3509 kvm_mmu_flush_tlb(vcpu);
3512 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3514 u64 *spte = vcpu->arch.last_pte_updated;
3516 return !!(spte && (*spte & shadow_accessed_mask));
3519 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3521 u64 *spte = vcpu->arch.last_pte_updated;
3523 if (spte
3524 && vcpu->arch.last_pte_gfn == gfn
3525 && shadow_accessed_mask
3526 && !(*spte & shadow_accessed_mask)
3527 && is_shadow_present_pte(*spte))
3528 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3531 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3532 const u8 *new, int bytes,
3533 bool guest_initiated)
3535 gfn_t gfn = gpa >> PAGE_SHIFT;
3536 union kvm_mmu_page_role mask = { .word = 0 };
3537 struct kvm_mmu_page *sp;
3538 struct hlist_node *node;
3539 LIST_HEAD(invalid_list);
3540 u64 entry, gentry, *spte;
3541 unsigned pte_size, page_offset, misaligned, quadrant, offset;
3542 int level, npte, invlpg_counter, r, flooded = 0;
3543 bool remote_flush, local_flush, zap_page;
3546 * If we don't have indirect shadow pages, it means no page is
3547 * write-protected, so we can exit simply.
3549 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3550 return;
3552 zap_page = remote_flush = local_flush = false;
3553 offset = offset_in_page(gpa);
3555 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3557 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3560 * Assume that the pte write on a page table of the same type
3561 * as the current vcpu paging mode since we update the sptes only
3562 * when they have the same mode.
3564 if ((is_pae(vcpu) && bytes == 4) || !new) {
3565 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3566 if (is_pae(vcpu)) {
3567 gpa &= ~(gpa_t)7;
3568 bytes = 8;
3570 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3571 if (r)
3572 gentry = 0;
3573 new = (const u8 *)&gentry;
3576 switch (bytes) {
3577 case 4:
3578 gentry = *(const u32 *)new;
3579 break;
3580 case 8:
3581 gentry = *(const u64 *)new;
3582 break;
3583 default:
3584 gentry = 0;
3585 break;
3588 spin_lock(&vcpu->kvm->mmu_lock);
3589 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3590 gentry = 0;
3591 kvm_mmu_free_some_pages(vcpu);
3592 ++vcpu->kvm->stat.mmu_pte_write;
3593 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3594 if (guest_initiated) {
3595 kvm_mmu_access_page(vcpu, gfn);
3596 if (gfn == vcpu->arch.last_pt_write_gfn
3597 && !last_updated_pte_accessed(vcpu)) {
3598 ++vcpu->arch.last_pt_write_count;
3599 if (vcpu->arch.last_pt_write_count >= 3)
3600 flooded = 1;
3601 } else {
3602 vcpu->arch.last_pt_write_gfn = gfn;
3603 vcpu->arch.last_pt_write_count = 1;
3604 vcpu->arch.last_pte_updated = NULL;
3608 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3609 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3610 pte_size = sp->role.cr4_pae ? 8 : 4;
3611 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3612 misaligned |= bytes < 4;
3613 if (misaligned || flooded) {
3615 * Misaligned accesses are too much trouble to fix
3616 * up; also, they usually indicate a page is not used
3617 * as a page table.
3619 * If we're seeing too many writes to a page,
3620 * it may no longer be a page table, or we may be
3621 * forking, in which case it is better to unmap the
3622 * page.
3624 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3625 gpa, bytes, sp->role.word);
3626 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3627 &invalid_list);
3628 ++vcpu->kvm->stat.mmu_flooded;
3629 continue;
3631 page_offset = offset;
3632 level = sp->role.level;
3633 npte = 1;
3634 if (!sp->role.cr4_pae) {
3635 page_offset <<= 1; /* 32->64 */
3637 * A 32-bit pde maps 4MB while the shadow pdes map
3638 * only 2MB. So we need to double the offset again
3639 * and zap two pdes instead of one.
3641 if (level == PT32_ROOT_LEVEL) {
3642 page_offset &= ~7; /* kill rounding error */
3643 page_offset <<= 1;
3644 npte = 2;
3646 quadrant = page_offset >> PAGE_SHIFT;
3647 page_offset &= ~PAGE_MASK;
3648 if (quadrant != sp->role.quadrant)
3649 continue;
3651 local_flush = true;
3652 spte = &sp->spt[page_offset / sizeof(*spte)];
3653 while (npte--) {
3654 entry = *spte;
3655 mmu_page_zap_pte(vcpu->kvm, sp, spte);
3656 if (gentry &&
3657 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3658 & mask.word))
3659 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3660 if (!remote_flush && need_remote_flush(entry, *spte))
3661 remote_flush = true;
3662 ++spte;
3665 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3666 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3667 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3668 spin_unlock(&vcpu->kvm->mmu_lock);
3671 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3673 gpa_t gpa;
3674 int r;
3676 if (vcpu->arch.mmu.direct_map)
3677 return 0;
3679 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3681 spin_lock(&vcpu->kvm->mmu_lock);
3682 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3683 spin_unlock(&vcpu->kvm->mmu_lock);
3684 return r;
3686 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3688 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3690 LIST_HEAD(invalid_list);
3692 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3693 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3694 struct kvm_mmu_page *sp;
3696 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3697 struct kvm_mmu_page, link);
3698 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3699 ++vcpu->kvm->stat.mmu_recycled;
3701 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3704 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3705 void *insn, int insn_len)
3707 int r;
3708 enum emulation_result er;
3710 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3711 if (r < 0)
3712 goto out;
3714 if (!r) {
3715 r = 1;
3716 goto out;
3719 r = mmu_topup_memory_caches(vcpu);
3720 if (r)
3721 goto out;
3723 er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
3725 switch (er) {
3726 case EMULATE_DONE:
3727 return 1;
3728 case EMULATE_DO_MMIO:
3729 ++vcpu->stat.mmio_exits;
3730 /* fall through */
3731 case EMULATE_FAIL:
3732 return 0;
3733 default:
3734 BUG();
3736 out:
3737 return r;
3739 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3741 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3743 vcpu->arch.mmu.invlpg(vcpu, gva);
3744 kvm_mmu_flush_tlb(vcpu);
3745 ++vcpu->stat.invlpg;
3747 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3749 void kvm_enable_tdp(void)
3751 tdp_enabled = true;
3753 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3755 void kvm_disable_tdp(void)
3757 tdp_enabled = false;
3759 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3761 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3763 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3764 if (vcpu->arch.mmu.lm_root != NULL)
3765 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3768 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3770 struct page *page;
3771 int i;
3773 ASSERT(vcpu);
3776 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3777 * Therefore we need to allocate shadow page tables in the first
3778 * 4GB of memory, which happens to fit the DMA32 zone.
3780 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3781 if (!page)
3782 return -ENOMEM;
3784 vcpu->arch.mmu.pae_root = page_address(page);
3785 for (i = 0; i < 4; ++i)
3786 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3788 return 0;
3791 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3793 ASSERT(vcpu);
3794 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3796 return alloc_mmu_pages(vcpu);
3799 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3801 ASSERT(vcpu);
3802 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3804 return init_kvm_mmu(vcpu);
3807 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3809 struct kvm_mmu_page *sp;
3811 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3812 int i;
3813 u64 *pt;
3815 if (!test_bit(slot, sp->slot_bitmap))
3816 continue;
3818 pt = sp->spt;
3819 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3820 if (!is_shadow_present_pte(pt[i]) ||
3821 !is_last_spte(pt[i], sp->role.level))
3822 continue;
3824 if (is_large_pte(pt[i])) {
3825 drop_spte(kvm, &pt[i]);
3826 --kvm->stat.lpages;
3827 continue;
3830 /* avoid RMW */
3831 if (is_writable_pte(pt[i]))
3832 mmu_spte_update(&pt[i],
3833 pt[i] & ~PT_WRITABLE_MASK);
3836 kvm_flush_remote_tlbs(kvm);
3839 void kvm_mmu_zap_all(struct kvm *kvm)
3841 struct kvm_mmu_page *sp, *node;
3842 LIST_HEAD(invalid_list);
3844 spin_lock(&kvm->mmu_lock);
3845 restart:
3846 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3847 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3848 goto restart;
3850 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3851 spin_unlock(&kvm->mmu_lock);
3854 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3855 struct list_head *invalid_list)
3857 struct kvm_mmu_page *page;
3859 page = container_of(kvm->arch.active_mmu_pages.prev,
3860 struct kvm_mmu_page, link);
3861 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3864 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3866 struct kvm *kvm;
3867 struct kvm *kvm_freed = NULL;
3868 int nr_to_scan = sc->nr_to_scan;
3870 if (nr_to_scan == 0)
3871 goto out;
3873 raw_spin_lock(&kvm_lock);
3875 list_for_each_entry(kvm, &vm_list, vm_list) {
3876 int idx, freed_pages;
3877 LIST_HEAD(invalid_list);
3879 idx = srcu_read_lock(&kvm->srcu);
3880 spin_lock(&kvm->mmu_lock);
3881 if (!kvm_freed && nr_to_scan > 0 &&
3882 kvm->arch.n_used_mmu_pages > 0) {
3883 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3884 &invalid_list);
3885 kvm_freed = kvm;
3887 nr_to_scan--;
3889 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3890 spin_unlock(&kvm->mmu_lock);
3891 srcu_read_unlock(&kvm->srcu, idx);
3893 if (kvm_freed)
3894 list_move_tail(&kvm_freed->vm_list, &vm_list);
3896 raw_spin_unlock(&kvm_lock);
3898 out:
3899 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3902 static struct shrinker mmu_shrinker = {
3903 .shrink = mmu_shrink,
3904 .seeks = DEFAULT_SEEKS * 10,
3907 static void mmu_destroy_caches(void)
3909 if (pte_list_desc_cache)
3910 kmem_cache_destroy(pte_list_desc_cache);
3911 if (mmu_page_header_cache)
3912 kmem_cache_destroy(mmu_page_header_cache);
3915 int kvm_mmu_module_init(void)
3917 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3918 sizeof(struct pte_list_desc),
3919 0, 0, NULL);
3920 if (!pte_list_desc_cache)
3921 goto nomem;
3923 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3924 sizeof(struct kvm_mmu_page),
3925 0, 0, NULL);
3926 if (!mmu_page_header_cache)
3927 goto nomem;
3929 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3930 goto nomem;
3932 register_shrinker(&mmu_shrinker);
3934 return 0;
3936 nomem:
3937 mmu_destroy_caches();
3938 return -ENOMEM;
3942 * Caculate mmu pages needed for kvm.
3944 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3946 int i;
3947 unsigned int nr_mmu_pages;
3948 unsigned int nr_pages = 0;
3949 struct kvm_memslots *slots;
3951 slots = kvm_memslots(kvm);
3953 for (i = 0; i < slots->nmemslots; i++)
3954 nr_pages += slots->memslots[i].npages;
3956 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3957 nr_mmu_pages = max(nr_mmu_pages,
3958 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3960 return nr_mmu_pages;
3963 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3964 unsigned len)
3966 if (len > buffer->len)
3967 return NULL;
3968 return buffer->ptr;
3971 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3972 unsigned len)
3974 void *ret;
3976 ret = pv_mmu_peek_buffer(buffer, len);
3977 if (!ret)
3978 return ret;
3979 buffer->ptr += len;
3980 buffer->len -= len;
3981 buffer->processed += len;
3982 return ret;
3985 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3986 gpa_t addr, gpa_t value)
3988 int bytes = 8;
3989 int r;
3991 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3992 bytes = 4;
3994 r = mmu_topup_memory_caches(vcpu);
3995 if (r)
3996 return r;
3998 if (!emulator_write_phys(vcpu, addr, &value, bytes))
3999 return -EFAULT;
4001 return 1;
4004 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
4006 (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
4007 return 1;
4010 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
4012 spin_lock(&vcpu->kvm->mmu_lock);
4013 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
4014 spin_unlock(&vcpu->kvm->mmu_lock);
4015 return 1;
4018 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
4019 struct kvm_pv_mmu_op_buffer *buffer)
4021 struct kvm_mmu_op_header *header;
4023 header = pv_mmu_peek_buffer(buffer, sizeof *header);
4024 if (!header)
4025 return 0;
4026 switch (header->op) {
4027 case KVM_MMU_OP_WRITE_PTE: {
4028 struct kvm_mmu_op_write_pte *wpte;
4030 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
4031 if (!wpte)
4032 return 0;
4033 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
4034 wpte->pte_val);
4036 case KVM_MMU_OP_FLUSH_TLB: {
4037 struct kvm_mmu_op_flush_tlb *ftlb;
4039 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
4040 if (!ftlb)
4041 return 0;
4042 return kvm_pv_mmu_flush_tlb(vcpu);
4044 case KVM_MMU_OP_RELEASE_PT: {
4045 struct kvm_mmu_op_release_pt *rpt;
4047 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
4048 if (!rpt)
4049 return 0;
4050 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
4052 default: return 0;
4056 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
4057 gpa_t addr, unsigned long *ret)
4059 int r;
4060 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
4062 buffer->ptr = buffer->buf;
4063 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
4064 buffer->processed = 0;
4066 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
4067 if (r)
4068 goto out;
4070 while (buffer->len) {
4071 r = kvm_pv_mmu_op_one(vcpu, buffer);
4072 if (r < 0)
4073 goto out;
4074 if (r == 0)
4075 break;
4078 r = 1;
4079 out:
4080 *ret = buffer->processed;
4081 return r;
4084 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4086 struct kvm_shadow_walk_iterator iterator;
4087 u64 spte;
4088 int nr_sptes = 0;
4090 walk_shadow_page_lockless_begin(vcpu);
4091 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4092 sptes[iterator.level-1] = spte;
4093 nr_sptes++;
4094 if (!is_shadow_present_pte(spte))
4095 break;
4097 walk_shadow_page_lockless_end(vcpu);
4099 return nr_sptes;
4101 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4103 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4105 ASSERT(vcpu);
4107 destroy_kvm_mmu(vcpu);
4108 free_mmu_pages(vcpu);
4109 mmu_free_memory_caches(vcpu);
4112 #ifdef CONFIG_KVM_MMU_AUDIT
4113 #include "mmu_audit.c"
4114 #else
4115 static void mmu_audit_disable(void) { }
4116 #endif
4118 void kvm_mmu_module_exit(void)
4120 mmu_destroy_caches();
4121 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4122 unregister_shrinker(&mmu_shrinker);
4123 mmu_audit_disable();