2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
49 #define CREATE_TRACE_POINTS
52 #include <asm/debugreg.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
62 #define MAX_IO_MSRS 256
63 #define KVM_MAX_MCE_BANKS 32
64 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
66 #define emul_to_vcpu(ctxt) \
67 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
70 * - enable syscall per default because its emulated by KVM
71 * - enable LME and LMA per default on 64 bit KVM
75 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
77 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
80 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
81 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
83 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
84 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
85 struct kvm_cpuid_entry2 __user
*entries
);
87 struct kvm_x86_ops
*kvm_x86_ops
;
88 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
91 module_param_named(ignore_msrs
, ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
93 bool kvm_has_tsc_control
;
94 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
95 u32 kvm_max_guest_tsc_khz
;
96 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
98 #define KVM_NR_SHARED_MSRS 16
100 struct kvm_shared_msrs_global
{
102 u32 msrs
[KVM_NR_SHARED_MSRS
];
105 struct kvm_shared_msrs
{
106 struct user_return_notifier urn
;
108 struct kvm_shared_msr_values
{
111 } values
[KVM_NR_SHARED_MSRS
];
114 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
115 static DEFINE_PER_CPU(struct kvm_shared_msrs
, shared_msrs
);
117 struct kvm_stats_debugfs_item debugfs_entries
[] = {
118 { "pf_fixed", VCPU_STAT(pf_fixed
) },
119 { "pf_guest", VCPU_STAT(pf_guest
) },
120 { "tlb_flush", VCPU_STAT(tlb_flush
) },
121 { "invlpg", VCPU_STAT(invlpg
) },
122 { "exits", VCPU_STAT(exits
) },
123 { "io_exits", VCPU_STAT(io_exits
) },
124 { "mmio_exits", VCPU_STAT(mmio_exits
) },
125 { "signal_exits", VCPU_STAT(signal_exits
) },
126 { "irq_window", VCPU_STAT(irq_window_exits
) },
127 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
128 { "halt_exits", VCPU_STAT(halt_exits
) },
129 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
130 { "hypercalls", VCPU_STAT(hypercalls
) },
131 { "request_irq", VCPU_STAT(request_irq_exits
) },
132 { "irq_exits", VCPU_STAT(irq_exits
) },
133 { "host_state_reload", VCPU_STAT(host_state_reload
) },
134 { "efer_reload", VCPU_STAT(efer_reload
) },
135 { "fpu_reload", VCPU_STAT(fpu_reload
) },
136 { "insn_emulation", VCPU_STAT(insn_emulation
) },
137 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
138 { "irq_injections", VCPU_STAT(irq_injections
) },
139 { "nmi_injections", VCPU_STAT(nmi_injections
) },
140 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
141 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
142 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
143 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
144 { "mmu_flooded", VM_STAT(mmu_flooded
) },
145 { "mmu_recycled", VM_STAT(mmu_recycled
) },
146 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
147 { "mmu_unsync", VM_STAT(mmu_unsync
) },
148 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
149 { "largepages", VM_STAT(lpages
) },
153 u64 __read_mostly host_xcr0
;
155 int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
157 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
160 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
161 vcpu
->arch
.apf
.gfns
[i
] = ~0;
164 static void kvm_on_user_return(struct user_return_notifier
*urn
)
167 struct kvm_shared_msrs
*locals
168 = container_of(urn
, struct kvm_shared_msrs
, urn
);
169 struct kvm_shared_msr_values
*values
;
171 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
172 values
= &locals
->values
[slot
];
173 if (values
->host
!= values
->curr
) {
174 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
175 values
->curr
= values
->host
;
178 locals
->registered
= false;
179 user_return_notifier_unregister(urn
);
182 static void shared_msr_update(unsigned slot
, u32 msr
)
184 struct kvm_shared_msrs
*smsr
;
187 smsr
= &__get_cpu_var(shared_msrs
);
188 /* only read, and nobody should modify it at this time,
189 * so don't need lock */
190 if (slot
>= shared_msrs_global
.nr
) {
191 printk(KERN_ERR
"kvm: invalid MSR slot!");
194 rdmsrl_safe(msr
, &value
);
195 smsr
->values
[slot
].host
= value
;
196 smsr
->values
[slot
].curr
= value
;
199 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
201 if (slot
>= shared_msrs_global
.nr
)
202 shared_msrs_global
.nr
= slot
+ 1;
203 shared_msrs_global
.msrs
[slot
] = msr
;
204 /* we need ensured the shared_msr_global have been updated */
207 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
209 static void kvm_shared_msr_cpu_online(void)
213 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
214 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
217 void kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
219 struct kvm_shared_msrs
*smsr
= &__get_cpu_var(shared_msrs
);
221 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
223 smsr
->values
[slot
].curr
= value
;
224 wrmsrl(shared_msrs_global
.msrs
[slot
], value
);
225 if (!smsr
->registered
) {
226 smsr
->urn
.on_user_return
= kvm_on_user_return
;
227 user_return_notifier_register(&smsr
->urn
);
228 smsr
->registered
= true;
231 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
233 static void drop_user_return_notifiers(void *ignore
)
235 struct kvm_shared_msrs
*smsr
= &__get_cpu_var(shared_msrs
);
237 if (smsr
->registered
)
238 kvm_on_user_return(&smsr
->urn
);
241 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
243 if (irqchip_in_kernel(vcpu
->kvm
))
244 return vcpu
->arch
.apic_base
;
246 return vcpu
->arch
.apic_base
;
248 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
250 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
252 /* TODO: reserve bits check */
253 if (irqchip_in_kernel(vcpu
->kvm
))
254 kvm_lapic_set_base(vcpu
, data
);
256 vcpu
->arch
.apic_base
= data
;
258 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
260 #define EXCPT_BENIGN 0
261 #define EXCPT_CONTRIBUTORY 1
264 static int exception_class(int vector
)
274 return EXCPT_CONTRIBUTORY
;
281 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
282 unsigned nr
, bool has_error
, u32 error_code
,
288 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
290 if (!vcpu
->arch
.exception
.pending
) {
292 vcpu
->arch
.exception
.pending
= true;
293 vcpu
->arch
.exception
.has_error_code
= has_error
;
294 vcpu
->arch
.exception
.nr
= nr
;
295 vcpu
->arch
.exception
.error_code
= error_code
;
296 vcpu
->arch
.exception
.reinject
= reinject
;
300 /* to check exception */
301 prev_nr
= vcpu
->arch
.exception
.nr
;
302 if (prev_nr
== DF_VECTOR
) {
303 /* triple fault -> shutdown */
304 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
307 class1
= exception_class(prev_nr
);
308 class2
= exception_class(nr
);
309 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
310 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
311 /* generate double fault per SDM Table 5-5 */
312 vcpu
->arch
.exception
.pending
= true;
313 vcpu
->arch
.exception
.has_error_code
= true;
314 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
315 vcpu
->arch
.exception
.error_code
= 0;
317 /* replace previous exception with a new one in a hope
318 that instruction re-execution will regenerate lost
323 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
325 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
327 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
329 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
331 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
333 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
335 void kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
338 kvm_inject_gp(vcpu
, 0);
340 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
342 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
344 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
346 ++vcpu
->stat
.pf_guest
;
347 vcpu
->arch
.cr2
= fault
->address
;
348 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
350 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
352 void kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
354 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
355 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
357 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
360 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
362 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
363 vcpu
->arch
.nmi_pending
= 1;
365 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
367 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
369 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
371 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
373 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
375 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
377 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
380 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
381 * a #GP and return false.
383 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
385 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
387 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
390 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
393 * This function will be used to read from the physical memory of the currently
394 * running guest. The difference to kvm_read_guest_page is that this function
395 * can read from guest physical or from the guest's guest physical memory.
397 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
398 gfn_t ngfn
, void *data
, int offset
, int len
,
404 ngpa
= gfn_to_gpa(ngfn
);
405 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
);
406 if (real_gfn
== UNMAPPED_GVA
)
409 real_gfn
= gpa_to_gfn(real_gfn
);
411 return kvm_read_guest_page(vcpu
->kvm
, real_gfn
, data
, offset
, len
);
413 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
415 int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
416 void *data
, int offset
, int len
, u32 access
)
418 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
419 data
, offset
, len
, access
);
423 * Load the pae pdptrs. Return true is they are all valid.
425 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
427 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
428 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
431 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
433 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
434 offset
* sizeof(u64
), sizeof(pdpte
),
435 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
440 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
441 if (is_present_gpte(pdpte
[i
]) &&
442 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
449 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
450 __set_bit(VCPU_EXREG_PDPTR
,
451 (unsigned long *)&vcpu
->arch
.regs_avail
);
452 __set_bit(VCPU_EXREG_PDPTR
,
453 (unsigned long *)&vcpu
->arch
.regs_dirty
);
458 EXPORT_SYMBOL_GPL(load_pdptrs
);
460 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
462 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
468 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
471 if (!test_bit(VCPU_EXREG_PDPTR
,
472 (unsigned long *)&vcpu
->arch
.regs_avail
))
475 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
476 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
477 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
478 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
481 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
487 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
489 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
490 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
|
491 X86_CR0_CD
| X86_CR0_NW
;
496 if (cr0
& 0xffffffff00000000UL
)
500 cr0
&= ~CR0_RESERVED_BITS
;
502 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
505 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
508 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
510 if ((vcpu
->arch
.efer
& EFER_LME
)) {
515 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
520 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
525 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
527 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
528 kvm_clear_async_pf_completion_queue(vcpu
);
529 kvm_async_pf_hash_reset(vcpu
);
532 if ((cr0
^ old_cr0
) & update_bits
)
533 kvm_mmu_reset_context(vcpu
);
536 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
538 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
540 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
542 EXPORT_SYMBOL_GPL(kvm_lmsw
);
544 int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
548 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
549 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
552 if (kvm_x86_ops
->get_cpl(vcpu
) != 0)
554 if (!(xcr0
& XSTATE_FP
))
556 if ((xcr0
& XSTATE_YMM
) && !(xcr0
& XSTATE_SSE
))
558 if (xcr0
& ~host_xcr0
)
560 vcpu
->arch
.xcr0
= xcr0
;
561 vcpu
->guest_xcr0_loaded
= 0;
565 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
567 if (__kvm_set_xcr(vcpu
, index
, xcr
)) {
568 kvm_inject_gp(vcpu
, 0);
573 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
575 static bool guest_cpuid_has_xsave(struct kvm_vcpu
*vcpu
)
577 struct kvm_cpuid_entry2
*best
;
579 best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
580 return best
&& (best
->ecx
& bit(X86_FEATURE_XSAVE
));
583 static bool guest_cpuid_has_smep(struct kvm_vcpu
*vcpu
)
585 struct kvm_cpuid_entry2
*best
;
587 best
= kvm_find_cpuid_entry(vcpu
, 7, 0);
588 return best
&& (best
->ebx
& bit(X86_FEATURE_SMEP
));
591 static bool guest_cpuid_has_fsgsbase(struct kvm_vcpu
*vcpu
)
593 struct kvm_cpuid_entry2
*best
;
595 best
= kvm_find_cpuid_entry(vcpu
, 7, 0);
596 return best
&& (best
->ebx
& bit(X86_FEATURE_FSGSBASE
));
599 static void update_cpuid(struct kvm_vcpu
*vcpu
)
601 struct kvm_cpuid_entry2
*best
;
603 best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
607 /* Update OSXSAVE bit */
608 if (cpu_has_xsave
&& best
->function
== 0x1) {
609 best
->ecx
&= ~(bit(X86_FEATURE_OSXSAVE
));
610 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
))
611 best
->ecx
|= bit(X86_FEATURE_OSXSAVE
);
615 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
617 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
618 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
|
619 X86_CR4_PAE
| X86_CR4_SMEP
;
620 if (cr4
& CR4_RESERVED_BITS
)
623 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
626 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
629 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_RDWRGSFS
))
632 if (is_long_mode(vcpu
)) {
633 if (!(cr4
& X86_CR4_PAE
))
635 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
636 && ((cr4
^ old_cr4
) & pdptr_bits
)
637 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
641 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
644 if ((cr4
^ old_cr4
) & pdptr_bits
)
645 kvm_mmu_reset_context(vcpu
);
647 if ((cr4
^ old_cr4
) & X86_CR4_OSXSAVE
)
652 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
654 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
656 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
657 kvm_mmu_sync_roots(vcpu
);
658 kvm_mmu_flush_tlb(vcpu
);
662 if (is_long_mode(vcpu
)) {
663 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
667 if (cr3
& CR3_PAE_RESERVED_BITS
)
669 if (is_paging(vcpu
) &&
670 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
674 * We don't check reserved bits in nonpae mode, because
675 * this isn't enforced, and VMware depends on this.
680 * Does the new cr3 value map to physical memory? (Note, we
681 * catch an invalid cr3 even in real-mode, because it would
682 * cause trouble later on when we turn on paging anyway.)
684 * A real CPU would silently accept an invalid cr3 and would
685 * attempt to use it - with largely undefined (and often hard
686 * to debug) behavior on the guest side.
688 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
690 vcpu
->arch
.cr3
= cr3
;
691 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
692 vcpu
->arch
.mmu
.new_cr3(vcpu
);
695 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
697 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
699 if (cr8
& CR8_RESERVED_BITS
)
701 if (irqchip_in_kernel(vcpu
->kvm
))
702 kvm_lapic_set_tpr(vcpu
, cr8
);
704 vcpu
->arch
.cr8
= cr8
;
707 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
709 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
711 if (irqchip_in_kernel(vcpu
->kvm
))
712 return kvm_lapic_get_cr8(vcpu
);
714 return vcpu
->arch
.cr8
;
716 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
718 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
722 vcpu
->arch
.db
[dr
] = val
;
723 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
724 vcpu
->arch
.eff_db
[dr
] = val
;
727 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
731 if (val
& 0xffffffff00000000ULL
)
733 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | DR6_FIXED_1
;
736 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
740 if (val
& 0xffffffff00000000ULL
)
742 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
743 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
744 kvm_x86_ops
->set_dr7(vcpu
, vcpu
->arch
.dr7
);
745 vcpu
->arch
.switch_db_regs
= (val
& DR7_BP_EN_MASK
);
753 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
757 res
= __kvm_set_dr(vcpu
, dr
, val
);
759 kvm_queue_exception(vcpu
, UD_VECTOR
);
761 kvm_inject_gp(vcpu
, 0);
765 EXPORT_SYMBOL_GPL(kvm_set_dr
);
767 static int _kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
771 *val
= vcpu
->arch
.db
[dr
];
774 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
778 *val
= vcpu
->arch
.dr6
;
781 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
785 *val
= vcpu
->arch
.dr7
;
792 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
794 if (_kvm_get_dr(vcpu
, dr
, val
)) {
795 kvm_queue_exception(vcpu
, UD_VECTOR
);
800 EXPORT_SYMBOL_GPL(kvm_get_dr
);
803 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
804 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
806 * This list is modified at module load time to reflect the
807 * capabilities of the host cpu. This capabilities test skips MSRs that are
808 * kvm-specific. Those are put in the beginning of the list.
811 #define KVM_SAVE_MSRS_BEGIN 9
812 static u32 msrs_to_save
[] = {
813 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
814 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
815 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
816 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
817 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
820 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
822 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
825 static unsigned num_msrs_to_save
;
827 static u32 emulated_msrs
[] = {
828 MSR_IA32_MISC_ENABLE
,
833 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
835 u64 old_efer
= vcpu
->arch
.efer
;
837 if (efer
& efer_reserved_bits
)
841 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
844 if (efer
& EFER_FFXSR
) {
845 struct kvm_cpuid_entry2
*feat
;
847 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
848 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
852 if (efer
& EFER_SVME
) {
853 struct kvm_cpuid_entry2
*feat
;
855 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
856 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
861 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
863 kvm_x86_ops
->set_efer(vcpu
, efer
);
865 vcpu
->arch
.mmu
.base_role
.nxe
= (efer
& EFER_NX
) && !tdp_enabled
;
867 /* Update reserved bits */
868 if ((efer
^ old_efer
) & EFER_NX
)
869 kvm_mmu_reset_context(vcpu
);
874 void kvm_enable_efer_bits(u64 mask
)
876 efer_reserved_bits
&= ~mask
;
878 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
882 * Writes msr value into into the appropriate "register".
883 * Returns 0 on success, non-0 otherwise.
884 * Assumes vcpu_load() was already called.
886 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
888 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
892 * Adapt set_msr() to msr_io()'s calling convention
894 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
896 return kvm_set_msr(vcpu
, index
, *data
);
899 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
903 struct pvclock_wall_clock wc
;
904 struct timespec boot
;
909 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
914 ++version
; /* first time write, random junk */
918 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
921 * The guest calculates current wall clock time by adding
922 * system time (updated by kvm_guest_time_update below) to the
923 * wall clock specified here. guest system time equals host
924 * system time for us, thus we must fill in host boot time here.
928 wc
.sec
= boot
.tv_sec
;
929 wc
.nsec
= boot
.tv_nsec
;
930 wc
.version
= version
;
932 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
935 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
938 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
940 uint32_t quotient
, remainder
;
942 /* Don't try to replace with do_div(), this one calculates
943 * "(dividend << 32) / divisor" */
945 : "=a" (quotient
), "=d" (remainder
)
946 : "0" (0), "1" (dividend
), "r" (divisor
) );
950 static void kvm_get_time_scale(uint32_t scaled_khz
, uint32_t base_khz
,
951 s8
*pshift
, u32
*pmultiplier
)
958 tps64
= base_khz
* 1000LL;
959 scaled64
= scaled_khz
* 1000LL;
960 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
965 tps32
= (uint32_t)tps64
;
966 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
967 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
975 *pmultiplier
= div_frac(scaled64
, tps32
);
977 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
978 __func__
, base_khz
, scaled_khz
, shift
, *pmultiplier
);
981 static inline u64
get_kernel_ns(void)
985 WARN_ON(preemptible());
987 monotonic_to_bootbased(&ts
);
988 return timespec_to_ns(&ts
);
991 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
992 unsigned long max_tsc_khz
;
994 static inline int kvm_tsc_changes_freq(void)
997 int ret
= !boot_cpu_has(X86_FEATURE_CONSTANT_TSC
) &&
998 cpufreq_quick_get(cpu
) != 0;
1003 static u64
vcpu_tsc_khz(struct kvm_vcpu
*vcpu
)
1005 if (vcpu
->arch
.virtual_tsc_khz
)
1006 return vcpu
->arch
.virtual_tsc_khz
;
1008 return __this_cpu_read(cpu_tsc_khz
);
1011 static inline u64
nsec_to_cycles(struct kvm_vcpu
*vcpu
, u64 nsec
)
1015 WARN_ON(preemptible());
1016 if (kvm_tsc_changes_freq())
1017 printk_once(KERN_WARNING
1018 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
1019 ret
= nsec
* vcpu_tsc_khz(vcpu
);
1020 do_div(ret
, USEC_PER_SEC
);
1024 static void kvm_init_tsc_catchup(struct kvm_vcpu
*vcpu
, u32 this_tsc_khz
)
1026 /* Compute a scale to convert nanoseconds in TSC cycles */
1027 kvm_get_time_scale(this_tsc_khz
, NSEC_PER_SEC
/ 1000,
1028 &vcpu
->arch
.tsc_catchup_shift
,
1029 &vcpu
->arch
.tsc_catchup_mult
);
1032 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1034 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.last_tsc_nsec
,
1035 vcpu
->arch
.tsc_catchup_mult
,
1036 vcpu
->arch
.tsc_catchup_shift
);
1037 tsc
+= vcpu
->arch
.last_tsc_write
;
1041 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, u64 data
)
1043 struct kvm
*kvm
= vcpu
->kvm
;
1044 u64 offset
, ns
, elapsed
;
1045 unsigned long flags
;
1048 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1049 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1050 ns
= get_kernel_ns();
1051 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1052 sdiff
= data
- kvm
->arch
.last_tsc_write
;
1057 * Special case: close write to TSC within 5 seconds of
1058 * another CPU is interpreted as an attempt to synchronize
1059 * The 5 seconds is to accommodate host load / swapping as
1060 * well as any reset of TSC during the boot process.
1062 * In that case, for a reliable TSC, we can match TSC offsets,
1063 * or make a best guest using elapsed value.
1065 if (sdiff
< nsec_to_cycles(vcpu
, 5ULL * NSEC_PER_SEC
) &&
1066 elapsed
< 5ULL * NSEC_PER_SEC
) {
1067 if (!check_tsc_unstable()) {
1068 offset
= kvm
->arch
.last_tsc_offset
;
1069 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1071 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1073 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1075 ns
= kvm
->arch
.last_tsc_nsec
;
1077 kvm
->arch
.last_tsc_nsec
= ns
;
1078 kvm
->arch
.last_tsc_write
= data
;
1079 kvm
->arch
.last_tsc_offset
= offset
;
1080 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1081 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1083 /* Reset of TSC must disable overshoot protection below */
1084 vcpu
->arch
.hv_clock
.tsc_timestamp
= 0;
1085 vcpu
->arch
.last_tsc_write
= data
;
1086 vcpu
->arch
.last_tsc_nsec
= ns
;
1088 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1090 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1092 unsigned long flags
;
1093 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1095 unsigned long this_tsc_khz
;
1096 s64 kernel_ns
, max_kernel_ns
;
1099 /* Keep irq disabled to prevent changes to the clock */
1100 local_irq_save(flags
);
1101 tsc_timestamp
= kvm_x86_ops
->read_l1_tsc(v
);
1102 kernel_ns
= get_kernel_ns();
1103 this_tsc_khz
= vcpu_tsc_khz(v
);
1104 if (unlikely(this_tsc_khz
== 0)) {
1105 local_irq_restore(flags
);
1106 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1111 * We may have to catch up the TSC to match elapsed wall clock
1112 * time for two reasons, even if kvmclock is used.
1113 * 1) CPU could have been running below the maximum TSC rate
1114 * 2) Broken TSC compensation resets the base at each VCPU
1115 * entry to avoid unknown leaps of TSC even when running
1116 * again on the same CPU. This may cause apparent elapsed
1117 * time to disappear, and the guest to stand still or run
1120 if (vcpu
->tsc_catchup
) {
1121 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1122 if (tsc
> tsc_timestamp
) {
1123 kvm_x86_ops
->adjust_tsc_offset(v
, tsc
- tsc_timestamp
);
1124 tsc_timestamp
= tsc
;
1128 local_irq_restore(flags
);
1130 if (!vcpu
->time_page
)
1134 * Time as measured by the TSC may go backwards when resetting the base
1135 * tsc_timestamp. The reason for this is that the TSC resolution is
1136 * higher than the resolution of the other clock scales. Thus, many
1137 * possible measurments of the TSC correspond to one measurement of any
1138 * other clock, and so a spread of values is possible. This is not a
1139 * problem for the computation of the nanosecond clock; with TSC rates
1140 * around 1GHZ, there can only be a few cycles which correspond to one
1141 * nanosecond value, and any path through this code will inevitably
1142 * take longer than that. However, with the kernel_ns value itself,
1143 * the precision may be much lower, down to HZ granularity. If the
1144 * first sampling of TSC against kernel_ns ends in the low part of the
1145 * range, and the second in the high end of the range, we can get:
1147 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1149 * As the sampling errors potentially range in the thousands of cycles,
1150 * it is possible such a time value has already been observed by the
1151 * guest. To protect against this, we must compute the system time as
1152 * observed by the guest and ensure the new system time is greater.
1155 if (vcpu
->hv_clock
.tsc_timestamp
&& vcpu
->last_guest_tsc
) {
1156 max_kernel_ns
= vcpu
->last_guest_tsc
-
1157 vcpu
->hv_clock
.tsc_timestamp
;
1158 max_kernel_ns
= pvclock_scale_delta(max_kernel_ns
,
1159 vcpu
->hv_clock
.tsc_to_system_mul
,
1160 vcpu
->hv_clock
.tsc_shift
);
1161 max_kernel_ns
+= vcpu
->last_kernel_ns
;
1164 if (unlikely(vcpu
->hw_tsc_khz
!= this_tsc_khz
)) {
1165 kvm_get_time_scale(NSEC_PER_SEC
/ 1000, this_tsc_khz
,
1166 &vcpu
->hv_clock
.tsc_shift
,
1167 &vcpu
->hv_clock
.tsc_to_system_mul
);
1168 vcpu
->hw_tsc_khz
= this_tsc_khz
;
1171 if (max_kernel_ns
> kernel_ns
)
1172 kernel_ns
= max_kernel_ns
;
1174 /* With all the info we got, fill in the values */
1175 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1176 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1177 vcpu
->last_kernel_ns
= kernel_ns
;
1178 vcpu
->last_guest_tsc
= tsc_timestamp
;
1179 vcpu
->hv_clock
.flags
= 0;
1182 * The interface expects us to write an even number signaling that the
1183 * update is finished. Since the guest won't see the intermediate
1184 * state, we just increase by 2 at the end.
1186 vcpu
->hv_clock
.version
+= 2;
1188 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
1190 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
1191 sizeof(vcpu
->hv_clock
));
1193 kunmap_atomic(shared_kaddr
, KM_USER0
);
1195 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
1199 static bool msr_mtrr_valid(unsigned msr
)
1202 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
1203 case MSR_MTRRfix64K_00000
:
1204 case MSR_MTRRfix16K_80000
:
1205 case MSR_MTRRfix16K_A0000
:
1206 case MSR_MTRRfix4K_C0000
:
1207 case MSR_MTRRfix4K_C8000
:
1208 case MSR_MTRRfix4K_D0000
:
1209 case MSR_MTRRfix4K_D8000
:
1210 case MSR_MTRRfix4K_E0000
:
1211 case MSR_MTRRfix4K_E8000
:
1212 case MSR_MTRRfix4K_F0000
:
1213 case MSR_MTRRfix4K_F8000
:
1214 case MSR_MTRRdefType
:
1215 case MSR_IA32_CR_PAT
:
1223 static bool valid_pat_type(unsigned t
)
1225 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1228 static bool valid_mtrr_type(unsigned t
)
1230 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
1233 static bool mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1237 if (!msr_mtrr_valid(msr
))
1240 if (msr
== MSR_IA32_CR_PAT
) {
1241 for (i
= 0; i
< 8; i
++)
1242 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
1245 } else if (msr
== MSR_MTRRdefType
) {
1248 return valid_mtrr_type(data
& 0xff);
1249 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
1250 for (i
= 0; i
< 8 ; i
++)
1251 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
1256 /* variable MTRRs */
1257 return valid_mtrr_type(data
& 0xff);
1260 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1262 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1264 if (!mtrr_valid(vcpu
, msr
, data
))
1267 if (msr
== MSR_MTRRdefType
) {
1268 vcpu
->arch
.mtrr_state
.def_type
= data
;
1269 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
1270 } else if (msr
== MSR_MTRRfix64K_00000
)
1272 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1273 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
1274 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1275 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
1276 else if (msr
== MSR_IA32_CR_PAT
)
1277 vcpu
->arch
.pat
= data
;
1278 else { /* Variable MTRRs */
1279 int idx
, is_mtrr_mask
;
1282 idx
= (msr
- 0x200) / 2;
1283 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1286 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1289 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1293 kvm_mmu_reset_context(vcpu
);
1297 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1299 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1300 unsigned bank_num
= mcg_cap
& 0xff;
1303 case MSR_IA32_MCG_STATUS
:
1304 vcpu
->arch
.mcg_status
= data
;
1306 case MSR_IA32_MCG_CTL
:
1307 if (!(mcg_cap
& MCG_CTL_P
))
1309 if (data
!= 0 && data
!= ~(u64
)0)
1311 vcpu
->arch
.mcg_ctl
= data
;
1314 if (msr
>= MSR_IA32_MC0_CTL
&&
1315 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1316 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1317 /* only 0 or all 1s can be written to IA32_MCi_CTL
1318 * some Linux kernels though clear bit 10 in bank 4 to
1319 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1320 * this to avoid an uncatched #GP in the guest
1322 if ((offset
& 0x3) == 0 &&
1323 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1325 vcpu
->arch
.mce_banks
[offset
] = data
;
1333 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1335 struct kvm
*kvm
= vcpu
->kvm
;
1336 int lm
= is_long_mode(vcpu
);
1337 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1338 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1339 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1340 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1341 u32 page_num
= data
& ~PAGE_MASK
;
1342 u64 page_addr
= data
& PAGE_MASK
;
1347 if (page_num
>= blob_size
)
1350 page
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
1354 if (copy_from_user(page
, blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
))
1356 if (kvm_write_guest(kvm
, page_addr
, page
, PAGE_SIZE
))
1365 static bool kvm_hv_hypercall_enabled(struct kvm
*kvm
)
1367 return kvm
->arch
.hv_hypercall
& HV_X64_MSR_HYPERCALL_ENABLE
;
1370 static bool kvm_hv_msr_partition_wide(u32 msr
)
1374 case HV_X64_MSR_GUEST_OS_ID
:
1375 case HV_X64_MSR_HYPERCALL
:
1383 static int set_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1385 struct kvm
*kvm
= vcpu
->kvm
;
1388 case HV_X64_MSR_GUEST_OS_ID
:
1389 kvm
->arch
.hv_guest_os_id
= data
;
1390 /* setting guest os id to zero disables hypercall page */
1391 if (!kvm
->arch
.hv_guest_os_id
)
1392 kvm
->arch
.hv_hypercall
&= ~HV_X64_MSR_HYPERCALL_ENABLE
;
1394 case HV_X64_MSR_HYPERCALL
: {
1399 /* if guest os id is not set hypercall should remain disabled */
1400 if (!kvm
->arch
.hv_guest_os_id
)
1402 if (!(data
& HV_X64_MSR_HYPERCALL_ENABLE
)) {
1403 kvm
->arch
.hv_hypercall
= data
;
1406 gfn
= data
>> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT
;
1407 addr
= gfn_to_hva(kvm
, gfn
);
1408 if (kvm_is_error_hva(addr
))
1410 kvm_x86_ops
->patch_hypercall(vcpu
, instructions
);
1411 ((unsigned char *)instructions
)[3] = 0xc3; /* ret */
1412 if (__copy_to_user((void __user
*)addr
, instructions
, 4))
1414 kvm
->arch
.hv_hypercall
= data
;
1418 pr_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1419 "data 0x%llx\n", msr
, data
);
1425 static int set_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1428 case HV_X64_MSR_APIC_ASSIST_PAGE
: {
1431 if (!(data
& HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE
)) {
1432 vcpu
->arch
.hv_vapic
= data
;
1435 addr
= gfn_to_hva(vcpu
->kvm
, data
>>
1436 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT
);
1437 if (kvm_is_error_hva(addr
))
1439 if (__clear_user((void __user
*)addr
, PAGE_SIZE
))
1441 vcpu
->arch
.hv_vapic
= data
;
1444 case HV_X64_MSR_EOI
:
1445 return kvm_hv_vapic_msr_write(vcpu
, APIC_EOI
, data
);
1446 case HV_X64_MSR_ICR
:
1447 return kvm_hv_vapic_msr_write(vcpu
, APIC_ICR
, data
);
1448 case HV_X64_MSR_TPR
:
1449 return kvm_hv_vapic_msr_write(vcpu
, APIC_TASKPRI
, data
);
1451 pr_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1452 "data 0x%llx\n", msr
, data
);
1459 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
1461 gpa_t gpa
= data
& ~0x3f;
1463 /* Bits 2:5 are resrved, Should be zero */
1467 vcpu
->arch
.apf
.msr_val
= data
;
1469 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
1470 kvm_clear_async_pf_completion_queue(vcpu
);
1471 kvm_async_pf_hash_reset(vcpu
);
1475 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
))
1478 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
1479 kvm_async_pf_wakeup_all(vcpu
);
1483 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
1485 if (vcpu
->arch
.time_page
) {
1486 kvm_release_page_dirty(vcpu
->arch
.time_page
);
1487 vcpu
->arch
.time_page
= NULL
;
1491 static void accumulate_steal_time(struct kvm_vcpu
*vcpu
)
1495 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1498 delta
= current
->sched_info
.run_delay
- vcpu
->arch
.st
.last_steal
;
1499 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
1500 vcpu
->arch
.st
.accum_steal
= delta
;
1503 static void record_steal_time(struct kvm_vcpu
*vcpu
)
1505 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1508 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1509 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
1512 vcpu
->arch
.st
.steal
.steal
+= vcpu
->arch
.st
.accum_steal
;
1513 vcpu
->arch
.st
.steal
.version
+= 2;
1514 vcpu
->arch
.st
.accum_steal
= 0;
1516 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1517 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
1520 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1524 return set_efer(vcpu
, data
);
1526 data
&= ~(u64
)0x40; /* ignore flush filter disable */
1527 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
1529 pr_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
1534 case MSR_FAM10H_MMIO_CONF_BASE
:
1536 pr_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
1541 case MSR_AMD64_NB_CFG
:
1543 case MSR_IA32_DEBUGCTLMSR
:
1545 /* We support the non-activated case already */
1547 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
1548 /* Values other than LBR and BTF are vendor-specific,
1549 thus reserved and should throw a #GP */
1552 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1555 case MSR_IA32_UCODE_REV
:
1556 case MSR_IA32_UCODE_WRITE
:
1557 case MSR_VM_HSAVE_PA
:
1558 case MSR_AMD64_PATCH_LOADER
:
1560 case 0x200 ... 0x2ff:
1561 return set_msr_mtrr(vcpu
, msr
, data
);
1562 case MSR_IA32_APICBASE
:
1563 kvm_set_apic_base(vcpu
, data
);
1565 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1566 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
1567 case MSR_IA32_MISC_ENABLE
:
1568 vcpu
->arch
.ia32_misc_enable_msr
= data
;
1570 case MSR_KVM_WALL_CLOCK_NEW
:
1571 case MSR_KVM_WALL_CLOCK
:
1572 vcpu
->kvm
->arch
.wall_clock
= data
;
1573 kvm_write_wall_clock(vcpu
->kvm
, data
);
1575 case MSR_KVM_SYSTEM_TIME_NEW
:
1576 case MSR_KVM_SYSTEM_TIME
: {
1577 kvmclock_reset(vcpu
);
1579 vcpu
->arch
.time
= data
;
1580 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1582 /* we verify if the enable bit is set... */
1586 /* ...but clean it before doing the actual write */
1587 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
1589 vcpu
->arch
.time_page
=
1590 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
1592 if (is_error_page(vcpu
->arch
.time_page
)) {
1593 kvm_release_page_clean(vcpu
->arch
.time_page
);
1594 vcpu
->arch
.time_page
= NULL
;
1598 case MSR_KVM_ASYNC_PF_EN
:
1599 if (kvm_pv_enable_async_pf(vcpu
, data
))
1602 case MSR_KVM_STEAL_TIME
:
1604 if (unlikely(!sched_info_on()))
1607 if (data
& KVM_STEAL_RESERVED_MASK
)
1610 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1611 data
& KVM_STEAL_VALID_BITS
))
1614 vcpu
->arch
.st
.msr_val
= data
;
1616 if (!(data
& KVM_MSR_ENABLED
))
1619 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
1622 accumulate_steal_time(vcpu
);
1625 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
1629 case MSR_IA32_MCG_CTL
:
1630 case MSR_IA32_MCG_STATUS
:
1631 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1632 return set_msr_mce(vcpu
, msr
, data
);
1634 /* Performance counters are not protected by a CPUID bit,
1635 * so we should check all of them in the generic path for the sake of
1636 * cross vendor migration.
1637 * Writing a zero into the event select MSRs disables them,
1638 * which we perfectly emulate ;-). Any other value should be at least
1639 * reported, some guests depend on them.
1641 case MSR_P6_EVNTSEL0
:
1642 case MSR_P6_EVNTSEL1
:
1643 case MSR_K7_EVNTSEL0
:
1644 case MSR_K7_EVNTSEL1
:
1645 case MSR_K7_EVNTSEL2
:
1646 case MSR_K7_EVNTSEL3
:
1648 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
1649 "0x%x data 0x%llx\n", msr
, data
);
1651 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1652 * so we ignore writes to make it happy.
1654 case MSR_P6_PERFCTR0
:
1655 case MSR_P6_PERFCTR1
:
1656 case MSR_K7_PERFCTR0
:
1657 case MSR_K7_PERFCTR1
:
1658 case MSR_K7_PERFCTR2
:
1659 case MSR_K7_PERFCTR3
:
1660 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
1661 "0x%x data 0x%llx\n", msr
, data
);
1663 case MSR_K7_CLK_CTL
:
1665 * Ignore all writes to this no longer documented MSR.
1666 * Writes are only relevant for old K7 processors,
1667 * all pre-dating SVM, but a recommended workaround from
1668 * AMD for these chips. It is possible to speicify the
1669 * affected processor models on the command line, hence
1670 * the need to ignore the workaround.
1673 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
1674 if (kvm_hv_msr_partition_wide(msr
)) {
1676 mutex_lock(&vcpu
->kvm
->lock
);
1677 r
= set_msr_hyperv_pw(vcpu
, msr
, data
);
1678 mutex_unlock(&vcpu
->kvm
->lock
);
1681 return set_msr_hyperv(vcpu
, msr
, data
);
1683 case MSR_IA32_BBL_CR_CTL3
:
1684 /* Drop writes to this legacy MSR -- see rdmsr
1685 * counterpart for further detail.
1687 pr_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n", msr
, data
);
1690 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
1691 return xen_hvm_config(vcpu
, data
);
1693 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
1697 pr_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
1704 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
1708 * Reads an msr value (of 'msr_index') into 'pdata'.
1709 * Returns 0 on success, non-0 otherwise.
1710 * Assumes vcpu_load() was already called.
1712 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
1714 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
1717 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1719 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1721 if (!msr_mtrr_valid(msr
))
1724 if (msr
== MSR_MTRRdefType
)
1725 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
1726 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
1727 else if (msr
== MSR_MTRRfix64K_00000
)
1729 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1730 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
1731 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1732 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
1733 else if (msr
== MSR_IA32_CR_PAT
)
1734 *pdata
= vcpu
->arch
.pat
;
1735 else { /* Variable MTRRs */
1736 int idx
, is_mtrr_mask
;
1739 idx
= (msr
- 0x200) / 2;
1740 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1743 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1746 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1753 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1756 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1757 unsigned bank_num
= mcg_cap
& 0xff;
1760 case MSR_IA32_P5_MC_ADDR
:
1761 case MSR_IA32_P5_MC_TYPE
:
1764 case MSR_IA32_MCG_CAP
:
1765 data
= vcpu
->arch
.mcg_cap
;
1767 case MSR_IA32_MCG_CTL
:
1768 if (!(mcg_cap
& MCG_CTL_P
))
1770 data
= vcpu
->arch
.mcg_ctl
;
1772 case MSR_IA32_MCG_STATUS
:
1773 data
= vcpu
->arch
.mcg_status
;
1776 if (msr
>= MSR_IA32_MC0_CTL
&&
1777 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1778 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1779 data
= vcpu
->arch
.mce_banks
[offset
];
1788 static int get_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1791 struct kvm
*kvm
= vcpu
->kvm
;
1794 case HV_X64_MSR_GUEST_OS_ID
:
1795 data
= kvm
->arch
.hv_guest_os_id
;
1797 case HV_X64_MSR_HYPERCALL
:
1798 data
= kvm
->arch
.hv_hypercall
;
1801 pr_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1809 static int get_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1814 case HV_X64_MSR_VP_INDEX
: {
1817 kvm_for_each_vcpu(r
, v
, vcpu
->kvm
)
1822 case HV_X64_MSR_EOI
:
1823 return kvm_hv_vapic_msr_read(vcpu
, APIC_EOI
, pdata
);
1824 case HV_X64_MSR_ICR
:
1825 return kvm_hv_vapic_msr_read(vcpu
, APIC_ICR
, pdata
);
1826 case HV_X64_MSR_TPR
:
1827 return kvm_hv_vapic_msr_read(vcpu
, APIC_TASKPRI
, pdata
);
1828 case HV_X64_MSR_APIC_ASSIST_PAGE
:
1829 data
= vcpu
->arch
.hv_vapic
;
1832 pr_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1839 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1844 case MSR_IA32_PLATFORM_ID
:
1845 case MSR_IA32_EBL_CR_POWERON
:
1846 case MSR_IA32_DEBUGCTLMSR
:
1847 case MSR_IA32_LASTBRANCHFROMIP
:
1848 case MSR_IA32_LASTBRANCHTOIP
:
1849 case MSR_IA32_LASTINTFROMIP
:
1850 case MSR_IA32_LASTINTTOIP
:
1853 case MSR_VM_HSAVE_PA
:
1854 case MSR_P6_PERFCTR0
:
1855 case MSR_P6_PERFCTR1
:
1856 case MSR_P6_EVNTSEL0
:
1857 case MSR_P6_EVNTSEL1
:
1858 case MSR_K7_EVNTSEL0
:
1859 case MSR_K7_PERFCTR0
:
1860 case MSR_K8_INT_PENDING_MSG
:
1861 case MSR_AMD64_NB_CFG
:
1862 case MSR_FAM10H_MMIO_CONF_BASE
:
1865 case MSR_IA32_UCODE_REV
:
1866 data
= 0x100000000ULL
;
1869 data
= 0x500 | KVM_NR_VAR_MTRR
;
1871 case 0x200 ... 0x2ff:
1872 return get_msr_mtrr(vcpu
, msr
, pdata
);
1873 case 0xcd: /* fsb frequency */
1877 * MSR_EBC_FREQUENCY_ID
1878 * Conservative value valid for even the basic CPU models.
1879 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1880 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1881 * and 266MHz for model 3, or 4. Set Core Clock
1882 * Frequency to System Bus Frequency Ratio to 1 (bits
1883 * 31:24) even though these are only valid for CPU
1884 * models > 2, however guests may end up dividing or
1885 * multiplying by zero otherwise.
1887 case MSR_EBC_FREQUENCY_ID
:
1890 case MSR_IA32_APICBASE
:
1891 data
= kvm_get_apic_base(vcpu
);
1893 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1894 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
1896 case MSR_IA32_MISC_ENABLE
:
1897 data
= vcpu
->arch
.ia32_misc_enable_msr
;
1899 case MSR_IA32_PERF_STATUS
:
1900 /* TSC increment by tick */
1902 /* CPU multiplier */
1903 data
|= (((uint64_t)4ULL) << 40);
1906 data
= vcpu
->arch
.efer
;
1908 case MSR_KVM_WALL_CLOCK
:
1909 case MSR_KVM_WALL_CLOCK_NEW
:
1910 data
= vcpu
->kvm
->arch
.wall_clock
;
1912 case MSR_KVM_SYSTEM_TIME
:
1913 case MSR_KVM_SYSTEM_TIME_NEW
:
1914 data
= vcpu
->arch
.time
;
1916 case MSR_KVM_ASYNC_PF_EN
:
1917 data
= vcpu
->arch
.apf
.msr_val
;
1919 case MSR_KVM_STEAL_TIME
:
1920 data
= vcpu
->arch
.st
.msr_val
;
1922 case MSR_IA32_P5_MC_ADDR
:
1923 case MSR_IA32_P5_MC_TYPE
:
1924 case MSR_IA32_MCG_CAP
:
1925 case MSR_IA32_MCG_CTL
:
1926 case MSR_IA32_MCG_STATUS
:
1927 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1928 return get_msr_mce(vcpu
, msr
, pdata
);
1929 case MSR_K7_CLK_CTL
:
1931 * Provide expected ramp-up count for K7. All other
1932 * are set to zero, indicating minimum divisors for
1935 * This prevents guest kernels on AMD host with CPU
1936 * type 6, model 8 and higher from exploding due to
1937 * the rdmsr failing.
1941 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
1942 if (kvm_hv_msr_partition_wide(msr
)) {
1944 mutex_lock(&vcpu
->kvm
->lock
);
1945 r
= get_msr_hyperv_pw(vcpu
, msr
, pdata
);
1946 mutex_unlock(&vcpu
->kvm
->lock
);
1949 return get_msr_hyperv(vcpu
, msr
, pdata
);
1951 case MSR_IA32_BBL_CR_CTL3
:
1952 /* This legacy MSR exists but isn't fully documented in current
1953 * silicon. It is however accessed by winxp in very narrow
1954 * scenarios where it sets bit #19, itself documented as
1955 * a "reserved" bit. Best effort attempt to source coherent
1956 * read data here should the balance of the register be
1957 * interpreted by the guest:
1959 * L2 cache control register 3: 64GB range, 256KB size,
1960 * enabled, latency 0x1, configured
1966 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
1969 pr_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
1977 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
1980 * Read or write a bunch of msrs. All parameters are kernel addresses.
1982 * @return number of msrs set successfully.
1984 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
1985 struct kvm_msr_entry
*entries
,
1986 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1987 unsigned index
, u64
*data
))
1991 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
1992 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
1993 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
1995 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2001 * Read or write a bunch of msrs. Parameters are user addresses.
2003 * @return number of msrs set successfully.
2005 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2006 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2007 unsigned index
, u64
*data
),
2010 struct kvm_msrs msrs
;
2011 struct kvm_msr_entry
*entries
;
2016 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2020 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2024 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2025 entries
= kmalloc(size
, GFP_KERNEL
);
2030 if (copy_from_user(entries
, user_msrs
->entries
, size
))
2033 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2038 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2049 int kvm_dev_ioctl_check_extension(long ext
)
2054 case KVM_CAP_IRQCHIP
:
2056 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2057 case KVM_CAP_SET_TSS_ADDR
:
2058 case KVM_CAP_EXT_CPUID
:
2059 case KVM_CAP_CLOCKSOURCE
:
2061 case KVM_CAP_NOP_IO_DELAY
:
2062 case KVM_CAP_MP_STATE
:
2063 case KVM_CAP_SYNC_MMU
:
2064 case KVM_CAP_USER_NMI
:
2065 case KVM_CAP_REINJECT_CONTROL
:
2066 case KVM_CAP_IRQ_INJECT_STATUS
:
2067 case KVM_CAP_ASSIGN_DEV_IRQ
:
2069 case KVM_CAP_IOEVENTFD
:
2071 case KVM_CAP_PIT_STATE2
:
2072 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2073 case KVM_CAP_XEN_HVM
:
2074 case KVM_CAP_ADJUST_CLOCK
:
2075 case KVM_CAP_VCPU_EVENTS
:
2076 case KVM_CAP_HYPERV
:
2077 case KVM_CAP_HYPERV_VAPIC
:
2078 case KVM_CAP_HYPERV_SPIN
:
2079 case KVM_CAP_PCI_SEGMENT
:
2080 case KVM_CAP_DEBUGREGS
:
2081 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2083 case KVM_CAP_ASYNC_PF
:
2084 case KVM_CAP_GET_TSC_KHZ
:
2087 case KVM_CAP_COALESCED_MMIO
:
2088 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2091 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2093 case KVM_CAP_NR_VCPUS
:
2094 r
= KVM_SOFT_MAX_VCPUS
;
2096 case KVM_CAP_MAX_VCPUS
:
2099 case KVM_CAP_NR_MEMSLOTS
:
2100 r
= KVM_MEMORY_SLOTS
;
2102 case KVM_CAP_PV_MMU
: /* obsolete */
2109 r
= KVM_MAX_MCE_BANKS
;
2114 case KVM_CAP_TSC_CONTROL
:
2115 r
= kvm_has_tsc_control
;
2125 long kvm_arch_dev_ioctl(struct file
*filp
,
2126 unsigned int ioctl
, unsigned long arg
)
2128 void __user
*argp
= (void __user
*)arg
;
2132 case KVM_GET_MSR_INDEX_LIST
: {
2133 struct kvm_msr_list __user
*user_msr_list
= argp
;
2134 struct kvm_msr_list msr_list
;
2138 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2141 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
2142 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2145 if (n
< msr_list
.nmsrs
)
2148 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2149 num_msrs_to_save
* sizeof(u32
)))
2151 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2153 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
2158 case KVM_GET_SUPPORTED_CPUID
: {
2159 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2160 struct kvm_cpuid2 cpuid
;
2163 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2165 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
2166 cpuid_arg
->entries
);
2171 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2176 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2179 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
2181 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
2193 static void wbinvd_ipi(void *garbage
)
2198 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2200 return vcpu
->kvm
->arch
.iommu_domain
&&
2201 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
);
2204 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2206 /* Address WBINVD may be executed by guest */
2207 if (need_emulate_wbinvd(vcpu
)) {
2208 if (kvm_x86_ops
->has_wbinvd_exit())
2209 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2210 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2211 smp_call_function_single(vcpu
->cpu
,
2212 wbinvd_ipi
, NULL
, 1);
2215 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2216 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2217 /* Make sure TSC doesn't go backwards */
2221 tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
);
2222 tsc_delta
= !vcpu
->arch
.last_guest_tsc
? 0 :
2223 tsc
- vcpu
->arch
.last_guest_tsc
;
2226 mark_tsc_unstable("KVM discovered backwards TSC");
2227 if (check_tsc_unstable()) {
2228 kvm_x86_ops
->adjust_tsc_offset(vcpu
, -tsc_delta
);
2229 vcpu
->arch
.tsc_catchup
= 1;
2231 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2232 if (vcpu
->cpu
!= cpu
)
2233 kvm_migrate_timers(vcpu
);
2237 accumulate_steal_time(vcpu
);
2238 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2241 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2243 kvm_x86_ops
->vcpu_put(vcpu
);
2244 kvm_put_guest_fpu(vcpu
);
2245 vcpu
->arch
.last_guest_tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
);
2248 static int is_efer_nx(void)
2250 unsigned long long efer
= 0;
2252 rdmsrl_safe(MSR_EFER
, &efer
);
2253 return efer
& EFER_NX
;
2256 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
2259 struct kvm_cpuid_entry2
*e
, *entry
;
2262 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
2263 e
= &vcpu
->arch
.cpuid_entries
[i
];
2264 if (e
->function
== 0x80000001) {
2269 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
2270 entry
->edx
&= ~(1 << 20);
2271 printk(KERN_INFO
"kvm: guest NX capability removed\n");
2275 /* when an old userspace process fills a new kernel module */
2276 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
2277 struct kvm_cpuid
*cpuid
,
2278 struct kvm_cpuid_entry __user
*entries
)
2281 struct kvm_cpuid_entry
*cpuid_entries
;
2284 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2287 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
2291 if (copy_from_user(cpuid_entries
, entries
,
2292 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
2294 for (i
= 0; i
< cpuid
->nent
; i
++) {
2295 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
2296 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
2297 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
2298 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
2299 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
2300 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
2301 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
2302 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
2303 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
2304 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
2306 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
2307 cpuid_fix_nx_cap(vcpu
);
2309 kvm_apic_set_version(vcpu
);
2310 kvm_x86_ops
->cpuid_update(vcpu
);
2314 vfree(cpuid_entries
);
2319 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
2320 struct kvm_cpuid2
*cpuid
,
2321 struct kvm_cpuid_entry2 __user
*entries
)
2326 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2329 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
2330 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
2332 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
2333 kvm_apic_set_version(vcpu
);
2334 kvm_x86_ops
->cpuid_update(vcpu
);
2342 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
2343 struct kvm_cpuid2
*cpuid
,
2344 struct kvm_cpuid_entry2 __user
*entries
)
2349 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
2352 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
2353 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
2358 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
2362 static void cpuid_mask(u32
*word
, int wordnum
)
2364 *word
&= boot_cpu_data
.x86_capability
[wordnum
];
2367 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
2370 entry
->function
= function
;
2371 entry
->index
= index
;
2372 cpuid_count(entry
->function
, entry
->index
,
2373 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
2377 static bool supported_xcr0_bit(unsigned bit
)
2379 u64 mask
= ((u64
)1 << bit
);
2381 return mask
& (XSTATE_FP
| XSTATE_SSE
| XSTATE_YMM
) & host_xcr0
;
2384 #define F(x) bit(X86_FEATURE_##x)
2386 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
2387 u32 index
, int *nent
, int maxnent
)
2389 unsigned f_nx
= is_efer_nx() ? F(NX
) : 0;
2390 #ifdef CONFIG_X86_64
2391 unsigned f_gbpages
= (kvm_x86_ops
->get_lpage_level() == PT_PDPE_LEVEL
)
2393 unsigned f_lm
= F(LM
);
2395 unsigned f_gbpages
= 0;
2398 unsigned f_rdtscp
= kvm_x86_ops
->rdtscp_supported() ? F(RDTSCP
) : 0;
2401 const u32 kvm_supported_word0_x86_features
=
2402 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
2403 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
2404 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SEP
) |
2405 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
2406 F(PAT
) | F(PSE36
) | 0 /* PSN */ | F(CLFLSH
) |
2407 0 /* Reserved, DS, ACPI */ | F(MMX
) |
2408 F(FXSR
) | F(XMM
) | F(XMM2
) | F(SELFSNOOP
) |
2409 0 /* HTT, TM, Reserved, PBE */;
2410 /* cpuid 0x80000001.edx */
2411 const u32 kvm_supported_word1_x86_features
=
2412 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
2413 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
2414 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SYSCALL
) |
2415 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
2416 F(PAT
) | F(PSE36
) | 0 /* Reserved */ |
2417 f_nx
| 0 /* Reserved */ | F(MMXEXT
) | F(MMX
) |
2418 F(FXSR
) | F(FXSR_OPT
) | f_gbpages
| f_rdtscp
|
2419 0 /* Reserved */ | f_lm
| F(3DNOWEXT
) | F(3DNOW
);
2421 const u32 kvm_supported_word4_x86_features
=
2422 F(XMM3
) | F(PCLMULQDQ
) | 0 /* DTES64, MONITOR */ |
2423 0 /* DS-CPL, VMX, SMX, EST */ |
2424 0 /* TM2 */ | F(SSSE3
) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2425 0 /* Reserved */ | F(CX16
) | 0 /* xTPR Update, PDCM */ |
2426 0 /* Reserved, DCA */ | F(XMM4_1
) |
2427 F(XMM4_2
) | F(X2APIC
) | F(MOVBE
) | F(POPCNT
) |
2428 0 /* Reserved*/ | F(AES
) | F(XSAVE
) | 0 /* OSXSAVE */ | F(AVX
) |
2429 F(F16C
) | F(RDRAND
);
2430 /* cpuid 0x80000001.ecx */
2431 const u32 kvm_supported_word6_x86_features
=
2432 F(LAHF_LM
) | F(CMP_LEGACY
) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2433 F(CR8_LEGACY
) | F(ABM
) | F(SSE4A
) | F(MISALIGNSSE
) |
2434 F(3DNOWPREFETCH
) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP
) |
2435 0 /* SKINIT, WDT, LWP */ | F(FMA4
) | F(TBM
);
2437 /* cpuid 0xC0000001.edx */
2438 const u32 kvm_supported_word5_x86_features
=
2439 F(XSTORE
) | F(XSTORE_EN
) | F(XCRYPT
) | F(XCRYPT_EN
) |
2440 F(ACE2
) | F(ACE2_EN
) | F(PHE
) | F(PHE_EN
) |
2444 const u32 kvm_supported_word9_x86_features
=
2445 F(SMEP
) | F(FSGSBASE
) | F(ERMS
);
2447 /* all calls to cpuid_count() should be made on the same cpu */
2449 do_cpuid_1_ent(entry
, function
, index
);
2454 entry
->eax
= min(entry
->eax
, (u32
)0xd);
2457 entry
->edx
&= kvm_supported_word0_x86_features
;
2458 cpuid_mask(&entry
->edx
, 0);
2459 entry
->ecx
&= kvm_supported_word4_x86_features
;
2460 cpuid_mask(&entry
->ecx
, 4);
2461 /* we support x2apic emulation even if host does not support
2462 * it since we emulate x2apic in software */
2463 entry
->ecx
|= F(X2APIC
);
2465 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2466 * may return different values. This forces us to get_cpu() before
2467 * issuing the first command, and also to emulate this annoying behavior
2468 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2470 int t
, times
= entry
->eax
& 0xff;
2472 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
2473 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
2474 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
2475 do_cpuid_1_ent(&entry
[t
], function
, 0);
2476 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
2481 /* function 4 has additional index. */
2485 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2486 /* read more entries until cache_type is zero */
2487 for (i
= 1; *nent
< maxnent
; ++i
) {
2488 cache_type
= entry
[i
- 1].eax
& 0x1f;
2491 do_cpuid_1_ent(&entry
[i
], function
, i
);
2493 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2499 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2500 /* Mask ebx against host capbability word 9 */
2502 entry
->ebx
&= kvm_supported_word9_x86_features
;
2503 cpuid_mask(&entry
->ebx
, 9);
2513 /* function 0xb has additional index. */
2517 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2518 /* read more entries until level_type is zero */
2519 for (i
= 1; *nent
< maxnent
; ++i
) {
2520 level_type
= entry
[i
- 1].ecx
& 0xff00;
2523 do_cpuid_1_ent(&entry
[i
], function
, i
);
2525 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2533 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2534 for (idx
= 1, i
= 1; *nent
< maxnent
&& idx
< 64; ++idx
) {
2535 do_cpuid_1_ent(&entry
[i
], function
, idx
);
2536 if (entry
[i
].eax
== 0 || !supported_xcr0_bit(idx
))
2539 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2545 case KVM_CPUID_SIGNATURE
: {
2546 char signature
[12] = "KVMKVMKVM\0\0";
2547 u32
*sigptr
= (u32
*)signature
;
2549 entry
->ebx
= sigptr
[0];
2550 entry
->ecx
= sigptr
[1];
2551 entry
->edx
= sigptr
[2];
2554 case KVM_CPUID_FEATURES
:
2555 entry
->eax
= (1 << KVM_FEATURE_CLOCKSOURCE
) |
2556 (1 << KVM_FEATURE_NOP_IO_DELAY
) |
2557 (1 << KVM_FEATURE_CLOCKSOURCE2
) |
2558 (1 << KVM_FEATURE_ASYNC_PF
) |
2559 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT
);
2561 if (sched_info_on())
2562 entry
->eax
|= (1 << KVM_FEATURE_STEAL_TIME
);
2569 entry
->eax
= min(entry
->eax
, 0x8000001a);
2572 entry
->edx
&= kvm_supported_word1_x86_features
;
2573 cpuid_mask(&entry
->edx
, 1);
2574 entry
->ecx
&= kvm_supported_word6_x86_features
;
2575 cpuid_mask(&entry
->ecx
, 6);
2578 unsigned g_phys_as
= (entry
->eax
>> 16) & 0xff;
2579 unsigned virt_as
= max((entry
->eax
>> 8) & 0xff, 48U);
2580 unsigned phys_as
= entry
->eax
& 0xff;
2583 g_phys_as
= phys_as
;
2584 entry
->eax
= g_phys_as
| (virt_as
<< 8);
2585 entry
->ebx
= entry
->edx
= 0;
2589 entry
->ecx
= entry
->edx
= 0;
2595 /*Add support for Centaur's CPUID instruction*/
2597 /*Just support up to 0xC0000004 now*/
2598 entry
->eax
= min(entry
->eax
, 0xC0000004);
2601 entry
->edx
&= kvm_supported_word5_x86_features
;
2602 cpuid_mask(&entry
->edx
, 5);
2604 case 3: /* Processor serial number */
2605 case 5: /* MONITOR/MWAIT */
2606 case 6: /* Thermal management */
2607 case 0xA: /* Architectural Performance Monitoring */
2608 case 0x80000007: /* Advanced power management */
2613 entry
->eax
= entry
->ebx
= entry
->ecx
= entry
->edx
= 0;
2617 kvm_x86_ops
->set_supported_cpuid(function
, entry
);
2624 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
2625 struct kvm_cpuid_entry2 __user
*entries
)
2627 struct kvm_cpuid_entry2
*cpuid_entries
;
2628 int limit
, nent
= 0, r
= -E2BIG
;
2631 if (cpuid
->nent
< 1)
2633 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2634 cpuid
->nent
= KVM_MAX_CPUID_ENTRIES
;
2636 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
2640 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
2641 limit
= cpuid_entries
[0].eax
;
2642 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
2643 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
2644 &nent
, cpuid
->nent
);
2646 if (nent
>= cpuid
->nent
)
2649 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
2650 limit
= cpuid_entries
[nent
- 1].eax
;
2651 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
2652 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
2653 &nent
, cpuid
->nent
);
2658 if (nent
>= cpuid
->nent
)
2661 /* Add support for Centaur's CPUID instruction. */
2662 if (boot_cpu_data
.x86_vendor
== X86_VENDOR_CENTAUR
) {
2663 do_cpuid_ent(&cpuid_entries
[nent
], 0xC0000000, 0,
2664 &nent
, cpuid
->nent
);
2667 if (nent
>= cpuid
->nent
)
2670 limit
= cpuid_entries
[nent
- 1].eax
;
2671 for (func
= 0xC0000001;
2672 func
<= limit
&& nent
< cpuid
->nent
; ++func
)
2673 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
2674 &nent
, cpuid
->nent
);
2677 if (nent
>= cpuid
->nent
)
2681 do_cpuid_ent(&cpuid_entries
[nent
], KVM_CPUID_SIGNATURE
, 0, &nent
,
2685 if (nent
>= cpuid
->nent
)
2688 do_cpuid_ent(&cpuid_entries
[nent
], KVM_CPUID_FEATURES
, 0, &nent
,
2692 if (nent
>= cpuid
->nent
)
2696 if (copy_to_user(entries
, cpuid_entries
,
2697 nent
* sizeof(struct kvm_cpuid_entry2
)))
2703 vfree(cpuid_entries
);
2708 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2709 struct kvm_lapic_state
*s
)
2711 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
2716 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2717 struct kvm_lapic_state
*s
)
2719 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
2720 kvm_apic_post_state_restore(vcpu
);
2721 update_cr8_intercept(vcpu
);
2726 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2727 struct kvm_interrupt
*irq
)
2729 if (irq
->irq
< 0 || irq
->irq
>= 256)
2731 if (irqchip_in_kernel(vcpu
->kvm
))
2734 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2735 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2740 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2742 kvm_inject_nmi(vcpu
);
2747 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2748 struct kvm_tpr_access_ctl
*tac
)
2752 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2756 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2760 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2763 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2765 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
2768 vcpu
->arch
.mcg_cap
= mcg_cap
;
2769 /* Init IA32_MCG_CTL to all 1s */
2770 if (mcg_cap
& MCG_CTL_P
)
2771 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2772 /* Init IA32_MCi_CTL to all 1s */
2773 for (bank
= 0; bank
< bank_num
; bank
++)
2774 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2779 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2780 struct kvm_x86_mce
*mce
)
2782 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2783 unsigned bank_num
= mcg_cap
& 0xff;
2784 u64
*banks
= vcpu
->arch
.mce_banks
;
2786 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2789 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2790 * reporting is disabled
2792 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
2793 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
2795 banks
+= 4 * mce
->bank
;
2797 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2798 * reporting is disabled for the bank
2800 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
2802 if (mce
->status
& MCI_STATUS_UC
) {
2803 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
2804 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
2805 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2808 if (banks
[1] & MCI_STATUS_VAL
)
2809 mce
->status
|= MCI_STATUS_OVER
;
2810 banks
[2] = mce
->addr
;
2811 banks
[3] = mce
->misc
;
2812 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
2813 banks
[1] = mce
->status
;
2814 kvm_queue_exception(vcpu
, MC_VECTOR
);
2815 } else if (!(banks
[1] & MCI_STATUS_VAL
)
2816 || !(banks
[1] & MCI_STATUS_UC
)) {
2817 if (banks
[1] & MCI_STATUS_VAL
)
2818 mce
->status
|= MCI_STATUS_OVER
;
2819 banks
[2] = mce
->addr
;
2820 banks
[3] = mce
->misc
;
2821 banks
[1] = mce
->status
;
2823 banks
[1] |= MCI_STATUS_OVER
;
2827 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
2828 struct kvm_vcpu_events
*events
)
2830 events
->exception
.injected
=
2831 vcpu
->arch
.exception
.pending
&&
2832 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
2833 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
2834 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2835 events
->exception
.pad
= 0;
2836 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
2838 events
->interrupt
.injected
=
2839 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
2840 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
2841 events
->interrupt
.soft
= 0;
2842 events
->interrupt
.shadow
=
2843 kvm_x86_ops
->get_interrupt_shadow(vcpu
,
2844 KVM_X86_SHADOW_INT_MOV_SS
| KVM_X86_SHADOW_INT_STI
);
2846 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
2847 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
;
2848 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
2849 events
->nmi
.pad
= 0;
2851 events
->sipi_vector
= vcpu
->arch
.sipi_vector
;
2853 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
2854 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2855 | KVM_VCPUEVENT_VALID_SHADOW
);
2856 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
2859 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
2860 struct kvm_vcpu_events
*events
)
2862 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2863 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2864 | KVM_VCPUEVENT_VALID_SHADOW
))
2867 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
2868 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
2869 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
2870 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
2872 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
2873 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
2874 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
2875 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
2876 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
2877 events
->interrupt
.shadow
);
2879 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
2880 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
2881 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
2882 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
2884 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
)
2885 vcpu
->arch
.sipi_vector
= events
->sipi_vector
;
2887 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2892 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
2893 struct kvm_debugregs
*dbgregs
)
2895 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
2896 dbgregs
->dr6
= vcpu
->arch
.dr6
;
2897 dbgregs
->dr7
= vcpu
->arch
.dr7
;
2899 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
2902 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
2903 struct kvm_debugregs
*dbgregs
)
2908 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
2909 vcpu
->arch
.dr6
= dbgregs
->dr6
;
2910 vcpu
->arch
.dr7
= dbgregs
->dr7
;
2915 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
2916 struct kvm_xsave
*guest_xsave
)
2919 memcpy(guest_xsave
->region
,
2920 &vcpu
->arch
.guest_fpu
.state
->xsave
,
2923 memcpy(guest_xsave
->region
,
2924 &vcpu
->arch
.guest_fpu
.state
->fxsave
,
2925 sizeof(struct i387_fxsave_struct
));
2926 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
2931 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
2932 struct kvm_xsave
*guest_xsave
)
2935 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
2938 memcpy(&vcpu
->arch
.guest_fpu
.state
->xsave
,
2939 guest_xsave
->region
, xstate_size
);
2941 if (xstate_bv
& ~XSTATE_FPSSE
)
2943 memcpy(&vcpu
->arch
.guest_fpu
.state
->fxsave
,
2944 guest_xsave
->region
, sizeof(struct i387_fxsave_struct
));
2949 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
2950 struct kvm_xcrs
*guest_xcrs
)
2952 if (!cpu_has_xsave
) {
2953 guest_xcrs
->nr_xcrs
= 0;
2957 guest_xcrs
->nr_xcrs
= 1;
2958 guest_xcrs
->flags
= 0;
2959 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
2960 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
2963 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
2964 struct kvm_xcrs
*guest_xcrs
)
2971 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
2974 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
2975 /* Only support XCR0 currently */
2976 if (guest_xcrs
->xcrs
[0].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
2977 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
2978 guest_xcrs
->xcrs
[0].value
);
2986 long kvm_arch_vcpu_ioctl(struct file
*filp
,
2987 unsigned int ioctl
, unsigned long arg
)
2989 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2990 void __user
*argp
= (void __user
*)arg
;
2993 struct kvm_lapic_state
*lapic
;
2994 struct kvm_xsave
*xsave
;
2995 struct kvm_xcrs
*xcrs
;
3001 case KVM_GET_LAPIC
: {
3003 if (!vcpu
->arch
.apic
)
3005 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3010 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3014 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3019 case KVM_SET_LAPIC
: {
3021 if (!vcpu
->arch
.apic
)
3023 u
.lapic
= kmalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3028 if (copy_from_user(u
.lapic
, argp
, sizeof(struct kvm_lapic_state
)))
3030 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3036 case KVM_INTERRUPT
: {
3037 struct kvm_interrupt irq
;
3040 if (copy_from_user(&irq
, argp
, sizeof irq
))
3042 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3049 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3055 case KVM_SET_CPUID
: {
3056 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3057 struct kvm_cpuid cpuid
;
3060 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3062 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3067 case KVM_SET_CPUID2
: {
3068 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3069 struct kvm_cpuid2 cpuid
;
3072 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3074 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3075 cpuid_arg
->entries
);
3080 case KVM_GET_CPUID2
: {
3081 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3082 struct kvm_cpuid2 cpuid
;
3085 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3087 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3088 cpuid_arg
->entries
);
3092 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3098 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
3101 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3103 case KVM_TPR_ACCESS_REPORTING
: {
3104 struct kvm_tpr_access_ctl tac
;
3107 if (copy_from_user(&tac
, argp
, sizeof tac
))
3109 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3113 if (copy_to_user(argp
, &tac
, sizeof tac
))
3118 case KVM_SET_VAPIC_ADDR
: {
3119 struct kvm_vapic_addr va
;
3122 if (!irqchip_in_kernel(vcpu
->kvm
))
3125 if (copy_from_user(&va
, argp
, sizeof va
))
3128 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3131 case KVM_X86_SETUP_MCE
: {
3135 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3137 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3140 case KVM_X86_SET_MCE
: {
3141 struct kvm_x86_mce mce
;
3144 if (copy_from_user(&mce
, argp
, sizeof mce
))
3146 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3149 case KVM_GET_VCPU_EVENTS
: {
3150 struct kvm_vcpu_events events
;
3152 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3155 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3160 case KVM_SET_VCPU_EVENTS
: {
3161 struct kvm_vcpu_events events
;
3164 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3167 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3170 case KVM_GET_DEBUGREGS
: {
3171 struct kvm_debugregs dbgregs
;
3173 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3176 if (copy_to_user(argp
, &dbgregs
,
3177 sizeof(struct kvm_debugregs
)))
3182 case KVM_SET_DEBUGREGS
: {
3183 struct kvm_debugregs dbgregs
;
3186 if (copy_from_user(&dbgregs
, argp
,
3187 sizeof(struct kvm_debugregs
)))
3190 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3193 case KVM_GET_XSAVE
: {
3194 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3199 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3202 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3207 case KVM_SET_XSAVE
: {
3208 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3214 if (copy_from_user(u
.xsave
, argp
, sizeof(struct kvm_xsave
)))
3217 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3220 case KVM_GET_XCRS
: {
3221 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3226 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3229 if (copy_to_user(argp
, u
.xcrs
,
3230 sizeof(struct kvm_xcrs
)))
3235 case KVM_SET_XCRS
: {
3236 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3242 if (copy_from_user(u
.xcrs
, argp
,
3243 sizeof(struct kvm_xcrs
)))
3246 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3249 case KVM_SET_TSC_KHZ
: {
3253 if (!kvm_has_tsc_control
)
3256 user_tsc_khz
= (u32
)arg
;
3258 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3261 kvm_x86_ops
->set_tsc_khz(vcpu
, user_tsc_khz
);
3266 case KVM_GET_TSC_KHZ
: {
3268 if (check_tsc_unstable())
3271 r
= vcpu_tsc_khz(vcpu
);
3283 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3287 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3289 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3293 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3296 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3300 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3301 u32 kvm_nr_mmu_pages
)
3303 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3306 mutex_lock(&kvm
->slots_lock
);
3307 spin_lock(&kvm
->mmu_lock
);
3309 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3310 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3312 spin_unlock(&kvm
->mmu_lock
);
3313 mutex_unlock(&kvm
->slots_lock
);
3317 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3319 return kvm
->arch
.n_max_mmu_pages
;
3322 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3327 switch (chip
->chip_id
) {
3328 case KVM_IRQCHIP_PIC_MASTER
:
3329 memcpy(&chip
->chip
.pic
,
3330 &pic_irqchip(kvm
)->pics
[0],
3331 sizeof(struct kvm_pic_state
));
3333 case KVM_IRQCHIP_PIC_SLAVE
:
3334 memcpy(&chip
->chip
.pic
,
3335 &pic_irqchip(kvm
)->pics
[1],
3336 sizeof(struct kvm_pic_state
));
3338 case KVM_IRQCHIP_IOAPIC
:
3339 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3348 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3353 switch (chip
->chip_id
) {
3354 case KVM_IRQCHIP_PIC_MASTER
:
3355 spin_lock(&pic_irqchip(kvm
)->lock
);
3356 memcpy(&pic_irqchip(kvm
)->pics
[0],
3358 sizeof(struct kvm_pic_state
));
3359 spin_unlock(&pic_irqchip(kvm
)->lock
);
3361 case KVM_IRQCHIP_PIC_SLAVE
:
3362 spin_lock(&pic_irqchip(kvm
)->lock
);
3363 memcpy(&pic_irqchip(kvm
)->pics
[1],
3365 sizeof(struct kvm_pic_state
));
3366 spin_unlock(&pic_irqchip(kvm
)->lock
);
3368 case KVM_IRQCHIP_IOAPIC
:
3369 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3375 kvm_pic_update_irq(pic_irqchip(kvm
));
3379 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3383 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3384 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
3385 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3389 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3393 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3394 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
3395 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
, 0);
3396 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3400 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3404 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3405 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3406 sizeof(ps
->channels
));
3407 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3408 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3409 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3413 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3415 int r
= 0, start
= 0;
3416 u32 prev_legacy
, cur_legacy
;
3417 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3418 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3419 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3420 if (!prev_legacy
&& cur_legacy
)
3422 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
3423 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
3424 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
3425 kvm_pit_load_count(kvm
, 0, kvm
->arch
.vpit
->pit_state
.channels
[0].count
, start
);
3426 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3430 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3431 struct kvm_reinject_control
*control
)
3433 if (!kvm
->arch
.vpit
)
3435 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3436 kvm
->arch
.vpit
->pit_state
.pit_timer
.reinject
= control
->pit_reinject
;
3437 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3442 * Get (and clear) the dirty memory log for a memory slot.
3444 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
3445 struct kvm_dirty_log
*log
)
3448 struct kvm_memory_slot
*memslot
;
3450 unsigned long is_dirty
= 0;
3452 mutex_lock(&kvm
->slots_lock
);
3455 if (log
->slot
>= KVM_MEMORY_SLOTS
)
3458 memslot
= &kvm
->memslots
->memslots
[log
->slot
];
3460 if (!memslot
->dirty_bitmap
)
3463 n
= kvm_dirty_bitmap_bytes(memslot
);
3465 for (i
= 0; !is_dirty
&& i
< n
/sizeof(long); i
++)
3466 is_dirty
= memslot
->dirty_bitmap
[i
];
3468 /* If nothing is dirty, don't bother messing with page tables. */
3470 struct kvm_memslots
*slots
, *old_slots
;
3471 unsigned long *dirty_bitmap
;
3473 dirty_bitmap
= memslot
->dirty_bitmap_head
;
3474 if (memslot
->dirty_bitmap
== dirty_bitmap
)
3475 dirty_bitmap
+= n
/ sizeof(long);
3476 memset(dirty_bitmap
, 0, n
);
3479 slots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
3482 memcpy(slots
, kvm
->memslots
, sizeof(struct kvm_memslots
));
3483 slots
->memslots
[log
->slot
].dirty_bitmap
= dirty_bitmap
;
3484 slots
->generation
++;
3486 old_slots
= kvm
->memslots
;
3487 rcu_assign_pointer(kvm
->memslots
, slots
);
3488 synchronize_srcu_expedited(&kvm
->srcu
);
3489 dirty_bitmap
= old_slots
->memslots
[log
->slot
].dirty_bitmap
;
3492 spin_lock(&kvm
->mmu_lock
);
3493 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
3494 spin_unlock(&kvm
->mmu_lock
);
3497 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap
, n
))
3501 if (clear_user(log
->dirty_bitmap
, n
))
3507 mutex_unlock(&kvm
->slots_lock
);
3511 long kvm_arch_vm_ioctl(struct file
*filp
,
3512 unsigned int ioctl
, unsigned long arg
)
3514 struct kvm
*kvm
= filp
->private_data
;
3515 void __user
*argp
= (void __user
*)arg
;
3518 * This union makes it completely explicit to gcc-3.x
3519 * that these two variables' stack usage should be
3520 * combined, not added together.
3523 struct kvm_pit_state ps
;
3524 struct kvm_pit_state2 ps2
;
3525 struct kvm_pit_config pit_config
;
3529 case KVM_SET_TSS_ADDR
:
3530 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3534 case KVM_SET_IDENTITY_MAP_ADDR
: {
3538 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3540 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3545 case KVM_SET_NR_MMU_PAGES
:
3546 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3550 case KVM_GET_NR_MMU_PAGES
:
3551 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3553 case KVM_CREATE_IRQCHIP
: {
3554 struct kvm_pic
*vpic
;
3556 mutex_lock(&kvm
->lock
);
3559 goto create_irqchip_unlock
;
3561 vpic
= kvm_create_pic(kvm
);
3563 r
= kvm_ioapic_init(kvm
);
3565 mutex_lock(&kvm
->slots_lock
);
3566 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3568 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3570 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3572 mutex_unlock(&kvm
->slots_lock
);
3574 goto create_irqchip_unlock
;
3577 goto create_irqchip_unlock
;
3579 kvm
->arch
.vpic
= vpic
;
3581 r
= kvm_setup_default_irq_routing(kvm
);
3583 mutex_lock(&kvm
->slots_lock
);
3584 mutex_lock(&kvm
->irq_lock
);
3585 kvm_ioapic_destroy(kvm
);
3586 kvm_destroy_pic(kvm
);
3587 mutex_unlock(&kvm
->irq_lock
);
3588 mutex_unlock(&kvm
->slots_lock
);
3590 create_irqchip_unlock
:
3591 mutex_unlock(&kvm
->lock
);
3594 case KVM_CREATE_PIT
:
3595 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3597 case KVM_CREATE_PIT2
:
3599 if (copy_from_user(&u
.pit_config
, argp
,
3600 sizeof(struct kvm_pit_config
)))
3603 mutex_lock(&kvm
->slots_lock
);
3606 goto create_pit_unlock
;
3608 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3612 mutex_unlock(&kvm
->slots_lock
);
3614 case KVM_IRQ_LINE_STATUS
:
3615 case KVM_IRQ_LINE
: {
3616 struct kvm_irq_level irq_event
;
3619 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
3622 if (irqchip_in_kernel(kvm
)) {
3624 status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3625 irq_event
.irq
, irq_event
.level
);
3626 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
3628 irq_event
.status
= status
;
3629 if (copy_to_user(argp
, &irq_event
,
3637 case KVM_GET_IRQCHIP
: {
3638 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3639 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
3645 if (copy_from_user(chip
, argp
, sizeof *chip
))
3646 goto get_irqchip_out
;
3648 if (!irqchip_in_kernel(kvm
))
3649 goto get_irqchip_out
;
3650 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3652 goto get_irqchip_out
;
3654 if (copy_to_user(argp
, chip
, sizeof *chip
))
3655 goto get_irqchip_out
;
3663 case KVM_SET_IRQCHIP
: {
3664 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3665 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
3671 if (copy_from_user(chip
, argp
, sizeof *chip
))
3672 goto set_irqchip_out
;
3674 if (!irqchip_in_kernel(kvm
))
3675 goto set_irqchip_out
;
3676 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3678 goto set_irqchip_out
;
3688 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3691 if (!kvm
->arch
.vpit
)
3693 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
3697 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
3704 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
3707 if (!kvm
->arch
.vpit
)
3709 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
3715 case KVM_GET_PIT2
: {
3717 if (!kvm
->arch
.vpit
)
3719 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
3723 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
3728 case KVM_SET_PIT2
: {
3730 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
3733 if (!kvm
->arch
.vpit
)
3735 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
3741 case KVM_REINJECT_CONTROL
: {
3742 struct kvm_reinject_control control
;
3744 if (copy_from_user(&control
, argp
, sizeof(control
)))
3746 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
3752 case KVM_XEN_HVM_CONFIG
: {
3754 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
3755 sizeof(struct kvm_xen_hvm_config
)))
3758 if (kvm
->arch
.xen_hvm_config
.flags
)
3763 case KVM_SET_CLOCK
: {
3764 struct kvm_clock_data user_ns
;
3769 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
3777 local_irq_disable();
3778 now_ns
= get_kernel_ns();
3779 delta
= user_ns
.clock
- now_ns
;
3781 kvm
->arch
.kvmclock_offset
= delta
;
3784 case KVM_GET_CLOCK
: {
3785 struct kvm_clock_data user_ns
;
3788 local_irq_disable();
3789 now_ns
= get_kernel_ns();
3790 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
3793 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
3796 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
3809 static void kvm_init_msr_list(void)
3814 /* skip the first msrs in the list. KVM-specific */
3815 for (i
= j
= KVM_SAVE_MSRS_BEGIN
; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
3816 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
3819 msrs_to_save
[j
] = msrs_to_save
[i
];
3822 num_msrs_to_save
= j
;
3825 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
3833 if (!(vcpu
->arch
.apic
&&
3834 !kvm_iodevice_write(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3835 && kvm_io_bus_write(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3846 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
3853 if (!(vcpu
->arch
.apic
&&
3854 !kvm_iodevice_read(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3855 && kvm_io_bus_read(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3857 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
3867 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3868 struct kvm_segment
*var
, int seg
)
3870 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3873 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3874 struct kvm_segment
*var
, int seg
)
3876 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3879 static gpa_t
translate_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
)
3884 static gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
)
3887 struct x86_exception exception
;
3889 BUG_ON(!mmu_is_nested(vcpu
));
3891 /* NPT walks are always user-walks */
3892 access
|= PFERR_USER_MASK
;
3893 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, &exception
);
3898 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
3899 struct x86_exception
*exception
)
3901 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3902 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3905 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
3906 struct x86_exception
*exception
)
3908 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3909 access
|= PFERR_FETCH_MASK
;
3910 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3913 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
3914 struct x86_exception
*exception
)
3916 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3917 access
|= PFERR_WRITE_MASK
;
3918 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3921 /* uses this to access any guest's mapped memory without checking CPL */
3922 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
3923 struct x86_exception
*exception
)
3925 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
3928 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
3929 struct kvm_vcpu
*vcpu
, u32 access
,
3930 struct x86_exception
*exception
)
3933 int r
= X86EMUL_CONTINUE
;
3936 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
3938 unsigned offset
= addr
& (PAGE_SIZE
-1);
3939 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3942 if (gpa
== UNMAPPED_GVA
)
3943 return X86EMUL_PROPAGATE_FAULT
;
3944 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
3946 r
= X86EMUL_IO_NEEDED
;
3958 /* used for instruction fetching */
3959 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
3960 gva_t addr
, void *val
, unsigned int bytes
,
3961 struct x86_exception
*exception
)
3963 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3964 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3966 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
,
3967 access
| PFERR_FETCH_MASK
,
3971 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
3972 gva_t addr
, void *val
, unsigned int bytes
,
3973 struct x86_exception
*exception
)
3975 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3976 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3978 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
3981 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
3983 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
3984 gva_t addr
, void *val
, unsigned int bytes
,
3985 struct x86_exception
*exception
)
3987 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3988 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
3991 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
3992 gva_t addr
, void *val
,
3994 struct x86_exception
*exception
)
3996 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3998 int r
= X86EMUL_CONTINUE
;
4001 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
4004 unsigned offset
= addr
& (PAGE_SIZE
-1);
4005 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4008 if (gpa
== UNMAPPED_GVA
)
4009 return X86EMUL_PROPAGATE_FAULT
;
4010 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
4012 r
= X86EMUL_IO_NEEDED
;
4023 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
4025 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4026 gpa_t
*gpa
, struct x86_exception
*exception
,
4029 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4031 if (vcpu_match_mmio_gva(vcpu
, gva
) &&
4032 check_write_user_access(vcpu
, write
, access
,
4033 vcpu
->arch
.access
)) {
4034 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
4035 (gva
& (PAGE_SIZE
- 1));
4036 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
4041 access
|= PFERR_WRITE_MASK
;
4043 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4045 if (*gpa
== UNMAPPED_GVA
)
4048 /* For APIC access vmexit */
4049 if ((*gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4052 if (vcpu_match_mmio_gpa(vcpu
, *gpa
)) {
4053 trace_vcpu_match_mmio(gva
, *gpa
, write
, true);
4060 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4061 const void *val
, int bytes
)
4065 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
4068 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
, 1);
4072 struct read_write_emulator_ops
{
4073 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
4075 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4076 void *val
, int bytes
);
4077 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4078 int bytes
, void *val
);
4079 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4080 void *val
, int bytes
);
4084 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
4086 if (vcpu
->mmio_read_completed
) {
4087 memcpy(val
, vcpu
->mmio_data
, bytes
);
4088 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
4089 vcpu
->mmio_phys_addr
, *(u64
*)val
);
4090 vcpu
->mmio_read_completed
= 0;
4097 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4098 void *val
, int bytes
)
4100 return !kvm_read_guest(vcpu
->kvm
, gpa
, val
, bytes
);
4103 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4104 void *val
, int bytes
)
4106 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
4109 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
4111 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
4112 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
4115 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4116 void *val
, int bytes
)
4118 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
4119 return X86EMUL_IO_NEEDED
;
4122 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4123 void *val
, int bytes
)
4125 memcpy(vcpu
->mmio_data
, val
, bytes
);
4126 memcpy(vcpu
->run
->mmio
.data
, vcpu
->mmio_data
, 8);
4127 return X86EMUL_CONTINUE
;
4130 static struct read_write_emulator_ops read_emultor
= {
4131 .read_write_prepare
= read_prepare
,
4132 .read_write_emulate
= read_emulate
,
4133 .read_write_mmio
= vcpu_mmio_read
,
4134 .read_write_exit_mmio
= read_exit_mmio
,
4137 static struct read_write_emulator_ops write_emultor
= {
4138 .read_write_emulate
= write_emulate
,
4139 .read_write_mmio
= write_mmio
,
4140 .read_write_exit_mmio
= write_exit_mmio
,
4144 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
4146 struct x86_exception
*exception
,
4147 struct kvm_vcpu
*vcpu
,
4148 struct read_write_emulator_ops
*ops
)
4152 bool write
= ops
->write
;
4154 if (ops
->read_write_prepare
&&
4155 ops
->read_write_prepare(vcpu
, val
, bytes
))
4156 return X86EMUL_CONTINUE
;
4158 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
4161 return X86EMUL_PROPAGATE_FAULT
;
4163 /* For APIC access vmexit */
4167 if (ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
4168 return X86EMUL_CONTINUE
;
4172 * Is this MMIO handled locally?
4174 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
4175 if (handled
== bytes
)
4176 return X86EMUL_CONTINUE
;
4182 vcpu
->mmio_needed
= 1;
4183 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4184 vcpu
->run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
= gpa
;
4185 vcpu
->mmio_size
= bytes
;
4186 vcpu
->run
->mmio
.len
= min(vcpu
->mmio_size
, 8);
4187 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= write
;
4188 vcpu
->mmio_index
= 0;
4190 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
4193 int emulator_read_write(struct x86_emulate_ctxt
*ctxt
, unsigned long addr
,
4194 void *val
, unsigned int bytes
,
4195 struct x86_exception
*exception
,
4196 struct read_write_emulator_ops
*ops
)
4198 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4200 /* Crossing a page boundary? */
4201 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
4204 now
= -addr
& ~PAGE_MASK
;
4205 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
4208 if (rc
!= X86EMUL_CONTINUE
)
4215 return emulator_read_write_onepage(addr
, val
, bytes
, exception
,
4219 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
4223 struct x86_exception
*exception
)
4225 return emulator_read_write(ctxt
, addr
, val
, bytes
,
4226 exception
, &read_emultor
);
4229 int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
4233 struct x86_exception
*exception
)
4235 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
4236 exception
, &write_emultor
);
4239 #define CMPXCHG_TYPE(t, ptr, old, new) \
4240 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4242 #ifdef CONFIG_X86_64
4243 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4245 # define CMPXCHG64(ptr, old, new) \
4246 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4249 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
4254 struct x86_exception
*exception
)
4256 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4262 /* guests cmpxchg8b have to be emulated atomically */
4263 if (bytes
> 8 || (bytes
& (bytes
- 1)))
4266 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
4268 if (gpa
== UNMAPPED_GVA
||
4269 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4272 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
4275 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4276 if (is_error_page(page
)) {
4277 kvm_release_page_clean(page
);
4281 kaddr
= kmap_atomic(page
, KM_USER0
);
4282 kaddr
+= offset_in_page(gpa
);
4285 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
4288 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
4291 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
4294 exchanged
= CMPXCHG64(kaddr
, old
, new);
4299 kunmap_atomic(kaddr
, KM_USER0
);
4300 kvm_release_page_dirty(page
);
4303 return X86EMUL_CMPXCHG_FAILED
;
4305 kvm_mmu_pte_write(vcpu
, gpa
, new, bytes
, 1);
4307 return X86EMUL_CONTINUE
;
4310 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
4312 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
4315 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
4317 /* TODO: String I/O for in kernel device */
4320 if (vcpu
->arch
.pio
.in
)
4321 r
= kvm_io_bus_read(vcpu
->kvm
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
4322 vcpu
->arch
.pio
.size
, pd
);
4324 r
= kvm_io_bus_write(vcpu
->kvm
, KVM_PIO_BUS
,
4325 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
4331 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
4332 int size
, unsigned short port
, void *val
,
4335 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4337 if (vcpu
->arch
.pio
.count
)
4340 trace_kvm_pio(0, port
, size
, count
);
4342 vcpu
->arch
.pio
.port
= port
;
4343 vcpu
->arch
.pio
.in
= 1;
4344 vcpu
->arch
.pio
.count
= count
;
4345 vcpu
->arch
.pio
.size
= size
;
4347 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4349 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
4350 vcpu
->arch
.pio
.count
= 0;
4354 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4355 vcpu
->run
->io
.direction
= KVM_EXIT_IO_IN
;
4356 vcpu
->run
->io
.size
= size
;
4357 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4358 vcpu
->run
->io
.count
= count
;
4359 vcpu
->run
->io
.port
= port
;
4364 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
4365 int size
, unsigned short port
,
4366 const void *val
, unsigned int count
)
4368 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4370 trace_kvm_pio(1, port
, size
, count
);
4372 vcpu
->arch
.pio
.port
= port
;
4373 vcpu
->arch
.pio
.in
= 0;
4374 vcpu
->arch
.pio
.count
= count
;
4375 vcpu
->arch
.pio
.size
= size
;
4377 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4379 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4380 vcpu
->arch
.pio
.count
= 0;
4384 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4385 vcpu
->run
->io
.direction
= KVM_EXIT_IO_OUT
;
4386 vcpu
->run
->io
.size
= size
;
4387 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4388 vcpu
->run
->io
.count
= count
;
4389 vcpu
->run
->io
.port
= port
;
4394 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4396 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4399 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
4401 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
4404 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4406 if (!need_emulate_wbinvd(vcpu
))
4407 return X86EMUL_CONTINUE
;
4409 if (kvm_x86_ops
->has_wbinvd_exit()) {
4410 int cpu
= get_cpu();
4412 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4413 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4414 wbinvd_ipi
, NULL
, 1);
4416 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4419 return X86EMUL_CONTINUE
;
4421 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4423 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
4425 kvm_emulate_wbinvd(emul_to_vcpu(ctxt
));
4428 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
4430 return _kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
4433 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
4436 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
4439 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4441 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4444 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
4446 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4447 unsigned long value
;
4451 value
= kvm_read_cr0(vcpu
);
4454 value
= vcpu
->arch
.cr2
;
4457 value
= kvm_read_cr3(vcpu
);
4460 value
= kvm_read_cr4(vcpu
);
4463 value
= kvm_get_cr8(vcpu
);
4466 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
4473 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
4475 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4480 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4483 vcpu
->arch
.cr2
= val
;
4486 res
= kvm_set_cr3(vcpu
, val
);
4489 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4492 res
= kvm_set_cr8(vcpu
, val
);
4495 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
4502 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
4504 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
4507 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4509 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
4512 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4514 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
4517 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4519 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
4522 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4524 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
4527 static unsigned long emulator_get_cached_segment_base(
4528 struct x86_emulate_ctxt
*ctxt
, int seg
)
4530 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
4533 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
4534 struct desc_struct
*desc
, u32
*base3
,
4537 struct kvm_segment var
;
4539 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
4540 *selector
= var
.selector
;
4547 set_desc_limit(desc
, var
.limit
);
4548 set_desc_base(desc
, (unsigned long)var
.base
);
4549 #ifdef CONFIG_X86_64
4551 *base3
= var
.base
>> 32;
4553 desc
->type
= var
.type
;
4555 desc
->dpl
= var
.dpl
;
4556 desc
->p
= var
.present
;
4557 desc
->avl
= var
.avl
;
4565 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
4566 struct desc_struct
*desc
, u32 base3
,
4569 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4570 struct kvm_segment var
;
4572 var
.selector
= selector
;
4573 var
.base
= get_desc_base(desc
);
4574 #ifdef CONFIG_X86_64
4575 var
.base
|= ((u64
)base3
) << 32;
4577 var
.limit
= get_desc_limit(desc
);
4579 var
.limit
= (var
.limit
<< 12) | 0xfff;
4580 var
.type
= desc
->type
;
4581 var
.present
= desc
->p
;
4582 var
.dpl
= desc
->dpl
;
4587 var
.avl
= desc
->avl
;
4588 var
.present
= desc
->p
;
4589 var
.unusable
= !var
.present
;
4592 kvm_set_segment(vcpu
, &var
, seg
);
4596 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
4597 u32 msr_index
, u64
*pdata
)
4599 return kvm_get_msr(emul_to_vcpu(ctxt
), msr_index
, pdata
);
4602 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
4603 u32 msr_index
, u64 data
)
4605 return kvm_set_msr(emul_to_vcpu(ctxt
), msr_index
, data
);
4608 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
4610 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
4613 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
4616 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
4618 * CR0.TS may reference the host fpu state, not the guest fpu state,
4619 * so it may be clear at this point.
4624 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
4629 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
4630 struct x86_instruction_info
*info
,
4631 enum x86_intercept_stage stage
)
4633 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
4636 static struct x86_emulate_ops emulate_ops
= {
4637 .read_std
= kvm_read_guest_virt_system
,
4638 .write_std
= kvm_write_guest_virt_system
,
4639 .fetch
= kvm_fetch_guest_virt
,
4640 .read_emulated
= emulator_read_emulated
,
4641 .write_emulated
= emulator_write_emulated
,
4642 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
4643 .invlpg
= emulator_invlpg
,
4644 .pio_in_emulated
= emulator_pio_in_emulated
,
4645 .pio_out_emulated
= emulator_pio_out_emulated
,
4646 .get_segment
= emulator_get_segment
,
4647 .set_segment
= emulator_set_segment
,
4648 .get_cached_segment_base
= emulator_get_cached_segment_base
,
4649 .get_gdt
= emulator_get_gdt
,
4650 .get_idt
= emulator_get_idt
,
4651 .set_gdt
= emulator_set_gdt
,
4652 .set_idt
= emulator_set_idt
,
4653 .get_cr
= emulator_get_cr
,
4654 .set_cr
= emulator_set_cr
,
4655 .cpl
= emulator_get_cpl
,
4656 .get_dr
= emulator_get_dr
,
4657 .set_dr
= emulator_set_dr
,
4658 .set_msr
= emulator_set_msr
,
4659 .get_msr
= emulator_get_msr
,
4660 .halt
= emulator_halt
,
4661 .wbinvd
= emulator_wbinvd
,
4662 .fix_hypercall
= emulator_fix_hypercall
,
4663 .get_fpu
= emulator_get_fpu
,
4664 .put_fpu
= emulator_put_fpu
,
4665 .intercept
= emulator_intercept
,
4668 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
4670 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4671 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4672 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
4673 vcpu
->arch
.regs_dirty
= ~0;
4676 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
4678 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
, mask
);
4680 * an sti; sti; sequence only disable interrupts for the first
4681 * instruction. So, if the last instruction, be it emulated or
4682 * not, left the system with the INT_STI flag enabled, it
4683 * means that the last instruction is an sti. We should not
4684 * leave the flag on in this case. The same goes for mov ss
4686 if (!(int_shadow
& mask
))
4687 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
4690 static void inject_emulated_exception(struct kvm_vcpu
*vcpu
)
4692 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4693 if (ctxt
->exception
.vector
== PF_VECTOR
)
4694 kvm_propagate_fault(vcpu
, &ctxt
->exception
);
4695 else if (ctxt
->exception
.error_code_valid
)
4696 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
4697 ctxt
->exception
.error_code
);
4699 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
4702 static void init_decode_cache(struct x86_emulate_ctxt
*ctxt
,
4703 const unsigned long *regs
)
4705 memset(&ctxt
->twobyte
, 0,
4706 (void *)&ctxt
->regs
- (void *)&ctxt
->twobyte
);
4707 memcpy(ctxt
->regs
, regs
, sizeof(ctxt
->regs
));
4709 ctxt
->fetch
.start
= 0;
4710 ctxt
->fetch
.end
= 0;
4711 ctxt
->io_read
.pos
= 0;
4712 ctxt
->io_read
.end
= 0;
4713 ctxt
->mem_read
.pos
= 0;
4714 ctxt
->mem_read
.end
= 0;
4717 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
4719 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4723 * TODO: fix emulate.c to use guest_read/write_register
4724 * instead of direct ->regs accesses, can save hundred cycles
4725 * on Intel for instructions that don't read/change RSP, for
4728 cache_all_regs(vcpu
);
4730 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
4732 ctxt
->eflags
= kvm_get_rflags(vcpu
);
4733 ctxt
->eip
= kvm_rip_read(vcpu
);
4734 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
4735 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
4736 cs_l
? X86EMUL_MODE_PROT64
:
4737 cs_db
? X86EMUL_MODE_PROT32
:
4738 X86EMUL_MODE_PROT16
;
4739 ctxt
->guest_mode
= is_guest_mode(vcpu
);
4741 init_decode_cache(ctxt
, vcpu
->arch
.regs
);
4742 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
4745 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
4747 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4750 init_emulate_ctxt(vcpu
);
4754 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
4755 ret
= emulate_int_real(ctxt
, irq
);
4757 if (ret
!= X86EMUL_CONTINUE
)
4758 return EMULATE_FAIL
;
4760 ctxt
->eip
= ctxt
->_eip
;
4761 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
4762 kvm_rip_write(vcpu
, ctxt
->eip
);
4763 kvm_set_rflags(vcpu
, ctxt
->eflags
);
4765 if (irq
== NMI_VECTOR
)
4766 vcpu
->arch
.nmi_pending
= false;
4768 vcpu
->arch
.interrupt
.pending
= false;
4770 return EMULATE_DONE
;
4772 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
4774 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
4776 int r
= EMULATE_DONE
;
4778 ++vcpu
->stat
.insn_emulation_fail
;
4779 trace_kvm_emulate_insn_failed(vcpu
);
4780 if (!is_guest_mode(vcpu
)) {
4781 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4782 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
4783 vcpu
->run
->internal
.ndata
= 0;
4786 kvm_queue_exception(vcpu
, UD_VECTOR
);
4791 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t gva
)
4799 * if emulation was due to access to shadowed page table
4800 * and it failed try to unshadow page and re-entetr the
4801 * guest to let CPU execute the instruction.
4803 if (kvm_mmu_unprotect_page_virt(vcpu
, gva
))
4806 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, gva
, NULL
);
4808 if (gpa
== UNMAPPED_GVA
)
4809 return true; /* let cpu generate fault */
4811 if (!kvm_is_error_hva(gfn_to_hva(vcpu
->kvm
, gpa
>> PAGE_SHIFT
)))
4817 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
4824 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4825 bool writeback
= true;
4827 kvm_clear_exception_queue(vcpu
);
4829 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
4830 init_emulate_ctxt(vcpu
);
4831 ctxt
->interruptibility
= 0;
4832 ctxt
->have_exception
= false;
4833 ctxt
->perm_ok
= false;
4835 ctxt
->only_vendor_specific_insn
4836 = emulation_type
& EMULTYPE_TRAP_UD
;
4838 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
4840 trace_kvm_emulate_insn_start(vcpu
);
4841 ++vcpu
->stat
.insn_emulation
;
4842 if (r
!= EMULATION_OK
) {
4843 if (emulation_type
& EMULTYPE_TRAP_UD
)
4844 return EMULATE_FAIL
;
4845 if (reexecute_instruction(vcpu
, cr2
))
4846 return EMULATE_DONE
;
4847 if (emulation_type
& EMULTYPE_SKIP
)
4848 return EMULATE_FAIL
;
4849 return handle_emulation_failure(vcpu
);
4853 if (emulation_type
& EMULTYPE_SKIP
) {
4854 kvm_rip_write(vcpu
, ctxt
->_eip
);
4855 return EMULATE_DONE
;
4858 /* this is needed for vmware backdoor interface to work since it
4859 changes registers values during IO operation */
4860 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
4861 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
4862 memcpy(ctxt
->regs
, vcpu
->arch
.regs
, sizeof ctxt
->regs
);
4866 r
= x86_emulate_insn(ctxt
);
4868 if (r
== EMULATION_INTERCEPTED
)
4869 return EMULATE_DONE
;
4871 if (r
== EMULATION_FAILED
) {
4872 if (reexecute_instruction(vcpu
, cr2
))
4873 return EMULATE_DONE
;
4875 return handle_emulation_failure(vcpu
);
4878 if (ctxt
->have_exception
) {
4879 inject_emulated_exception(vcpu
);
4881 } else if (vcpu
->arch
.pio
.count
) {
4882 if (!vcpu
->arch
.pio
.in
)
4883 vcpu
->arch
.pio
.count
= 0;
4886 r
= EMULATE_DO_MMIO
;
4887 } else if (vcpu
->mmio_needed
) {
4888 if (!vcpu
->mmio_is_write
)
4890 r
= EMULATE_DO_MMIO
;
4891 } else if (r
== EMULATION_RESTART
)
4897 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
4898 kvm_set_rflags(vcpu
, ctxt
->eflags
);
4899 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4900 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
4901 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
4902 kvm_rip_write(vcpu
, ctxt
->eip
);
4904 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
4908 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
4910 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
4912 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4913 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
4914 size
, port
, &val
, 1);
4915 /* do not return to emulator after return from userspace */
4916 vcpu
->arch
.pio
.count
= 0;
4919 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
4921 static void tsc_bad(void *info
)
4923 __this_cpu_write(cpu_tsc_khz
, 0);
4926 static void tsc_khz_changed(void *data
)
4928 struct cpufreq_freqs
*freq
= data
;
4929 unsigned long khz
= 0;
4933 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
4934 khz
= cpufreq_quick_get(raw_smp_processor_id());
4937 __this_cpu_write(cpu_tsc_khz
, khz
);
4940 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
4943 struct cpufreq_freqs
*freq
= data
;
4945 struct kvm_vcpu
*vcpu
;
4946 int i
, send_ipi
= 0;
4949 * We allow guests to temporarily run on slowing clocks,
4950 * provided we notify them after, or to run on accelerating
4951 * clocks, provided we notify them before. Thus time never
4954 * However, we have a problem. We can't atomically update
4955 * the frequency of a given CPU from this function; it is
4956 * merely a notifier, which can be called from any CPU.
4957 * Changing the TSC frequency at arbitrary points in time
4958 * requires a recomputation of local variables related to
4959 * the TSC for each VCPU. We must flag these local variables
4960 * to be updated and be sure the update takes place with the
4961 * new frequency before any guests proceed.
4963 * Unfortunately, the combination of hotplug CPU and frequency
4964 * change creates an intractable locking scenario; the order
4965 * of when these callouts happen is undefined with respect to
4966 * CPU hotplug, and they can race with each other. As such,
4967 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4968 * undefined; you can actually have a CPU frequency change take
4969 * place in between the computation of X and the setting of the
4970 * variable. To protect against this problem, all updates of
4971 * the per_cpu tsc_khz variable are done in an interrupt
4972 * protected IPI, and all callers wishing to update the value
4973 * must wait for a synchronous IPI to complete (which is trivial
4974 * if the caller is on the CPU already). This establishes the
4975 * necessary total order on variable updates.
4977 * Note that because a guest time update may take place
4978 * anytime after the setting of the VCPU's request bit, the
4979 * correct TSC value must be set before the request. However,
4980 * to ensure the update actually makes it to any guest which
4981 * starts running in hardware virtualization between the set
4982 * and the acquisition of the spinlock, we must also ping the
4983 * CPU after setting the request bit.
4987 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
4989 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
4992 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
4994 raw_spin_lock(&kvm_lock
);
4995 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4996 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
4997 if (vcpu
->cpu
!= freq
->cpu
)
4999 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5000 if (vcpu
->cpu
!= smp_processor_id())
5004 raw_spin_unlock(&kvm_lock
);
5006 if (freq
->old
< freq
->new && send_ipi
) {
5008 * We upscale the frequency. Must make the guest
5009 * doesn't see old kvmclock values while running with
5010 * the new frequency, otherwise we risk the guest sees
5011 * time go backwards.
5013 * In case we update the frequency for another cpu
5014 * (which might be in guest context) send an interrupt
5015 * to kick the cpu out of guest context. Next time
5016 * guest context is entered kvmclock will be updated,
5017 * so the guest will not see stale values.
5019 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5024 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
5025 .notifier_call
= kvmclock_cpufreq_notifier
5028 static int kvmclock_cpu_notifier(struct notifier_block
*nfb
,
5029 unsigned long action
, void *hcpu
)
5031 unsigned int cpu
= (unsigned long)hcpu
;
5035 case CPU_DOWN_FAILED
:
5036 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5038 case CPU_DOWN_PREPARE
:
5039 smp_call_function_single(cpu
, tsc_bad
, NULL
, 1);
5045 static struct notifier_block kvmclock_cpu_notifier_block
= {
5046 .notifier_call
= kvmclock_cpu_notifier
,
5047 .priority
= -INT_MAX
5050 static void kvm_timer_init(void)
5054 max_tsc_khz
= tsc_khz
;
5055 register_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5056 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
5057 #ifdef CONFIG_CPU_FREQ
5058 struct cpufreq_policy policy
;
5059 memset(&policy
, 0, sizeof(policy
));
5061 cpufreq_get_policy(&policy
, cpu
);
5062 if (policy
.cpuinfo
.max_freq
)
5063 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
5066 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
5067 CPUFREQ_TRANSITION_NOTIFIER
);
5069 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
5070 for_each_online_cpu(cpu
)
5071 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5074 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
5076 static int kvm_is_in_guest(void)
5078 return percpu_read(current_vcpu
) != NULL
;
5081 static int kvm_is_user_mode(void)
5085 if (percpu_read(current_vcpu
))
5086 user_mode
= kvm_x86_ops
->get_cpl(percpu_read(current_vcpu
));
5088 return user_mode
!= 0;
5091 static unsigned long kvm_get_guest_ip(void)
5093 unsigned long ip
= 0;
5095 if (percpu_read(current_vcpu
))
5096 ip
= kvm_rip_read(percpu_read(current_vcpu
));
5101 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
5102 .is_in_guest
= kvm_is_in_guest
,
5103 .is_user_mode
= kvm_is_user_mode
,
5104 .get_guest_ip
= kvm_get_guest_ip
,
5107 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
5109 percpu_write(current_vcpu
, vcpu
);
5111 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
5113 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
5115 percpu_write(current_vcpu
, NULL
);
5117 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
5119 static void kvm_set_mmio_spte_mask(void)
5122 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
5125 * Set the reserved bits and the present bit of an paging-structure
5126 * entry to generate page fault with PFER.RSV = 1.
5128 mask
= ((1ull << (62 - maxphyaddr
+ 1)) - 1) << maxphyaddr
;
5131 #ifdef CONFIG_X86_64
5133 * If reserved bit is not supported, clear the present bit to disable
5136 if (maxphyaddr
== 52)
5140 kvm_mmu_set_mmio_spte_mask(mask
);
5143 int kvm_arch_init(void *opaque
)
5146 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
5149 printk(KERN_ERR
"kvm: already loaded the other module\n");
5154 if (!ops
->cpu_has_kvm_support()) {
5155 printk(KERN_ERR
"kvm: no hardware support\n");
5159 if (ops
->disabled_by_bios()) {
5160 printk(KERN_ERR
"kvm: disabled by bios\n");
5165 r
= kvm_mmu_module_init();
5169 kvm_set_mmio_spte_mask();
5170 kvm_init_msr_list();
5173 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
5174 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
5178 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
5181 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
5189 void kvm_arch_exit(void)
5191 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
5193 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5194 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
5195 CPUFREQ_TRANSITION_NOTIFIER
);
5196 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5198 kvm_mmu_module_exit();
5201 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
5203 ++vcpu
->stat
.halt_exits
;
5204 if (irqchip_in_kernel(vcpu
->kvm
)) {
5205 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
5208 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
5212 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
5214 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
5217 if (is_long_mode(vcpu
))
5220 return a0
| ((gpa_t
)a1
<< 32);
5223 int kvm_hv_hypercall(struct kvm_vcpu
*vcpu
)
5225 u64 param
, ingpa
, outgpa
, ret
;
5226 uint16_t code
, rep_idx
, rep_cnt
, res
= HV_STATUS_SUCCESS
, rep_done
= 0;
5227 bool fast
, longmode
;
5231 * hypercall generates UD from non zero cpl and real mode
5234 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 || !is_protmode(vcpu
)) {
5235 kvm_queue_exception(vcpu
, UD_VECTOR
);
5239 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5240 longmode
= is_long_mode(vcpu
) && cs_l
== 1;
5243 param
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDX
) << 32) |
5244 (kvm_register_read(vcpu
, VCPU_REGS_RAX
) & 0xffffffff);
5245 ingpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RBX
) << 32) |
5246 (kvm_register_read(vcpu
, VCPU_REGS_RCX
) & 0xffffffff);
5247 outgpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDI
) << 32) |
5248 (kvm_register_read(vcpu
, VCPU_REGS_RSI
) & 0xffffffff);
5250 #ifdef CONFIG_X86_64
5252 param
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5253 ingpa
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5254 outgpa
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
5258 code
= param
& 0xffff;
5259 fast
= (param
>> 16) & 0x1;
5260 rep_cnt
= (param
>> 32) & 0xfff;
5261 rep_idx
= (param
>> 48) & 0xfff;
5263 trace_kvm_hv_hypercall(code
, fast
, rep_cnt
, rep_idx
, ingpa
, outgpa
);
5266 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT
:
5267 kvm_vcpu_on_spin(vcpu
);
5270 res
= HV_STATUS_INVALID_HYPERCALL_CODE
;
5274 ret
= res
| (((u64
)rep_done
& 0xfff) << 32);
5276 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5278 kvm_register_write(vcpu
, VCPU_REGS_RDX
, ret
>> 32);
5279 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
& 0xffffffff);
5285 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
5287 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
5290 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
5291 return kvm_hv_hypercall(vcpu
);
5293 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5294 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5295 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5296 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5297 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5299 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
5301 if (!is_long_mode(vcpu
)) {
5309 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
5315 case KVM_HC_VAPIC_POLL_IRQ
:
5319 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
5326 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5327 ++vcpu
->stat
.hypercalls
;
5330 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
5332 int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
5334 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5335 char instruction
[3];
5336 unsigned long rip
= kvm_rip_read(vcpu
);
5339 * Blow out the MMU to ensure that no other VCPU has an active mapping
5340 * to ensure that the updated hypercall appears atomically across all
5343 kvm_mmu_zap_all(vcpu
->kvm
);
5345 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
5347 return emulator_write_emulated(ctxt
, rip
, instruction
, 3, NULL
);
5350 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
5352 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
5353 int j
, nent
= vcpu
->arch
.cpuid_nent
;
5355 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
5356 /* when no next entry is found, the current entry[i] is reselected */
5357 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
5358 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
5359 if (ej
->function
== e
->function
) {
5360 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
5364 return 0; /* silence gcc, even though control never reaches here */
5367 /* find an entry with matching function, matching index (if needed), and that
5368 * should be read next (if it's stateful) */
5369 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
5370 u32 function
, u32 index
)
5372 if (e
->function
!= function
)
5374 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
5376 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
5377 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
5382 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
5383 u32 function
, u32 index
)
5386 struct kvm_cpuid_entry2
*best
= NULL
;
5388 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
5389 struct kvm_cpuid_entry2
*e
;
5391 e
= &vcpu
->arch
.cpuid_entries
[i
];
5392 if (is_matching_cpuid_entry(e
, function
, index
)) {
5393 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
5394 move_to_next_stateful_cpuid_entry(vcpu
, i
);
5401 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry
);
5403 int cpuid_maxphyaddr(struct kvm_vcpu
*vcpu
)
5405 struct kvm_cpuid_entry2
*best
;
5407 best
= kvm_find_cpuid_entry(vcpu
, 0x80000000, 0);
5408 if (!best
|| best
->eax
< 0x80000008)
5410 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
5412 return best
->eax
& 0xff;
5418 * If no match is found, check whether we exceed the vCPU's limit
5419 * and return the content of the highest valid _standard_ leaf instead.
5420 * This is to satisfy the CPUID specification.
5422 static struct kvm_cpuid_entry2
* check_cpuid_limit(struct kvm_vcpu
*vcpu
,
5423 u32 function
, u32 index
)
5425 struct kvm_cpuid_entry2
*maxlevel
;
5427 maxlevel
= kvm_find_cpuid_entry(vcpu
, function
& 0x80000000, 0);
5428 if (!maxlevel
|| maxlevel
->eax
>= function
)
5430 if (function
& 0x80000000) {
5431 maxlevel
= kvm_find_cpuid_entry(vcpu
, 0, 0);
5435 return kvm_find_cpuid_entry(vcpu
, maxlevel
->eax
, index
);
5438 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
5440 u32 function
, index
;
5441 struct kvm_cpuid_entry2
*best
;
5443 function
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5444 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5445 kvm_register_write(vcpu
, VCPU_REGS_RAX
, 0);
5446 kvm_register_write(vcpu
, VCPU_REGS_RBX
, 0);
5447 kvm_register_write(vcpu
, VCPU_REGS_RCX
, 0);
5448 kvm_register_write(vcpu
, VCPU_REGS_RDX
, 0);
5449 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
5452 best
= check_cpuid_limit(vcpu
, function
, index
);
5455 kvm_register_write(vcpu
, VCPU_REGS_RAX
, best
->eax
);
5456 kvm_register_write(vcpu
, VCPU_REGS_RBX
, best
->ebx
);
5457 kvm_register_write(vcpu
, VCPU_REGS_RCX
, best
->ecx
);
5458 kvm_register_write(vcpu
, VCPU_REGS_RDX
, best
->edx
);
5460 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5461 trace_kvm_cpuid(function
,
5462 kvm_register_read(vcpu
, VCPU_REGS_RAX
),
5463 kvm_register_read(vcpu
, VCPU_REGS_RBX
),
5464 kvm_register_read(vcpu
, VCPU_REGS_RCX
),
5465 kvm_register_read(vcpu
, VCPU_REGS_RDX
));
5467 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
5470 * Check if userspace requested an interrupt window, and that the
5471 * interrupt window is open.
5473 * No need to exit to userspace if we already have an interrupt queued.
5475 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
5477 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
5478 vcpu
->run
->request_interrupt_window
&&
5479 kvm_arch_interrupt_allowed(vcpu
));
5482 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
5484 struct kvm_run
*kvm_run
= vcpu
->run
;
5486 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
5487 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
5488 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
5489 if (irqchip_in_kernel(vcpu
->kvm
))
5490 kvm_run
->ready_for_interrupt_injection
= 1;
5492 kvm_run
->ready_for_interrupt_injection
=
5493 kvm_arch_interrupt_allowed(vcpu
) &&
5494 !kvm_cpu_has_interrupt(vcpu
) &&
5495 !kvm_event_needs_reinjection(vcpu
);
5498 static void vapic_enter(struct kvm_vcpu
*vcpu
)
5500 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
5503 if (!apic
|| !apic
->vapic_addr
)
5506 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
5508 vcpu
->arch
.apic
->vapic_page
= page
;
5511 static void vapic_exit(struct kvm_vcpu
*vcpu
)
5513 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
5516 if (!apic
|| !apic
->vapic_addr
)
5519 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5520 kvm_release_page_dirty(apic
->vapic_page
);
5521 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
5522 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5525 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
5529 if (!kvm_x86_ops
->update_cr8_intercept
)
5532 if (!vcpu
->arch
.apic
)
5535 if (!vcpu
->arch
.apic
->vapic_addr
)
5536 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
5543 tpr
= kvm_lapic_get_cr8(vcpu
);
5545 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
5548 static void inject_pending_event(struct kvm_vcpu
*vcpu
)
5550 /* try to reinject previous events if any */
5551 if (vcpu
->arch
.exception
.pending
) {
5552 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
5553 vcpu
->arch
.exception
.has_error_code
,
5554 vcpu
->arch
.exception
.error_code
);
5555 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
5556 vcpu
->arch
.exception
.has_error_code
,
5557 vcpu
->arch
.exception
.error_code
,
5558 vcpu
->arch
.exception
.reinject
);
5562 if (vcpu
->arch
.nmi_injected
) {
5563 kvm_x86_ops
->set_nmi(vcpu
);
5567 if (vcpu
->arch
.interrupt
.pending
) {
5568 kvm_x86_ops
->set_irq(vcpu
);
5572 /* try to inject new event if pending */
5573 if (vcpu
->arch
.nmi_pending
) {
5574 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
5575 vcpu
->arch
.nmi_pending
= false;
5576 vcpu
->arch
.nmi_injected
= true;
5577 kvm_x86_ops
->set_nmi(vcpu
);
5579 } else if (kvm_cpu_has_interrupt(vcpu
)) {
5580 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
5581 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
5583 kvm_x86_ops
->set_irq(vcpu
);
5588 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
5590 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
5591 !vcpu
->guest_xcr0_loaded
) {
5592 /* kvm_set_xcr() also depends on this */
5593 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
5594 vcpu
->guest_xcr0_loaded
= 1;
5598 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
5600 if (vcpu
->guest_xcr0_loaded
) {
5601 if (vcpu
->arch
.xcr0
!= host_xcr0
)
5602 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
5603 vcpu
->guest_xcr0_loaded
= 0;
5607 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
5611 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
5612 vcpu
->run
->request_interrupt_window
;
5614 if (vcpu
->requests
) {
5615 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
5616 kvm_mmu_unload(vcpu
);
5617 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
5618 __kvm_migrate_timers(vcpu
);
5619 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
5620 r
= kvm_guest_time_update(vcpu
);
5624 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
5625 kvm_mmu_sync_roots(vcpu
);
5626 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
5627 kvm_x86_ops
->tlb_flush(vcpu
);
5628 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
5629 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
5633 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
5634 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
5638 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
5639 vcpu
->fpu_active
= 0;
5640 kvm_x86_ops
->fpu_deactivate(vcpu
);
5642 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
5643 /* Page is swapped out. Do synthetic halt */
5644 vcpu
->arch
.apf
.halted
= true;
5648 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
5649 record_steal_time(vcpu
);
5653 r
= kvm_mmu_reload(vcpu
);
5658 * An NMI can be injected between local nmi_pending read and
5659 * vcpu->arch.nmi_pending read inside inject_pending_event().
5660 * But in that case, KVM_REQ_EVENT will be set, which makes
5661 * the race described above benign.
5663 nmi_pending
= ACCESS_ONCE(vcpu
->arch
.nmi_pending
);
5665 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
5666 inject_pending_event(vcpu
);
5668 /* enable NMI/IRQ window open exits if needed */
5670 kvm_x86_ops
->enable_nmi_window(vcpu
);
5671 else if (kvm_cpu_has_interrupt(vcpu
) || req_int_win
)
5672 kvm_x86_ops
->enable_irq_window(vcpu
);
5674 if (kvm_lapic_enabled(vcpu
)) {
5675 update_cr8_intercept(vcpu
);
5676 kvm_lapic_sync_to_vapic(vcpu
);
5682 kvm_x86_ops
->prepare_guest_switch(vcpu
);
5683 if (vcpu
->fpu_active
)
5684 kvm_load_guest_fpu(vcpu
);
5685 kvm_load_guest_xcr0(vcpu
);
5687 vcpu
->mode
= IN_GUEST_MODE
;
5689 /* We should set ->mode before check ->requests,
5690 * see the comment in make_all_cpus_request.
5694 local_irq_disable();
5696 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
5697 || need_resched() || signal_pending(current
)) {
5698 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5702 kvm_x86_ops
->cancel_injection(vcpu
);
5707 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5711 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
5713 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
5714 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
5715 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
5716 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
5719 trace_kvm_entry(vcpu
->vcpu_id
);
5720 kvm_x86_ops
->run(vcpu
);
5723 * If the guest has used debug registers, at least dr7
5724 * will be disabled while returning to the host.
5725 * If we don't have active breakpoints in the host, we don't
5726 * care about the messed up debug address registers. But if
5727 * we have some of them active, restore the old state.
5729 if (hw_breakpoint_active())
5730 hw_breakpoint_restore();
5732 vcpu
->arch
.last_guest_tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
);
5734 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5741 * We must have an instruction between local_irq_enable() and
5742 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5743 * the interrupt shadow. The stat.exits increment will do nicely.
5744 * But we need to prevent reordering, hence this barrier():
5752 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5755 * Profile KVM exit RIPs:
5757 if (unlikely(prof_on
== KVM_PROFILING
)) {
5758 unsigned long rip
= kvm_rip_read(vcpu
);
5759 profile_hit(KVM_PROFILING
, (void *)rip
);
5763 kvm_lapic_sync_from_vapic(vcpu
);
5765 r
= kvm_x86_ops
->handle_exit(vcpu
);
5771 static int __vcpu_run(struct kvm_vcpu
*vcpu
)
5774 struct kvm
*kvm
= vcpu
->kvm
;
5776 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
5777 pr_debug("vcpu %d received sipi with vector # %x\n",
5778 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
5779 kvm_lapic_reset(vcpu
);
5780 r
= kvm_arch_vcpu_reset(vcpu
);
5783 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5786 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5791 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
5792 !vcpu
->arch
.apf
.halted
)
5793 r
= vcpu_enter_guest(vcpu
);
5795 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5796 kvm_vcpu_block(vcpu
);
5797 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5798 if (kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
5800 switch(vcpu
->arch
.mp_state
) {
5801 case KVM_MP_STATE_HALTED
:
5802 vcpu
->arch
.mp_state
=
5803 KVM_MP_STATE_RUNNABLE
;
5804 case KVM_MP_STATE_RUNNABLE
:
5805 vcpu
->arch
.apf
.halted
= false;
5807 case KVM_MP_STATE_SIPI_RECEIVED
:
5818 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
5819 if (kvm_cpu_has_pending_timer(vcpu
))
5820 kvm_inject_pending_timer_irqs(vcpu
);
5822 if (dm_request_for_irq_injection(vcpu
)) {
5824 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
5825 ++vcpu
->stat
.request_irq_exits
;
5828 kvm_check_async_pf_completion(vcpu
);
5830 if (signal_pending(current
)) {
5832 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
5833 ++vcpu
->stat
.signal_exits
;
5835 if (need_resched()) {
5836 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5838 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5842 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5849 static int complete_mmio(struct kvm_vcpu
*vcpu
)
5851 struct kvm_run
*run
= vcpu
->run
;
5854 if (!(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
))
5857 if (vcpu
->mmio_needed
) {
5858 vcpu
->mmio_needed
= 0;
5859 if (!vcpu
->mmio_is_write
)
5860 memcpy(vcpu
->mmio_data
+ vcpu
->mmio_index
,
5862 vcpu
->mmio_index
+= 8;
5863 if (vcpu
->mmio_index
< vcpu
->mmio_size
) {
5864 run
->exit_reason
= KVM_EXIT_MMIO
;
5865 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
+ vcpu
->mmio_index
;
5866 memcpy(run
->mmio
.data
, vcpu
->mmio_data
+ vcpu
->mmio_index
, 8);
5867 run
->mmio
.len
= min(vcpu
->mmio_size
- vcpu
->mmio_index
, 8);
5868 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
5869 vcpu
->mmio_needed
= 1;
5872 if (vcpu
->mmio_is_write
)
5874 vcpu
->mmio_read_completed
= 1;
5876 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5877 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
5878 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5879 if (r
!= EMULATE_DONE
)
5884 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
5889 if (!tsk_used_math(current
) && init_fpu(current
))
5892 if (vcpu
->sigset_active
)
5893 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
5895 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
5896 kvm_vcpu_block(vcpu
);
5897 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
5902 /* re-sync apic's tpr */
5903 if (!irqchip_in_kernel(vcpu
->kvm
)) {
5904 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
5910 r
= complete_mmio(vcpu
);
5914 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
)
5915 kvm_register_write(vcpu
, VCPU_REGS_RAX
,
5916 kvm_run
->hypercall
.ret
);
5918 r
= __vcpu_run(vcpu
);
5921 post_kvm_run_save(vcpu
);
5922 if (vcpu
->sigset_active
)
5923 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
5928 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
5930 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
5932 * We are here if userspace calls get_regs() in the middle of
5933 * instruction emulation. Registers state needs to be copied
5934 * back from emulation context to vcpu. Usrapace shouldn't do
5935 * that usually, but some bad designed PV devices (vmware
5936 * backdoor interface) need this to work
5938 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5939 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
5940 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5942 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5943 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5944 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5945 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5946 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5947 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
5948 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
5949 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
5950 #ifdef CONFIG_X86_64
5951 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
5952 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
5953 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
5954 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
5955 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
5956 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
5957 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
5958 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
5961 regs
->rip
= kvm_rip_read(vcpu
);
5962 regs
->rflags
= kvm_get_rflags(vcpu
);
5967 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
5969 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
5970 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5972 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
5973 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
5974 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
5975 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
5976 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
5977 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
5978 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
5979 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
5980 #ifdef CONFIG_X86_64
5981 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
5982 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
5983 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
5984 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
5985 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
5986 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
5987 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
5988 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
5991 kvm_rip_write(vcpu
, regs
->rip
);
5992 kvm_set_rflags(vcpu
, regs
->rflags
);
5994 vcpu
->arch
.exception
.pending
= false;
5996 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6001 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
6003 struct kvm_segment cs
;
6005 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6009 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
6011 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
6012 struct kvm_sregs
*sregs
)
6016 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6017 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6018 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6019 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6020 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6021 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6023 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6024 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6026 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6027 sregs
->idt
.limit
= dt
.size
;
6028 sregs
->idt
.base
= dt
.address
;
6029 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6030 sregs
->gdt
.limit
= dt
.size
;
6031 sregs
->gdt
.base
= dt
.address
;
6033 sregs
->cr0
= kvm_read_cr0(vcpu
);
6034 sregs
->cr2
= vcpu
->arch
.cr2
;
6035 sregs
->cr3
= kvm_read_cr3(vcpu
);
6036 sregs
->cr4
= kvm_read_cr4(vcpu
);
6037 sregs
->cr8
= kvm_get_cr8(vcpu
);
6038 sregs
->efer
= vcpu
->arch
.efer
;
6039 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
6041 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
6043 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
6044 set_bit(vcpu
->arch
.interrupt
.nr
,
6045 (unsigned long *)sregs
->interrupt_bitmap
);
6050 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
6051 struct kvm_mp_state
*mp_state
)
6053 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
6057 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
6058 struct kvm_mp_state
*mp_state
)
6060 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
6061 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6065 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
,
6066 bool has_error_code
, u32 error_code
)
6068 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
6071 init_emulate_ctxt(vcpu
);
6073 ret
= emulator_task_switch(ctxt
, tss_selector
, reason
,
6074 has_error_code
, error_code
);
6077 return EMULATE_FAIL
;
6079 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
6080 kvm_rip_write(vcpu
, ctxt
->eip
);
6081 kvm_set_rflags(vcpu
, ctxt
->eflags
);
6082 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6083 return EMULATE_DONE
;
6085 EXPORT_SYMBOL_GPL(kvm_task_switch
);
6087 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
6088 struct kvm_sregs
*sregs
)
6090 int mmu_reset_needed
= 0;
6091 int pending_vec
, max_bits
, idx
;
6094 dt
.size
= sregs
->idt
.limit
;
6095 dt
.address
= sregs
->idt
.base
;
6096 kvm_x86_ops
->set_idt(vcpu
, &dt
);
6097 dt
.size
= sregs
->gdt
.limit
;
6098 dt
.address
= sregs
->gdt
.base
;
6099 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
6101 vcpu
->arch
.cr2
= sregs
->cr2
;
6102 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
6103 vcpu
->arch
.cr3
= sregs
->cr3
;
6104 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
6106 kvm_set_cr8(vcpu
, sregs
->cr8
);
6108 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
6109 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
6110 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
6112 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
6113 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
6114 vcpu
->arch
.cr0
= sregs
->cr0
;
6116 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
6117 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
6118 if (sregs
->cr4
& X86_CR4_OSXSAVE
)
6121 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6122 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
6123 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
6124 mmu_reset_needed
= 1;
6126 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6128 if (mmu_reset_needed
)
6129 kvm_mmu_reset_context(vcpu
);
6131 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
6132 pending_vec
= find_first_bit(
6133 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
6134 if (pending_vec
< max_bits
) {
6135 kvm_queue_interrupt(vcpu
, pending_vec
, false);
6136 pr_debug("Set back pending irq %d\n", pending_vec
);
6139 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6140 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6141 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6142 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6143 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6144 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6146 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6147 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6149 update_cr8_intercept(vcpu
);
6151 /* Older userspace won't unhalt the vcpu on reset. */
6152 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
6153 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
6155 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
6157 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6162 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
6163 struct kvm_guest_debug
*dbg
)
6165 unsigned long rflags
;
6168 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
6170 if (vcpu
->arch
.exception
.pending
)
6172 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
6173 kvm_queue_exception(vcpu
, DB_VECTOR
);
6175 kvm_queue_exception(vcpu
, BP_VECTOR
);
6179 * Read rflags as long as potentially injected trace flags are still
6182 rflags
= kvm_get_rflags(vcpu
);
6184 vcpu
->guest_debug
= dbg
->control
;
6185 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
6186 vcpu
->guest_debug
= 0;
6188 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
6189 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
6190 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
6191 vcpu
->arch
.switch_db_regs
=
6192 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
6194 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
6195 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
6196 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
6199 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6200 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
6201 get_segment_base(vcpu
, VCPU_SREG_CS
);
6204 * Trigger an rflags update that will inject or remove the trace
6207 kvm_set_rflags(vcpu
, rflags
);
6209 kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
6219 * Translate a guest virtual address to a guest physical address.
6221 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
6222 struct kvm_translation
*tr
)
6224 unsigned long vaddr
= tr
->linear_address
;
6228 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6229 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
6230 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6231 tr
->physical_address
= gpa
;
6232 tr
->valid
= gpa
!= UNMAPPED_GVA
;
6239 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
6241 struct i387_fxsave_struct
*fxsave
=
6242 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
6244 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
6245 fpu
->fcw
= fxsave
->cwd
;
6246 fpu
->fsw
= fxsave
->swd
;
6247 fpu
->ftwx
= fxsave
->twd
;
6248 fpu
->last_opcode
= fxsave
->fop
;
6249 fpu
->last_ip
= fxsave
->rip
;
6250 fpu
->last_dp
= fxsave
->rdp
;
6251 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
6256 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
6258 struct i387_fxsave_struct
*fxsave
=
6259 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
6261 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
6262 fxsave
->cwd
= fpu
->fcw
;
6263 fxsave
->swd
= fpu
->fsw
;
6264 fxsave
->twd
= fpu
->ftwx
;
6265 fxsave
->fop
= fpu
->last_opcode
;
6266 fxsave
->rip
= fpu
->last_ip
;
6267 fxsave
->rdp
= fpu
->last_dp
;
6268 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
6273 int fx_init(struct kvm_vcpu
*vcpu
)
6277 err
= fpu_alloc(&vcpu
->arch
.guest_fpu
);
6281 fpu_finit(&vcpu
->arch
.guest_fpu
);
6284 * Ensure guest xcr0 is valid for loading
6286 vcpu
->arch
.xcr0
= XSTATE_FP
;
6288 vcpu
->arch
.cr0
|= X86_CR0_ET
;
6292 EXPORT_SYMBOL_GPL(fx_init
);
6294 static void fx_free(struct kvm_vcpu
*vcpu
)
6296 fpu_free(&vcpu
->arch
.guest_fpu
);
6299 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
6301 if (vcpu
->guest_fpu_loaded
)
6305 * Restore all possible states in the guest,
6306 * and assume host would use all available bits.
6307 * Guest xcr0 would be loaded later.
6309 kvm_put_guest_xcr0(vcpu
);
6310 vcpu
->guest_fpu_loaded
= 1;
6311 unlazy_fpu(current
);
6312 fpu_restore_checking(&vcpu
->arch
.guest_fpu
);
6316 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
6318 kvm_put_guest_xcr0(vcpu
);
6320 if (!vcpu
->guest_fpu_loaded
)
6323 vcpu
->guest_fpu_loaded
= 0;
6324 fpu_save_init(&vcpu
->arch
.guest_fpu
);
6325 ++vcpu
->stat
.fpu_reload
;
6326 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
6330 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
6332 kvmclock_reset(vcpu
);
6334 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
6336 kvm_x86_ops
->vcpu_free(vcpu
);
6339 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
6342 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
6343 printk_once(KERN_WARNING
6344 "kvm: SMP vm created on host with unstable TSC; "
6345 "guest TSC will not be reliable\n");
6346 return kvm_x86_ops
->vcpu_create(kvm
, id
);
6349 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
6353 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
6355 r
= kvm_arch_vcpu_reset(vcpu
);
6357 r
= kvm_mmu_setup(vcpu
);
6363 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
6365 vcpu
->arch
.apf
.msr_val
= 0;
6368 kvm_mmu_unload(vcpu
);
6372 kvm_x86_ops
->vcpu_free(vcpu
);
6375 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
6377 vcpu
->arch
.nmi_pending
= false;
6378 vcpu
->arch
.nmi_injected
= false;
6380 vcpu
->arch
.switch_db_regs
= 0;
6381 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
6382 vcpu
->arch
.dr6
= DR6_FIXED_1
;
6383 vcpu
->arch
.dr7
= DR7_FIXED_1
;
6385 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6386 vcpu
->arch
.apf
.msr_val
= 0;
6387 vcpu
->arch
.st
.msr_val
= 0;
6389 kvmclock_reset(vcpu
);
6391 kvm_clear_async_pf_completion_queue(vcpu
);
6392 kvm_async_pf_hash_reset(vcpu
);
6393 vcpu
->arch
.apf
.halted
= false;
6395 return kvm_x86_ops
->vcpu_reset(vcpu
);
6398 int kvm_arch_hardware_enable(void *garbage
)
6401 struct kvm_vcpu
*vcpu
;
6404 kvm_shared_msr_cpu_online();
6405 list_for_each_entry(kvm
, &vm_list
, vm_list
)
6406 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6407 if (vcpu
->cpu
== smp_processor_id())
6408 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6409 return kvm_x86_ops
->hardware_enable(garbage
);
6412 void kvm_arch_hardware_disable(void *garbage
)
6414 kvm_x86_ops
->hardware_disable(garbage
);
6415 drop_user_return_notifiers(garbage
);
6418 int kvm_arch_hardware_setup(void)
6420 return kvm_x86_ops
->hardware_setup();
6423 void kvm_arch_hardware_unsetup(void)
6425 kvm_x86_ops
->hardware_unsetup();
6428 void kvm_arch_check_processor_compat(void *rtn
)
6430 kvm_x86_ops
->check_processor_compatibility(rtn
);
6433 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
6439 BUG_ON(vcpu
->kvm
== NULL
);
6442 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
6443 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
6444 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
6445 vcpu
->arch
.mmu
.translate_gpa
= translate_gpa
;
6446 vcpu
->arch
.nested_mmu
.translate_gpa
= translate_nested_gpa
;
6447 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
6448 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
6450 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
6452 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
6457 vcpu
->arch
.pio_data
= page_address(page
);
6459 kvm_init_tsc_catchup(vcpu
, max_tsc_khz
);
6461 r
= kvm_mmu_create(vcpu
);
6463 goto fail_free_pio_data
;
6465 if (irqchip_in_kernel(kvm
)) {
6466 r
= kvm_create_lapic(vcpu
);
6468 goto fail_mmu_destroy
;
6471 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
6473 if (!vcpu
->arch
.mce_banks
) {
6475 goto fail_free_lapic
;
6477 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
6479 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
))
6480 goto fail_free_mce_banks
;
6482 kvm_async_pf_hash_reset(vcpu
);
6485 fail_free_mce_banks
:
6486 kfree(vcpu
->arch
.mce_banks
);
6488 kvm_free_lapic(vcpu
);
6490 kvm_mmu_destroy(vcpu
);
6492 free_page((unsigned long)vcpu
->arch
.pio_data
);
6497 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
6501 kfree(vcpu
->arch
.mce_banks
);
6502 kvm_free_lapic(vcpu
);
6503 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6504 kvm_mmu_destroy(vcpu
);
6505 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6506 free_page((unsigned long)vcpu
->arch
.pio_data
);
6509 int kvm_arch_init_vm(struct kvm
*kvm
)
6511 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
6512 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
6514 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6515 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
6517 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
6522 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
6525 kvm_mmu_unload(vcpu
);
6529 static void kvm_free_vcpus(struct kvm
*kvm
)
6532 struct kvm_vcpu
*vcpu
;
6535 * Unpin any mmu pages first.
6537 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6538 kvm_clear_async_pf_completion_queue(vcpu
);
6539 kvm_unload_vcpu_mmu(vcpu
);
6541 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6542 kvm_arch_vcpu_free(vcpu
);
6544 mutex_lock(&kvm
->lock
);
6545 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
6546 kvm
->vcpus
[i
] = NULL
;
6548 atomic_set(&kvm
->online_vcpus
, 0);
6549 mutex_unlock(&kvm
->lock
);
6552 void kvm_arch_sync_events(struct kvm
*kvm
)
6554 kvm_free_all_assigned_devices(kvm
);
6558 void kvm_arch_destroy_vm(struct kvm
*kvm
)
6560 kvm_iommu_unmap_guest(kvm
);
6561 kfree(kvm
->arch
.vpic
);
6562 kfree(kvm
->arch
.vioapic
);
6563 kvm_free_vcpus(kvm
);
6564 if (kvm
->arch
.apic_access_page
)
6565 put_page(kvm
->arch
.apic_access_page
);
6566 if (kvm
->arch
.ept_identity_pagetable
)
6567 put_page(kvm
->arch
.ept_identity_pagetable
);
6570 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
6571 struct kvm_memory_slot
*memslot
,
6572 struct kvm_memory_slot old
,
6573 struct kvm_userspace_memory_region
*mem
,
6576 int npages
= memslot
->npages
;
6577 int map_flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
6579 /* Prevent internal slot pages from being moved by fork()/COW. */
6580 if (memslot
->id
>= KVM_MEMORY_SLOTS
)
6581 map_flags
= MAP_SHARED
| MAP_ANONYMOUS
;
6583 /*To keep backward compatibility with older userspace,
6584 *x86 needs to hanlde !user_alloc case.
6587 if (npages
&& !old
.rmap
) {
6588 unsigned long userspace_addr
;
6590 down_write(¤t
->mm
->mmap_sem
);
6591 userspace_addr
= do_mmap(NULL
, 0,
6593 PROT_READ
| PROT_WRITE
,
6596 up_write(¤t
->mm
->mmap_sem
);
6598 if (IS_ERR((void *)userspace_addr
))
6599 return PTR_ERR((void *)userspace_addr
);
6601 memslot
->userspace_addr
= userspace_addr
;
6609 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
6610 struct kvm_userspace_memory_region
*mem
,
6611 struct kvm_memory_slot old
,
6615 int nr_mmu_pages
= 0, npages
= mem
->memory_size
>> PAGE_SHIFT
;
6617 if (!user_alloc
&& !old
.user_alloc
&& old
.rmap
&& !npages
) {
6620 down_write(¤t
->mm
->mmap_sem
);
6621 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
6622 old
.npages
* PAGE_SIZE
);
6623 up_write(¤t
->mm
->mmap_sem
);
6626 "kvm_vm_ioctl_set_memory_region: "
6627 "failed to munmap memory\n");
6630 if (!kvm
->arch
.n_requested_mmu_pages
)
6631 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
6633 spin_lock(&kvm
->mmu_lock
);
6635 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
6636 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
6637 spin_unlock(&kvm
->mmu_lock
);
6640 void kvm_arch_flush_shadow(struct kvm
*kvm
)
6642 kvm_mmu_zap_all(kvm
);
6643 kvm_reload_remote_mmus(kvm
);
6646 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
6648 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6649 !vcpu
->arch
.apf
.halted
)
6650 || !list_empty_careful(&vcpu
->async_pf
.done
)
6651 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
6652 || vcpu
->arch
.nmi_pending
||
6653 (kvm_arch_interrupt_allowed(vcpu
) &&
6654 kvm_cpu_has_interrupt(vcpu
));
6657 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
6660 int cpu
= vcpu
->cpu
;
6662 if (waitqueue_active(&vcpu
->wq
)) {
6663 wake_up_interruptible(&vcpu
->wq
);
6664 ++vcpu
->stat
.halt_wakeup
;
6668 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
6669 if (kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
)
6670 smp_send_reschedule(cpu
);
6674 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
6676 return kvm_x86_ops
->interrupt_allowed(vcpu
);
6679 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
6681 unsigned long current_rip
= kvm_rip_read(vcpu
) +
6682 get_segment_base(vcpu
, VCPU_SREG_CS
);
6684 return current_rip
== linear_rip
;
6686 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
6688 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
6690 unsigned long rflags
;
6692 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
6693 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6694 rflags
&= ~X86_EFLAGS_TF
;
6697 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
6699 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
6701 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
6702 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
6703 rflags
|= X86_EFLAGS_TF
;
6704 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
6705 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6707 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
6709 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
6713 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
6714 is_error_page(work
->page
))
6717 r
= kvm_mmu_reload(vcpu
);
6721 if (!vcpu
->arch
.mmu
.direct_map
&&
6722 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
6725 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
6728 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
6730 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
6733 static inline u32
kvm_async_pf_next_probe(u32 key
)
6735 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
6738 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6740 u32 key
= kvm_async_pf_hash_fn(gfn
);
6742 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
6743 key
= kvm_async_pf_next_probe(key
);
6745 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
6748 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6751 u32 key
= kvm_async_pf_hash_fn(gfn
);
6753 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
6754 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
6755 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
6756 key
= kvm_async_pf_next_probe(key
);
6761 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6763 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
6766 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6770 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
6772 vcpu
->arch
.apf
.gfns
[i
] = ~0;
6774 j
= kvm_async_pf_next_probe(j
);
6775 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
6777 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
6779 * k lies cyclically in ]i,j]
6781 * |....j i.k.| or |.k..j i...|
6783 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
6784 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
6789 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
6792 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
6796 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
6797 struct kvm_async_pf
*work
)
6799 struct x86_exception fault
;
6801 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
6802 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
6804 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
6805 (vcpu
->arch
.apf
.send_user_only
&&
6806 kvm_x86_ops
->get_cpl(vcpu
) == 0))
6807 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
6808 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
6809 fault
.vector
= PF_VECTOR
;
6810 fault
.error_code_valid
= true;
6811 fault
.error_code
= 0;
6812 fault
.nested_page_fault
= false;
6813 fault
.address
= work
->arch
.token
;
6814 kvm_inject_page_fault(vcpu
, &fault
);
6818 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
6819 struct kvm_async_pf
*work
)
6821 struct x86_exception fault
;
6823 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
6824 if (is_error_page(work
->page
))
6825 work
->arch
.token
= ~0; /* broadcast wakeup */
6827 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
6829 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
6830 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
6831 fault
.vector
= PF_VECTOR
;
6832 fault
.error_code_valid
= true;
6833 fault
.error_code
= 0;
6834 fault
.nested_page_fault
= false;
6835 fault
.address
= work
->arch
.token
;
6836 kvm_inject_page_fault(vcpu
, &fault
);
6838 vcpu
->arch
.apf
.halted
= false;
6841 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
6843 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
6846 return !kvm_event_needs_reinjection(vcpu
) &&
6847 kvm_x86_ops
->interrupt_allowed(vcpu
);
6850 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
6851 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
6852 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
6853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
6854 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
6855 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
6856 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
6857 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
6858 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
6859 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
6860 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
6861 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);