Linux 2.6.22-rc3
[linux-2.6/next.git] / drivers / char / tty_io.c
blob75d2a46e106fedf09630958ca24c1bf2909a25ad
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
107 #undef TTY_DEBUG_HANGUP
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
112 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
113 .c_iflag = ICRNL | IXON,
114 .c_oflag = OPOST | ONLCR,
115 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117 ECHOCTL | ECHOKE | IEXTEN,
118 .c_cc = INIT_C_CC,
119 .c_ispeed = 38400,
120 .c_ospeed = 38400
123 EXPORT_SYMBOL(tty_std_termios);
125 /* This list gets poked at by procfs and various bits of boot up code. This
126 could do with some rationalisation such as pulling the tty proc function
127 into this file */
129 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131 /* Mutex to protect creating and releasing a tty. This is shared with
132 vt.c for deeply disgusting hack reasons */
133 DEFINE_MUTEX(tty_mutex);
134 EXPORT_SYMBOL(tty_mutex);
136 #ifdef CONFIG_UNIX98_PTYS
137 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
138 extern int pty_limit; /* Config limit on Unix98 ptys */
139 static DEFINE_IDR(allocated_ptys);
140 static DECLARE_MUTEX(allocated_ptys_lock);
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
144 static void initialize_tty_struct(struct tty_struct *tty);
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 static int tty_release(struct inode *, struct file *);
152 int tty_ioctl(struct inode * inode, struct file * file,
153 unsigned int cmd, unsigned long arg);
154 #ifdef CONFIG_COMPAT
155 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
156 unsigned long arg);
157 #else
158 #define tty_compat_ioctl NULL
159 #endif
160 static int tty_fasync(int fd, struct file * filp, int on);
161 static void release_tty(struct tty_struct *tty, int idx);
162 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
163 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
166 * alloc_tty_struct - allocate a tty object
168 * Return a new empty tty structure. The data fields have not
169 * been initialized in any way but has been zeroed
171 * Locking: none
174 static struct tty_struct *alloc_tty_struct(void)
176 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
179 static void tty_buffer_free_all(struct tty_struct *);
182 * free_tty_struct - free a disused tty
183 * @tty: tty struct to free
185 * Free the write buffers, tty queue and tty memory itself.
187 * Locking: none. Must be called after tty is definitely unused
190 static inline void free_tty_struct(struct tty_struct *tty)
192 kfree(tty->write_buf);
193 tty_buffer_free_all(tty);
194 kfree(tty);
197 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
200 * tty_name - return tty naming
201 * @tty: tty structure
202 * @buf: buffer for output
204 * Convert a tty structure into a name. The name reflects the kernel
205 * naming policy and if udev is in use may not reflect user space
207 * Locking: none
210 char *tty_name(struct tty_struct *tty, char *buf)
212 if (!tty) /* Hmm. NULL pointer. That's fun. */
213 strcpy(buf, "NULL tty");
214 else
215 strcpy(buf, tty->name);
216 return buf;
219 EXPORT_SYMBOL(tty_name);
221 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
222 const char *routine)
224 #ifdef TTY_PARANOIA_CHECK
225 if (!tty) {
226 printk(KERN_WARNING
227 "null TTY for (%d:%d) in %s\n",
228 imajor(inode), iminor(inode), routine);
229 return 1;
231 if (tty->magic != TTY_MAGIC) {
232 printk(KERN_WARNING
233 "bad magic number for tty struct (%d:%d) in %s\n",
234 imajor(inode), iminor(inode), routine);
235 return 1;
237 #endif
238 return 0;
241 static int check_tty_count(struct tty_struct *tty, const char *routine)
243 #ifdef CHECK_TTY_COUNT
244 struct list_head *p;
245 int count = 0;
247 file_list_lock();
248 list_for_each(p, &tty->tty_files) {
249 count++;
251 file_list_unlock();
252 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
253 tty->driver->subtype == PTY_TYPE_SLAVE &&
254 tty->link && tty->link->count)
255 count++;
256 if (tty->count != count) {
257 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
258 "!= #fd's(%d) in %s\n",
259 tty->name, tty->count, count, routine);
260 return count;
262 #endif
263 return 0;
267 * Tty buffer allocation management
271 * tty_buffer_free_all - free buffers used by a tty
272 * @tty: tty to free from
274 * Remove all the buffers pending on a tty whether queued with data
275 * or in the free ring. Must be called when the tty is no longer in use
277 * Locking: none
280 static void tty_buffer_free_all(struct tty_struct *tty)
282 struct tty_buffer *thead;
283 while((thead = tty->buf.head) != NULL) {
284 tty->buf.head = thead->next;
285 kfree(thead);
287 while((thead = tty->buf.free) != NULL) {
288 tty->buf.free = thead->next;
289 kfree(thead);
291 tty->buf.tail = NULL;
292 tty->buf.memory_used = 0;
296 * tty_buffer_init - prepare a tty buffer structure
297 * @tty: tty to initialise
299 * Set up the initial state of the buffer management for a tty device.
300 * Must be called before the other tty buffer functions are used.
302 * Locking: none
305 static void tty_buffer_init(struct tty_struct *tty)
307 spin_lock_init(&tty->buf.lock);
308 tty->buf.head = NULL;
309 tty->buf.tail = NULL;
310 tty->buf.free = NULL;
311 tty->buf.memory_used = 0;
315 * tty_buffer_alloc - allocate a tty buffer
316 * @tty: tty device
317 * @size: desired size (characters)
319 * Allocate a new tty buffer to hold the desired number of characters.
320 * Return NULL if out of memory or the allocation would exceed the
321 * per device queue
323 * Locking: Caller must hold tty->buf.lock
326 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
328 struct tty_buffer *p;
330 if (tty->buf.memory_used + size > 65536)
331 return NULL;
332 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
333 if(p == NULL)
334 return NULL;
335 p->used = 0;
336 p->size = size;
337 p->next = NULL;
338 p->commit = 0;
339 p->read = 0;
340 p->char_buf_ptr = (char *)(p->data);
341 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
342 tty->buf.memory_used += size;
343 return p;
347 * tty_buffer_free - free a tty buffer
348 * @tty: tty owning the buffer
349 * @b: the buffer to free
351 * Free a tty buffer, or add it to the free list according to our
352 * internal strategy
354 * Locking: Caller must hold tty->buf.lock
357 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
359 /* Dumb strategy for now - should keep some stats */
360 tty->buf.memory_used -= b->size;
361 WARN_ON(tty->buf.memory_used < 0);
363 if(b->size >= 512)
364 kfree(b);
365 else {
366 b->next = tty->buf.free;
367 tty->buf.free = b;
372 * tty_buffer_flush - flush full tty buffers
373 * @tty: tty to flush
375 * flush all the buffers containing receive data
377 * Locking: none
380 static void tty_buffer_flush(struct tty_struct *tty)
382 struct tty_buffer *thead;
383 unsigned long flags;
385 spin_lock_irqsave(&tty->buf.lock, flags);
386 while((thead = tty->buf.head) != NULL) {
387 tty->buf.head = thead->next;
388 tty_buffer_free(tty, thead);
390 tty->buf.tail = NULL;
391 spin_unlock_irqrestore(&tty->buf.lock, flags);
395 * tty_buffer_find - find a free tty buffer
396 * @tty: tty owning the buffer
397 * @size: characters wanted
399 * Locate an existing suitable tty buffer or if we are lacking one then
400 * allocate a new one. We round our buffers off in 256 character chunks
401 * to get better allocation behaviour.
403 * Locking: Caller must hold tty->buf.lock
406 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
408 struct tty_buffer **tbh = &tty->buf.free;
409 while((*tbh) != NULL) {
410 struct tty_buffer *t = *tbh;
411 if(t->size >= size) {
412 *tbh = t->next;
413 t->next = NULL;
414 t->used = 0;
415 t->commit = 0;
416 t->read = 0;
417 tty->buf.memory_used += t->size;
418 return t;
420 tbh = &((*tbh)->next);
422 /* Round the buffer size out */
423 size = (size + 0xFF) & ~ 0xFF;
424 return tty_buffer_alloc(tty, size);
425 /* Should possibly check if this fails for the largest buffer we
426 have queued and recycle that ? */
430 * tty_buffer_request_room - grow tty buffer if needed
431 * @tty: tty structure
432 * @size: size desired
434 * Make at least size bytes of linear space available for the tty
435 * buffer. If we fail return the size we managed to find.
437 * Locking: Takes tty->buf.lock
439 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
441 struct tty_buffer *b, *n;
442 int left;
443 unsigned long flags;
445 spin_lock_irqsave(&tty->buf.lock, flags);
447 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
448 remove this conditional if its worth it. This would be invisible
449 to the callers */
450 if ((b = tty->buf.tail) != NULL)
451 left = b->size - b->used;
452 else
453 left = 0;
455 if (left < size) {
456 /* This is the slow path - looking for new buffers to use */
457 if ((n = tty_buffer_find(tty, size)) != NULL) {
458 if (b != NULL) {
459 b->next = n;
460 b->commit = b->used;
461 } else
462 tty->buf.head = n;
463 tty->buf.tail = n;
464 } else
465 size = left;
468 spin_unlock_irqrestore(&tty->buf.lock, flags);
469 return size;
471 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
474 * tty_insert_flip_string - Add characters to the tty buffer
475 * @tty: tty structure
476 * @chars: characters
477 * @size: size
479 * Queue a series of bytes to the tty buffering. All the characters
480 * passed are marked as without error. Returns the number added.
482 * Locking: Called functions may take tty->buf.lock
485 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
486 size_t size)
488 int copied = 0;
489 do {
490 int space = tty_buffer_request_room(tty, size - copied);
491 struct tty_buffer *tb = tty->buf.tail;
492 /* If there is no space then tb may be NULL */
493 if(unlikely(space == 0))
494 break;
495 memcpy(tb->char_buf_ptr + tb->used, chars, space);
496 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
497 tb->used += space;
498 copied += space;
499 chars += space;
500 /* There is a small chance that we need to split the data over
501 several buffers. If this is the case we must loop */
502 } while (unlikely(size > copied));
503 return copied;
505 EXPORT_SYMBOL(tty_insert_flip_string);
508 * tty_insert_flip_string_flags - Add characters to the tty buffer
509 * @tty: tty structure
510 * @chars: characters
511 * @flags: flag bytes
512 * @size: size
514 * Queue a series of bytes to the tty buffering. For each character
515 * the flags array indicates the status of the character. Returns the
516 * number added.
518 * Locking: Called functions may take tty->buf.lock
521 int tty_insert_flip_string_flags(struct tty_struct *tty,
522 const unsigned char *chars, const char *flags, size_t size)
524 int copied = 0;
525 do {
526 int space = tty_buffer_request_room(tty, size - copied);
527 struct tty_buffer *tb = tty->buf.tail;
528 /* If there is no space then tb may be NULL */
529 if(unlikely(space == 0))
530 break;
531 memcpy(tb->char_buf_ptr + tb->used, chars, space);
532 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
533 tb->used += space;
534 copied += space;
535 chars += space;
536 flags += space;
537 /* There is a small chance that we need to split the data over
538 several buffers. If this is the case we must loop */
539 } while (unlikely(size > copied));
540 return copied;
542 EXPORT_SYMBOL(tty_insert_flip_string_flags);
545 * tty_schedule_flip - push characters to ldisc
546 * @tty: tty to push from
548 * Takes any pending buffers and transfers their ownership to the
549 * ldisc side of the queue. It then schedules those characters for
550 * processing by the line discipline.
552 * Locking: Takes tty->buf.lock
555 void tty_schedule_flip(struct tty_struct *tty)
557 unsigned long flags;
558 spin_lock_irqsave(&tty->buf.lock, flags);
559 if (tty->buf.tail != NULL)
560 tty->buf.tail->commit = tty->buf.tail->used;
561 spin_unlock_irqrestore(&tty->buf.lock, flags);
562 schedule_delayed_work(&tty->buf.work, 1);
564 EXPORT_SYMBOL(tty_schedule_flip);
567 * tty_prepare_flip_string - make room for characters
568 * @tty: tty
569 * @chars: return pointer for character write area
570 * @size: desired size
572 * Prepare a block of space in the buffer for data. Returns the length
573 * available and buffer pointer to the space which is now allocated and
574 * accounted for as ready for normal characters. This is used for drivers
575 * that need their own block copy routines into the buffer. There is no
576 * guarantee the buffer is a DMA target!
578 * Locking: May call functions taking tty->buf.lock
581 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
583 int space = tty_buffer_request_room(tty, size);
584 if (likely(space)) {
585 struct tty_buffer *tb = tty->buf.tail;
586 *chars = tb->char_buf_ptr + tb->used;
587 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
588 tb->used += space;
590 return space;
593 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
596 * tty_prepare_flip_string_flags - make room for characters
597 * @tty: tty
598 * @chars: return pointer for character write area
599 * @flags: return pointer for status flag write area
600 * @size: desired size
602 * Prepare a block of space in the buffer for data. Returns the length
603 * available and buffer pointer to the space which is now allocated and
604 * accounted for as ready for characters. This is used for drivers
605 * that need their own block copy routines into the buffer. There is no
606 * guarantee the buffer is a DMA target!
608 * Locking: May call functions taking tty->buf.lock
611 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
613 int space = tty_buffer_request_room(tty, size);
614 if (likely(space)) {
615 struct tty_buffer *tb = tty->buf.tail;
616 *chars = tb->char_buf_ptr + tb->used;
617 *flags = tb->flag_buf_ptr + tb->used;
618 tb->used += space;
620 return space;
623 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
628 * tty_set_termios_ldisc - set ldisc field
629 * @tty: tty structure
630 * @num: line discipline number
632 * This is probably overkill for real world processors but
633 * they are not on hot paths so a little discipline won't do
634 * any harm.
636 * Locking: takes termios_mutex
639 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
641 mutex_lock(&tty->termios_mutex);
642 tty->termios->c_line = num;
643 mutex_unlock(&tty->termios_mutex);
647 * This guards the refcounted line discipline lists. The lock
648 * must be taken with irqs off because there are hangup path
649 * callers who will do ldisc lookups and cannot sleep.
652 static DEFINE_SPINLOCK(tty_ldisc_lock);
653 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
654 static struct tty_ldisc tty_ldiscs[NR_LDISCS]; /* line disc dispatch table */
657 * tty_register_ldisc - install a line discipline
658 * @disc: ldisc number
659 * @new_ldisc: pointer to the ldisc object
661 * Installs a new line discipline into the kernel. The discipline
662 * is set up as unreferenced and then made available to the kernel
663 * from this point onwards.
665 * Locking:
666 * takes tty_ldisc_lock to guard against ldisc races
669 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
671 unsigned long flags;
672 int ret = 0;
674 if (disc < N_TTY || disc >= NR_LDISCS)
675 return -EINVAL;
677 spin_lock_irqsave(&tty_ldisc_lock, flags);
678 tty_ldiscs[disc] = *new_ldisc;
679 tty_ldiscs[disc].num = disc;
680 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
681 tty_ldiscs[disc].refcount = 0;
682 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
684 return ret;
686 EXPORT_SYMBOL(tty_register_ldisc);
689 * tty_unregister_ldisc - unload a line discipline
690 * @disc: ldisc number
691 * @new_ldisc: pointer to the ldisc object
693 * Remove a line discipline from the kernel providing it is not
694 * currently in use.
696 * Locking:
697 * takes tty_ldisc_lock to guard against ldisc races
700 int tty_unregister_ldisc(int disc)
702 unsigned long flags;
703 int ret = 0;
705 if (disc < N_TTY || disc >= NR_LDISCS)
706 return -EINVAL;
708 spin_lock_irqsave(&tty_ldisc_lock, flags);
709 if (tty_ldiscs[disc].refcount)
710 ret = -EBUSY;
711 else
712 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
713 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
715 return ret;
717 EXPORT_SYMBOL(tty_unregister_ldisc);
720 * tty_ldisc_get - take a reference to an ldisc
721 * @disc: ldisc number
723 * Takes a reference to a line discipline. Deals with refcounts and
724 * module locking counts. Returns NULL if the discipline is not available.
725 * Returns a pointer to the discipline and bumps the ref count if it is
726 * available
728 * Locking:
729 * takes tty_ldisc_lock to guard against ldisc races
732 struct tty_ldisc *tty_ldisc_get(int disc)
734 unsigned long flags;
735 struct tty_ldisc *ld;
737 if (disc < N_TTY || disc >= NR_LDISCS)
738 return NULL;
740 spin_lock_irqsave(&tty_ldisc_lock, flags);
742 ld = &tty_ldiscs[disc];
743 /* Check the entry is defined */
744 if(ld->flags & LDISC_FLAG_DEFINED)
746 /* If the module is being unloaded we can't use it */
747 if (!try_module_get(ld->owner))
748 ld = NULL;
749 else /* lock it */
750 ld->refcount++;
752 else
753 ld = NULL;
754 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
755 return ld;
758 EXPORT_SYMBOL_GPL(tty_ldisc_get);
761 * tty_ldisc_put - drop ldisc reference
762 * @disc: ldisc number
764 * Drop a reference to a line discipline. Manage refcounts and
765 * module usage counts
767 * Locking:
768 * takes tty_ldisc_lock to guard against ldisc races
771 void tty_ldisc_put(int disc)
773 struct tty_ldisc *ld;
774 unsigned long flags;
776 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
778 spin_lock_irqsave(&tty_ldisc_lock, flags);
779 ld = &tty_ldiscs[disc];
780 BUG_ON(ld->refcount == 0);
781 ld->refcount--;
782 module_put(ld->owner);
783 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
786 EXPORT_SYMBOL_GPL(tty_ldisc_put);
789 * tty_ldisc_assign - set ldisc on a tty
790 * @tty: tty to assign
791 * @ld: line discipline
793 * Install an instance of a line discipline into a tty structure. The
794 * ldisc must have a reference count above zero to ensure it remains/
795 * The tty instance refcount starts at zero.
797 * Locking:
798 * Caller must hold references
801 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
803 tty->ldisc = *ld;
804 tty->ldisc.refcount = 0;
808 * tty_ldisc_try - internal helper
809 * @tty: the tty
811 * Make a single attempt to grab and bump the refcount on
812 * the tty ldisc. Return 0 on failure or 1 on success. This is
813 * used to implement both the waiting and non waiting versions
814 * of tty_ldisc_ref
816 * Locking: takes tty_ldisc_lock
819 static int tty_ldisc_try(struct tty_struct *tty)
821 unsigned long flags;
822 struct tty_ldisc *ld;
823 int ret = 0;
825 spin_lock_irqsave(&tty_ldisc_lock, flags);
826 ld = &tty->ldisc;
827 if(test_bit(TTY_LDISC, &tty->flags))
829 ld->refcount++;
830 ret = 1;
832 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
833 return ret;
837 * tty_ldisc_ref_wait - wait for the tty ldisc
838 * @tty: tty device
840 * Dereference the line discipline for the terminal and take a
841 * reference to it. If the line discipline is in flux then
842 * wait patiently until it changes.
844 * Note: Must not be called from an IRQ/timer context. The caller
845 * must also be careful not to hold other locks that will deadlock
846 * against a discipline change, such as an existing ldisc reference
847 * (which we check for)
849 * Locking: call functions take tty_ldisc_lock
852 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
854 /* wait_event is a macro */
855 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
856 if(tty->ldisc.refcount == 0)
857 printk(KERN_ERR "tty_ldisc_ref_wait\n");
858 return &tty->ldisc;
861 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
864 * tty_ldisc_ref - get the tty ldisc
865 * @tty: tty device
867 * Dereference the line discipline for the terminal and take a
868 * reference to it. If the line discipline is in flux then
869 * return NULL. Can be called from IRQ and timer functions.
871 * Locking: called functions take tty_ldisc_lock
874 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
876 if(tty_ldisc_try(tty))
877 return &tty->ldisc;
878 return NULL;
881 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
884 * tty_ldisc_deref - free a tty ldisc reference
885 * @ld: reference to free up
887 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
888 * be called in IRQ context.
890 * Locking: takes tty_ldisc_lock
893 void tty_ldisc_deref(struct tty_ldisc *ld)
895 unsigned long flags;
897 BUG_ON(ld == NULL);
899 spin_lock_irqsave(&tty_ldisc_lock, flags);
900 if(ld->refcount == 0)
901 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
902 else
903 ld->refcount--;
904 if(ld->refcount == 0)
905 wake_up(&tty_ldisc_wait);
906 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
909 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
912 * tty_ldisc_enable - allow ldisc use
913 * @tty: terminal to activate ldisc on
915 * Set the TTY_LDISC flag when the line discipline can be called
916 * again. Do neccessary wakeups for existing sleepers.
918 * Note: nobody should set this bit except via this function. Clearing
919 * directly is allowed.
922 static void tty_ldisc_enable(struct tty_struct *tty)
924 set_bit(TTY_LDISC, &tty->flags);
925 wake_up(&tty_ldisc_wait);
929 * tty_set_ldisc - set line discipline
930 * @tty: the terminal to set
931 * @ldisc: the line discipline
933 * Set the discipline of a tty line. Must be called from a process
934 * context.
936 * Locking: takes tty_ldisc_lock.
937 * called functions take termios_mutex
940 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
942 int retval = 0;
943 struct tty_ldisc o_ldisc;
944 char buf[64];
945 int work;
946 unsigned long flags;
947 struct tty_ldisc *ld;
948 struct tty_struct *o_tty;
950 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
951 return -EINVAL;
953 restart:
955 ld = tty_ldisc_get(ldisc);
956 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
957 /* Cyrus Durgin <cider@speakeasy.org> */
958 if (ld == NULL) {
959 request_module("tty-ldisc-%d", ldisc);
960 ld = tty_ldisc_get(ldisc);
962 if (ld == NULL)
963 return -EINVAL;
966 * Problem: What do we do if this blocks ?
969 tty_wait_until_sent(tty, 0);
971 if (tty->ldisc.num == ldisc) {
972 tty_ldisc_put(ldisc);
973 return 0;
977 * No more input please, we are switching. The new ldisc
978 * will update this value in the ldisc open function
981 tty->receive_room = 0;
983 o_ldisc = tty->ldisc;
984 o_tty = tty->link;
987 * Make sure we don't change while someone holds a
988 * reference to the line discipline. The TTY_LDISC bit
989 * prevents anyone taking a reference once it is clear.
990 * We need the lock to avoid racing reference takers.
993 spin_lock_irqsave(&tty_ldisc_lock, flags);
994 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
995 if(tty->ldisc.refcount) {
996 /* Free the new ldisc we grabbed. Must drop the lock
997 first. */
998 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
999 tty_ldisc_put(ldisc);
1001 * There are several reasons we may be busy, including
1002 * random momentary I/O traffic. We must therefore
1003 * retry. We could distinguish between blocking ops
1004 * and retries if we made tty_ldisc_wait() smarter. That
1005 * is up for discussion.
1007 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
1008 return -ERESTARTSYS;
1009 goto restart;
1011 if(o_tty && o_tty->ldisc.refcount) {
1012 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1013 tty_ldisc_put(ldisc);
1014 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
1015 return -ERESTARTSYS;
1016 goto restart;
1020 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
1022 if (!test_bit(TTY_LDISC, &tty->flags)) {
1023 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1024 tty_ldisc_put(ldisc);
1025 ld = tty_ldisc_ref_wait(tty);
1026 tty_ldisc_deref(ld);
1027 goto restart;
1030 clear_bit(TTY_LDISC, &tty->flags);
1031 if (o_tty)
1032 clear_bit(TTY_LDISC, &o_tty->flags);
1033 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1036 * From this point on we know nobody has an ldisc
1037 * usage reference, nor can they obtain one until
1038 * we say so later on.
1041 work = cancel_delayed_work(&tty->buf.work);
1043 * Wait for ->hangup_work and ->buf.work handlers to terminate
1046 flush_scheduled_work();
1047 /* Shutdown the current discipline. */
1048 if (tty->ldisc.close)
1049 (tty->ldisc.close)(tty);
1051 /* Now set up the new line discipline. */
1052 tty_ldisc_assign(tty, ld);
1053 tty_set_termios_ldisc(tty, ldisc);
1054 if (tty->ldisc.open)
1055 retval = (tty->ldisc.open)(tty);
1056 if (retval < 0) {
1057 tty_ldisc_put(ldisc);
1058 /* There is an outstanding reference here so this is safe */
1059 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1060 tty_set_termios_ldisc(tty, tty->ldisc.num);
1061 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1062 tty_ldisc_put(o_ldisc.num);
1063 /* This driver is always present */
1064 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1065 tty_set_termios_ldisc(tty, N_TTY);
1066 if (tty->ldisc.open) {
1067 int r = tty->ldisc.open(tty);
1069 if (r < 0)
1070 panic("Couldn't open N_TTY ldisc for "
1071 "%s --- error %d.",
1072 tty_name(tty, buf), r);
1076 /* At this point we hold a reference to the new ldisc and a
1077 a reference to the old ldisc. If we ended up flipping back
1078 to the existing ldisc we have two references to it */
1080 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1081 tty->driver->set_ldisc(tty);
1083 tty_ldisc_put(o_ldisc.num);
1086 * Allow ldisc referencing to occur as soon as the driver
1087 * ldisc callback completes.
1090 tty_ldisc_enable(tty);
1091 if (o_tty)
1092 tty_ldisc_enable(o_tty);
1094 /* Restart it in case no characters kick it off. Safe if
1095 already running */
1096 if (work)
1097 schedule_delayed_work(&tty->buf.work, 1);
1098 return retval;
1102 * get_tty_driver - find device of a tty
1103 * @dev_t: device identifier
1104 * @index: returns the index of the tty
1106 * This routine returns a tty driver structure, given a device number
1107 * and also passes back the index number.
1109 * Locking: caller must hold tty_mutex
1112 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1114 struct tty_driver *p;
1116 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1117 dev_t base = MKDEV(p->major, p->minor_start);
1118 if (device < base || device >= base + p->num)
1119 continue;
1120 *index = device - base;
1121 return p;
1123 return NULL;
1127 * tty_check_change - check for POSIX terminal changes
1128 * @tty: tty to check
1130 * If we try to write to, or set the state of, a terminal and we're
1131 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1132 * ignored, go ahead and perform the operation. (POSIX 7.2)
1134 * Locking: none
1137 int tty_check_change(struct tty_struct * tty)
1139 if (current->signal->tty != tty)
1140 return 0;
1141 if (!tty->pgrp) {
1142 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
1143 return 0;
1145 if (task_pgrp(current) == tty->pgrp)
1146 return 0;
1147 if (is_ignored(SIGTTOU))
1148 return 0;
1149 if (is_current_pgrp_orphaned())
1150 return -EIO;
1151 (void) kill_pgrp(task_pgrp(current), SIGTTOU, 1);
1152 return -ERESTARTSYS;
1155 EXPORT_SYMBOL(tty_check_change);
1157 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1158 size_t count, loff_t *ppos)
1160 return 0;
1163 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1164 size_t count, loff_t *ppos)
1166 return -EIO;
1169 /* No kernel lock held - none needed ;) */
1170 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1172 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1175 static long hung_up_tty_ioctl(struct file * file,
1176 unsigned int cmd, unsigned long arg)
1178 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1181 static const struct file_operations tty_fops = {
1182 .llseek = no_llseek,
1183 .read = tty_read,
1184 .write = tty_write,
1185 .poll = tty_poll,
1186 .ioctl = tty_ioctl,
1187 .compat_ioctl = tty_compat_ioctl,
1188 .open = tty_open,
1189 .release = tty_release,
1190 .fasync = tty_fasync,
1193 #ifdef CONFIG_UNIX98_PTYS
1194 static const struct file_operations ptmx_fops = {
1195 .llseek = no_llseek,
1196 .read = tty_read,
1197 .write = tty_write,
1198 .poll = tty_poll,
1199 .ioctl = tty_ioctl,
1200 .compat_ioctl = tty_compat_ioctl,
1201 .open = ptmx_open,
1202 .release = tty_release,
1203 .fasync = tty_fasync,
1205 #endif
1207 static const struct file_operations console_fops = {
1208 .llseek = no_llseek,
1209 .read = tty_read,
1210 .write = redirected_tty_write,
1211 .poll = tty_poll,
1212 .ioctl = tty_ioctl,
1213 .compat_ioctl = tty_compat_ioctl,
1214 .open = tty_open,
1215 .release = tty_release,
1216 .fasync = tty_fasync,
1219 static const struct file_operations hung_up_tty_fops = {
1220 .llseek = no_llseek,
1221 .read = hung_up_tty_read,
1222 .write = hung_up_tty_write,
1223 .poll = hung_up_tty_poll,
1224 .unlocked_ioctl = hung_up_tty_ioctl,
1225 .compat_ioctl = hung_up_tty_ioctl,
1226 .release = tty_release,
1229 static DEFINE_SPINLOCK(redirect_lock);
1230 static struct file *redirect;
1233 * tty_wakeup - request more data
1234 * @tty: terminal
1236 * Internal and external helper for wakeups of tty. This function
1237 * informs the line discipline if present that the driver is ready
1238 * to receive more output data.
1241 void tty_wakeup(struct tty_struct *tty)
1243 struct tty_ldisc *ld;
1245 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1246 ld = tty_ldisc_ref(tty);
1247 if(ld) {
1248 if(ld->write_wakeup)
1249 ld->write_wakeup(tty);
1250 tty_ldisc_deref(ld);
1253 wake_up_interruptible(&tty->write_wait);
1256 EXPORT_SYMBOL_GPL(tty_wakeup);
1259 * tty_ldisc_flush - flush line discipline queue
1260 * @tty: tty
1262 * Flush the line discipline queue (if any) for this tty. If there
1263 * is no line discipline active this is a no-op.
1266 void tty_ldisc_flush(struct tty_struct *tty)
1268 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1269 if(ld) {
1270 if(ld->flush_buffer)
1271 ld->flush_buffer(tty);
1272 tty_ldisc_deref(ld);
1274 tty_buffer_flush(tty);
1277 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1280 * tty_reset_termios - reset terminal state
1281 * @tty: tty to reset
1283 * Restore a terminal to the driver default state
1286 static void tty_reset_termios(struct tty_struct *tty)
1288 mutex_lock(&tty->termios_mutex);
1289 *tty->termios = tty->driver->init_termios;
1290 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1291 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1292 mutex_unlock(&tty->termios_mutex);
1296 * do_tty_hangup - actual handler for hangup events
1297 * @work: tty device
1299 * This can be called by the "eventd" kernel thread. That is process
1300 * synchronous but doesn't hold any locks, so we need to make sure we
1301 * have the appropriate locks for what we're doing.
1303 * The hangup event clears any pending redirections onto the hung up
1304 * device. It ensures future writes will error and it does the needed
1305 * line discipline hangup and signal delivery. The tty object itself
1306 * remains intact.
1308 * Locking:
1309 * BKL
1310 * redirect lock for undoing redirection
1311 * file list lock for manipulating list of ttys
1312 * tty_ldisc_lock from called functions
1313 * termios_mutex resetting termios data
1314 * tasklist_lock to walk task list for hangup event
1315 * ->siglock to protect ->signal/->sighand
1317 static void do_tty_hangup(struct work_struct *work)
1319 struct tty_struct *tty =
1320 container_of(work, struct tty_struct, hangup_work);
1321 struct file * cons_filp = NULL;
1322 struct file *filp, *f = NULL;
1323 struct task_struct *p;
1324 struct tty_ldisc *ld;
1325 int closecount = 0, n;
1327 if (!tty)
1328 return;
1330 /* inuse_filps is protected by the single kernel lock */
1331 lock_kernel();
1333 spin_lock(&redirect_lock);
1334 if (redirect && redirect->private_data == tty) {
1335 f = redirect;
1336 redirect = NULL;
1338 spin_unlock(&redirect_lock);
1340 check_tty_count(tty, "do_tty_hangup");
1341 file_list_lock();
1342 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1343 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1344 if (filp->f_op->write == redirected_tty_write)
1345 cons_filp = filp;
1346 if (filp->f_op->write != tty_write)
1347 continue;
1348 closecount++;
1349 tty_fasync(-1, filp, 0); /* can't block */
1350 filp->f_op = &hung_up_tty_fops;
1352 file_list_unlock();
1354 /* FIXME! What are the locking issues here? This may me overdoing things..
1355 * this question is especially important now that we've removed the irqlock. */
1357 ld = tty_ldisc_ref(tty);
1358 if(ld != NULL) /* We may have no line discipline at this point */
1360 if (ld->flush_buffer)
1361 ld->flush_buffer(tty);
1362 if (tty->driver->flush_buffer)
1363 tty->driver->flush_buffer(tty);
1364 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1365 ld->write_wakeup)
1366 ld->write_wakeup(tty);
1367 if (ld->hangup)
1368 ld->hangup(tty);
1371 /* FIXME: Once we trust the LDISC code better we can wait here for
1372 ldisc completion and fix the driver call race */
1374 wake_up_interruptible(&tty->write_wait);
1375 wake_up_interruptible(&tty->read_wait);
1378 * Shutdown the current line discipline, and reset it to
1379 * N_TTY.
1381 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1382 tty_reset_termios(tty);
1384 /* Defer ldisc switch */
1385 /* tty_deferred_ldisc_switch(N_TTY);
1387 This should get done automatically when the port closes and
1388 tty_release is called */
1390 read_lock(&tasklist_lock);
1391 if (tty->session) {
1392 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1393 spin_lock_irq(&p->sighand->siglock);
1394 if (p->signal->tty == tty)
1395 p->signal->tty = NULL;
1396 if (!p->signal->leader) {
1397 spin_unlock_irq(&p->sighand->siglock);
1398 continue;
1400 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1401 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1402 put_pid(p->signal->tty_old_pgrp); /* A noop */
1403 if (tty->pgrp)
1404 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1405 spin_unlock_irq(&p->sighand->siglock);
1406 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1408 read_unlock(&tasklist_lock);
1410 tty->flags = 0;
1411 put_pid(tty->session);
1412 put_pid(tty->pgrp);
1413 tty->session = NULL;
1414 tty->pgrp = NULL;
1415 tty->ctrl_status = 0;
1417 * If one of the devices matches a console pointer, we
1418 * cannot just call hangup() because that will cause
1419 * tty->count and state->count to go out of sync.
1420 * So we just call close() the right number of times.
1422 if (cons_filp) {
1423 if (tty->driver->close)
1424 for (n = 0; n < closecount; n++)
1425 tty->driver->close(tty, cons_filp);
1426 } else if (tty->driver->hangup)
1427 (tty->driver->hangup)(tty);
1429 /* We don't want to have driver/ldisc interactions beyond
1430 the ones we did here. The driver layer expects no
1431 calls after ->hangup() from the ldisc side. However we
1432 can't yet guarantee all that */
1434 set_bit(TTY_HUPPED, &tty->flags);
1435 if (ld) {
1436 tty_ldisc_enable(tty);
1437 tty_ldisc_deref(ld);
1439 unlock_kernel();
1440 if (f)
1441 fput(f);
1445 * tty_hangup - trigger a hangup event
1446 * @tty: tty to hangup
1448 * A carrier loss (virtual or otherwise) has occurred on this like
1449 * schedule a hangup sequence to run after this event.
1452 void tty_hangup(struct tty_struct * tty)
1454 #ifdef TTY_DEBUG_HANGUP
1455 char buf[64];
1457 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1458 #endif
1459 schedule_work(&tty->hangup_work);
1462 EXPORT_SYMBOL(tty_hangup);
1465 * tty_vhangup - process vhangup
1466 * @tty: tty to hangup
1468 * The user has asked via system call for the terminal to be hung up.
1469 * We do this synchronously so that when the syscall returns the process
1470 * is complete. That guarantee is neccessary for security reasons.
1473 void tty_vhangup(struct tty_struct * tty)
1475 #ifdef TTY_DEBUG_HANGUP
1476 char buf[64];
1478 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1479 #endif
1480 do_tty_hangup(&tty->hangup_work);
1482 EXPORT_SYMBOL(tty_vhangup);
1485 * tty_hung_up_p - was tty hung up
1486 * @filp: file pointer of tty
1488 * Return true if the tty has been subject to a vhangup or a carrier
1489 * loss
1492 int tty_hung_up_p(struct file * filp)
1494 return (filp->f_op == &hung_up_tty_fops);
1497 EXPORT_SYMBOL(tty_hung_up_p);
1499 static void session_clear_tty(struct pid *session)
1501 struct task_struct *p;
1502 do_each_pid_task(session, PIDTYPE_SID, p) {
1503 proc_clear_tty(p);
1504 } while_each_pid_task(session, PIDTYPE_SID, p);
1508 * disassociate_ctty - disconnect controlling tty
1509 * @on_exit: true if exiting so need to "hang up" the session
1511 * This function is typically called only by the session leader, when
1512 * it wants to disassociate itself from its controlling tty.
1514 * It performs the following functions:
1515 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1516 * (2) Clears the tty from being controlling the session
1517 * (3) Clears the controlling tty for all processes in the
1518 * session group.
1520 * The argument on_exit is set to 1 if called when a process is
1521 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1523 * Locking:
1524 * BKL is taken for hysterical raisins
1525 * tty_mutex is taken to protect tty
1526 * ->siglock is taken to protect ->signal/->sighand
1527 * tasklist_lock is taken to walk process list for sessions
1528 * ->siglock is taken to protect ->signal/->sighand
1531 void disassociate_ctty(int on_exit)
1533 struct tty_struct *tty;
1534 struct pid *tty_pgrp = NULL;
1536 lock_kernel();
1538 mutex_lock(&tty_mutex);
1539 tty = get_current_tty();
1540 if (tty) {
1541 tty_pgrp = get_pid(tty->pgrp);
1542 mutex_unlock(&tty_mutex);
1543 /* XXX: here we race, there is nothing protecting tty */
1544 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1545 tty_vhangup(tty);
1546 } else if (on_exit) {
1547 struct pid *old_pgrp;
1548 spin_lock_irq(&current->sighand->siglock);
1549 old_pgrp = current->signal->tty_old_pgrp;
1550 current->signal->tty_old_pgrp = NULL;
1551 spin_unlock_irq(&current->sighand->siglock);
1552 if (old_pgrp) {
1553 kill_pgrp(old_pgrp, SIGHUP, on_exit);
1554 kill_pgrp(old_pgrp, SIGCONT, on_exit);
1555 put_pid(old_pgrp);
1557 mutex_unlock(&tty_mutex);
1558 unlock_kernel();
1559 return;
1561 if (tty_pgrp) {
1562 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1563 if (!on_exit)
1564 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1565 put_pid(tty_pgrp);
1568 spin_lock_irq(&current->sighand->siglock);
1569 put_pid(current->signal->tty_old_pgrp);
1570 current->signal->tty_old_pgrp = NULL;
1571 spin_unlock_irq(&current->sighand->siglock);
1573 mutex_lock(&tty_mutex);
1574 /* It is possible that do_tty_hangup has free'd this tty */
1575 tty = get_current_tty();
1576 if (tty) {
1577 put_pid(tty->session);
1578 put_pid(tty->pgrp);
1579 tty->session = NULL;
1580 tty->pgrp = NULL;
1581 } else {
1582 #ifdef TTY_DEBUG_HANGUP
1583 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1584 " = NULL", tty);
1585 #endif
1587 mutex_unlock(&tty_mutex);
1589 /* Now clear signal->tty under the lock */
1590 read_lock(&tasklist_lock);
1591 session_clear_tty(task_session(current));
1592 read_unlock(&tasklist_lock);
1593 unlock_kernel();
1598 * no_tty - Ensure the current process does not have a controlling tty
1600 void no_tty(void)
1602 struct task_struct *tsk = current;
1603 if (tsk->signal->leader)
1604 disassociate_ctty(0);
1605 proc_clear_tty(tsk);
1610 * stop_tty - propagate flow control
1611 * @tty: tty to stop
1613 * Perform flow control to the driver. For PTY/TTY pairs we
1614 * must also propagate the TIOCKPKT status. May be called
1615 * on an already stopped device and will not re-call the driver
1616 * method.
1618 * This functionality is used by both the line disciplines for
1619 * halting incoming flow and by the driver. It may therefore be
1620 * called from any context, may be under the tty atomic_write_lock
1621 * but not always.
1623 * Locking:
1624 * Broken. Relies on BKL which is unsafe here.
1627 void stop_tty(struct tty_struct *tty)
1629 if (tty->stopped)
1630 return;
1631 tty->stopped = 1;
1632 if (tty->link && tty->link->packet) {
1633 tty->ctrl_status &= ~TIOCPKT_START;
1634 tty->ctrl_status |= TIOCPKT_STOP;
1635 wake_up_interruptible(&tty->link->read_wait);
1637 if (tty->driver->stop)
1638 (tty->driver->stop)(tty);
1641 EXPORT_SYMBOL(stop_tty);
1644 * start_tty - propagate flow control
1645 * @tty: tty to start
1647 * Start a tty that has been stopped if at all possible. Perform
1648 * any neccessary wakeups and propagate the TIOCPKT status. If this
1649 * is the tty was previous stopped and is being started then the
1650 * driver start method is invoked and the line discipline woken.
1652 * Locking:
1653 * Broken. Relies on BKL which is unsafe here.
1656 void start_tty(struct tty_struct *tty)
1658 if (!tty->stopped || tty->flow_stopped)
1659 return;
1660 tty->stopped = 0;
1661 if (tty->link && tty->link->packet) {
1662 tty->ctrl_status &= ~TIOCPKT_STOP;
1663 tty->ctrl_status |= TIOCPKT_START;
1664 wake_up_interruptible(&tty->link->read_wait);
1666 if (tty->driver->start)
1667 (tty->driver->start)(tty);
1669 /* If we have a running line discipline it may need kicking */
1670 tty_wakeup(tty);
1673 EXPORT_SYMBOL(start_tty);
1676 * tty_read - read method for tty device files
1677 * @file: pointer to tty file
1678 * @buf: user buffer
1679 * @count: size of user buffer
1680 * @ppos: unused
1682 * Perform the read system call function on this terminal device. Checks
1683 * for hung up devices before calling the line discipline method.
1685 * Locking:
1686 * Locks the line discipline internally while needed
1687 * For historical reasons the line discipline read method is
1688 * invoked under the BKL. This will go away in time so do not rely on it
1689 * in new code. Multiple read calls may be outstanding in parallel.
1692 static ssize_t tty_read(struct file * file, char __user * buf, size_t count,
1693 loff_t *ppos)
1695 int i;
1696 struct tty_struct * tty;
1697 struct inode *inode;
1698 struct tty_ldisc *ld;
1700 tty = (struct tty_struct *)file->private_data;
1701 inode = file->f_path.dentry->d_inode;
1702 if (tty_paranoia_check(tty, inode, "tty_read"))
1703 return -EIO;
1704 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1705 return -EIO;
1707 /* We want to wait for the line discipline to sort out in this
1708 situation */
1709 ld = tty_ldisc_ref_wait(tty);
1710 lock_kernel();
1711 if (ld->read)
1712 i = (ld->read)(tty,file,buf,count);
1713 else
1714 i = -EIO;
1715 tty_ldisc_deref(ld);
1716 unlock_kernel();
1717 if (i > 0)
1718 inode->i_atime = current_fs_time(inode->i_sb);
1719 return i;
1723 * Split writes up in sane blocksizes to avoid
1724 * denial-of-service type attacks
1726 static inline ssize_t do_tty_write(
1727 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1728 struct tty_struct *tty,
1729 struct file *file,
1730 const char __user *buf,
1731 size_t count)
1733 ssize_t ret = 0, written = 0;
1734 unsigned int chunk;
1736 /* FIXME: O_NDELAY ... */
1737 if (mutex_lock_interruptible(&tty->atomic_write_lock)) {
1738 return -ERESTARTSYS;
1742 * We chunk up writes into a temporary buffer. This
1743 * simplifies low-level drivers immensely, since they
1744 * don't have locking issues and user mode accesses.
1746 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1747 * big chunk-size..
1749 * The default chunk-size is 2kB, because the NTTY
1750 * layer has problems with bigger chunks. It will
1751 * claim to be able to handle more characters than
1752 * it actually does.
1754 * FIXME: This can probably go away now except that 64K chunks
1755 * are too likely to fail unless switched to vmalloc...
1757 chunk = 2048;
1758 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1759 chunk = 65536;
1760 if (count < chunk)
1761 chunk = count;
1763 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1764 if (tty->write_cnt < chunk) {
1765 unsigned char *buf;
1767 if (chunk < 1024)
1768 chunk = 1024;
1770 buf = kmalloc(chunk, GFP_KERNEL);
1771 if (!buf) {
1772 mutex_unlock(&tty->atomic_write_lock);
1773 return -ENOMEM;
1775 kfree(tty->write_buf);
1776 tty->write_cnt = chunk;
1777 tty->write_buf = buf;
1780 /* Do the write .. */
1781 for (;;) {
1782 size_t size = count;
1783 if (size > chunk)
1784 size = chunk;
1785 ret = -EFAULT;
1786 if (copy_from_user(tty->write_buf, buf, size))
1787 break;
1788 lock_kernel();
1789 ret = write(tty, file, tty->write_buf, size);
1790 unlock_kernel();
1791 if (ret <= 0)
1792 break;
1793 written += ret;
1794 buf += ret;
1795 count -= ret;
1796 if (!count)
1797 break;
1798 ret = -ERESTARTSYS;
1799 if (signal_pending(current))
1800 break;
1801 cond_resched();
1803 if (written) {
1804 struct inode *inode = file->f_path.dentry->d_inode;
1805 inode->i_mtime = current_fs_time(inode->i_sb);
1806 ret = written;
1808 mutex_unlock(&tty->atomic_write_lock);
1809 return ret;
1814 * tty_write - write method for tty device file
1815 * @file: tty file pointer
1816 * @buf: user data to write
1817 * @count: bytes to write
1818 * @ppos: unused
1820 * Write data to a tty device via the line discipline.
1822 * Locking:
1823 * Locks the line discipline as required
1824 * Writes to the tty driver are serialized by the atomic_write_lock
1825 * and are then processed in chunks to the device. The line discipline
1826 * write method will not be involked in parallel for each device
1827 * The line discipline write method is called under the big
1828 * kernel lock for historical reasons. New code should not rely on this.
1831 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1832 loff_t *ppos)
1834 struct tty_struct * tty;
1835 struct inode *inode = file->f_path.dentry->d_inode;
1836 ssize_t ret;
1837 struct tty_ldisc *ld;
1839 tty = (struct tty_struct *)file->private_data;
1840 if (tty_paranoia_check(tty, inode, "tty_write"))
1841 return -EIO;
1842 if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1843 return -EIO;
1845 ld = tty_ldisc_ref_wait(tty);
1846 if (!ld->write)
1847 ret = -EIO;
1848 else
1849 ret = do_tty_write(ld->write, tty, file, buf, count);
1850 tty_ldisc_deref(ld);
1851 return ret;
1854 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1855 loff_t *ppos)
1857 struct file *p = NULL;
1859 spin_lock(&redirect_lock);
1860 if (redirect) {
1861 get_file(redirect);
1862 p = redirect;
1864 spin_unlock(&redirect_lock);
1866 if (p) {
1867 ssize_t res;
1868 res = vfs_write(p, buf, count, &p->f_pos);
1869 fput(p);
1870 return res;
1873 return tty_write(file, buf, count, ppos);
1876 static char ptychar[] = "pqrstuvwxyzabcde";
1879 * pty_line_name - generate name for a pty
1880 * @driver: the tty driver in use
1881 * @index: the minor number
1882 * @p: output buffer of at least 6 bytes
1884 * Generate a name from a driver reference and write it to the output
1885 * buffer.
1887 * Locking: None
1889 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1891 int i = index + driver->name_base;
1892 /* ->name is initialized to "ttyp", but "tty" is expected */
1893 sprintf(p, "%s%c%x",
1894 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1895 ptychar[i >> 4 & 0xf], i & 0xf);
1899 * pty_line_name - generate name for a tty
1900 * @driver: the tty driver in use
1901 * @index: the minor number
1902 * @p: output buffer of at least 7 bytes
1904 * Generate a name from a driver reference and write it to the output
1905 * buffer.
1907 * Locking: None
1909 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1911 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1915 * init_dev - initialise a tty device
1916 * @driver: tty driver we are opening a device on
1917 * @idx: device index
1918 * @tty: returned tty structure
1920 * Prepare a tty device. This may not be a "new" clean device but
1921 * could also be an active device. The pty drivers require special
1922 * handling because of this.
1924 * Locking:
1925 * The function is called under the tty_mutex, which
1926 * protects us from the tty struct or driver itself going away.
1928 * On exit the tty device has the line discipline attached and
1929 * a reference count of 1. If a pair was created for pty/tty use
1930 * and the other was a pty master then it too has a reference count of 1.
1932 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1933 * failed open. The new code protects the open with a mutex, so it's
1934 * really quite straightforward. The mutex locking can probably be
1935 * relaxed for the (most common) case of reopening a tty.
1938 static int init_dev(struct tty_driver *driver, int idx,
1939 struct tty_struct **ret_tty)
1941 struct tty_struct *tty, *o_tty;
1942 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1943 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1944 int retval = 0;
1946 /* check whether we're reopening an existing tty */
1947 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1948 tty = devpts_get_tty(idx);
1950 * If we don't have a tty here on a slave open, it's because
1951 * the master already started the close process and there's
1952 * no relation between devpts file and tty anymore.
1954 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
1955 retval = -EIO;
1956 goto end_init;
1959 * It's safe from now on because init_dev() is called with
1960 * tty_mutex held and release_dev() won't change tty->count
1961 * or tty->flags without having to grab tty_mutex
1963 if (tty && driver->subtype == PTY_TYPE_MASTER)
1964 tty = tty->link;
1965 } else {
1966 tty = driver->ttys[idx];
1968 if (tty) goto fast_track;
1971 * First time open is complex, especially for PTY devices.
1972 * This code guarantees that either everything succeeds and the
1973 * TTY is ready for operation, or else the table slots are vacated
1974 * and the allocated memory released. (Except that the termios
1975 * and locked termios may be retained.)
1978 if (!try_module_get(driver->owner)) {
1979 retval = -ENODEV;
1980 goto end_init;
1983 o_tty = NULL;
1984 tp = o_tp = NULL;
1985 ltp = o_ltp = NULL;
1987 tty = alloc_tty_struct();
1988 if(!tty)
1989 goto fail_no_mem;
1990 initialize_tty_struct(tty);
1991 tty->driver = driver;
1992 tty->index = idx;
1993 tty_line_name(driver, idx, tty->name);
1995 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1996 tp_loc = &tty->termios;
1997 ltp_loc = &tty->termios_locked;
1998 } else {
1999 tp_loc = &driver->termios[idx];
2000 ltp_loc = &driver->termios_locked[idx];
2003 if (!*tp_loc) {
2004 tp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
2005 GFP_KERNEL);
2006 if (!tp)
2007 goto free_mem_out;
2008 *tp = driver->init_termios;
2011 if (!*ltp_loc) {
2012 ltp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
2013 GFP_KERNEL);
2014 if (!ltp)
2015 goto free_mem_out;
2016 memset(ltp, 0, sizeof(struct ktermios));
2019 if (driver->type == TTY_DRIVER_TYPE_PTY) {
2020 o_tty = alloc_tty_struct();
2021 if (!o_tty)
2022 goto free_mem_out;
2023 initialize_tty_struct(o_tty);
2024 o_tty->driver = driver->other;
2025 o_tty->index = idx;
2026 tty_line_name(driver->other, idx, o_tty->name);
2028 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2029 o_tp_loc = &o_tty->termios;
2030 o_ltp_loc = &o_tty->termios_locked;
2031 } else {
2032 o_tp_loc = &driver->other->termios[idx];
2033 o_ltp_loc = &driver->other->termios_locked[idx];
2036 if (!*o_tp_loc) {
2037 o_tp = (struct ktermios *)
2038 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2039 if (!o_tp)
2040 goto free_mem_out;
2041 *o_tp = driver->other->init_termios;
2044 if (!*o_ltp_loc) {
2045 o_ltp = (struct ktermios *)
2046 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2047 if (!o_ltp)
2048 goto free_mem_out;
2049 memset(o_ltp, 0, sizeof(struct ktermios));
2053 * Everything allocated ... set up the o_tty structure.
2055 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
2056 driver->other->ttys[idx] = o_tty;
2058 if (!*o_tp_loc)
2059 *o_tp_loc = o_tp;
2060 if (!*o_ltp_loc)
2061 *o_ltp_loc = o_ltp;
2062 o_tty->termios = *o_tp_loc;
2063 o_tty->termios_locked = *o_ltp_loc;
2064 driver->other->refcount++;
2065 if (driver->subtype == PTY_TYPE_MASTER)
2066 o_tty->count++;
2068 /* Establish the links in both directions */
2069 tty->link = o_tty;
2070 o_tty->link = tty;
2074 * All structures have been allocated, so now we install them.
2075 * Failures after this point use release_tty to clean up, so
2076 * there's no need to null out the local pointers.
2078 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2079 driver->ttys[idx] = tty;
2082 if (!*tp_loc)
2083 *tp_loc = tp;
2084 if (!*ltp_loc)
2085 *ltp_loc = ltp;
2086 tty->termios = *tp_loc;
2087 tty->termios_locked = *ltp_loc;
2088 /* Compatibility until drivers always set this */
2089 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2090 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2091 driver->refcount++;
2092 tty->count++;
2095 * Structures all installed ... call the ldisc open routines.
2096 * If we fail here just call release_tty to clean up. No need
2097 * to decrement the use counts, as release_tty doesn't care.
2100 if (tty->ldisc.open) {
2101 retval = (tty->ldisc.open)(tty);
2102 if (retval)
2103 goto release_mem_out;
2105 if (o_tty && o_tty->ldisc.open) {
2106 retval = (o_tty->ldisc.open)(o_tty);
2107 if (retval) {
2108 if (tty->ldisc.close)
2109 (tty->ldisc.close)(tty);
2110 goto release_mem_out;
2112 tty_ldisc_enable(o_tty);
2114 tty_ldisc_enable(tty);
2115 goto success;
2118 * This fast open can be used if the tty is already open.
2119 * No memory is allocated, and the only failures are from
2120 * attempting to open a closing tty or attempting multiple
2121 * opens on a pty master.
2123 fast_track:
2124 if (test_bit(TTY_CLOSING, &tty->flags)) {
2125 retval = -EIO;
2126 goto end_init;
2128 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2129 driver->subtype == PTY_TYPE_MASTER) {
2131 * special case for PTY masters: only one open permitted,
2132 * and the slave side open count is incremented as well.
2134 if (tty->count) {
2135 retval = -EIO;
2136 goto end_init;
2138 tty->link->count++;
2140 tty->count++;
2141 tty->driver = driver; /* N.B. why do this every time?? */
2143 /* FIXME */
2144 if(!test_bit(TTY_LDISC, &tty->flags))
2145 printk(KERN_ERR "init_dev but no ldisc\n");
2146 success:
2147 *ret_tty = tty;
2149 /* All paths come through here to release the mutex */
2150 end_init:
2151 return retval;
2153 /* Release locally allocated memory ... nothing placed in slots */
2154 free_mem_out:
2155 kfree(o_tp);
2156 if (o_tty)
2157 free_tty_struct(o_tty);
2158 kfree(ltp);
2159 kfree(tp);
2160 free_tty_struct(tty);
2162 fail_no_mem:
2163 module_put(driver->owner);
2164 retval = -ENOMEM;
2165 goto end_init;
2167 /* call the tty release_tty routine to clean out this slot */
2168 release_mem_out:
2169 if (printk_ratelimit())
2170 printk(KERN_INFO "init_dev: ldisc open failed, "
2171 "clearing slot %d\n", idx);
2172 release_tty(tty, idx);
2173 goto end_init;
2177 * release_one_tty - release tty structure memory
2179 * Releases memory associated with a tty structure, and clears out the
2180 * driver table slots. This function is called when a device is no longer
2181 * in use. It also gets called when setup of a device fails.
2183 * Locking:
2184 * tty_mutex - sometimes only
2185 * takes the file list lock internally when working on the list
2186 * of ttys that the driver keeps.
2187 * FIXME: should we require tty_mutex is held here ??
2189 static void release_one_tty(struct tty_struct *tty, int idx)
2191 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2192 struct ktermios *tp;
2194 if (!devpts)
2195 tty->driver->ttys[idx] = NULL;
2197 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2198 tp = tty->termios;
2199 if (!devpts)
2200 tty->driver->termios[idx] = NULL;
2201 kfree(tp);
2203 tp = tty->termios_locked;
2204 if (!devpts)
2205 tty->driver->termios_locked[idx] = NULL;
2206 kfree(tp);
2210 tty->magic = 0;
2211 tty->driver->refcount--;
2213 file_list_lock();
2214 list_del_init(&tty->tty_files);
2215 file_list_unlock();
2217 free_tty_struct(tty);
2221 * release_tty - release tty structure memory
2223 * Release both @tty and a possible linked partner (think pty pair),
2224 * and decrement the refcount of the backing module.
2226 * Locking:
2227 * tty_mutex - sometimes only
2228 * takes the file list lock internally when working on the list
2229 * of ttys that the driver keeps.
2230 * FIXME: should we require tty_mutex is held here ??
2232 static void release_tty(struct tty_struct *tty, int idx)
2234 struct tty_driver *driver = tty->driver;
2236 if (tty->link)
2237 release_one_tty(tty->link, idx);
2238 release_one_tty(tty, idx);
2239 module_put(driver->owner);
2243 * Even releasing the tty structures is a tricky business.. We have
2244 * to be very careful that the structures are all released at the
2245 * same time, as interrupts might otherwise get the wrong pointers.
2247 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2248 * lead to double frees or releasing memory still in use.
2250 static void release_dev(struct file * filp)
2252 struct tty_struct *tty, *o_tty;
2253 int pty_master, tty_closing, o_tty_closing, do_sleep;
2254 int devpts;
2255 int idx;
2256 char buf[64];
2257 unsigned long flags;
2259 tty = (struct tty_struct *)filp->private_data;
2260 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2261 return;
2263 check_tty_count(tty, "release_dev");
2265 tty_fasync(-1, filp, 0);
2267 idx = tty->index;
2268 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2269 tty->driver->subtype == PTY_TYPE_MASTER);
2270 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2271 o_tty = tty->link;
2273 #ifdef TTY_PARANOIA_CHECK
2274 if (idx < 0 || idx >= tty->driver->num) {
2275 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2276 "free (%s)\n", tty->name);
2277 return;
2279 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2280 if (tty != tty->driver->ttys[idx]) {
2281 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2282 "for (%s)\n", idx, tty->name);
2283 return;
2285 if (tty->termios != tty->driver->termios[idx]) {
2286 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2287 "for (%s)\n",
2288 idx, tty->name);
2289 return;
2291 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2292 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2293 "termios_locked for (%s)\n",
2294 idx, tty->name);
2295 return;
2298 #endif
2300 #ifdef TTY_DEBUG_HANGUP
2301 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2302 tty_name(tty, buf), tty->count);
2303 #endif
2305 #ifdef TTY_PARANOIA_CHECK
2306 if (tty->driver->other &&
2307 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2308 if (o_tty != tty->driver->other->ttys[idx]) {
2309 printk(KERN_DEBUG "release_dev: other->table[%d] "
2310 "not o_tty for (%s)\n",
2311 idx, tty->name);
2312 return;
2314 if (o_tty->termios != tty->driver->other->termios[idx]) {
2315 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2316 "not o_termios for (%s)\n",
2317 idx, tty->name);
2318 return;
2320 if (o_tty->termios_locked !=
2321 tty->driver->other->termios_locked[idx]) {
2322 printk(KERN_DEBUG "release_dev: other->termios_locked["
2323 "%d] not o_termios_locked for (%s)\n",
2324 idx, tty->name);
2325 return;
2327 if (o_tty->link != tty) {
2328 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2329 return;
2332 #endif
2333 if (tty->driver->close)
2334 tty->driver->close(tty, filp);
2337 * Sanity check: if tty->count is going to zero, there shouldn't be
2338 * any waiters on tty->read_wait or tty->write_wait. We test the
2339 * wait queues and kick everyone out _before_ actually starting to
2340 * close. This ensures that we won't block while releasing the tty
2341 * structure.
2343 * The test for the o_tty closing is necessary, since the master and
2344 * slave sides may close in any order. If the slave side closes out
2345 * first, its count will be one, since the master side holds an open.
2346 * Thus this test wouldn't be triggered at the time the slave closes,
2347 * so we do it now.
2349 * Note that it's possible for the tty to be opened again while we're
2350 * flushing out waiters. By recalculating the closing flags before
2351 * each iteration we avoid any problems.
2353 while (1) {
2354 /* Guard against races with tty->count changes elsewhere and
2355 opens on /dev/tty */
2357 mutex_lock(&tty_mutex);
2358 tty_closing = tty->count <= 1;
2359 o_tty_closing = o_tty &&
2360 (o_tty->count <= (pty_master ? 1 : 0));
2361 do_sleep = 0;
2363 if (tty_closing) {
2364 if (waitqueue_active(&tty->read_wait)) {
2365 wake_up(&tty->read_wait);
2366 do_sleep++;
2368 if (waitqueue_active(&tty->write_wait)) {
2369 wake_up(&tty->write_wait);
2370 do_sleep++;
2373 if (o_tty_closing) {
2374 if (waitqueue_active(&o_tty->read_wait)) {
2375 wake_up(&o_tty->read_wait);
2376 do_sleep++;
2378 if (waitqueue_active(&o_tty->write_wait)) {
2379 wake_up(&o_tty->write_wait);
2380 do_sleep++;
2383 if (!do_sleep)
2384 break;
2386 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2387 "active!\n", tty_name(tty, buf));
2388 mutex_unlock(&tty_mutex);
2389 schedule();
2393 * The closing flags are now consistent with the open counts on
2394 * both sides, and we've completed the last operation that could
2395 * block, so it's safe to proceed with closing.
2397 if (pty_master) {
2398 if (--o_tty->count < 0) {
2399 printk(KERN_WARNING "release_dev: bad pty slave count "
2400 "(%d) for %s\n",
2401 o_tty->count, tty_name(o_tty, buf));
2402 o_tty->count = 0;
2405 if (--tty->count < 0) {
2406 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2407 tty->count, tty_name(tty, buf));
2408 tty->count = 0;
2412 * We've decremented tty->count, so we need to remove this file
2413 * descriptor off the tty->tty_files list; this serves two
2414 * purposes:
2415 * - check_tty_count sees the correct number of file descriptors
2416 * associated with this tty.
2417 * - do_tty_hangup no longer sees this file descriptor as
2418 * something that needs to be handled for hangups.
2420 file_kill(filp);
2421 filp->private_data = NULL;
2424 * Perform some housekeeping before deciding whether to return.
2426 * Set the TTY_CLOSING flag if this was the last open. In the
2427 * case of a pty we may have to wait around for the other side
2428 * to close, and TTY_CLOSING makes sure we can't be reopened.
2430 if(tty_closing)
2431 set_bit(TTY_CLOSING, &tty->flags);
2432 if(o_tty_closing)
2433 set_bit(TTY_CLOSING, &o_tty->flags);
2436 * If _either_ side is closing, make sure there aren't any
2437 * processes that still think tty or o_tty is their controlling
2438 * tty.
2440 if (tty_closing || o_tty_closing) {
2441 read_lock(&tasklist_lock);
2442 session_clear_tty(tty->session);
2443 if (o_tty)
2444 session_clear_tty(o_tty->session);
2445 read_unlock(&tasklist_lock);
2448 mutex_unlock(&tty_mutex);
2450 /* check whether both sides are closing ... */
2451 if (!tty_closing || (o_tty && !o_tty_closing))
2452 return;
2454 #ifdef TTY_DEBUG_HANGUP
2455 printk(KERN_DEBUG "freeing tty structure...");
2456 #endif
2458 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2459 * kill any delayed work. As this is the final close it does not
2460 * race with the set_ldisc code path.
2462 clear_bit(TTY_LDISC, &tty->flags);
2463 cancel_delayed_work(&tty->buf.work);
2466 * Wait for ->hangup_work and ->buf.work handlers to terminate
2469 flush_scheduled_work();
2472 * Wait for any short term users (we know they are just driver
2473 * side waiters as the file is closing so user count on the file
2474 * side is zero.
2476 spin_lock_irqsave(&tty_ldisc_lock, flags);
2477 while(tty->ldisc.refcount)
2479 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2480 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2481 spin_lock_irqsave(&tty_ldisc_lock, flags);
2483 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2485 * Shutdown the current line discipline, and reset it to N_TTY.
2486 * N.B. why reset ldisc when we're releasing the memory??
2488 * FIXME: this MUST get fixed for the new reflocking
2490 if (tty->ldisc.close)
2491 (tty->ldisc.close)(tty);
2492 tty_ldisc_put(tty->ldisc.num);
2495 * Switch the line discipline back
2497 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2498 tty_set_termios_ldisc(tty,N_TTY);
2499 if (o_tty) {
2500 /* FIXME: could o_tty be in setldisc here ? */
2501 clear_bit(TTY_LDISC, &o_tty->flags);
2502 if (o_tty->ldisc.close)
2503 (o_tty->ldisc.close)(o_tty);
2504 tty_ldisc_put(o_tty->ldisc.num);
2505 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2506 tty_set_termios_ldisc(o_tty,N_TTY);
2509 * The release_tty function takes care of the details of clearing
2510 * the slots and preserving the termios structure.
2512 release_tty(tty, idx);
2514 #ifdef CONFIG_UNIX98_PTYS
2515 /* Make this pty number available for reallocation */
2516 if (devpts) {
2517 down(&allocated_ptys_lock);
2518 idr_remove(&allocated_ptys, idx);
2519 up(&allocated_ptys_lock);
2521 #endif
2526 * tty_open - open a tty device
2527 * @inode: inode of device file
2528 * @filp: file pointer to tty
2530 * tty_open and tty_release keep up the tty count that contains the
2531 * number of opens done on a tty. We cannot use the inode-count, as
2532 * different inodes might point to the same tty.
2534 * Open-counting is needed for pty masters, as well as for keeping
2535 * track of serial lines: DTR is dropped when the last close happens.
2536 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2538 * The termios state of a pty is reset on first open so that
2539 * settings don't persist across reuse.
2541 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2542 * tty->count should protect the rest.
2543 * ->siglock protects ->signal/->sighand
2546 static int tty_open(struct inode * inode, struct file * filp)
2548 struct tty_struct *tty;
2549 int noctty, retval;
2550 struct tty_driver *driver;
2551 int index;
2552 dev_t device = inode->i_rdev;
2553 unsigned short saved_flags = filp->f_flags;
2555 nonseekable_open(inode, filp);
2557 retry_open:
2558 noctty = filp->f_flags & O_NOCTTY;
2559 index = -1;
2560 retval = 0;
2562 mutex_lock(&tty_mutex);
2564 if (device == MKDEV(TTYAUX_MAJOR,0)) {
2565 tty = get_current_tty();
2566 if (!tty) {
2567 mutex_unlock(&tty_mutex);
2568 return -ENXIO;
2570 driver = tty->driver;
2571 index = tty->index;
2572 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2573 /* noctty = 1; */
2574 goto got_driver;
2576 #ifdef CONFIG_VT
2577 if (device == MKDEV(TTY_MAJOR,0)) {
2578 extern struct tty_driver *console_driver;
2579 driver = console_driver;
2580 index = fg_console;
2581 noctty = 1;
2582 goto got_driver;
2584 #endif
2585 if (device == MKDEV(TTYAUX_MAJOR,1)) {
2586 driver = console_device(&index);
2587 if (driver) {
2588 /* Don't let /dev/console block */
2589 filp->f_flags |= O_NONBLOCK;
2590 noctty = 1;
2591 goto got_driver;
2593 mutex_unlock(&tty_mutex);
2594 return -ENODEV;
2597 driver = get_tty_driver(device, &index);
2598 if (!driver) {
2599 mutex_unlock(&tty_mutex);
2600 return -ENODEV;
2602 got_driver:
2603 retval = init_dev(driver, index, &tty);
2604 mutex_unlock(&tty_mutex);
2605 if (retval)
2606 return retval;
2608 filp->private_data = tty;
2609 file_move(filp, &tty->tty_files);
2610 check_tty_count(tty, "tty_open");
2611 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2612 tty->driver->subtype == PTY_TYPE_MASTER)
2613 noctty = 1;
2614 #ifdef TTY_DEBUG_HANGUP
2615 printk(KERN_DEBUG "opening %s...", tty->name);
2616 #endif
2617 if (!retval) {
2618 if (tty->driver->open)
2619 retval = tty->driver->open(tty, filp);
2620 else
2621 retval = -ENODEV;
2623 filp->f_flags = saved_flags;
2625 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2626 retval = -EBUSY;
2628 if (retval) {
2629 #ifdef TTY_DEBUG_HANGUP
2630 printk(KERN_DEBUG "error %d in opening %s...", retval,
2631 tty->name);
2632 #endif
2633 release_dev(filp);
2634 if (retval != -ERESTARTSYS)
2635 return retval;
2636 if (signal_pending(current))
2637 return retval;
2638 schedule();
2640 * Need to reset f_op in case a hangup happened.
2642 if (filp->f_op == &hung_up_tty_fops)
2643 filp->f_op = &tty_fops;
2644 goto retry_open;
2647 mutex_lock(&tty_mutex);
2648 spin_lock_irq(&current->sighand->siglock);
2649 if (!noctty &&
2650 current->signal->leader &&
2651 !current->signal->tty &&
2652 tty->session == NULL)
2653 __proc_set_tty(current, tty);
2654 spin_unlock_irq(&current->sighand->siglock);
2655 mutex_unlock(&tty_mutex);
2656 return 0;
2659 #ifdef CONFIG_UNIX98_PTYS
2661 * ptmx_open - open a unix 98 pty master
2662 * @inode: inode of device file
2663 * @filp: file pointer to tty
2665 * Allocate a unix98 pty master device from the ptmx driver.
2667 * Locking: tty_mutex protects theinit_dev work. tty->count should
2668 protect the rest.
2669 * allocated_ptys_lock handles the list of free pty numbers
2672 static int ptmx_open(struct inode * inode, struct file * filp)
2674 struct tty_struct *tty;
2675 int retval;
2676 int index;
2677 int idr_ret;
2679 nonseekable_open(inode, filp);
2681 /* find a device that is not in use. */
2682 down(&allocated_ptys_lock);
2683 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2684 up(&allocated_ptys_lock);
2685 return -ENOMEM;
2687 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2688 if (idr_ret < 0) {
2689 up(&allocated_ptys_lock);
2690 if (idr_ret == -EAGAIN)
2691 return -ENOMEM;
2692 return -EIO;
2694 if (index >= pty_limit) {
2695 idr_remove(&allocated_ptys, index);
2696 up(&allocated_ptys_lock);
2697 return -EIO;
2699 up(&allocated_ptys_lock);
2701 mutex_lock(&tty_mutex);
2702 retval = init_dev(ptm_driver, index, &tty);
2703 mutex_unlock(&tty_mutex);
2705 if (retval)
2706 goto out;
2708 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2709 filp->private_data = tty;
2710 file_move(filp, &tty->tty_files);
2712 retval = -ENOMEM;
2713 if (devpts_pty_new(tty->link))
2714 goto out1;
2716 check_tty_count(tty, "tty_open");
2717 retval = ptm_driver->open(tty, filp);
2718 if (!retval)
2719 return 0;
2720 out1:
2721 release_dev(filp);
2722 return retval;
2723 out:
2724 down(&allocated_ptys_lock);
2725 idr_remove(&allocated_ptys, index);
2726 up(&allocated_ptys_lock);
2727 return retval;
2729 #endif
2732 * tty_release - vfs callback for close
2733 * @inode: inode of tty
2734 * @filp: file pointer for handle to tty
2736 * Called the last time each file handle is closed that references
2737 * this tty. There may however be several such references.
2739 * Locking:
2740 * Takes bkl. See release_dev
2743 static int tty_release(struct inode * inode, struct file * filp)
2745 lock_kernel();
2746 release_dev(filp);
2747 unlock_kernel();
2748 return 0;
2752 * tty_poll - check tty status
2753 * @filp: file being polled
2754 * @wait: poll wait structures to update
2756 * Call the line discipline polling method to obtain the poll
2757 * status of the device.
2759 * Locking: locks called line discipline but ldisc poll method
2760 * may be re-entered freely by other callers.
2763 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2765 struct tty_struct * tty;
2766 struct tty_ldisc *ld;
2767 int ret = 0;
2769 tty = (struct tty_struct *)filp->private_data;
2770 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2771 return 0;
2773 ld = tty_ldisc_ref_wait(tty);
2774 if (ld->poll)
2775 ret = (ld->poll)(tty, filp, wait);
2776 tty_ldisc_deref(ld);
2777 return ret;
2780 static int tty_fasync(int fd, struct file * filp, int on)
2782 struct tty_struct * tty;
2783 int retval;
2785 tty = (struct tty_struct *)filp->private_data;
2786 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2787 return 0;
2789 retval = fasync_helper(fd, filp, on, &tty->fasync);
2790 if (retval <= 0)
2791 return retval;
2793 if (on) {
2794 enum pid_type type;
2795 struct pid *pid;
2796 if (!waitqueue_active(&tty->read_wait))
2797 tty->minimum_to_wake = 1;
2798 if (tty->pgrp) {
2799 pid = tty->pgrp;
2800 type = PIDTYPE_PGID;
2801 } else {
2802 pid = task_pid(current);
2803 type = PIDTYPE_PID;
2805 retval = __f_setown(filp, pid, type, 0);
2806 if (retval)
2807 return retval;
2808 } else {
2809 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2810 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2812 return 0;
2816 * tiocsti - fake input character
2817 * @tty: tty to fake input into
2818 * @p: pointer to character
2820 * Fake input to a tty device. Does the neccessary locking and
2821 * input management.
2823 * FIXME: does not honour flow control ??
2825 * Locking:
2826 * Called functions take tty_ldisc_lock
2827 * current->signal->tty check is safe without locks
2829 * FIXME: may race normal receive processing
2832 static int tiocsti(struct tty_struct *tty, char __user *p)
2834 char ch, mbz = 0;
2835 struct tty_ldisc *ld;
2837 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2838 return -EPERM;
2839 if (get_user(ch, p))
2840 return -EFAULT;
2841 ld = tty_ldisc_ref_wait(tty);
2842 ld->receive_buf(tty, &ch, &mbz, 1);
2843 tty_ldisc_deref(ld);
2844 return 0;
2848 * tiocgwinsz - implement window query ioctl
2849 * @tty; tty
2850 * @arg: user buffer for result
2852 * Copies the kernel idea of the window size into the user buffer.
2854 * Locking: tty->termios_mutex is taken to ensure the winsize data
2855 * is consistent.
2858 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2860 int err;
2862 mutex_lock(&tty->termios_mutex);
2863 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2864 mutex_unlock(&tty->termios_mutex);
2866 return err ? -EFAULT: 0;
2870 * tiocswinsz - implement window size set ioctl
2871 * @tty; tty
2872 * @arg: user buffer for result
2874 * Copies the user idea of the window size to the kernel. Traditionally
2875 * this is just advisory information but for the Linux console it
2876 * actually has driver level meaning and triggers a VC resize.
2878 * Locking:
2879 * Called function use the console_sem is used to ensure we do
2880 * not try and resize the console twice at once.
2881 * The tty->termios_mutex is used to ensure we don't double
2882 * resize and get confused. Lock order - tty->termios_mutex before
2883 * console sem
2886 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2887 struct winsize __user * arg)
2889 struct winsize tmp_ws;
2891 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2892 return -EFAULT;
2894 mutex_lock(&tty->termios_mutex);
2895 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2896 goto done;
2898 #ifdef CONFIG_VT
2899 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2900 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2901 tmp_ws.ws_row)) {
2902 mutex_unlock(&tty->termios_mutex);
2903 return -ENXIO;
2906 #endif
2907 if (tty->pgrp)
2908 kill_pgrp(tty->pgrp, SIGWINCH, 1);
2909 if ((real_tty->pgrp != tty->pgrp) && real_tty->pgrp)
2910 kill_pgrp(real_tty->pgrp, SIGWINCH, 1);
2911 tty->winsize = tmp_ws;
2912 real_tty->winsize = tmp_ws;
2913 done:
2914 mutex_unlock(&tty->termios_mutex);
2915 return 0;
2919 * tioccons - allow admin to move logical console
2920 * @file: the file to become console
2922 * Allow the adminstrator to move the redirected console device
2924 * Locking: uses redirect_lock to guard the redirect information
2927 static int tioccons(struct file *file)
2929 if (!capable(CAP_SYS_ADMIN))
2930 return -EPERM;
2931 if (file->f_op->write == redirected_tty_write) {
2932 struct file *f;
2933 spin_lock(&redirect_lock);
2934 f = redirect;
2935 redirect = NULL;
2936 spin_unlock(&redirect_lock);
2937 if (f)
2938 fput(f);
2939 return 0;
2941 spin_lock(&redirect_lock);
2942 if (redirect) {
2943 spin_unlock(&redirect_lock);
2944 return -EBUSY;
2946 get_file(file);
2947 redirect = file;
2948 spin_unlock(&redirect_lock);
2949 return 0;
2953 * fionbio - non blocking ioctl
2954 * @file: file to set blocking value
2955 * @p: user parameter
2957 * Historical tty interfaces had a blocking control ioctl before
2958 * the generic functionality existed. This piece of history is preserved
2959 * in the expected tty API of posix OS's.
2961 * Locking: none, the open fle handle ensures it won't go away.
2964 static int fionbio(struct file *file, int __user *p)
2966 int nonblock;
2968 if (get_user(nonblock, p))
2969 return -EFAULT;
2971 if (nonblock)
2972 file->f_flags |= O_NONBLOCK;
2973 else
2974 file->f_flags &= ~O_NONBLOCK;
2975 return 0;
2979 * tiocsctty - set controlling tty
2980 * @tty: tty structure
2981 * @arg: user argument
2983 * This ioctl is used to manage job control. It permits a session
2984 * leader to set this tty as the controlling tty for the session.
2986 * Locking:
2987 * Takes tty_mutex() to protect tty instance
2988 * Takes tasklist_lock internally to walk sessions
2989 * Takes ->siglock() when updating signal->tty
2992 static int tiocsctty(struct tty_struct *tty, int arg)
2994 int ret = 0;
2995 if (current->signal->leader && (task_session(current) == tty->session))
2996 return ret;
2998 mutex_lock(&tty_mutex);
3000 * The process must be a session leader and
3001 * not have a controlling tty already.
3003 if (!current->signal->leader || current->signal->tty) {
3004 ret = -EPERM;
3005 goto unlock;
3008 if (tty->session) {
3010 * This tty is already the controlling
3011 * tty for another session group!
3013 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
3015 * Steal it away
3017 read_lock(&tasklist_lock);
3018 session_clear_tty(tty->session);
3019 read_unlock(&tasklist_lock);
3020 } else {
3021 ret = -EPERM;
3022 goto unlock;
3025 proc_set_tty(current, tty);
3026 unlock:
3027 mutex_unlock(&tty_mutex);
3028 return ret;
3032 * tiocgpgrp - get process group
3033 * @tty: tty passed by user
3034 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3035 * @p: returned pid
3037 * Obtain the process group of the tty. If there is no process group
3038 * return an error.
3040 * Locking: none. Reference to current->signal->tty is safe.
3043 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3046 * (tty == real_tty) is a cheap way of
3047 * testing if the tty is NOT a master pty.
3049 if (tty == real_tty && current->signal->tty != real_tty)
3050 return -ENOTTY;
3051 return put_user(pid_nr(real_tty->pgrp), p);
3055 * tiocspgrp - attempt to set process group
3056 * @tty: tty passed by user
3057 * @real_tty: tty side device matching tty passed by user
3058 * @p: pid pointer
3060 * Set the process group of the tty to the session passed. Only
3061 * permitted where the tty session is our session.
3063 * Locking: None
3066 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3068 struct pid *pgrp;
3069 pid_t pgrp_nr;
3070 int retval = tty_check_change(real_tty);
3072 if (retval == -EIO)
3073 return -ENOTTY;
3074 if (retval)
3075 return retval;
3076 if (!current->signal->tty ||
3077 (current->signal->tty != real_tty) ||
3078 (real_tty->session != task_session(current)))
3079 return -ENOTTY;
3080 if (get_user(pgrp_nr, p))
3081 return -EFAULT;
3082 if (pgrp_nr < 0)
3083 return -EINVAL;
3084 rcu_read_lock();
3085 pgrp = find_pid(pgrp_nr);
3086 retval = -ESRCH;
3087 if (!pgrp)
3088 goto out_unlock;
3089 retval = -EPERM;
3090 if (session_of_pgrp(pgrp) != task_session(current))
3091 goto out_unlock;
3092 retval = 0;
3093 put_pid(real_tty->pgrp);
3094 real_tty->pgrp = get_pid(pgrp);
3095 out_unlock:
3096 rcu_read_unlock();
3097 return retval;
3101 * tiocgsid - get session id
3102 * @tty: tty passed by user
3103 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3104 * @p: pointer to returned session id
3106 * Obtain the session id of the tty. If there is no session
3107 * return an error.
3109 * Locking: none. Reference to current->signal->tty is safe.
3112 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3115 * (tty == real_tty) is a cheap way of
3116 * testing if the tty is NOT a master pty.
3118 if (tty == real_tty && current->signal->tty != real_tty)
3119 return -ENOTTY;
3120 if (!real_tty->session)
3121 return -ENOTTY;
3122 return put_user(pid_nr(real_tty->session), p);
3126 * tiocsetd - set line discipline
3127 * @tty: tty device
3128 * @p: pointer to user data
3130 * Set the line discipline according to user request.
3132 * Locking: see tty_set_ldisc, this function is just a helper
3135 static int tiocsetd(struct tty_struct *tty, int __user *p)
3137 int ldisc;
3139 if (get_user(ldisc, p))
3140 return -EFAULT;
3141 return tty_set_ldisc(tty, ldisc);
3145 * send_break - performed time break
3146 * @tty: device to break on
3147 * @duration: timeout in mS
3149 * Perform a timed break on hardware that lacks its own driver level
3150 * timed break functionality.
3152 * Locking:
3153 * atomic_write_lock serializes
3157 static int send_break(struct tty_struct *tty, unsigned int duration)
3159 if (mutex_lock_interruptible(&tty->atomic_write_lock))
3160 return -EINTR;
3161 tty->driver->break_ctl(tty, -1);
3162 if (!signal_pending(current)) {
3163 msleep_interruptible(duration);
3165 tty->driver->break_ctl(tty, 0);
3166 mutex_unlock(&tty->atomic_write_lock);
3167 if (signal_pending(current))
3168 return -EINTR;
3169 return 0;
3173 * tiocmget - get modem status
3174 * @tty: tty device
3175 * @file: user file pointer
3176 * @p: pointer to result
3178 * Obtain the modem status bits from the tty driver if the feature
3179 * is supported. Return -EINVAL if it is not available.
3181 * Locking: none (up to the driver)
3184 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3186 int retval = -EINVAL;
3188 if (tty->driver->tiocmget) {
3189 retval = tty->driver->tiocmget(tty, file);
3191 if (retval >= 0)
3192 retval = put_user(retval, p);
3194 return retval;
3198 * tiocmset - set modem status
3199 * @tty: tty device
3200 * @file: user file pointer
3201 * @cmd: command - clear bits, set bits or set all
3202 * @p: pointer to desired bits
3204 * Set the modem status bits from the tty driver if the feature
3205 * is supported. Return -EINVAL if it is not available.
3207 * Locking: none (up to the driver)
3210 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3211 unsigned __user *p)
3213 int retval = -EINVAL;
3215 if (tty->driver->tiocmset) {
3216 unsigned int set, clear, val;
3218 retval = get_user(val, p);
3219 if (retval)
3220 return retval;
3222 set = clear = 0;
3223 switch (cmd) {
3224 case TIOCMBIS:
3225 set = val;
3226 break;
3227 case TIOCMBIC:
3228 clear = val;
3229 break;
3230 case TIOCMSET:
3231 set = val;
3232 clear = ~val;
3233 break;
3236 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3237 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3239 retval = tty->driver->tiocmset(tty, file, set, clear);
3241 return retval;
3245 * Split this up, as gcc can choke on it otherwise..
3247 int tty_ioctl(struct inode * inode, struct file * file,
3248 unsigned int cmd, unsigned long arg)
3250 struct tty_struct *tty, *real_tty;
3251 void __user *p = (void __user *)arg;
3252 int retval;
3253 struct tty_ldisc *ld;
3255 tty = (struct tty_struct *)file->private_data;
3256 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3257 return -EINVAL;
3259 /* CHECKME: is this safe as one end closes ? */
3261 real_tty = tty;
3262 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3263 tty->driver->subtype == PTY_TYPE_MASTER)
3264 real_tty = tty->link;
3267 * Break handling by driver
3269 if (!tty->driver->break_ctl) {
3270 switch(cmd) {
3271 case TIOCSBRK:
3272 case TIOCCBRK:
3273 if (tty->driver->ioctl)
3274 return tty->driver->ioctl(tty, file, cmd, arg);
3275 return -EINVAL;
3277 /* These two ioctl's always return success; even if */
3278 /* the driver doesn't support them. */
3279 case TCSBRK:
3280 case TCSBRKP:
3281 if (!tty->driver->ioctl)
3282 return 0;
3283 retval = tty->driver->ioctl(tty, file, cmd, arg);
3284 if (retval == -ENOIOCTLCMD)
3285 retval = 0;
3286 return retval;
3291 * Factor out some common prep work
3293 switch (cmd) {
3294 case TIOCSETD:
3295 case TIOCSBRK:
3296 case TIOCCBRK:
3297 case TCSBRK:
3298 case TCSBRKP:
3299 retval = tty_check_change(tty);
3300 if (retval)
3301 return retval;
3302 if (cmd != TIOCCBRK) {
3303 tty_wait_until_sent(tty, 0);
3304 if (signal_pending(current))
3305 return -EINTR;
3307 break;
3310 switch (cmd) {
3311 case TIOCSTI:
3312 return tiocsti(tty, p);
3313 case TIOCGWINSZ:
3314 return tiocgwinsz(tty, p);
3315 case TIOCSWINSZ:
3316 return tiocswinsz(tty, real_tty, p);
3317 case TIOCCONS:
3318 return real_tty!=tty ? -EINVAL : tioccons(file);
3319 case FIONBIO:
3320 return fionbio(file, p);
3321 case TIOCEXCL:
3322 set_bit(TTY_EXCLUSIVE, &tty->flags);
3323 return 0;
3324 case TIOCNXCL:
3325 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3326 return 0;
3327 case TIOCNOTTY:
3328 if (current->signal->tty != tty)
3329 return -ENOTTY;
3330 no_tty();
3331 return 0;
3332 case TIOCSCTTY:
3333 return tiocsctty(tty, arg);
3334 case TIOCGPGRP:
3335 return tiocgpgrp(tty, real_tty, p);
3336 case TIOCSPGRP:
3337 return tiocspgrp(tty, real_tty, p);
3338 case TIOCGSID:
3339 return tiocgsid(tty, real_tty, p);
3340 case TIOCGETD:
3341 /* FIXME: check this is ok */
3342 return put_user(tty->ldisc.num, (int __user *)p);
3343 case TIOCSETD:
3344 return tiocsetd(tty, p);
3345 #ifdef CONFIG_VT
3346 case TIOCLINUX:
3347 return tioclinux(tty, arg);
3348 #endif
3350 * Break handling
3352 case TIOCSBRK: /* Turn break on, unconditionally */
3353 tty->driver->break_ctl(tty, -1);
3354 return 0;
3356 case TIOCCBRK: /* Turn break off, unconditionally */
3357 tty->driver->break_ctl(tty, 0);
3358 return 0;
3359 case TCSBRK: /* SVID version: non-zero arg --> no break */
3360 /* non-zero arg means wait for all output data
3361 * to be sent (performed above) but don't send break.
3362 * This is used by the tcdrain() termios function.
3364 if (!arg)
3365 return send_break(tty, 250);
3366 return 0;
3367 case TCSBRKP: /* support for POSIX tcsendbreak() */
3368 return send_break(tty, arg ? arg*100 : 250);
3370 case TIOCMGET:
3371 return tty_tiocmget(tty, file, p);
3373 case TIOCMSET:
3374 case TIOCMBIC:
3375 case TIOCMBIS:
3376 return tty_tiocmset(tty, file, cmd, p);
3377 case TCFLSH:
3378 switch (arg) {
3379 case TCIFLUSH:
3380 case TCIOFLUSH:
3381 /* flush tty buffer and allow ldisc to process ioctl */
3382 tty_buffer_flush(tty);
3383 break;
3385 break;
3387 if (tty->driver->ioctl) {
3388 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3389 if (retval != -ENOIOCTLCMD)
3390 return retval;
3392 ld = tty_ldisc_ref_wait(tty);
3393 retval = -EINVAL;
3394 if (ld->ioctl) {
3395 retval = ld->ioctl(tty, file, cmd, arg);
3396 if (retval == -ENOIOCTLCMD)
3397 retval = -EINVAL;
3399 tty_ldisc_deref(ld);
3400 return retval;
3403 #ifdef CONFIG_COMPAT
3404 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
3405 unsigned long arg)
3407 struct inode *inode = file->f_dentry->d_inode;
3408 struct tty_struct *tty = file->private_data;
3409 struct tty_ldisc *ld;
3410 int retval = -ENOIOCTLCMD;
3412 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3413 return -EINVAL;
3415 if (tty->driver->compat_ioctl) {
3416 retval = (tty->driver->compat_ioctl)(tty, file, cmd, arg);
3417 if (retval != -ENOIOCTLCMD)
3418 return retval;
3421 ld = tty_ldisc_ref_wait(tty);
3422 if (ld->compat_ioctl)
3423 retval = ld->compat_ioctl(tty, file, cmd, arg);
3424 tty_ldisc_deref(ld);
3426 return retval;
3428 #endif
3431 * This implements the "Secure Attention Key" --- the idea is to
3432 * prevent trojan horses by killing all processes associated with this
3433 * tty when the user hits the "Secure Attention Key". Required for
3434 * super-paranoid applications --- see the Orange Book for more details.
3436 * This code could be nicer; ideally it should send a HUP, wait a few
3437 * seconds, then send a INT, and then a KILL signal. But you then
3438 * have to coordinate with the init process, since all processes associated
3439 * with the current tty must be dead before the new getty is allowed
3440 * to spawn.
3442 * Now, if it would be correct ;-/ The current code has a nasty hole -
3443 * it doesn't catch files in flight. We may send the descriptor to ourselves
3444 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3446 * Nasty bug: do_SAK is being called in interrupt context. This can
3447 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3449 void __do_SAK(struct tty_struct *tty)
3451 #ifdef TTY_SOFT_SAK
3452 tty_hangup(tty);
3453 #else
3454 struct task_struct *g, *p;
3455 struct pid *session;
3456 int i;
3457 struct file *filp;
3458 struct fdtable *fdt;
3460 if (!tty)
3461 return;
3462 session = tty->session;
3464 tty_ldisc_flush(tty);
3466 if (tty->driver->flush_buffer)
3467 tty->driver->flush_buffer(tty);
3469 read_lock(&tasklist_lock);
3470 /* Kill the entire session */
3471 do_each_pid_task(session, PIDTYPE_SID, p) {
3472 printk(KERN_NOTICE "SAK: killed process %d"
3473 " (%s): process_session(p)==tty->session\n",
3474 p->pid, p->comm);
3475 send_sig(SIGKILL, p, 1);
3476 } while_each_pid_task(session, PIDTYPE_SID, p);
3477 /* Now kill any processes that happen to have the
3478 * tty open.
3480 do_each_thread(g, p) {
3481 if (p->signal->tty == tty) {
3482 printk(KERN_NOTICE "SAK: killed process %d"
3483 " (%s): process_session(p)==tty->session\n",
3484 p->pid, p->comm);
3485 send_sig(SIGKILL, p, 1);
3486 continue;
3488 task_lock(p);
3489 if (p->files) {
3491 * We don't take a ref to the file, so we must
3492 * hold ->file_lock instead.
3494 spin_lock(&p->files->file_lock);
3495 fdt = files_fdtable(p->files);
3496 for (i=0; i < fdt->max_fds; i++) {
3497 filp = fcheck_files(p->files, i);
3498 if (!filp)
3499 continue;
3500 if (filp->f_op->read == tty_read &&
3501 filp->private_data == tty) {
3502 printk(KERN_NOTICE "SAK: killed process %d"
3503 " (%s): fd#%d opened to the tty\n",
3504 p->pid, p->comm, i);
3505 force_sig(SIGKILL, p);
3506 break;
3509 spin_unlock(&p->files->file_lock);
3511 task_unlock(p);
3512 } while_each_thread(g, p);
3513 read_unlock(&tasklist_lock);
3514 #endif
3517 static void do_SAK_work(struct work_struct *work)
3519 struct tty_struct *tty =
3520 container_of(work, struct tty_struct, SAK_work);
3521 __do_SAK(tty);
3525 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3526 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3527 * the values which we write to it will be identical to the values which it
3528 * already has. --akpm
3530 void do_SAK(struct tty_struct *tty)
3532 if (!tty)
3533 return;
3534 schedule_work(&tty->SAK_work);
3537 EXPORT_SYMBOL(do_SAK);
3540 * flush_to_ldisc
3541 * @work: tty structure passed from work queue.
3543 * This routine is called out of the software interrupt to flush data
3544 * from the buffer chain to the line discipline.
3546 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3547 * while invoking the line discipline receive_buf method. The
3548 * receive_buf method is single threaded for each tty instance.
3551 static void flush_to_ldisc(struct work_struct *work)
3553 struct tty_struct *tty =
3554 container_of(work, struct tty_struct, buf.work.work);
3555 unsigned long flags;
3556 struct tty_ldisc *disc;
3557 struct tty_buffer *tbuf, *head;
3558 char *char_buf;
3559 unsigned char *flag_buf;
3561 disc = tty_ldisc_ref(tty);
3562 if (disc == NULL) /* !TTY_LDISC */
3563 return;
3565 spin_lock_irqsave(&tty->buf.lock, flags);
3566 head = tty->buf.head;
3567 if (head != NULL) {
3568 tty->buf.head = NULL;
3569 for (;;) {
3570 int count = head->commit - head->read;
3571 if (!count) {
3572 if (head->next == NULL)
3573 break;
3574 tbuf = head;
3575 head = head->next;
3576 tty_buffer_free(tty, tbuf);
3577 continue;
3579 if (!tty->receive_room) {
3580 schedule_delayed_work(&tty->buf.work, 1);
3581 break;
3583 if (count > tty->receive_room)
3584 count = tty->receive_room;
3585 char_buf = head->char_buf_ptr + head->read;
3586 flag_buf = head->flag_buf_ptr + head->read;
3587 head->read += count;
3588 spin_unlock_irqrestore(&tty->buf.lock, flags);
3589 disc->receive_buf(tty, char_buf, flag_buf, count);
3590 spin_lock_irqsave(&tty->buf.lock, flags);
3592 tty->buf.head = head;
3594 spin_unlock_irqrestore(&tty->buf.lock, flags);
3596 tty_ldisc_deref(disc);
3600 * tty_flip_buffer_push - terminal
3601 * @tty: tty to push
3603 * Queue a push of the terminal flip buffers to the line discipline. This
3604 * function must not be called from IRQ context if tty->low_latency is set.
3606 * In the event of the queue being busy for flipping the work will be
3607 * held off and retried later.
3609 * Locking: tty buffer lock. Driver locks in low latency mode.
3612 void tty_flip_buffer_push(struct tty_struct *tty)
3614 unsigned long flags;
3615 spin_lock_irqsave(&tty->buf.lock, flags);
3616 if (tty->buf.tail != NULL)
3617 tty->buf.tail->commit = tty->buf.tail->used;
3618 spin_unlock_irqrestore(&tty->buf.lock, flags);
3620 if (tty->low_latency)
3621 flush_to_ldisc(&tty->buf.work.work);
3622 else
3623 schedule_delayed_work(&tty->buf.work, 1);
3626 EXPORT_SYMBOL(tty_flip_buffer_push);
3630 * initialize_tty_struct
3631 * @tty: tty to initialize
3633 * This subroutine initializes a tty structure that has been newly
3634 * allocated.
3636 * Locking: none - tty in question must not be exposed at this point
3639 static void initialize_tty_struct(struct tty_struct *tty)
3641 memset(tty, 0, sizeof(struct tty_struct));
3642 tty->magic = TTY_MAGIC;
3643 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3644 tty->session = NULL;
3645 tty->pgrp = NULL;
3646 tty->overrun_time = jiffies;
3647 tty->buf.head = tty->buf.tail = NULL;
3648 tty_buffer_init(tty);
3649 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3650 init_MUTEX(&tty->buf.pty_sem);
3651 mutex_init(&tty->termios_mutex);
3652 init_waitqueue_head(&tty->write_wait);
3653 init_waitqueue_head(&tty->read_wait);
3654 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3655 mutex_init(&tty->atomic_read_lock);
3656 mutex_init(&tty->atomic_write_lock);
3657 spin_lock_init(&tty->read_lock);
3658 INIT_LIST_HEAD(&tty->tty_files);
3659 INIT_WORK(&tty->SAK_work, do_SAK_work);
3663 * The default put_char routine if the driver did not define one.
3666 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3668 tty->driver->write(tty, &ch, 1);
3671 static struct class *tty_class;
3674 * tty_register_device - register a tty device
3675 * @driver: the tty driver that describes the tty device
3676 * @index: the index in the tty driver for this tty device
3677 * @device: a struct device that is associated with this tty device.
3678 * This field is optional, if there is no known struct device
3679 * for this tty device it can be set to NULL safely.
3681 * Returns a pointer to the struct device for this tty device
3682 * (or ERR_PTR(-EFOO) on error).
3684 * This call is required to be made to register an individual tty device
3685 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3686 * that bit is not set, this function should not be called by a tty
3687 * driver.
3689 * Locking: ??
3692 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3693 struct device *device)
3695 char name[64];
3696 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3698 if (index >= driver->num) {
3699 printk(KERN_ERR "Attempt to register invalid tty line number "
3700 " (%d).\n", index);
3701 return ERR_PTR(-EINVAL);
3704 if (driver->type == TTY_DRIVER_TYPE_PTY)
3705 pty_line_name(driver, index, name);
3706 else
3707 tty_line_name(driver, index, name);
3709 return device_create(tty_class, device, dev, name);
3713 * tty_unregister_device - unregister a tty device
3714 * @driver: the tty driver that describes the tty device
3715 * @index: the index in the tty driver for this tty device
3717 * If a tty device is registered with a call to tty_register_device() then
3718 * this function must be called when the tty device is gone.
3720 * Locking: ??
3723 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3725 device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3728 EXPORT_SYMBOL(tty_register_device);
3729 EXPORT_SYMBOL(tty_unregister_device);
3731 struct tty_driver *alloc_tty_driver(int lines)
3733 struct tty_driver *driver;
3735 driver = kmalloc(sizeof(struct tty_driver), GFP_KERNEL);
3736 if (driver) {
3737 memset(driver, 0, sizeof(struct tty_driver));
3738 driver->magic = TTY_DRIVER_MAGIC;
3739 driver->num = lines;
3740 /* later we'll move allocation of tables here */
3742 return driver;
3745 void put_tty_driver(struct tty_driver *driver)
3747 kfree(driver);
3750 void tty_set_operations(struct tty_driver *driver,
3751 const struct tty_operations *op)
3753 driver->open = op->open;
3754 driver->close = op->close;
3755 driver->write = op->write;
3756 driver->put_char = op->put_char;
3757 driver->flush_chars = op->flush_chars;
3758 driver->write_room = op->write_room;
3759 driver->chars_in_buffer = op->chars_in_buffer;
3760 driver->ioctl = op->ioctl;
3761 driver->compat_ioctl = op->compat_ioctl;
3762 driver->set_termios = op->set_termios;
3763 driver->throttle = op->throttle;
3764 driver->unthrottle = op->unthrottle;
3765 driver->stop = op->stop;
3766 driver->start = op->start;
3767 driver->hangup = op->hangup;
3768 driver->break_ctl = op->break_ctl;
3769 driver->flush_buffer = op->flush_buffer;
3770 driver->set_ldisc = op->set_ldisc;
3771 driver->wait_until_sent = op->wait_until_sent;
3772 driver->send_xchar = op->send_xchar;
3773 driver->read_proc = op->read_proc;
3774 driver->write_proc = op->write_proc;
3775 driver->tiocmget = op->tiocmget;
3776 driver->tiocmset = op->tiocmset;
3780 EXPORT_SYMBOL(alloc_tty_driver);
3781 EXPORT_SYMBOL(put_tty_driver);
3782 EXPORT_SYMBOL(tty_set_operations);
3785 * Called by a tty driver to register itself.
3787 int tty_register_driver(struct tty_driver *driver)
3789 int error;
3790 int i;
3791 dev_t dev;
3792 void **p = NULL;
3794 if (driver->flags & TTY_DRIVER_INSTALLED)
3795 return 0;
3797 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3798 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3799 if (!p)
3800 return -ENOMEM;
3803 if (!driver->major) {
3804 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3805 driver->name);
3806 if (!error) {
3807 driver->major = MAJOR(dev);
3808 driver->minor_start = MINOR(dev);
3810 } else {
3811 dev = MKDEV(driver->major, driver->minor_start);
3812 error = register_chrdev_region(dev, driver->num, driver->name);
3814 if (error < 0) {
3815 kfree(p);
3816 return error;
3819 if (p) {
3820 driver->ttys = (struct tty_struct **)p;
3821 driver->termios = (struct ktermios **)(p + driver->num);
3822 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3823 } else {
3824 driver->ttys = NULL;
3825 driver->termios = NULL;
3826 driver->termios_locked = NULL;
3829 cdev_init(&driver->cdev, &tty_fops);
3830 driver->cdev.owner = driver->owner;
3831 error = cdev_add(&driver->cdev, dev, driver->num);
3832 if (error) {
3833 unregister_chrdev_region(dev, driver->num);
3834 driver->ttys = NULL;
3835 driver->termios = driver->termios_locked = NULL;
3836 kfree(p);
3837 return error;
3840 if (!driver->put_char)
3841 driver->put_char = tty_default_put_char;
3843 mutex_lock(&tty_mutex);
3844 list_add(&driver->tty_drivers, &tty_drivers);
3845 mutex_unlock(&tty_mutex);
3847 if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3848 for(i = 0; i < driver->num; i++)
3849 tty_register_device(driver, i, NULL);
3851 proc_tty_register_driver(driver);
3852 return 0;
3855 EXPORT_SYMBOL(tty_register_driver);
3858 * Called by a tty driver to unregister itself.
3860 int tty_unregister_driver(struct tty_driver *driver)
3862 int i;
3863 struct ktermios *tp;
3864 void *p;
3866 if (driver->refcount)
3867 return -EBUSY;
3869 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3870 driver->num);
3871 mutex_lock(&tty_mutex);
3872 list_del(&driver->tty_drivers);
3873 mutex_unlock(&tty_mutex);
3876 * Free the termios and termios_locked structures because
3877 * we don't want to get memory leaks when modular tty
3878 * drivers are removed from the kernel.
3880 for (i = 0; i < driver->num; i++) {
3881 tp = driver->termios[i];
3882 if (tp) {
3883 driver->termios[i] = NULL;
3884 kfree(tp);
3886 tp = driver->termios_locked[i];
3887 if (tp) {
3888 driver->termios_locked[i] = NULL;
3889 kfree(tp);
3891 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3892 tty_unregister_device(driver, i);
3894 p = driver->ttys;
3895 proc_tty_unregister_driver(driver);
3896 driver->ttys = NULL;
3897 driver->termios = driver->termios_locked = NULL;
3898 kfree(p);
3899 cdev_del(&driver->cdev);
3900 return 0;
3902 EXPORT_SYMBOL(tty_unregister_driver);
3904 dev_t tty_devnum(struct tty_struct *tty)
3906 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3908 EXPORT_SYMBOL(tty_devnum);
3910 void proc_clear_tty(struct task_struct *p)
3912 spin_lock_irq(&p->sighand->siglock);
3913 p->signal->tty = NULL;
3914 spin_unlock_irq(&p->sighand->siglock);
3916 EXPORT_SYMBOL(proc_clear_tty);
3918 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3920 if (tty) {
3921 /* We should not have a session or pgrp to here but.... */
3922 put_pid(tty->session);
3923 put_pid(tty->pgrp);
3924 tty->session = get_pid(task_session(tsk));
3925 tty->pgrp = get_pid(task_pgrp(tsk));
3927 put_pid(tsk->signal->tty_old_pgrp);
3928 tsk->signal->tty = tty;
3929 tsk->signal->tty_old_pgrp = NULL;
3932 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3934 spin_lock_irq(&tsk->sighand->siglock);
3935 __proc_set_tty(tsk, tty);
3936 spin_unlock_irq(&tsk->sighand->siglock);
3939 struct tty_struct *get_current_tty(void)
3941 struct tty_struct *tty;
3942 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3943 tty = current->signal->tty;
3945 * session->tty can be changed/cleared from under us, make sure we
3946 * issue the load. The obtained pointer, when not NULL, is valid as
3947 * long as we hold tty_mutex.
3949 barrier();
3950 return tty;
3952 EXPORT_SYMBOL_GPL(get_current_tty);
3955 * Initialize the console device. This is called *early*, so
3956 * we can't necessarily depend on lots of kernel help here.
3957 * Just do some early initializations, and do the complex setup
3958 * later.
3960 void __init console_init(void)
3962 initcall_t *call;
3964 /* Setup the default TTY line discipline. */
3965 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
3968 * set up the console device so that later boot sequences can
3969 * inform about problems etc..
3971 call = __con_initcall_start;
3972 while (call < __con_initcall_end) {
3973 (*call)();
3974 call++;
3978 #ifdef CONFIG_VT
3979 extern int vty_init(void);
3980 #endif
3982 static int __init tty_class_init(void)
3984 tty_class = class_create(THIS_MODULE, "tty");
3985 if (IS_ERR(tty_class))
3986 return PTR_ERR(tty_class);
3987 return 0;
3990 postcore_initcall(tty_class_init);
3992 /* 3/2004 jmc: why do these devices exist? */
3994 static struct cdev tty_cdev, console_cdev;
3995 #ifdef CONFIG_UNIX98_PTYS
3996 static struct cdev ptmx_cdev;
3997 #endif
3998 #ifdef CONFIG_VT
3999 static struct cdev vc0_cdev;
4000 #endif
4003 * Ok, now we can initialize the rest of the tty devices and can count
4004 * on memory allocations, interrupts etc..
4006 static int __init tty_init(void)
4008 cdev_init(&tty_cdev, &tty_fops);
4009 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
4010 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
4011 panic("Couldn't register /dev/tty driver\n");
4012 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
4014 cdev_init(&console_cdev, &console_fops);
4015 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
4016 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
4017 panic("Couldn't register /dev/console driver\n");
4018 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
4020 #ifdef CONFIG_UNIX98_PTYS
4021 cdev_init(&ptmx_cdev, &ptmx_fops);
4022 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
4023 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
4024 panic("Couldn't register /dev/ptmx driver\n");
4025 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
4026 #endif
4028 #ifdef CONFIG_VT
4029 cdev_init(&vc0_cdev, &console_fops);
4030 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
4031 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
4032 panic("Couldn't register /dev/tty0 driver\n");
4033 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
4035 vty_init();
4036 #endif
4037 return 0;
4039 module_init(tty_init);