2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/poll.h>
28 #include <linux/dma-mapping.h>
31 #include <asm/uaccess.h>
32 #include <asm/semaphore.h>
34 #include "fw-transaction.h"
37 #define DESCRIPTOR_OUTPUT_MORE 0
38 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
39 #define DESCRIPTOR_INPUT_MORE (2 << 12)
40 #define DESCRIPTOR_INPUT_LAST (3 << 12)
41 #define DESCRIPTOR_STATUS (1 << 11)
42 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
43 #define DESCRIPTOR_PING (1 << 7)
44 #define DESCRIPTOR_YY (1 << 6)
45 #define DESCRIPTOR_NO_IRQ (0 << 4)
46 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
47 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
48 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
49 #define DESCRIPTOR_WAIT (3 << 0)
55 __le32 branch_address
;
57 __le16 transfer_status
;
58 } __attribute__((aligned(16)));
60 struct db_descriptor
{
63 __le16 second_req_count
;
64 __le16 first_req_count
;
65 __le32 branch_address
;
66 __le16 second_res_count
;
67 __le16 first_res_count
;
72 } __attribute__((aligned(16)));
74 #define CONTROL_SET(regs) (regs)
75 #define CONTROL_CLEAR(regs) ((regs) + 4)
76 #define COMMAND_PTR(regs) ((regs) + 12)
77 #define CONTEXT_MATCH(regs) ((regs) + 16)
80 struct descriptor descriptor
;
81 struct ar_buffer
*next
;
87 struct ar_buffer
*current_buffer
;
88 struct ar_buffer
*last_buffer
;
91 struct tasklet_struct tasklet
;
96 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
98 struct descriptor
*last
);
100 struct fw_ohci
*ohci
;
103 struct descriptor
*buffer
;
104 dma_addr_t buffer_bus
;
106 struct descriptor
*head_descriptor
;
107 struct descriptor
*tail_descriptor
;
108 struct descriptor
*tail_descriptor_last
;
109 struct descriptor
*prev_descriptor
;
111 descriptor_callback_t callback
;
113 struct tasklet_struct tasklet
;
116 #define IT_HEADER_SY(v) ((v) << 0)
117 #define IT_HEADER_TCODE(v) ((v) << 4)
118 #define IT_HEADER_CHANNEL(v) ((v) << 8)
119 #define IT_HEADER_TAG(v) ((v) << 14)
120 #define IT_HEADER_SPEED(v) ((v) << 16)
121 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
124 struct fw_iso_context base
;
125 struct context context
;
127 size_t header_length
;
130 #define CONFIG_ROM_SIZE 1024
136 __iomem
char *registers
;
137 dma_addr_t self_id_bus
;
139 struct tasklet_struct bus_reset_tasklet
;
142 int request_generation
;
146 * Spinlock for accessing fw_ohci data. Never call out of
147 * this driver with this lock held.
150 u32 self_id_buffer
[512];
152 /* Config rom buffers */
154 dma_addr_t config_rom_bus
;
155 __be32
*next_config_rom
;
156 dma_addr_t next_config_rom_bus
;
159 struct ar_context ar_request_ctx
;
160 struct ar_context ar_response_ctx
;
161 struct context at_request_ctx
;
162 struct context at_response_ctx
;
165 struct iso_context
*it_context_list
;
167 struct iso_context
*ir_context_list
;
170 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
172 return container_of(card
, struct fw_ohci
, card
);
175 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
176 #define IR_CONTEXT_BUFFER_FILL 0x80000000
177 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
178 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
179 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
180 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
182 #define CONTEXT_RUN 0x8000
183 #define CONTEXT_WAKE 0x1000
184 #define CONTEXT_DEAD 0x0800
185 #define CONTEXT_ACTIVE 0x0400
187 #define OHCI1394_MAX_AT_REQ_RETRIES 0x2
188 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
189 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
191 #define FW_OHCI_MAJOR 240
192 #define OHCI1394_REGISTER_SIZE 0x800
193 #define OHCI_LOOP_COUNT 500
194 #define OHCI1394_PCI_HCI_Control 0x40
195 #define SELF_ID_BUF_SIZE 0x800
196 #define OHCI_TCODE_PHY_PACKET 0x0e
197 #define OHCI_VERSION_1_1 0x010010
198 #define ISO_BUFFER_SIZE (64 * 1024)
199 #define AT_BUFFER_SIZE 4096
201 static char ohci_driver_name
[] = KBUILD_MODNAME
;
203 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
205 writel(data
, ohci
->registers
+ offset
);
208 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
210 return readl(ohci
->registers
+ offset
);
213 static inline void flush_writes(const struct fw_ohci
*ohci
)
215 /* Do a dummy read to flush writes. */
216 reg_read(ohci
, OHCI1394_Version
);
220 ohci_update_phy_reg(struct fw_card
*card
, int addr
,
221 int clear_bits
, int set_bits
)
223 struct fw_ohci
*ohci
= fw_ohci(card
);
226 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
228 val
= reg_read(ohci
, OHCI1394_PhyControl
);
229 if ((val
& OHCI1394_PhyControl_ReadDone
) == 0) {
230 fw_error("failed to set phy reg bits.\n");
234 old
= OHCI1394_PhyControl_ReadData(val
);
235 old
= (old
& ~clear_bits
) | set_bits
;
236 reg_write(ohci
, OHCI1394_PhyControl
,
237 OHCI1394_PhyControl_Write(addr
, old
));
242 static int ar_context_add_page(struct ar_context
*ctx
)
244 struct device
*dev
= ctx
->ohci
->card
.device
;
245 struct ar_buffer
*ab
;
249 ab
= (struct ar_buffer
*) __get_free_page(GFP_ATOMIC
);
253 ab_bus
= dma_map_single(dev
, ab
, PAGE_SIZE
, DMA_BIDIRECTIONAL
);
254 if (dma_mapping_error(ab_bus
)) {
255 free_page((unsigned long) ab
);
259 memset(&ab
->descriptor
, 0, sizeof(ab
->descriptor
));
260 ab
->descriptor
.control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
262 DESCRIPTOR_BRANCH_ALWAYS
);
263 offset
= offsetof(struct ar_buffer
, data
);
264 ab
->descriptor
.req_count
= cpu_to_le16(PAGE_SIZE
- offset
);
265 ab
->descriptor
.data_address
= cpu_to_le32(ab_bus
+ offset
);
266 ab
->descriptor
.res_count
= cpu_to_le16(PAGE_SIZE
- offset
);
267 ab
->descriptor
.branch_address
= 0;
269 dma_sync_single_for_device(dev
, ab_bus
, PAGE_SIZE
, DMA_BIDIRECTIONAL
);
271 ctx
->last_buffer
->descriptor
.branch_address
= ab_bus
| 1;
272 ctx
->last_buffer
->next
= ab
;
273 ctx
->last_buffer
= ab
;
275 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
276 flush_writes(ctx
->ohci
);
281 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
283 struct fw_ohci
*ohci
= ctx
->ohci
;
285 u32 status
, length
, tcode
;
287 p
.header
[0] = le32_to_cpu(buffer
[0]);
288 p
.header
[1] = le32_to_cpu(buffer
[1]);
289 p
.header
[2] = le32_to_cpu(buffer
[2]);
291 tcode
= (p
.header
[0] >> 4) & 0x0f;
293 case TCODE_WRITE_QUADLET_REQUEST
:
294 case TCODE_READ_QUADLET_RESPONSE
:
295 p
.header
[3] = (__force __u32
) buffer
[3];
296 p
.header_length
= 16;
297 p
.payload_length
= 0;
300 case TCODE_READ_BLOCK_REQUEST
:
301 p
.header
[3] = le32_to_cpu(buffer
[3]);
302 p
.header_length
= 16;
303 p
.payload_length
= 0;
306 case TCODE_WRITE_BLOCK_REQUEST
:
307 case TCODE_READ_BLOCK_RESPONSE
:
308 case TCODE_LOCK_REQUEST
:
309 case TCODE_LOCK_RESPONSE
:
310 p
.header
[3] = le32_to_cpu(buffer
[3]);
311 p
.header_length
= 16;
312 p
.payload_length
= p
.header
[3] >> 16;
315 case TCODE_WRITE_RESPONSE
:
316 case TCODE_READ_QUADLET_REQUEST
:
317 case OHCI_TCODE_PHY_PACKET
:
318 p
.header_length
= 12;
319 p
.payload_length
= 0;
323 p
.payload
= (void *) buffer
+ p
.header_length
;
325 /* FIXME: What to do about evt_* errors? */
326 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
327 status
= le32_to_cpu(buffer
[length
]);
329 p
.ack
= ((status
>> 16) & 0x1f) - 16;
330 p
.speed
= (status
>> 21) & 0x7;
331 p
.timestamp
= status
& 0xffff;
332 p
.generation
= ohci
->request_generation
;
335 * The OHCI bus reset handler synthesizes a phy packet with
336 * the new generation number when a bus reset happens (see
337 * section 8.4.2.3). This helps us determine when a request
338 * was received and make sure we send the response in the same
339 * generation. We only need this for requests; for responses
340 * we use the unique tlabel for finding the matching
344 if (p
.ack
+ 16 == 0x09)
345 ohci
->request_generation
= (buffer
[2] >> 16) & 0xff;
346 else if (ctx
== &ohci
->ar_request_ctx
)
347 fw_core_handle_request(&ohci
->card
, &p
);
349 fw_core_handle_response(&ohci
->card
, &p
);
351 return buffer
+ length
+ 1;
354 static void ar_context_tasklet(unsigned long data
)
356 struct ar_context
*ctx
= (struct ar_context
*)data
;
357 struct fw_ohci
*ohci
= ctx
->ohci
;
358 struct ar_buffer
*ab
;
359 struct descriptor
*d
;
362 ab
= ctx
->current_buffer
;
365 if (d
->res_count
== 0) {
366 size_t size
, rest
, offset
;
369 * This descriptor is finished and we may have a
370 * packet split across this and the next buffer. We
371 * reuse the page for reassembling the split packet.
374 offset
= offsetof(struct ar_buffer
, data
);
375 dma_unmap_single(ohci
->card
.device
,
376 ab
->descriptor
.data_address
- offset
,
377 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
382 size
= buffer
+ PAGE_SIZE
- ctx
->pointer
;
383 rest
= le16_to_cpu(d
->req_count
) - le16_to_cpu(d
->res_count
);
384 memmove(buffer
, ctx
->pointer
, size
);
385 memcpy(buffer
+ size
, ab
->data
, rest
);
386 ctx
->current_buffer
= ab
;
387 ctx
->pointer
= (void *) ab
->data
+ rest
;
388 end
= buffer
+ size
+ rest
;
391 buffer
= handle_ar_packet(ctx
, buffer
);
393 free_page((unsigned long)buffer
);
394 ar_context_add_page(ctx
);
396 buffer
= ctx
->pointer
;
398 (void *) ab
+ PAGE_SIZE
- le16_to_cpu(d
->res_count
);
401 buffer
= handle_ar_packet(ctx
, buffer
);
406 ar_context_init(struct ar_context
*ctx
, struct fw_ohci
*ohci
, u32 regs
)
412 ctx
->last_buffer
= &ab
;
413 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
415 ar_context_add_page(ctx
);
416 ar_context_add_page(ctx
);
417 ctx
->current_buffer
= ab
.next
;
418 ctx
->pointer
= ctx
->current_buffer
->data
;
420 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ab
.descriptor
.branch_address
);
421 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
422 flush_writes(ctx
->ohci
);
427 static void context_tasklet(unsigned long data
)
429 struct context
*ctx
= (struct context
*) data
;
430 struct fw_ohci
*ohci
= ctx
->ohci
;
431 struct descriptor
*d
, *last
;
435 dma_sync_single_for_cpu(ohci
->card
.device
, ctx
->buffer_bus
,
436 ctx
->buffer_size
, DMA_TO_DEVICE
);
438 d
= ctx
->tail_descriptor
;
439 last
= ctx
->tail_descriptor_last
;
441 while (last
->branch_address
!= 0) {
442 address
= le32_to_cpu(last
->branch_address
);
444 d
= ctx
->buffer
+ (address
- ctx
->buffer_bus
) / sizeof(*d
);
445 last
= (z
== 2) ? d
: d
+ z
- 1;
447 if (!ctx
->callback(ctx
, d
, last
))
450 ctx
->tail_descriptor
= d
;
451 ctx
->tail_descriptor_last
= last
;
456 context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
457 size_t buffer_size
, u32 regs
,
458 descriptor_callback_t callback
)
462 ctx
->buffer_size
= buffer_size
;
463 ctx
->buffer
= kmalloc(buffer_size
, GFP_KERNEL
);
464 if (ctx
->buffer
== NULL
)
467 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
468 ctx
->callback
= callback
;
471 dma_map_single(ohci
->card
.device
, ctx
->buffer
,
472 buffer_size
, DMA_TO_DEVICE
);
473 if (dma_mapping_error(ctx
->buffer_bus
)) {
478 ctx
->head_descriptor
= ctx
->buffer
;
479 ctx
->prev_descriptor
= ctx
->buffer
;
480 ctx
->tail_descriptor
= ctx
->buffer
;
481 ctx
->tail_descriptor_last
= ctx
->buffer
;
484 * We put a dummy descriptor in the buffer that has a NULL
485 * branch address and looks like it's been sent. That way we
486 * have a descriptor to append DMA programs to. Also, the
487 * ring buffer invariant is that it always has at least one
488 * element so that head == tail means buffer full.
491 memset(ctx
->head_descriptor
, 0, sizeof(*ctx
->head_descriptor
));
492 ctx
->head_descriptor
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
493 ctx
->head_descriptor
->transfer_status
= cpu_to_le16(0x8011);
494 ctx
->head_descriptor
++;
500 context_release(struct context
*ctx
)
502 struct fw_card
*card
= &ctx
->ohci
->card
;
504 dma_unmap_single(card
->device
, ctx
->buffer_bus
,
505 ctx
->buffer_size
, DMA_TO_DEVICE
);
509 static struct descriptor
*
510 context_get_descriptors(struct context
*ctx
, int z
, dma_addr_t
*d_bus
)
512 struct descriptor
*d
, *tail
, *end
;
514 d
= ctx
->head_descriptor
;
515 tail
= ctx
->tail_descriptor
;
516 end
= ctx
->buffer
+ ctx
->buffer_size
/ sizeof(*d
);
520 } else if (d
> tail
&& d
+ z
<= end
) {
522 } else if (d
> tail
&& ctx
->buffer
+ z
<= tail
) {
530 memset(d
, 0, z
* sizeof(*d
));
531 *d_bus
= ctx
->buffer_bus
+ (d
- ctx
->buffer
) * sizeof(*d
);
536 static void context_run(struct context
*ctx
, u32 extra
)
538 struct fw_ohci
*ohci
= ctx
->ohci
;
540 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
541 le32_to_cpu(ctx
->tail_descriptor_last
->branch_address
));
542 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
543 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
547 static void context_append(struct context
*ctx
,
548 struct descriptor
*d
, int z
, int extra
)
552 d_bus
= ctx
->buffer_bus
+ (d
- ctx
->buffer
) * sizeof(*d
);
554 ctx
->head_descriptor
= d
+ z
+ extra
;
555 ctx
->prev_descriptor
->branch_address
= cpu_to_le32(d_bus
| z
);
556 ctx
->prev_descriptor
= z
== 2 ? d
: d
+ z
- 1;
558 dma_sync_single_for_device(ctx
->ohci
->card
.device
, ctx
->buffer_bus
,
559 ctx
->buffer_size
, DMA_TO_DEVICE
);
561 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
562 flush_writes(ctx
->ohci
);
565 static void context_stop(struct context
*ctx
)
570 reg_write(ctx
->ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
571 flush_writes(ctx
->ohci
);
573 for (i
= 0; i
< 10; i
++) {
574 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
575 if ((reg
& CONTEXT_ACTIVE
) == 0)
578 fw_notify("context_stop: still active (0x%08x)\n", reg
);
584 struct fw_packet
*packet
;
588 * This function apppends a packet to the DMA queue for transmission.
589 * Must always be called with the ochi->lock held to ensure proper
590 * generation handling and locking around packet queue manipulation.
593 at_context_queue_packet(struct context
*ctx
, struct fw_packet
*packet
)
595 struct fw_ohci
*ohci
= ctx
->ohci
;
596 dma_addr_t d_bus
, payload_bus
;
597 struct driver_data
*driver_data
;
598 struct descriptor
*d
, *last
;
603 d
= context_get_descriptors(ctx
, 4, &d_bus
);
605 packet
->ack
= RCODE_SEND_ERROR
;
609 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
610 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
613 * The DMA format for asyncronous link packets is different
614 * from the IEEE1394 layout, so shift the fields around
615 * accordingly. If header_length is 8, it's a PHY packet, to
616 * which we need to prepend an extra quadlet.
619 header
= (__le32
*) &d
[1];
620 if (packet
->header_length
> 8) {
621 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
622 (packet
->speed
<< 16));
623 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
624 (packet
->header
[0] & 0xffff0000));
625 header
[2] = cpu_to_le32(packet
->header
[2]);
627 tcode
= (packet
->header
[0] >> 4) & 0x0f;
628 if (TCODE_IS_BLOCK_PACKET(tcode
))
629 header
[3] = cpu_to_le32(packet
->header
[3]);
631 header
[3] = (__force __le32
) packet
->header
[3];
633 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
635 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
636 (packet
->speed
<< 16));
637 header
[1] = cpu_to_le32(packet
->header
[0]);
638 header
[2] = cpu_to_le32(packet
->header
[1]);
639 d
[0].req_count
= cpu_to_le16(12);
642 driver_data
= (struct driver_data
*) &d
[3];
643 driver_data
->packet
= packet
;
644 packet
->driver_data
= driver_data
;
646 if (packet
->payload_length
> 0) {
648 dma_map_single(ohci
->card
.device
, packet
->payload
,
649 packet
->payload_length
, DMA_TO_DEVICE
);
650 if (dma_mapping_error(payload_bus
)) {
651 packet
->ack
= RCODE_SEND_ERROR
;
655 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
656 d
[2].data_address
= cpu_to_le32(payload_bus
);
664 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
665 DESCRIPTOR_IRQ_ALWAYS
|
666 DESCRIPTOR_BRANCH_ALWAYS
);
668 /* FIXME: Document how the locking works. */
669 if (ohci
->generation
!= packet
->generation
) {
670 packet
->ack
= RCODE_GENERATION
;
674 context_append(ctx
, d
, z
, 4 - z
);
676 /* If the context isn't already running, start it up. */
677 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
678 if ((reg
& CONTEXT_RUN
) == 0)
684 static int handle_at_packet(struct context
*context
,
685 struct descriptor
*d
,
686 struct descriptor
*last
)
688 struct driver_data
*driver_data
;
689 struct fw_packet
*packet
;
690 struct fw_ohci
*ohci
= context
->ohci
;
691 dma_addr_t payload_bus
;
694 if (last
->transfer_status
== 0)
695 /* This descriptor isn't done yet, stop iteration. */
698 driver_data
= (struct driver_data
*) &d
[3];
699 packet
= driver_data
->packet
;
701 /* This packet was cancelled, just continue. */
704 payload_bus
= le32_to_cpu(last
->data_address
);
705 if (payload_bus
!= 0)
706 dma_unmap_single(ohci
->card
.device
, payload_bus
,
707 packet
->payload_length
, DMA_TO_DEVICE
);
709 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
710 packet
->timestamp
= le16_to_cpu(last
->res_count
);
713 case OHCI1394_evt_timeout
:
714 /* Async response transmit timed out. */
715 packet
->ack
= RCODE_CANCELLED
;
718 case OHCI1394_evt_flushed
:
720 * The packet was flushed should give same error as
721 * when we try to use a stale generation count.
723 packet
->ack
= RCODE_GENERATION
;
726 case OHCI1394_evt_missing_ack
:
728 * Using a valid (current) generation count, but the
729 * node is not on the bus or not sending acks.
731 packet
->ack
= RCODE_NO_ACK
;
734 case ACK_COMPLETE
+ 0x10:
735 case ACK_PENDING
+ 0x10:
736 case ACK_BUSY_X
+ 0x10:
737 case ACK_BUSY_A
+ 0x10:
738 case ACK_BUSY_B
+ 0x10:
739 case ACK_DATA_ERROR
+ 0x10:
740 case ACK_TYPE_ERROR
+ 0x10:
741 packet
->ack
= evt
- 0x10;
745 packet
->ack
= RCODE_SEND_ERROR
;
749 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
754 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
755 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
756 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
757 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
758 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
761 handle_local_rom(struct fw_ohci
*ohci
, struct fw_packet
*packet
, u32 csr
)
763 struct fw_packet response
;
764 int tcode
, length
, i
;
766 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
767 if (TCODE_IS_BLOCK_PACKET(tcode
))
768 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
772 i
= csr
- CSR_CONFIG_ROM
;
773 if (i
+ length
> CONFIG_ROM_SIZE
) {
774 fw_fill_response(&response
, packet
->header
,
775 RCODE_ADDRESS_ERROR
, NULL
, 0);
776 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
777 fw_fill_response(&response
, packet
->header
,
778 RCODE_TYPE_ERROR
, NULL
, 0);
780 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
781 (void *) ohci
->config_rom
+ i
, length
);
784 fw_core_handle_response(&ohci
->card
, &response
);
788 handle_local_lock(struct fw_ohci
*ohci
, struct fw_packet
*packet
, u32 csr
)
790 struct fw_packet response
;
791 int tcode
, length
, ext_tcode
, sel
;
792 __be32
*payload
, lock_old
;
793 u32 lock_arg
, lock_data
;
795 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
796 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
797 payload
= packet
->payload
;
798 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
800 if (tcode
== TCODE_LOCK_REQUEST
&&
801 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
802 lock_arg
= be32_to_cpu(payload
[0]);
803 lock_data
= be32_to_cpu(payload
[1]);
804 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
808 fw_fill_response(&response
, packet
->header
,
809 RCODE_TYPE_ERROR
, NULL
, 0);
813 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
814 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
815 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
816 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
818 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000)
819 lock_old
= cpu_to_be32(reg_read(ohci
, OHCI1394_CSRData
));
821 fw_notify("swap not done yet\n");
823 fw_fill_response(&response
, packet
->header
,
824 RCODE_COMPLETE
, &lock_old
, sizeof(lock_old
));
826 fw_core_handle_response(&ohci
->card
, &response
);
830 handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
835 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
836 packet
->ack
= ACK_PENDING
;
837 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
841 ((unsigned long long)
842 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
844 csr
= offset
- CSR_REGISTER_BASE
;
846 /* Handle config rom reads. */
847 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
848 handle_local_rom(ctx
->ohci
, packet
, csr
);
850 case CSR_BUS_MANAGER_ID
:
851 case CSR_BANDWIDTH_AVAILABLE
:
852 case CSR_CHANNELS_AVAILABLE_HI
:
853 case CSR_CHANNELS_AVAILABLE_LO
:
854 handle_local_lock(ctx
->ohci
, packet
, csr
);
857 if (ctx
== &ctx
->ohci
->at_request_ctx
)
858 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
860 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
864 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
865 packet
->ack
= ACK_COMPLETE
;
866 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
871 at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
876 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
878 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
879 ctx
->ohci
->generation
== packet
->generation
) {
880 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
881 handle_local_request(ctx
, packet
);
885 retval
= at_context_queue_packet(ctx
, packet
);
886 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
889 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
893 static void bus_reset_tasklet(unsigned long data
)
895 struct fw_ohci
*ohci
= (struct fw_ohci
*)data
;
896 int self_id_count
, i
, j
, reg
;
897 int generation
, new_generation
;
900 reg
= reg_read(ohci
, OHCI1394_NodeID
);
901 if (!(reg
& OHCI1394_NodeID_idValid
)) {
902 fw_error("node ID not valid, new bus reset in progress\n");
905 ohci
->node_id
= reg
& 0xffff;
908 * The count in the SelfIDCount register is the number of
909 * bytes in the self ID receive buffer. Since we also receive
910 * the inverted quadlets and a header quadlet, we shift one
911 * bit extra to get the actual number of self IDs.
914 self_id_count
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 3) & 0x3ff;
915 generation
= (le32_to_cpu(ohci
->self_id_cpu
[0]) >> 16) & 0xff;
917 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
918 if (ohci
->self_id_cpu
[i
] != ~ohci
->self_id_cpu
[i
+ 1])
919 fw_error("inconsistent self IDs\n");
920 ohci
->self_id_buffer
[j
] = le32_to_cpu(ohci
->self_id_cpu
[i
]);
924 * Check the consistency of the self IDs we just read. The
925 * problem we face is that a new bus reset can start while we
926 * read out the self IDs from the DMA buffer. If this happens,
927 * the DMA buffer will be overwritten with new self IDs and we
928 * will read out inconsistent data. The OHCI specification
929 * (section 11.2) recommends a technique similar to
930 * linux/seqlock.h, where we remember the generation of the
931 * self IDs in the buffer before reading them out and compare
932 * it to the current generation after reading them out. If
933 * the two generations match we know we have a consistent set
937 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
938 if (new_generation
!= generation
) {
939 fw_notify("recursive bus reset detected, "
940 "discarding self ids\n");
944 /* FIXME: Document how the locking works. */
945 spin_lock_irqsave(&ohci
->lock
, flags
);
947 ohci
->generation
= generation
;
948 context_stop(&ohci
->at_request_ctx
);
949 context_stop(&ohci
->at_response_ctx
);
950 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
953 * This next bit is unrelated to the AT context stuff but we
954 * have to do it under the spinlock also. If a new config rom
955 * was set up before this reset, the old one is now no longer
956 * in use and we can free it. Update the config rom pointers
957 * to point to the current config rom and clear the
958 * next_config_rom pointer so a new udpate can take place.
961 if (ohci
->next_config_rom
!= NULL
) {
962 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
963 ohci
->config_rom
, ohci
->config_rom_bus
);
964 ohci
->config_rom
= ohci
->next_config_rom
;
965 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
966 ohci
->next_config_rom
= NULL
;
969 * Restore config_rom image and manually update
970 * config_rom registers. Writing the header quadlet
971 * will indicate that the config rom is ready, so we
974 reg_write(ohci
, OHCI1394_BusOptions
,
975 be32_to_cpu(ohci
->config_rom
[2]));
976 ohci
->config_rom
[0] = cpu_to_be32(ohci
->next_header
);
977 reg_write(ohci
, OHCI1394_ConfigROMhdr
, ohci
->next_header
);
980 spin_unlock_irqrestore(&ohci
->lock
, flags
);
982 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
983 self_id_count
, ohci
->self_id_buffer
);
986 static irqreturn_t
irq_handler(int irq
, void *data
)
988 struct fw_ohci
*ohci
= data
;
989 u32 event
, iso_event
, cycle_time
;
992 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
997 reg_write(ohci
, OHCI1394_IntEventClear
, event
);
999 if (event
& OHCI1394_selfIDComplete
)
1000 tasklet_schedule(&ohci
->bus_reset_tasklet
);
1002 if (event
& OHCI1394_RQPkt
)
1003 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
1005 if (event
& OHCI1394_RSPkt
)
1006 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
1008 if (event
& OHCI1394_reqTxComplete
)
1009 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
1011 if (event
& OHCI1394_respTxComplete
)
1012 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
1014 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
1015 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
1018 i
= ffs(iso_event
) - 1;
1019 tasklet_schedule(&ohci
->ir_context_list
[i
].context
.tasklet
);
1020 iso_event
&= ~(1 << i
);
1023 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
1024 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
1027 i
= ffs(iso_event
) - 1;
1028 tasklet_schedule(&ohci
->it_context_list
[i
].context
.tasklet
);
1029 iso_event
&= ~(1 << i
);
1032 if (event
& OHCI1394_cycle64Seconds
) {
1033 cycle_time
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1034 if ((cycle_time
& 0x80000000) == 0)
1035 ohci
->bus_seconds
++;
1041 static int ohci_enable(struct fw_card
*card
, u32
*config_rom
, size_t length
)
1043 struct fw_ohci
*ohci
= fw_ohci(card
);
1044 struct pci_dev
*dev
= to_pci_dev(card
->device
);
1047 * When the link is not yet enabled, the atomic config rom
1048 * update mechanism described below in ohci_set_config_rom()
1049 * is not active. We have to update ConfigRomHeader and
1050 * BusOptions manually, and the write to ConfigROMmap takes
1051 * effect immediately. We tie this to the enabling of the
1052 * link, so we have a valid config rom before enabling - the
1053 * OHCI requires that ConfigROMhdr and BusOptions have valid
1054 * values before enabling.
1056 * However, when the ConfigROMmap is written, some controllers
1057 * always read back quadlets 0 and 2 from the config rom to
1058 * the ConfigRomHeader and BusOptions registers on bus reset.
1059 * They shouldn't do that in this initial case where the link
1060 * isn't enabled. This means we have to use the same
1061 * workaround here, setting the bus header to 0 and then write
1062 * the right values in the bus reset tasklet.
1065 ohci
->next_config_rom
=
1066 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1067 &ohci
->next_config_rom_bus
, GFP_KERNEL
);
1068 if (ohci
->next_config_rom
== NULL
)
1071 memset(ohci
->next_config_rom
, 0, CONFIG_ROM_SIZE
);
1072 fw_memcpy_to_be32(ohci
->next_config_rom
, config_rom
, length
* 4);
1074 ohci
->next_header
= config_rom
[0];
1075 ohci
->next_config_rom
[0] = 0;
1076 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
1077 reg_write(ohci
, OHCI1394_BusOptions
, config_rom
[2]);
1078 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
1080 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
1082 if (request_irq(dev
->irq
, irq_handler
,
1083 IRQF_SHARED
, ohci_driver_name
, ohci
)) {
1084 fw_error("Failed to allocate shared interrupt %d.\n",
1086 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1087 ohci
->config_rom
, ohci
->config_rom_bus
);
1091 reg_write(ohci
, OHCI1394_HCControlSet
,
1092 OHCI1394_HCControl_linkEnable
|
1093 OHCI1394_HCControl_BIBimageValid
);
1097 * We are ready to go, initiate bus reset to finish the
1101 fw_core_initiate_bus_reset(&ohci
->card
, 1);
1107 ohci_set_config_rom(struct fw_card
*card
, u32
*config_rom
, size_t length
)
1109 struct fw_ohci
*ohci
;
1110 unsigned long flags
;
1112 __be32
*next_config_rom
;
1113 dma_addr_t next_config_rom_bus
;
1115 ohci
= fw_ohci(card
);
1118 * When the OHCI controller is enabled, the config rom update
1119 * mechanism is a bit tricky, but easy enough to use. See
1120 * section 5.5.6 in the OHCI specification.
1122 * The OHCI controller caches the new config rom address in a
1123 * shadow register (ConfigROMmapNext) and needs a bus reset
1124 * for the changes to take place. When the bus reset is
1125 * detected, the controller loads the new values for the
1126 * ConfigRomHeader and BusOptions registers from the specified
1127 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1128 * shadow register. All automatically and atomically.
1130 * Now, there's a twist to this story. The automatic load of
1131 * ConfigRomHeader and BusOptions doesn't honor the
1132 * noByteSwapData bit, so with a be32 config rom, the
1133 * controller will load be32 values in to these registers
1134 * during the atomic update, even on litte endian
1135 * architectures. The workaround we use is to put a 0 in the
1136 * header quadlet; 0 is endian agnostic and means that the
1137 * config rom isn't ready yet. In the bus reset tasklet we
1138 * then set up the real values for the two registers.
1140 * We use ohci->lock to avoid racing with the code that sets
1141 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1145 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1146 &next_config_rom_bus
, GFP_KERNEL
);
1147 if (next_config_rom
== NULL
)
1150 spin_lock_irqsave(&ohci
->lock
, flags
);
1152 if (ohci
->next_config_rom
== NULL
) {
1153 ohci
->next_config_rom
= next_config_rom
;
1154 ohci
->next_config_rom_bus
= next_config_rom_bus
;
1156 memset(ohci
->next_config_rom
, 0, CONFIG_ROM_SIZE
);
1157 fw_memcpy_to_be32(ohci
->next_config_rom
, config_rom
,
1160 ohci
->next_header
= config_rom
[0];
1161 ohci
->next_config_rom
[0] = 0;
1163 reg_write(ohci
, OHCI1394_ConfigROMmap
,
1164 ohci
->next_config_rom_bus
);
1166 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1167 next_config_rom
, next_config_rom_bus
);
1171 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1174 * Now initiate a bus reset to have the changes take
1175 * effect. We clean up the old config rom memory and DMA
1176 * mappings in the bus reset tasklet, since the OHCI
1177 * controller could need to access it before the bus reset
1181 fw_core_initiate_bus_reset(&ohci
->card
, 1);
1186 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
1188 struct fw_ohci
*ohci
= fw_ohci(card
);
1190 at_context_transmit(&ohci
->at_request_ctx
, packet
);
1193 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
1195 struct fw_ohci
*ohci
= fw_ohci(card
);
1197 at_context_transmit(&ohci
->at_response_ctx
, packet
);
1200 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
1202 struct fw_ohci
*ohci
= fw_ohci(card
);
1203 struct context
*ctx
= &ohci
->at_request_ctx
;
1204 struct driver_data
*driver_data
= packet
->driver_data
;
1205 int retval
= -ENOENT
;
1207 tasklet_disable(&ctx
->tasklet
);
1209 if (packet
->ack
!= 0)
1212 driver_data
->packet
= NULL
;
1213 packet
->ack
= RCODE_CANCELLED
;
1214 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1218 tasklet_enable(&ctx
->tasklet
);
1224 ohci_enable_phys_dma(struct fw_card
*card
, int node_id
, int generation
)
1226 struct fw_ohci
*ohci
= fw_ohci(card
);
1227 unsigned long flags
;
1231 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1232 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1235 spin_lock_irqsave(&ohci
->lock
, flags
);
1237 if (ohci
->generation
!= generation
) {
1243 * Note, if the node ID contains a non-local bus ID, physical DMA is
1244 * enabled for _all_ nodes on remote buses.
1247 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
1249 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
1251 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
1255 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1260 ohci_get_bus_time(struct fw_card
*card
)
1262 struct fw_ohci
*ohci
= fw_ohci(card
);
1266 cycle_time
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1267 bus_time
= ((u64
) ohci
->bus_seconds
<< 32) | cycle_time
;
1272 static int handle_ir_dualbuffer_packet(struct context
*context
,
1273 struct descriptor
*d
,
1274 struct descriptor
*last
)
1276 struct iso_context
*ctx
=
1277 container_of(context
, struct iso_context
, context
);
1278 struct db_descriptor
*db
= (struct db_descriptor
*) d
;
1280 size_t header_length
;
1284 if (db
->first_res_count
> 0 && db
->second_res_count
> 0)
1285 /* This descriptor isn't done yet, stop iteration. */
1288 header_length
= le16_to_cpu(db
->first_req_count
) -
1289 le16_to_cpu(db
->first_res_count
);
1291 i
= ctx
->header_length
;
1293 end
= p
+ header_length
;
1294 while (p
< end
&& i
+ ctx
->base
.header_size
<= PAGE_SIZE
) {
1296 * The iso header is byteswapped to little endian by
1297 * the controller, but the remaining header quadlets
1298 * are big endian. We want to present all the headers
1299 * as big endian, so we have to swap the first
1302 *(u32
*) (ctx
->header
+ i
) = __swab32(*(u32
*) (p
+ 4));
1303 memcpy(ctx
->header
+ i
+ 4, p
+ 8, ctx
->base
.header_size
- 4);
1304 i
+= ctx
->base
.header_size
;
1305 p
+= ctx
->base
.header_size
+ 4;
1308 ctx
->header_length
= i
;
1310 if (le16_to_cpu(db
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
1311 ir_header
= (__le32
*) (db
+ 1);
1312 ctx
->base
.callback(&ctx
->base
,
1313 le32_to_cpu(ir_header
[0]) & 0xffff,
1314 ctx
->header_length
, ctx
->header
,
1315 ctx
->base
.callback_data
);
1316 ctx
->header_length
= 0;
1322 static int handle_it_packet(struct context
*context
,
1323 struct descriptor
*d
,
1324 struct descriptor
*last
)
1326 struct iso_context
*ctx
=
1327 container_of(context
, struct iso_context
, context
);
1329 if (last
->transfer_status
== 0)
1330 /* This descriptor isn't done yet, stop iteration. */
1333 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
)
1334 ctx
->base
.callback(&ctx
->base
, le16_to_cpu(last
->res_count
),
1335 0, NULL
, ctx
->base
.callback_data
);
1340 static struct fw_iso_context
*
1341 ohci_allocate_iso_context(struct fw_card
*card
, int type
, size_t header_size
)
1343 struct fw_ohci
*ohci
= fw_ohci(card
);
1344 struct iso_context
*ctx
, *list
;
1345 descriptor_callback_t callback
;
1347 unsigned long flags
;
1348 int index
, retval
= -ENOMEM
;
1350 if (type
== FW_ISO_CONTEXT_TRANSMIT
) {
1351 mask
= &ohci
->it_context_mask
;
1352 list
= ohci
->it_context_list
;
1353 callback
= handle_it_packet
;
1355 mask
= &ohci
->ir_context_mask
;
1356 list
= ohci
->ir_context_list
;
1357 callback
= handle_ir_dualbuffer_packet
;
1360 /* FIXME: We need a fallback for pre 1.1 OHCI. */
1361 if (callback
== handle_ir_dualbuffer_packet
&&
1362 ohci
->version
< OHCI_VERSION_1_1
)
1363 return ERR_PTR(-EINVAL
);
1365 spin_lock_irqsave(&ohci
->lock
, flags
);
1366 index
= ffs(*mask
) - 1;
1368 *mask
&= ~(1 << index
);
1369 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1372 return ERR_PTR(-EBUSY
);
1374 if (type
== FW_ISO_CONTEXT_TRANSMIT
)
1375 regs
= OHCI1394_IsoXmitContextBase(index
);
1377 regs
= OHCI1394_IsoRcvContextBase(index
);
1380 memset(ctx
, 0, sizeof(*ctx
));
1381 ctx
->header_length
= 0;
1382 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
1383 if (ctx
->header
== NULL
)
1386 retval
= context_init(&ctx
->context
, ohci
, ISO_BUFFER_SIZE
,
1389 goto out_with_header
;
1394 free_page((unsigned long)ctx
->header
);
1396 spin_lock_irqsave(&ohci
->lock
, flags
);
1397 *mask
|= 1 << index
;
1398 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1400 return ERR_PTR(retval
);
1403 static int ohci_start_iso(struct fw_iso_context
*base
,
1404 s32 cycle
, u32 sync
, u32 tags
)
1406 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1407 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
1411 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
1412 index
= ctx
- ohci
->it_context_list
;
1415 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
1416 (cycle
& 0x7fff) << 16;
1418 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
1419 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
1420 context_run(&ctx
->context
, match
);
1422 index
= ctx
- ohci
->ir_context_list
;
1423 control
= IR_CONTEXT_DUAL_BUFFER_MODE
| IR_CONTEXT_ISOCH_HEADER
;
1424 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
1426 match
|= (cycle
& 0x07fff) << 12;
1427 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
1430 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
1431 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
1432 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
1433 context_run(&ctx
->context
, control
);
1439 static int ohci_stop_iso(struct fw_iso_context
*base
)
1441 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
1442 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1445 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
1446 index
= ctx
- ohci
->it_context_list
;
1447 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
1449 index
= ctx
- ohci
->ir_context_list
;
1450 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
1453 context_stop(&ctx
->context
);
1458 static void ohci_free_iso_context(struct fw_iso_context
*base
)
1460 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
1461 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1462 unsigned long flags
;
1465 ohci_stop_iso(base
);
1466 context_release(&ctx
->context
);
1467 free_page((unsigned long)ctx
->header
);
1469 spin_lock_irqsave(&ohci
->lock
, flags
);
1471 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
1472 index
= ctx
- ohci
->it_context_list
;
1473 ohci
->it_context_mask
|= 1 << index
;
1475 index
= ctx
- ohci
->ir_context_list
;
1476 ohci
->ir_context_mask
|= 1 << index
;
1479 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1483 ohci_queue_iso_transmit(struct fw_iso_context
*base
,
1484 struct fw_iso_packet
*packet
,
1485 struct fw_iso_buffer
*buffer
,
1486 unsigned long payload
)
1488 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1489 struct descriptor
*d
, *last
, *pd
;
1490 struct fw_iso_packet
*p
;
1492 dma_addr_t d_bus
, page_bus
;
1493 u32 z
, header_z
, payload_z
, irq
;
1494 u32 payload_index
, payload_end_index
, next_page_index
;
1495 int page
, end_page
, i
, length
, offset
;
1498 * FIXME: Cycle lost behavior should be configurable: lose
1499 * packet, retransmit or terminate..
1503 payload_index
= payload
;
1509 if (p
->header_length
> 0)
1512 /* Determine the first page the payload isn't contained in. */
1513 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
1514 if (p
->payload_length
> 0)
1515 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
1521 /* Get header size in number of descriptors. */
1522 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
1524 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
1529 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
1530 d
[0].req_count
= cpu_to_le16(8);
1532 header
= (__le32
*) &d
[1];
1533 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
1534 IT_HEADER_TAG(p
->tag
) |
1535 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
1536 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
1537 IT_HEADER_SPEED(ctx
->base
.speed
));
1539 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
1540 p
->payload_length
));
1543 if (p
->header_length
> 0) {
1544 d
[2].req_count
= cpu_to_le16(p
->header_length
);
1545 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
1546 memcpy(&d
[z
], p
->header
, p
->header_length
);
1549 pd
= d
+ z
- payload_z
;
1550 payload_end_index
= payload_index
+ p
->payload_length
;
1551 for (i
= 0; i
< payload_z
; i
++) {
1552 page
= payload_index
>> PAGE_SHIFT
;
1553 offset
= payload_index
& ~PAGE_MASK
;
1554 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
1556 min(next_page_index
, payload_end_index
) - payload_index
;
1557 pd
[i
].req_count
= cpu_to_le16(length
);
1559 page_bus
= page_private(buffer
->pages
[page
]);
1560 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
1562 payload_index
+= length
;
1566 irq
= DESCRIPTOR_IRQ_ALWAYS
;
1568 irq
= DESCRIPTOR_NO_IRQ
;
1570 last
= z
== 2 ? d
: d
+ z
- 1;
1571 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1573 DESCRIPTOR_BRANCH_ALWAYS
|
1576 context_append(&ctx
->context
, d
, z
, header_z
);
1582 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context
*base
,
1583 struct fw_iso_packet
*packet
,
1584 struct fw_iso_buffer
*buffer
,
1585 unsigned long payload
)
1587 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1588 struct db_descriptor
*db
= NULL
;
1589 struct descriptor
*d
;
1590 struct fw_iso_packet
*p
;
1591 dma_addr_t d_bus
, page_bus
;
1592 u32 z
, header_z
, length
, rest
;
1593 int page
, offset
, packet_count
, header_size
;
1596 * FIXME: Cycle lost behavior should be configurable: lose
1597 * packet, retransmit or terminate..
1601 d
= context_get_descriptors(&ctx
->context
, 2, &d_bus
);
1605 db
= (struct db_descriptor
*) d
;
1606 db
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
1607 DESCRIPTOR_BRANCH_ALWAYS
|
1609 db
->first_size
= cpu_to_le16(ctx
->base
.header_size
+ 4);
1610 context_append(&ctx
->context
, d
, 2, 0);
1617 * The OHCI controller puts the status word in the header
1618 * buffer too, so we need 4 extra bytes per packet.
1620 packet_count
= p
->header_length
/ ctx
->base
.header_size
;
1621 header_size
= packet_count
* (ctx
->base
.header_size
+ 4);
1623 /* Get header size in number of descriptors. */
1624 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
1625 page
= payload
>> PAGE_SHIFT
;
1626 offset
= payload
& ~PAGE_MASK
;
1627 rest
= p
->payload_length
;
1629 /* FIXME: OHCI 1.0 doesn't support dual buffer receive */
1630 /* FIXME: make packet-per-buffer/dual-buffer a context option */
1632 d
= context_get_descriptors(&ctx
->context
,
1633 z
+ header_z
, &d_bus
);
1637 db
= (struct db_descriptor
*) d
;
1638 db
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
1639 DESCRIPTOR_BRANCH_ALWAYS
);
1640 db
->first_size
= cpu_to_le16(ctx
->base
.header_size
+ 4);
1641 db
->first_req_count
= cpu_to_le16(header_size
);
1642 db
->first_res_count
= db
->first_req_count
;
1643 db
->first_buffer
= cpu_to_le32(d_bus
+ sizeof(*db
));
1645 if (offset
+ rest
< PAGE_SIZE
)
1648 length
= PAGE_SIZE
- offset
;
1650 db
->second_req_count
= cpu_to_le16(length
);
1651 db
->second_res_count
= db
->second_req_count
;
1652 page_bus
= page_private(buffer
->pages
[page
]);
1653 db
->second_buffer
= cpu_to_le32(page_bus
+ offset
);
1655 if (p
->interrupt
&& length
== rest
)
1656 db
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
1658 context_append(&ctx
->context
, d
, z
, header_z
);
1659 offset
= (offset
+ length
) & ~PAGE_MASK
;
1668 ohci_queue_iso(struct fw_iso_context
*base
,
1669 struct fw_iso_packet
*packet
,
1670 struct fw_iso_buffer
*buffer
,
1671 unsigned long payload
)
1673 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1675 if (base
->type
== FW_ISO_CONTEXT_TRANSMIT
)
1676 return ohci_queue_iso_transmit(base
, packet
, buffer
, payload
);
1677 else if (ctx
->context
.ohci
->version
>= OHCI_VERSION_1_1
)
1678 return ohci_queue_iso_receive_dualbuffer(base
, packet
,
1681 /* FIXME: Implement fallback for OHCI 1.0 controllers. */
1685 static const struct fw_card_driver ohci_driver
= {
1686 .name
= ohci_driver_name
,
1687 .enable
= ohci_enable
,
1688 .update_phy_reg
= ohci_update_phy_reg
,
1689 .set_config_rom
= ohci_set_config_rom
,
1690 .send_request
= ohci_send_request
,
1691 .send_response
= ohci_send_response
,
1692 .cancel_packet
= ohci_cancel_packet
,
1693 .enable_phys_dma
= ohci_enable_phys_dma
,
1694 .get_bus_time
= ohci_get_bus_time
,
1696 .allocate_iso_context
= ohci_allocate_iso_context
,
1697 .free_iso_context
= ohci_free_iso_context
,
1698 .queue_iso
= ohci_queue_iso
,
1699 .start_iso
= ohci_start_iso
,
1700 .stop_iso
= ohci_stop_iso
,
1703 static int software_reset(struct fw_ohci
*ohci
)
1707 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
1709 for (i
= 0; i
< OHCI_LOOP_COUNT
; i
++) {
1710 if ((reg_read(ohci
, OHCI1394_HCControlSet
) &
1711 OHCI1394_HCControl_softReset
) == 0)
1719 static int __devinit
1720 pci_probe(struct pci_dev
*dev
, const struct pci_device_id
*ent
)
1722 struct fw_ohci
*ohci
;
1723 u32 bus_options
, max_receive
, link_speed
;
1728 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
1730 fw_error("Could not malloc fw_ohci data.\n");
1734 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
1736 err
= pci_enable_device(dev
);
1738 fw_error("Failed to enable OHCI hardware.\n");
1742 pci_set_master(dev
);
1743 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
1744 pci_set_drvdata(dev
, ohci
);
1746 spin_lock_init(&ohci
->lock
);
1748 tasklet_init(&ohci
->bus_reset_tasklet
,
1749 bus_reset_tasklet
, (unsigned long)ohci
);
1751 err
= pci_request_region(dev
, 0, ohci_driver_name
);
1753 fw_error("MMIO resource unavailable\n");
1757 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
1758 if (ohci
->registers
== NULL
) {
1759 fw_error("Failed to remap registers\n");
1764 if (software_reset(ohci
)) {
1765 fw_error("Failed to reset ohci card.\n");
1767 goto fail_registers
;
1771 * Now enable LPS, which we need in order to start accessing
1772 * most of the registers. In fact, on some cards (ALI M5251),
1773 * accessing registers in the SClk domain without LPS enabled
1774 * will lock up the machine. Wait 50msec to make sure we have
1775 * full link enabled.
1777 reg_write(ohci
, OHCI1394_HCControlSet
,
1778 OHCI1394_HCControl_LPS
|
1779 OHCI1394_HCControl_postedWriteEnable
);
1783 reg_write(ohci
, OHCI1394_HCControlClear
,
1784 OHCI1394_HCControl_noByteSwapData
);
1786 reg_write(ohci
, OHCI1394_LinkControlSet
,
1787 OHCI1394_LinkControl_rcvSelfID
|
1788 OHCI1394_LinkControl_cycleTimerEnable
|
1789 OHCI1394_LinkControl_cycleMaster
);
1791 ar_context_init(&ohci
->ar_request_ctx
, ohci
,
1792 OHCI1394_AsReqRcvContextControlSet
);
1794 ar_context_init(&ohci
->ar_response_ctx
, ohci
,
1795 OHCI1394_AsRspRcvContextControlSet
);
1797 context_init(&ohci
->at_request_ctx
, ohci
, AT_BUFFER_SIZE
,
1798 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
1800 context_init(&ohci
->at_response_ctx
, ohci
, AT_BUFFER_SIZE
,
1801 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
1803 reg_write(ohci
, OHCI1394_ATRetries
,
1804 OHCI1394_MAX_AT_REQ_RETRIES
|
1805 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
1806 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8));
1808 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
1809 ohci
->it_context_mask
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
1810 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
1811 size
= sizeof(struct iso_context
) * hweight32(ohci
->it_context_mask
);
1812 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
1814 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
1815 ohci
->ir_context_mask
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
1816 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
1817 size
= sizeof(struct iso_context
) * hweight32(ohci
->ir_context_mask
);
1818 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
1820 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
1821 fw_error("Out of memory for it/ir contexts.\n");
1823 goto fail_registers
;
1826 /* self-id dma buffer allocation */
1827 ohci
->self_id_cpu
= dma_alloc_coherent(ohci
->card
.device
,
1831 if (ohci
->self_id_cpu
== NULL
) {
1832 fw_error("Out of memory for self ID buffer.\n");
1834 goto fail_registers
;
1837 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
1838 reg_write(ohci
, OHCI1394_PhyUpperBound
, 0x00010000);
1839 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
1840 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
1841 reg_write(ohci
, OHCI1394_IntMaskSet
,
1842 OHCI1394_selfIDComplete
|
1843 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
1844 OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
1845 OHCI1394_isochRx
| OHCI1394_isochTx
|
1846 OHCI1394_masterIntEnable
|
1847 OHCI1394_cycle64Seconds
);
1849 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
1850 max_receive
= (bus_options
>> 12) & 0xf;
1851 link_speed
= bus_options
& 0x7;
1852 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
1853 reg_read(ohci
, OHCI1394_GUIDLo
);
1855 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
1859 ohci
->version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
1860 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
1861 dev
->dev
.bus_id
, ohci
->version
>> 16, ohci
->version
& 0xff);
1866 dma_free_coherent(ohci
->card
.device
, SELF_ID_BUF_SIZE
,
1867 ohci
->self_id_cpu
, ohci
->self_id_bus
);
1869 kfree(ohci
->it_context_list
);
1870 kfree(ohci
->ir_context_list
);
1871 pci_iounmap(dev
, ohci
->registers
);
1873 pci_release_region(dev
, 0);
1875 pci_disable_device(dev
);
1877 fw_card_put(&ohci
->card
);
1882 static void pci_remove(struct pci_dev
*dev
)
1884 struct fw_ohci
*ohci
;
1886 ohci
= pci_get_drvdata(dev
);
1887 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
1889 fw_core_remove_card(&ohci
->card
);
1892 * FIXME: Fail all pending packets here, now that the upper
1893 * layers can't queue any more.
1896 software_reset(ohci
);
1897 free_irq(dev
->irq
, ohci
);
1898 dma_free_coherent(ohci
->card
.device
, SELF_ID_BUF_SIZE
,
1899 ohci
->self_id_cpu
, ohci
->self_id_bus
);
1900 kfree(ohci
->it_context_list
);
1901 kfree(ohci
->ir_context_list
);
1902 pci_iounmap(dev
, ohci
->registers
);
1903 pci_release_region(dev
, 0);
1904 pci_disable_device(dev
);
1905 fw_card_put(&ohci
->card
);
1907 fw_notify("Removed fw-ohci device.\n");
1910 static struct pci_device_id pci_table
[] = {
1911 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
1915 MODULE_DEVICE_TABLE(pci
, pci_table
);
1917 static struct pci_driver fw_ohci_pci_driver
= {
1918 .name
= ohci_driver_name
,
1919 .id_table
= pci_table
,
1921 .remove
= pci_remove
,
1924 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1925 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1926 MODULE_LICENSE("GPL");
1928 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1929 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
1930 MODULE_ALIAS("ohci1394");
1933 static int __init
fw_ohci_init(void)
1935 return pci_register_driver(&fw_ohci_pci_driver
);
1938 static void __exit
fw_ohci_cleanup(void)
1940 pci_unregister_driver(&fw_ohci_pci_driver
);
1943 module_init(fw_ohci_init
);
1944 module_exit(fw_ohci_cleanup
);