Linux 2.6.22-rc3
[linux-2.6/next.git] / drivers / firewire / fw-sbp2.c
blob68300414e5f44060ec8be59d1d0cf79a6d491fdc
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/mod_devicetable.h>
34 #include <linux/device.h>
35 #include <linux/scatterlist.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/timer.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_dbg.h>
42 #include <scsi/scsi_device.h>
43 #include <scsi/scsi_host.h>
45 #include "fw-transaction.h"
46 #include "fw-topology.h"
47 #include "fw-device.h"
49 /* I don't know why the SCSI stack doesn't define something like this... */
50 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
52 static const char sbp2_driver_name[] = "sbp2";
54 struct sbp2_device {
55 struct kref kref;
56 struct fw_unit *unit;
57 struct fw_address_handler address_handler;
58 struct list_head orb_list;
59 u64 management_agent_address;
60 u64 command_block_agent_address;
61 u32 workarounds;
62 int login_id;
65 * We cache these addresses and only update them once we've
66 * logged in or reconnected to the sbp2 device. That way, any
67 * IO to the device will automatically fail and get retried if
68 * it happens in a window where the device is not ready to
69 * handle it (e.g. after a bus reset but before we reconnect).
71 int node_id;
72 int address_high;
73 int generation;
75 int retries;
76 struct delayed_work work;
79 #define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000
80 #define SBP2_MAX_SECTORS 255 /* Max sectors supported */
81 #define SBP2_ORB_TIMEOUT 2000 /* Timeout in ms */
83 #define SBP2_ORB_NULL 0x80000000
85 #define SBP2_DIRECTION_TO_MEDIA 0x0
86 #define SBP2_DIRECTION_FROM_MEDIA 0x1
88 /* Unit directory keys */
89 #define SBP2_COMMAND_SET_SPECIFIER 0x38
90 #define SBP2_COMMAND_SET 0x39
91 #define SBP2_COMMAND_SET_REVISION 0x3b
92 #define SBP2_FIRMWARE_REVISION 0x3c
94 /* Flags for detected oddities and brokeness */
95 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
96 #define SBP2_WORKAROUND_INQUIRY_36 0x2
97 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
98 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
99 #define SBP2_WORKAROUND_OVERRIDE 0x100
101 /* Management orb opcodes */
102 #define SBP2_LOGIN_REQUEST 0x0
103 #define SBP2_QUERY_LOGINS_REQUEST 0x1
104 #define SBP2_RECONNECT_REQUEST 0x3
105 #define SBP2_SET_PASSWORD_REQUEST 0x4
106 #define SBP2_LOGOUT_REQUEST 0x7
107 #define SBP2_ABORT_TASK_REQUEST 0xb
108 #define SBP2_ABORT_TASK_SET 0xc
109 #define SBP2_LOGICAL_UNIT_RESET 0xe
110 #define SBP2_TARGET_RESET_REQUEST 0xf
112 /* Offsets for command block agent registers */
113 #define SBP2_AGENT_STATE 0x00
114 #define SBP2_AGENT_RESET 0x04
115 #define SBP2_ORB_POINTER 0x08
116 #define SBP2_DOORBELL 0x10
117 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
119 /* Status write response codes */
120 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
121 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
122 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
123 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
125 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
126 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
127 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
128 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
129 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
130 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
131 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
132 #define STATUS_GET_DATA(v) ((v).data)
134 struct sbp2_status {
135 u32 status;
136 u32 orb_low;
137 u8 data[24];
140 struct sbp2_pointer {
141 u32 high;
142 u32 low;
145 struct sbp2_orb {
146 struct fw_transaction t;
147 dma_addr_t request_bus;
148 int rcode;
149 struct sbp2_pointer pointer;
150 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
151 struct list_head link;
154 #define MANAGEMENT_ORB_LUN(v) ((v))
155 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
156 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
157 #define MANAGEMENT_ORB_EXCLUSIVE ((1) << 28)
158 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
159 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
161 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
162 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
164 struct sbp2_management_orb {
165 struct sbp2_orb base;
166 struct {
167 struct sbp2_pointer password;
168 struct sbp2_pointer response;
169 u32 misc;
170 u32 length;
171 struct sbp2_pointer status_fifo;
172 } request;
173 __be32 response[4];
174 dma_addr_t response_bus;
175 struct completion done;
176 struct sbp2_status status;
179 #define LOGIN_RESPONSE_GET_LOGIN_ID(v) ((v).misc & 0xffff)
180 #define LOGIN_RESPONSE_GET_LENGTH(v) (((v).misc >> 16) & 0xffff)
182 struct sbp2_login_response {
183 u32 misc;
184 struct sbp2_pointer command_block_agent;
185 u32 reconnect_hold;
187 #define COMMAND_ORB_DATA_SIZE(v) ((v))
188 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
189 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
190 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
191 #define COMMAND_ORB_SPEED(v) ((v) << 24)
192 #define COMMAND_ORB_DIRECTION(v) ((v) << 27)
193 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
194 #define COMMAND_ORB_NOTIFY ((1) << 31)
196 struct sbp2_command_orb {
197 struct sbp2_orb base;
198 struct {
199 struct sbp2_pointer next;
200 struct sbp2_pointer data_descriptor;
201 u32 misc;
202 u8 command_block[12];
203 } request;
204 struct scsi_cmnd *cmd;
205 scsi_done_fn_t done;
206 struct fw_unit *unit;
208 struct sbp2_pointer page_table[SG_ALL];
209 dma_addr_t page_table_bus;
210 dma_addr_t request_buffer_bus;
214 * List of devices with known bugs.
216 * The firmware_revision field, masked with 0xffff00, is the best
217 * indicator for the type of bridge chip of a device. It yields a few
218 * false positives but this did not break correctly behaving devices
219 * so far. We use ~0 as a wildcard, since the 24 bit values we get
220 * from the config rom can never match that.
222 static const struct {
223 u32 firmware_revision;
224 u32 model;
225 unsigned workarounds;
226 } sbp2_workarounds_table[] = {
227 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
228 .firmware_revision = 0x002800,
229 .model = 0x001010,
230 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
231 SBP2_WORKAROUND_MODE_SENSE_8,
233 /* Initio bridges, actually only needed for some older ones */ {
234 .firmware_revision = 0x000200,
235 .model = ~0,
236 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
238 /* Symbios bridge */ {
239 .firmware_revision = 0xa0b800,
240 .model = ~0,
241 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
245 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
246 * these iPods do not feature the read_capacity bug according
247 * to one report. Read_capacity behaviour as well as model_id
248 * could change due to Apple-supplied firmware updates though.
251 /* iPod 4th generation. */ {
252 .firmware_revision = 0x0a2700,
253 .model = 0x000021,
254 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
256 /* iPod mini */ {
257 .firmware_revision = 0x0a2700,
258 .model = 0x000023,
259 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
261 /* iPod Photo */ {
262 .firmware_revision = 0x0a2700,
263 .model = 0x00007e,
264 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
268 static void
269 sbp2_status_write(struct fw_card *card, struct fw_request *request,
270 int tcode, int destination, int source,
271 int generation, int speed,
272 unsigned long long offset,
273 void *payload, size_t length, void *callback_data)
275 struct sbp2_device *sd = callback_data;
276 struct sbp2_orb *orb;
277 struct sbp2_status status;
278 size_t header_size;
279 unsigned long flags;
281 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
282 length == 0 || length > sizeof(status)) {
283 fw_send_response(card, request, RCODE_TYPE_ERROR);
284 return;
287 header_size = min(length, 2 * sizeof(u32));
288 fw_memcpy_from_be32(&status, payload, header_size);
289 if (length > header_size)
290 memcpy(status.data, payload + 8, length - header_size);
291 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
292 fw_notify("non-orb related status write, not handled\n");
293 fw_send_response(card, request, RCODE_COMPLETE);
294 return;
297 /* Lookup the orb corresponding to this status write. */
298 spin_lock_irqsave(&card->lock, flags);
299 list_for_each_entry(orb, &sd->orb_list, link) {
300 if (STATUS_GET_ORB_HIGH(status) == 0 &&
301 STATUS_GET_ORB_LOW(status) == orb->request_bus &&
302 orb->rcode == RCODE_COMPLETE) {
303 list_del(&orb->link);
304 break;
307 spin_unlock_irqrestore(&card->lock, flags);
309 if (&orb->link != &sd->orb_list)
310 orb->callback(orb, &status);
311 else
312 fw_error("status write for unknown orb\n");
314 fw_send_response(card, request, RCODE_COMPLETE);
317 static void
318 complete_transaction(struct fw_card *card, int rcode,
319 void *payload, size_t length, void *data)
321 struct sbp2_orb *orb = data;
322 unsigned long flags;
324 orb->rcode = rcode;
325 if (rcode != RCODE_COMPLETE) {
326 spin_lock_irqsave(&card->lock, flags);
327 list_del(&orb->link);
328 spin_unlock_irqrestore(&card->lock, flags);
329 orb->callback(orb, NULL);
333 static void
334 sbp2_send_orb(struct sbp2_orb *orb, struct fw_unit *unit,
335 int node_id, int generation, u64 offset)
337 struct fw_device *device = fw_device(unit->device.parent);
338 struct sbp2_device *sd = unit->device.driver_data;
339 unsigned long flags;
341 orb->pointer.high = 0;
342 orb->pointer.low = orb->request_bus;
343 fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
345 spin_lock_irqsave(&device->card->lock, flags);
346 list_add_tail(&orb->link, &sd->orb_list);
347 spin_unlock_irqrestore(&device->card->lock, flags);
349 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
350 node_id, generation,
351 device->node->max_speed, offset,
352 &orb->pointer, sizeof(orb->pointer),
353 complete_transaction, orb);
356 static int sbp2_cancel_orbs(struct fw_unit *unit)
358 struct fw_device *device = fw_device(unit->device.parent);
359 struct sbp2_device *sd = unit->device.driver_data;
360 struct sbp2_orb *orb, *next;
361 struct list_head list;
362 unsigned long flags;
363 int retval = -ENOENT;
365 INIT_LIST_HEAD(&list);
366 spin_lock_irqsave(&device->card->lock, flags);
367 list_splice_init(&sd->orb_list, &list);
368 spin_unlock_irqrestore(&device->card->lock, flags);
370 list_for_each_entry_safe(orb, next, &list, link) {
371 retval = 0;
372 if (fw_cancel_transaction(device->card, &orb->t) == 0)
373 continue;
375 orb->rcode = RCODE_CANCELLED;
376 orb->callback(orb, NULL);
379 return retval;
382 static void
383 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
385 struct sbp2_management_orb *orb =
386 (struct sbp2_management_orb *)base_orb;
388 if (status)
389 memcpy(&orb->status, status, sizeof(*status));
390 complete(&orb->done);
393 static int
394 sbp2_send_management_orb(struct fw_unit *unit, int node_id, int generation,
395 int function, int lun, void *response)
397 struct fw_device *device = fw_device(unit->device.parent);
398 struct sbp2_device *sd = unit->device.driver_data;
399 struct sbp2_management_orb *orb;
400 int retval = -ENOMEM;
402 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
403 if (orb == NULL)
404 return -ENOMEM;
407 * The sbp2 device is going to send a block read request to
408 * read out the request from host memory, so map it for dma.
410 orb->base.request_bus =
411 dma_map_single(device->card->device, &orb->request,
412 sizeof(orb->request), DMA_TO_DEVICE);
413 if (dma_mapping_error(orb->base.request_bus))
414 goto out;
416 orb->response_bus =
417 dma_map_single(device->card->device, &orb->response,
418 sizeof(orb->response), DMA_FROM_DEVICE);
419 if (dma_mapping_error(orb->response_bus))
420 goto out;
422 orb->request.response.high = 0;
423 orb->request.response.low = orb->response_bus;
425 orb->request.misc =
426 MANAGEMENT_ORB_NOTIFY |
427 MANAGEMENT_ORB_FUNCTION(function) |
428 MANAGEMENT_ORB_LUN(lun);
429 orb->request.length =
430 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
432 orb->request.status_fifo.high = sd->address_handler.offset >> 32;
433 orb->request.status_fifo.low = sd->address_handler.offset;
436 * FIXME: Yeah, ok this isn't elegant, we hardwire exclusive
437 * login and 1 second reconnect time. The reconnect setting
438 * is probably fine, but the exclusive login should be an option.
440 if (function == SBP2_LOGIN_REQUEST) {
441 orb->request.misc |=
442 MANAGEMENT_ORB_EXCLUSIVE |
443 MANAGEMENT_ORB_RECONNECT(0);
446 fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
448 init_completion(&orb->done);
449 orb->base.callback = complete_management_orb;
451 sbp2_send_orb(&orb->base, unit,
452 node_id, generation, sd->management_agent_address);
454 wait_for_completion_timeout(&orb->done,
455 msecs_to_jiffies(SBP2_ORB_TIMEOUT));
457 retval = -EIO;
458 if (sbp2_cancel_orbs(unit) == 0) {
459 fw_error("orb reply timed out, rcode=0x%02x\n",
460 orb->base.rcode);
461 goto out;
464 if (orb->base.rcode != RCODE_COMPLETE) {
465 fw_error("management write failed, rcode 0x%02x\n",
466 orb->base.rcode);
467 goto out;
470 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
471 STATUS_GET_SBP_STATUS(orb->status) != 0) {
472 fw_error("error status: %d:%d\n",
473 STATUS_GET_RESPONSE(orb->status),
474 STATUS_GET_SBP_STATUS(orb->status));
475 goto out;
478 retval = 0;
479 out:
480 dma_unmap_single(device->card->device, orb->base.request_bus,
481 sizeof(orb->request), DMA_TO_DEVICE);
482 dma_unmap_single(device->card->device, orb->response_bus,
483 sizeof(orb->response), DMA_FROM_DEVICE);
485 if (response)
486 fw_memcpy_from_be32(response,
487 orb->response, sizeof(orb->response));
488 kfree(orb);
490 return retval;
493 static void
494 complete_agent_reset_write(struct fw_card *card, int rcode,
495 void *payload, size_t length, void *data)
497 struct fw_transaction *t = data;
499 kfree(t);
502 static int sbp2_agent_reset(struct fw_unit *unit)
504 struct fw_device *device = fw_device(unit->device.parent);
505 struct sbp2_device *sd = unit->device.driver_data;
506 struct fw_transaction *t;
507 static u32 zero;
509 t = kzalloc(sizeof(*t), GFP_ATOMIC);
510 if (t == NULL)
511 return -ENOMEM;
513 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
514 sd->node_id, sd->generation, SCODE_400,
515 sd->command_block_agent_address + SBP2_AGENT_RESET,
516 &zero, sizeof(zero), complete_agent_reset_write, t);
518 return 0;
521 static void sbp2_reconnect(struct work_struct *work);
522 static struct scsi_host_template scsi_driver_template;
524 static void
525 release_sbp2_device(struct kref *kref)
527 struct sbp2_device *sd = container_of(kref, struct sbp2_device, kref);
528 struct Scsi_Host *host =
529 container_of((void *)sd, struct Scsi_Host, hostdata[0]);
531 sbp2_send_management_orb(sd->unit, sd->node_id, sd->generation,
532 SBP2_LOGOUT_REQUEST, sd->login_id, NULL);
534 scsi_remove_host(host);
535 fw_core_remove_address_handler(&sd->address_handler);
536 fw_notify("removed sbp2 unit %s\n", sd->unit->device.bus_id);
537 put_device(&sd->unit->device);
538 scsi_host_put(host);
541 static void sbp2_login(struct work_struct *work)
543 struct sbp2_device *sd =
544 container_of(work, struct sbp2_device, work.work);
545 struct Scsi_Host *host =
546 container_of((void *)sd, struct Scsi_Host, hostdata[0]);
547 struct fw_unit *unit = sd->unit;
548 struct fw_device *device = fw_device(unit->device.parent);
549 struct sbp2_login_response response;
550 int generation, node_id, local_node_id, lun, retval;
552 /* FIXME: Make this work for multi-lun devices. */
553 lun = 0;
555 generation = device->card->generation;
556 node_id = device->node->node_id;
557 local_node_id = device->card->local_node->node_id;
559 if (sbp2_send_management_orb(unit, node_id, generation,
560 SBP2_LOGIN_REQUEST, lun, &response) < 0) {
561 if (sd->retries++ < 5) {
562 schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
563 } else {
564 fw_error("failed to login to %s\n",
565 unit->device.bus_id);
566 kref_put(&sd->kref, release_sbp2_device);
568 return;
571 sd->generation = generation;
572 sd->node_id = node_id;
573 sd->address_high = local_node_id << 16;
575 /* Get command block agent offset and login id. */
576 sd->command_block_agent_address =
577 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
578 response.command_block_agent.low;
579 sd->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
581 fw_notify("logged in to sbp2 unit %s (%d retries)\n",
582 unit->device.bus_id, sd->retries);
583 fw_notify(" - management_agent_address: 0x%012llx\n",
584 (unsigned long long) sd->management_agent_address);
585 fw_notify(" - command_block_agent_address: 0x%012llx\n",
586 (unsigned long long) sd->command_block_agent_address);
587 fw_notify(" - status write address: 0x%012llx\n",
588 (unsigned long long) sd->address_handler.offset);
590 #if 0
591 /* FIXME: The linux1394 sbp2 does this last step. */
592 sbp2_set_busy_timeout(scsi_id);
593 #endif
595 PREPARE_DELAYED_WORK(&sd->work, sbp2_reconnect);
596 sbp2_agent_reset(unit);
598 /* FIXME: Loop over luns here. */
599 lun = 0;
600 retval = scsi_add_device(host, 0, 0, lun);
601 if (retval < 0) {
602 sbp2_send_management_orb(unit, sd->node_id, sd->generation,
603 SBP2_LOGOUT_REQUEST, sd->login_id,
604 NULL);
606 * Set this back to sbp2_login so we fall back and
607 * retry login on bus reset.
609 PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
611 kref_put(&sd->kref, release_sbp2_device);
614 static int sbp2_probe(struct device *dev)
616 struct fw_unit *unit = fw_unit(dev);
617 struct fw_device *device = fw_device(unit->device.parent);
618 struct sbp2_device *sd;
619 struct fw_csr_iterator ci;
620 struct Scsi_Host *host;
621 int i, key, value, err;
622 u32 model, firmware_revision;
624 err = -ENOMEM;
625 host = scsi_host_alloc(&scsi_driver_template, sizeof(*sd));
626 if (host == NULL)
627 goto fail;
629 sd = (struct sbp2_device *) host->hostdata;
630 unit->device.driver_data = sd;
631 sd->unit = unit;
632 INIT_LIST_HEAD(&sd->orb_list);
633 kref_init(&sd->kref);
635 sd->address_handler.length = 0x100;
636 sd->address_handler.address_callback = sbp2_status_write;
637 sd->address_handler.callback_data = sd;
639 err = fw_core_add_address_handler(&sd->address_handler,
640 &fw_high_memory_region);
641 if (err < 0)
642 goto fail_host;
644 err = fw_device_enable_phys_dma(device);
645 if (err < 0)
646 goto fail_address_handler;
648 err = scsi_add_host(host, &unit->device);
649 if (err < 0)
650 goto fail_address_handler;
653 * Scan unit directory to get management agent address,
654 * firmware revison and model. Initialize firmware_revision
655 * and model to values that wont match anything in our table.
657 firmware_revision = 0xff000000;
658 model = 0xff000000;
659 fw_csr_iterator_init(&ci, unit->directory);
660 while (fw_csr_iterator_next(&ci, &key, &value)) {
661 switch (key) {
662 case CSR_DEPENDENT_INFO | CSR_OFFSET:
663 sd->management_agent_address =
664 0xfffff0000000ULL + 4 * value;
665 break;
666 case SBP2_FIRMWARE_REVISION:
667 firmware_revision = value;
668 break;
669 case CSR_MODEL:
670 model = value;
671 break;
675 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
676 if (sbp2_workarounds_table[i].firmware_revision !=
677 (firmware_revision & 0xffffff00))
678 continue;
679 if (sbp2_workarounds_table[i].model != model &&
680 sbp2_workarounds_table[i].model != ~0)
681 continue;
682 sd->workarounds |= sbp2_workarounds_table[i].workarounds;
683 break;
686 if (sd->workarounds)
687 fw_notify("Workarounds for node %s: 0x%x "
688 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
689 unit->device.bus_id,
690 sd->workarounds, firmware_revision, model);
692 get_device(&unit->device);
695 * We schedule work to do the login so we can easily
696 * reschedule retries. Always get the ref before scheduling
697 * work.
699 INIT_DELAYED_WORK(&sd->work, sbp2_login);
700 if (schedule_delayed_work(&sd->work, 0))
701 kref_get(&sd->kref);
703 return 0;
705 fail_address_handler:
706 fw_core_remove_address_handler(&sd->address_handler);
707 fail_host:
708 scsi_host_put(host);
709 fail:
710 return err;
713 static int sbp2_remove(struct device *dev)
715 struct fw_unit *unit = fw_unit(dev);
716 struct sbp2_device *sd = unit->device.driver_data;
718 kref_put(&sd->kref, release_sbp2_device);
720 return 0;
723 static void sbp2_reconnect(struct work_struct *work)
725 struct sbp2_device *sd =
726 container_of(work, struct sbp2_device, work.work);
727 struct fw_unit *unit = sd->unit;
728 struct fw_device *device = fw_device(unit->device.parent);
729 int generation, node_id, local_node_id;
731 generation = device->card->generation;
732 node_id = device->node->node_id;
733 local_node_id = device->card->local_node->node_id;
735 if (sbp2_send_management_orb(unit, node_id, generation,
736 SBP2_RECONNECT_REQUEST,
737 sd->login_id, NULL) < 0) {
738 if (sd->retries++ >= 5) {
739 fw_error("failed to reconnect to %s\n",
740 unit->device.bus_id);
741 /* Fall back and try to log in again. */
742 sd->retries = 0;
743 PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
745 schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
746 return;
749 sd->generation = generation;
750 sd->node_id = node_id;
751 sd->address_high = local_node_id << 16;
753 fw_notify("reconnected to unit %s (%d retries)\n",
754 unit->device.bus_id, sd->retries);
755 sbp2_agent_reset(unit);
756 sbp2_cancel_orbs(unit);
757 kref_put(&sd->kref, release_sbp2_device);
760 static void sbp2_update(struct fw_unit *unit)
762 struct fw_device *device = fw_device(unit->device.parent);
763 struct sbp2_device *sd = unit->device.driver_data;
765 sd->retries = 0;
766 fw_device_enable_phys_dma(device);
767 if (schedule_delayed_work(&sd->work, 0))
768 kref_get(&sd->kref);
771 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
772 #define SBP2_SW_VERSION_ENTRY 0x00010483
774 static const struct fw_device_id sbp2_id_table[] = {
776 .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
777 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
778 .version = SBP2_SW_VERSION_ENTRY,
783 static struct fw_driver sbp2_driver = {
784 .driver = {
785 .owner = THIS_MODULE,
786 .name = sbp2_driver_name,
787 .bus = &fw_bus_type,
788 .probe = sbp2_probe,
789 .remove = sbp2_remove,
791 .update = sbp2_update,
792 .id_table = sbp2_id_table,
795 static unsigned int
796 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
798 int sam_status;
800 sense_data[0] = 0x70;
801 sense_data[1] = 0x0;
802 sense_data[2] = sbp2_status[1];
803 sense_data[3] = sbp2_status[4];
804 sense_data[4] = sbp2_status[5];
805 sense_data[5] = sbp2_status[6];
806 sense_data[6] = sbp2_status[7];
807 sense_data[7] = 10;
808 sense_data[8] = sbp2_status[8];
809 sense_data[9] = sbp2_status[9];
810 sense_data[10] = sbp2_status[10];
811 sense_data[11] = sbp2_status[11];
812 sense_data[12] = sbp2_status[2];
813 sense_data[13] = sbp2_status[3];
814 sense_data[14] = sbp2_status[12];
815 sense_data[15] = sbp2_status[13];
817 sam_status = sbp2_status[0] & 0x3f;
819 switch (sam_status) {
820 case SAM_STAT_GOOD:
821 case SAM_STAT_CHECK_CONDITION:
822 case SAM_STAT_CONDITION_MET:
823 case SAM_STAT_BUSY:
824 case SAM_STAT_RESERVATION_CONFLICT:
825 case SAM_STAT_COMMAND_TERMINATED:
826 return DID_OK << 16 | sam_status;
828 default:
829 return DID_ERROR << 16;
833 static void
834 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
836 struct sbp2_command_orb *orb = (struct sbp2_command_orb *)base_orb;
837 struct fw_unit *unit = orb->unit;
838 struct fw_device *device = fw_device(unit->device.parent);
839 struct scatterlist *sg;
840 int result;
842 if (status != NULL) {
843 if (STATUS_GET_DEAD(*status))
844 sbp2_agent_reset(unit);
846 switch (STATUS_GET_RESPONSE(*status)) {
847 case SBP2_STATUS_REQUEST_COMPLETE:
848 result = DID_OK << 16;
849 break;
850 case SBP2_STATUS_TRANSPORT_FAILURE:
851 result = DID_BUS_BUSY << 16;
852 break;
853 case SBP2_STATUS_ILLEGAL_REQUEST:
854 case SBP2_STATUS_VENDOR_DEPENDENT:
855 default:
856 result = DID_ERROR << 16;
857 break;
860 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
861 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
862 orb->cmd->sense_buffer);
863 } else {
865 * If the orb completes with status == NULL, something
866 * went wrong, typically a bus reset happened mid-orb
867 * or when sending the write (less likely).
869 result = DID_BUS_BUSY << 16;
872 dma_unmap_single(device->card->device, orb->base.request_bus,
873 sizeof(orb->request), DMA_TO_DEVICE);
875 if (orb->cmd->use_sg > 0) {
876 sg = (struct scatterlist *)orb->cmd->request_buffer;
877 dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg,
878 orb->cmd->sc_data_direction);
881 if (orb->page_table_bus != 0)
882 dma_unmap_single(device->card->device, orb->page_table_bus,
883 sizeof(orb->page_table_bus), DMA_TO_DEVICE);
885 if (orb->request_buffer_bus != 0)
886 dma_unmap_single(device->card->device, orb->request_buffer_bus,
887 sizeof(orb->request_buffer_bus),
888 DMA_FROM_DEVICE);
890 orb->cmd->result = result;
891 orb->done(orb->cmd);
892 kfree(orb);
895 static int sbp2_command_orb_map_scatterlist(struct sbp2_command_orb *orb)
897 struct sbp2_device *sd =
898 (struct sbp2_device *)orb->cmd->device->host->hostdata;
899 struct fw_unit *unit = sd->unit;
900 struct fw_device *device = fw_device(unit->device.parent);
901 struct scatterlist *sg;
902 int sg_len, l, i, j, count;
903 size_t size;
904 dma_addr_t sg_addr;
906 sg = (struct scatterlist *)orb->cmd->request_buffer;
907 count = dma_map_sg(device->card->device, sg, orb->cmd->use_sg,
908 orb->cmd->sc_data_direction);
909 if (count == 0)
910 goto fail;
913 * Handle the special case where there is only one element in
914 * the scatter list by converting it to an immediate block
915 * request. This is also a workaround for broken devices such
916 * as the second generation iPod which doesn't support page
917 * tables.
919 if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
920 orb->request.data_descriptor.high = sd->address_high;
921 orb->request.data_descriptor.low = sg_dma_address(sg);
922 orb->request.misc |=
923 COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
924 return 0;
928 * Convert the scatterlist to an sbp2 page table. If any
929 * scatterlist entries are too big for sbp2, we split them as we
930 * go. Even if we ask the block I/O layer to not give us sg
931 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
932 * during DMA mapping, and Linux currently doesn't prevent this.
934 for (i = 0, j = 0; i < count; i++) {
935 sg_len = sg_dma_len(sg + i);
936 sg_addr = sg_dma_address(sg + i);
937 while (sg_len) {
938 l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
939 orb->page_table[j].low = sg_addr;
940 orb->page_table[j].high = (l << 16);
941 sg_addr += l;
942 sg_len -= l;
943 j++;
947 size = sizeof(orb->page_table[0]) * j;
950 * The data_descriptor pointer is the one case where we need
951 * to fill in the node ID part of the address. All other
952 * pointers assume that the data referenced reside on the
953 * initiator (i.e. us), but data_descriptor can refer to data
954 * on other nodes so we need to put our ID in descriptor.high.
957 orb->page_table_bus =
958 dma_map_single(device->card->device, orb->page_table,
959 size, DMA_TO_DEVICE);
960 if (dma_mapping_error(orb->page_table_bus))
961 goto fail_page_table;
962 orb->request.data_descriptor.high = sd->address_high;
963 orb->request.data_descriptor.low = orb->page_table_bus;
964 orb->request.misc |=
965 COMMAND_ORB_PAGE_TABLE_PRESENT |
966 COMMAND_ORB_DATA_SIZE(j);
968 fw_memcpy_to_be32(orb->page_table, orb->page_table, size);
970 return 0;
972 fail_page_table:
973 dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg,
974 orb->cmd->sc_data_direction);
975 fail:
976 return -ENOMEM;
979 /* SCSI stack integration */
981 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
983 struct sbp2_device *sd =
984 (struct sbp2_device *)cmd->device->host->hostdata;
985 struct fw_unit *unit = sd->unit;
986 struct fw_device *device = fw_device(unit->device.parent);
987 struct sbp2_command_orb *orb;
990 * Bidirectional commands are not yet implemented, and unknown
991 * transfer direction not handled.
993 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
994 fw_error("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
995 cmd->result = DID_ERROR << 16;
996 done(cmd);
997 return 0;
1000 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1001 if (orb == NULL) {
1002 fw_notify("failed to alloc orb\n");
1003 goto fail_alloc;
1006 /* Initialize rcode to something not RCODE_COMPLETE. */
1007 orb->base.rcode = -1;
1008 orb->base.request_bus =
1009 dma_map_single(device->card->device, &orb->request,
1010 sizeof(orb->request), DMA_TO_DEVICE);
1011 if (dma_mapping_error(orb->base.request_bus))
1012 goto fail_mapping;
1014 orb->unit = unit;
1015 orb->done = done;
1016 orb->cmd = cmd;
1018 orb->request.next.high = SBP2_ORB_NULL;
1019 orb->request.next.low = 0x0;
1021 * At speed 100 we can do 512 bytes per packet, at speed 200,
1022 * 1024 bytes per packet etc. The SBP-2 max_payload field
1023 * specifies the max payload size as 2 ^ (max_payload + 2), so
1024 * if we set this to max_speed + 7, we get the right value.
1026 orb->request.misc =
1027 COMMAND_ORB_MAX_PAYLOAD(device->node->max_speed + 7) |
1028 COMMAND_ORB_SPEED(device->node->max_speed) |
1029 COMMAND_ORB_NOTIFY;
1031 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1032 orb->request.misc |=
1033 COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1034 else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1035 orb->request.misc |=
1036 COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1038 if (cmd->use_sg && sbp2_command_orb_map_scatterlist(orb) < 0)
1039 goto fail_map_payload;
1041 fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1043 memset(orb->request.command_block,
1044 0, sizeof(orb->request.command_block));
1045 memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1047 orb->base.callback = complete_command_orb;
1049 sbp2_send_orb(&orb->base, unit, sd->node_id, sd->generation,
1050 sd->command_block_agent_address + SBP2_ORB_POINTER);
1052 return 0;
1054 fail_map_payload:
1055 dma_unmap_single(device->card->device, orb->base.request_bus,
1056 sizeof(orb->request), DMA_TO_DEVICE);
1057 fail_mapping:
1058 kfree(orb);
1059 fail_alloc:
1060 return SCSI_MLQUEUE_HOST_BUSY;
1063 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1065 struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
1067 sdev->allow_restart = 1;
1069 if (sd->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1070 sdev->inquiry_len = 36;
1071 return 0;
1074 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1076 struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
1077 struct fw_unit *unit = sd->unit;
1079 sdev->use_10_for_rw = 1;
1081 if (sdev->type == TYPE_ROM)
1082 sdev->use_10_for_ms = 1;
1083 if (sdev->type == TYPE_DISK &&
1084 sd->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1085 sdev->skip_ms_page_8 = 1;
1086 if (sd->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) {
1087 fw_notify("setting fix_capacity for %s\n", unit->device.bus_id);
1088 sdev->fix_capacity = 1;
1091 return 0;
1095 * Called by scsi stack when something has really gone wrong. Usually
1096 * called when a command has timed-out for some reason.
1098 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1100 struct sbp2_device *sd =
1101 (struct sbp2_device *)cmd->device->host->hostdata;
1102 struct fw_unit *unit = sd->unit;
1104 fw_notify("sbp2_scsi_abort\n");
1105 sbp2_agent_reset(unit);
1106 sbp2_cancel_orbs(unit);
1108 return SUCCESS;
1111 static struct scsi_host_template scsi_driver_template = {
1112 .module = THIS_MODULE,
1113 .name = "SBP-2 IEEE-1394",
1114 .proc_name = (char *)sbp2_driver_name,
1115 .queuecommand = sbp2_scsi_queuecommand,
1116 .slave_alloc = sbp2_scsi_slave_alloc,
1117 .slave_configure = sbp2_scsi_slave_configure,
1118 .eh_abort_handler = sbp2_scsi_abort,
1119 .this_id = -1,
1120 .sg_tablesize = SG_ALL,
1121 .use_clustering = ENABLE_CLUSTERING,
1122 .cmd_per_lun = 1,
1123 .can_queue = 1,
1126 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1127 MODULE_DESCRIPTION("SCSI over IEEE1394");
1128 MODULE_LICENSE("GPL");
1129 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1131 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1132 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1133 MODULE_ALIAS("sbp2");
1134 #endif
1136 static int __init sbp2_init(void)
1138 return driver_register(&sbp2_driver.driver);
1141 static void __exit sbp2_cleanup(void)
1143 driver_unregister(&sbp2_driver.driver);
1146 module_init(sbp2_init);
1147 module_exit(sbp2_cleanup);