include: convert various register fcns to macros to avoid include chaining
[linux-2.6/next.git] / drivers / md / md.c
blob269f95c533a2664a74d3108af0edcb9313ffe624
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
58 #define DEBUG 0
59 #define dprintk(x...) ((void)(DEBUG && printk(x)))
61 #ifndef MODULE
62 static void autostart_arrays(int part);
63 #endif
65 static LIST_HEAD(pers_list);
66 static DEFINE_SPINLOCK(pers_lock);
68 static void md_print_devices(void);
70 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
71 static struct workqueue_struct *md_wq;
72 static struct workqueue_struct *md_misc_wq;
74 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77 * Default number of read corrections we'll attempt on an rdev
78 * before ejecting it from the array. We divide the read error
79 * count by 2 for every hour elapsed between read errors.
81 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
84 * is 1000 KB/sec, so the extra system load does not show up that much.
85 * Increase it if you want to have more _guaranteed_ speed. Note that
86 * the RAID driver will use the maximum available bandwidth if the IO
87 * subsystem is idle. There is also an 'absolute maximum' reconstruction
88 * speed limit - in case reconstruction slows down your system despite
89 * idle IO detection.
91 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
92 * or /sys/block/mdX/md/sync_speed_{min,max}
95 static int sysctl_speed_limit_min = 1000;
96 static int sysctl_speed_limit_max = 200000;
97 static inline int speed_min(mddev_t *mddev)
99 return mddev->sync_speed_min ?
100 mddev->sync_speed_min : sysctl_speed_limit_min;
103 static inline int speed_max(mddev_t *mddev)
105 return mddev->sync_speed_max ?
106 mddev->sync_speed_max : sysctl_speed_limit_max;
109 static struct ctl_table_header *raid_table_header;
111 static ctl_table raid_table[] = {
113 .procname = "speed_limit_min",
114 .data = &sysctl_speed_limit_min,
115 .maxlen = sizeof(int),
116 .mode = S_IRUGO|S_IWUSR,
117 .proc_handler = proc_dointvec,
120 .procname = "speed_limit_max",
121 .data = &sysctl_speed_limit_max,
122 .maxlen = sizeof(int),
123 .mode = S_IRUGO|S_IWUSR,
124 .proc_handler = proc_dointvec,
129 static ctl_table raid_dir_table[] = {
131 .procname = "raid",
132 .maxlen = 0,
133 .mode = S_IRUGO|S_IXUGO,
134 .child = raid_table,
139 static ctl_table raid_root_table[] = {
141 .procname = "dev",
142 .maxlen = 0,
143 .mode = 0555,
144 .child = raid_dir_table,
149 static const struct block_device_operations md_fops;
151 static int start_readonly;
153 /* bio_clone_mddev
154 * like bio_clone, but with a local bio set
157 static void mddev_bio_destructor(struct bio *bio)
159 mddev_t *mddev, **mddevp;
161 mddevp = (void*)bio;
162 mddev = mddevp[-1];
164 bio_free(bio, mddev->bio_set);
167 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
168 mddev_t *mddev)
170 struct bio *b;
171 mddev_t **mddevp;
173 if (!mddev || !mddev->bio_set)
174 return bio_alloc(gfp_mask, nr_iovecs);
176 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
177 mddev->bio_set);
178 if (!b)
179 return NULL;
180 mddevp = (void*)b;
181 mddevp[-1] = mddev;
182 b->bi_destructor = mddev_bio_destructor;
183 return b;
185 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
188 mddev_t *mddev)
190 struct bio *b;
191 mddev_t **mddevp;
193 if (!mddev || !mddev->bio_set)
194 return bio_clone(bio, gfp_mask);
196 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
197 mddev->bio_set);
198 if (!b)
199 return NULL;
200 mddevp = (void*)b;
201 mddevp[-1] = mddev;
202 b->bi_destructor = mddev_bio_destructor;
203 __bio_clone(b, bio);
204 if (bio_integrity(bio)) {
205 int ret;
207 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209 if (ret < 0) {
210 bio_put(b);
211 return NULL;
215 return b;
217 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219 void md_trim_bio(struct bio *bio, int offset, int size)
221 /* 'bio' is a cloned bio which we need to trim to match
222 * the given offset and size.
223 * This requires adjusting bi_sector, bi_size, and bi_io_vec
225 int i;
226 struct bio_vec *bvec;
227 int sofar = 0;
229 size <<= 9;
230 if (offset == 0 && size == bio->bi_size)
231 return;
233 bio->bi_sector += offset;
234 bio->bi_size = size;
235 offset <<= 9;
236 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238 while (bio->bi_idx < bio->bi_vcnt &&
239 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
240 /* remove this whole bio_vec */
241 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
242 bio->bi_idx++;
244 if (bio->bi_idx < bio->bi_vcnt) {
245 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
246 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248 /* avoid any complications with bi_idx being non-zero*/
249 if (bio->bi_idx) {
250 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
251 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
252 bio->bi_vcnt -= bio->bi_idx;
253 bio->bi_idx = 0;
255 /* Make sure vcnt and last bv are not too big */
256 bio_for_each_segment(bvec, bio, i) {
257 if (sofar + bvec->bv_len > size)
258 bvec->bv_len = size - sofar;
259 if (bvec->bv_len == 0) {
260 bio->bi_vcnt = i;
261 break;
263 sofar += bvec->bv_len;
266 EXPORT_SYMBOL_GPL(md_trim_bio);
269 * We have a system wide 'event count' that is incremented
270 * on any 'interesting' event, and readers of /proc/mdstat
271 * can use 'poll' or 'select' to find out when the event
272 * count increases.
274 * Events are:
275 * start array, stop array, error, add device, remove device,
276 * start build, activate spare
278 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
279 static atomic_t md_event_count;
280 void md_new_event(mddev_t *mddev)
282 atomic_inc(&md_event_count);
283 wake_up(&md_event_waiters);
285 EXPORT_SYMBOL_GPL(md_new_event);
287 /* Alternate version that can be called from interrupts
288 * when calling sysfs_notify isn't needed.
290 static void md_new_event_inintr(mddev_t *mddev)
292 atomic_inc(&md_event_count);
293 wake_up(&md_event_waiters);
297 * Enables to iterate over all existing md arrays
298 * all_mddevs_lock protects this list.
300 static LIST_HEAD(all_mddevs);
301 static DEFINE_SPINLOCK(all_mddevs_lock);
305 * iterates through all used mddevs in the system.
306 * We take care to grab the all_mddevs_lock whenever navigating
307 * the list, and to always hold a refcount when unlocked.
308 * Any code which breaks out of this loop while own
309 * a reference to the current mddev and must mddev_put it.
311 #define for_each_mddev(mddev,tmp) \
313 for (({ spin_lock(&all_mddevs_lock); \
314 tmp = all_mddevs.next; \
315 mddev = NULL;}); \
316 ({ if (tmp != &all_mddevs) \
317 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
318 spin_unlock(&all_mddevs_lock); \
319 if (mddev) mddev_put(mddev); \
320 mddev = list_entry(tmp, mddev_t, all_mddevs); \
321 tmp != &all_mddevs;}); \
322 ({ spin_lock(&all_mddevs_lock); \
323 tmp = tmp->next;}) \
327 /* Rather than calling directly into the personality make_request function,
328 * IO requests come here first so that we can check if the device is
329 * being suspended pending a reconfiguration.
330 * We hold a refcount over the call to ->make_request. By the time that
331 * call has finished, the bio has been linked into some internal structure
332 * and so is visible to ->quiesce(), so we don't need the refcount any more.
334 static int md_make_request(struct request_queue *q, struct bio *bio)
336 const int rw = bio_data_dir(bio);
337 mddev_t *mddev = q->queuedata;
338 int rv;
339 int cpu;
340 unsigned int sectors;
342 if (mddev == NULL || mddev->pers == NULL
343 || !mddev->ready) {
344 bio_io_error(bio);
345 return 0;
347 smp_rmb(); /* Ensure implications of 'active' are visible */
348 rcu_read_lock();
349 if (mddev->suspended) {
350 DEFINE_WAIT(__wait);
351 for (;;) {
352 prepare_to_wait(&mddev->sb_wait, &__wait,
353 TASK_UNINTERRUPTIBLE);
354 if (!mddev->suspended)
355 break;
356 rcu_read_unlock();
357 schedule();
358 rcu_read_lock();
360 finish_wait(&mddev->sb_wait, &__wait);
362 atomic_inc(&mddev->active_io);
363 rcu_read_unlock();
366 * save the sectors now since our bio can
367 * go away inside make_request
369 sectors = bio_sectors(bio);
370 rv = mddev->pers->make_request(mddev, bio);
372 cpu = part_stat_lock();
373 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375 part_stat_unlock();
377 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378 wake_up(&mddev->sb_wait);
380 return rv;
383 /* mddev_suspend makes sure no new requests are submitted
384 * to the device, and that any requests that have been submitted
385 * are completely handled.
386 * Once ->stop is called and completes, the module will be completely
387 * unused.
389 void mddev_suspend(mddev_t *mddev)
391 BUG_ON(mddev->suspended);
392 mddev->suspended = 1;
393 synchronize_rcu();
394 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
395 mddev->pers->quiesce(mddev, 1);
397 EXPORT_SYMBOL_GPL(mddev_suspend);
399 void mddev_resume(mddev_t *mddev)
401 mddev->suspended = 0;
402 wake_up(&mddev->sb_wait);
403 mddev->pers->quiesce(mddev, 0);
405 md_wakeup_thread(mddev->thread);
406 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
408 EXPORT_SYMBOL_GPL(mddev_resume);
410 int mddev_congested(mddev_t *mddev, int bits)
412 return mddev->suspended;
414 EXPORT_SYMBOL(mddev_congested);
417 * Generic flush handling for md
420 static void md_end_flush(struct bio *bio, int err)
422 mdk_rdev_t *rdev = bio->bi_private;
423 mddev_t *mddev = rdev->mddev;
425 rdev_dec_pending(rdev, mddev);
427 if (atomic_dec_and_test(&mddev->flush_pending)) {
428 /* The pre-request flush has finished */
429 queue_work(md_wq, &mddev->flush_work);
431 bio_put(bio);
434 static void md_submit_flush_data(struct work_struct *ws);
436 static void submit_flushes(struct work_struct *ws)
438 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
439 mdk_rdev_t *rdev;
441 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
442 atomic_set(&mddev->flush_pending, 1);
443 rcu_read_lock();
444 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
445 if (rdev->raid_disk >= 0 &&
446 !test_bit(Faulty, &rdev->flags)) {
447 /* Take two references, one is dropped
448 * when request finishes, one after
449 * we reclaim rcu_read_lock
451 struct bio *bi;
452 atomic_inc(&rdev->nr_pending);
453 atomic_inc(&rdev->nr_pending);
454 rcu_read_unlock();
455 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
456 bi->bi_end_io = md_end_flush;
457 bi->bi_private = rdev;
458 bi->bi_bdev = rdev->bdev;
459 atomic_inc(&mddev->flush_pending);
460 submit_bio(WRITE_FLUSH, bi);
461 rcu_read_lock();
462 rdev_dec_pending(rdev, mddev);
464 rcu_read_unlock();
465 if (atomic_dec_and_test(&mddev->flush_pending))
466 queue_work(md_wq, &mddev->flush_work);
469 static void md_submit_flush_data(struct work_struct *ws)
471 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
472 struct bio *bio = mddev->flush_bio;
474 if (bio->bi_size == 0)
475 /* an empty barrier - all done */
476 bio_endio(bio, 0);
477 else {
478 bio->bi_rw &= ~REQ_FLUSH;
479 if (mddev->pers->make_request(mddev, bio))
480 generic_make_request(bio);
483 mddev->flush_bio = NULL;
484 wake_up(&mddev->sb_wait);
487 void md_flush_request(mddev_t *mddev, struct bio *bio)
489 spin_lock_irq(&mddev->write_lock);
490 wait_event_lock_irq(mddev->sb_wait,
491 !mddev->flush_bio,
492 mddev->write_lock, /*nothing*/);
493 mddev->flush_bio = bio;
494 spin_unlock_irq(&mddev->write_lock);
496 INIT_WORK(&mddev->flush_work, submit_flushes);
497 queue_work(md_wq, &mddev->flush_work);
499 EXPORT_SYMBOL(md_flush_request);
501 /* Support for plugging.
502 * This mirrors the plugging support in request_queue, but does not
503 * require having a whole queue or request structures.
504 * We allocate an md_plug_cb for each md device and each thread it gets
505 * plugged on. This links tot the private plug_handle structure in the
506 * personality data where we keep a count of the number of outstanding
507 * plugs so other code can see if a plug is active.
509 struct md_plug_cb {
510 struct blk_plug_cb cb;
511 mddev_t *mddev;
514 static void plugger_unplug(struct blk_plug_cb *cb)
516 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
517 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
518 md_wakeup_thread(mdcb->mddev->thread);
519 kfree(mdcb);
522 /* Check that an unplug wakeup will come shortly.
523 * If not, wakeup the md thread immediately
525 int mddev_check_plugged(mddev_t *mddev)
527 struct blk_plug *plug = current->plug;
528 struct md_plug_cb *mdcb;
530 if (!plug)
531 return 0;
533 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
534 if (mdcb->cb.callback == plugger_unplug &&
535 mdcb->mddev == mddev) {
536 /* Already on the list, move to top */
537 if (mdcb != list_first_entry(&plug->cb_list,
538 struct md_plug_cb,
539 cb.list))
540 list_move(&mdcb->cb.list, &plug->cb_list);
541 return 1;
544 /* Not currently on the callback list */
545 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
546 if (!mdcb)
547 return 0;
549 mdcb->mddev = mddev;
550 mdcb->cb.callback = plugger_unplug;
551 atomic_inc(&mddev->plug_cnt);
552 list_add(&mdcb->cb.list, &plug->cb_list);
553 return 1;
555 EXPORT_SYMBOL_GPL(mddev_check_plugged);
557 static inline mddev_t *mddev_get(mddev_t *mddev)
559 atomic_inc(&mddev->active);
560 return mddev;
563 static void mddev_delayed_delete(struct work_struct *ws);
565 static void mddev_put(mddev_t *mddev)
567 struct bio_set *bs = NULL;
569 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
570 return;
571 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
572 mddev->ctime == 0 && !mddev->hold_active) {
573 /* Array is not configured at all, and not held active,
574 * so destroy it */
575 list_del(&mddev->all_mddevs);
576 bs = mddev->bio_set;
577 mddev->bio_set = NULL;
578 if (mddev->gendisk) {
579 /* We did a probe so need to clean up. Call
580 * queue_work inside the spinlock so that
581 * flush_workqueue() after mddev_find will
582 * succeed in waiting for the work to be done.
584 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
585 queue_work(md_misc_wq, &mddev->del_work);
586 } else
587 kfree(mddev);
589 spin_unlock(&all_mddevs_lock);
590 if (bs)
591 bioset_free(bs);
594 void mddev_init(mddev_t *mddev)
596 mutex_init(&mddev->open_mutex);
597 mutex_init(&mddev->reconfig_mutex);
598 mutex_init(&mddev->bitmap_info.mutex);
599 INIT_LIST_HEAD(&mddev->disks);
600 INIT_LIST_HEAD(&mddev->all_mddevs);
601 init_timer(&mddev->safemode_timer);
602 atomic_set(&mddev->active, 1);
603 atomic_set(&mddev->openers, 0);
604 atomic_set(&mddev->active_io, 0);
605 atomic_set(&mddev->plug_cnt, 0);
606 spin_lock_init(&mddev->write_lock);
607 atomic_set(&mddev->flush_pending, 0);
608 init_waitqueue_head(&mddev->sb_wait);
609 init_waitqueue_head(&mddev->recovery_wait);
610 mddev->reshape_position = MaxSector;
611 mddev->resync_min = 0;
612 mddev->resync_max = MaxSector;
613 mddev->level = LEVEL_NONE;
615 EXPORT_SYMBOL_GPL(mddev_init);
617 static mddev_t * mddev_find(dev_t unit)
619 mddev_t *mddev, *new = NULL;
621 if (unit && MAJOR(unit) != MD_MAJOR)
622 unit &= ~((1<<MdpMinorShift)-1);
624 retry:
625 spin_lock(&all_mddevs_lock);
627 if (unit) {
628 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
629 if (mddev->unit == unit) {
630 mddev_get(mddev);
631 spin_unlock(&all_mddevs_lock);
632 kfree(new);
633 return mddev;
636 if (new) {
637 list_add(&new->all_mddevs, &all_mddevs);
638 spin_unlock(&all_mddevs_lock);
639 new->hold_active = UNTIL_IOCTL;
640 return new;
642 } else if (new) {
643 /* find an unused unit number */
644 static int next_minor = 512;
645 int start = next_minor;
646 int is_free = 0;
647 int dev = 0;
648 while (!is_free) {
649 dev = MKDEV(MD_MAJOR, next_minor);
650 next_minor++;
651 if (next_minor > MINORMASK)
652 next_minor = 0;
653 if (next_minor == start) {
654 /* Oh dear, all in use. */
655 spin_unlock(&all_mddevs_lock);
656 kfree(new);
657 return NULL;
660 is_free = 1;
661 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
662 if (mddev->unit == dev) {
663 is_free = 0;
664 break;
667 new->unit = dev;
668 new->md_minor = MINOR(dev);
669 new->hold_active = UNTIL_STOP;
670 list_add(&new->all_mddevs, &all_mddevs);
671 spin_unlock(&all_mddevs_lock);
672 return new;
674 spin_unlock(&all_mddevs_lock);
676 new = kzalloc(sizeof(*new), GFP_KERNEL);
677 if (!new)
678 return NULL;
680 new->unit = unit;
681 if (MAJOR(unit) == MD_MAJOR)
682 new->md_minor = MINOR(unit);
683 else
684 new->md_minor = MINOR(unit) >> MdpMinorShift;
686 mddev_init(new);
688 goto retry;
691 static inline int mddev_lock(mddev_t * mddev)
693 return mutex_lock_interruptible(&mddev->reconfig_mutex);
696 static inline int mddev_is_locked(mddev_t *mddev)
698 return mutex_is_locked(&mddev->reconfig_mutex);
701 static inline int mddev_trylock(mddev_t * mddev)
703 return mutex_trylock(&mddev->reconfig_mutex);
706 static struct attribute_group md_redundancy_group;
708 static void mddev_unlock(mddev_t * mddev)
710 if (mddev->to_remove) {
711 /* These cannot be removed under reconfig_mutex as
712 * an access to the files will try to take reconfig_mutex
713 * while holding the file unremovable, which leads to
714 * a deadlock.
715 * So hold set sysfs_active while the remove in happeing,
716 * and anything else which might set ->to_remove or my
717 * otherwise change the sysfs namespace will fail with
718 * -EBUSY if sysfs_active is still set.
719 * We set sysfs_active under reconfig_mutex and elsewhere
720 * test it under the same mutex to ensure its correct value
721 * is seen.
723 struct attribute_group *to_remove = mddev->to_remove;
724 mddev->to_remove = NULL;
725 mddev->sysfs_active = 1;
726 mutex_unlock(&mddev->reconfig_mutex);
728 if (mddev->kobj.sd) {
729 if (to_remove != &md_redundancy_group)
730 sysfs_remove_group(&mddev->kobj, to_remove);
731 if (mddev->pers == NULL ||
732 mddev->pers->sync_request == NULL) {
733 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
734 if (mddev->sysfs_action)
735 sysfs_put(mddev->sysfs_action);
736 mddev->sysfs_action = NULL;
739 mddev->sysfs_active = 0;
740 } else
741 mutex_unlock(&mddev->reconfig_mutex);
743 md_wakeup_thread(mddev->thread);
746 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
748 mdk_rdev_t *rdev;
750 list_for_each_entry(rdev, &mddev->disks, same_set)
751 if (rdev->desc_nr == nr)
752 return rdev;
754 return NULL;
757 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
759 mdk_rdev_t *rdev;
761 list_for_each_entry(rdev, &mddev->disks, same_set)
762 if (rdev->bdev->bd_dev == dev)
763 return rdev;
765 return NULL;
768 static struct mdk_personality *find_pers(int level, char *clevel)
770 struct mdk_personality *pers;
771 list_for_each_entry(pers, &pers_list, list) {
772 if (level != LEVEL_NONE && pers->level == level)
773 return pers;
774 if (strcmp(pers->name, clevel)==0)
775 return pers;
777 return NULL;
780 /* return the offset of the super block in 512byte sectors */
781 static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev)
783 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
784 return MD_NEW_SIZE_SECTORS(num_sectors);
787 static int alloc_disk_sb(mdk_rdev_t * rdev)
789 if (rdev->sb_page)
790 MD_BUG();
792 rdev->sb_page = alloc_page(GFP_KERNEL);
793 if (!rdev->sb_page) {
794 printk(KERN_ALERT "md: out of memory.\n");
795 return -ENOMEM;
798 return 0;
801 static void free_disk_sb(mdk_rdev_t * rdev)
803 if (rdev->sb_page) {
804 put_page(rdev->sb_page);
805 rdev->sb_loaded = 0;
806 rdev->sb_page = NULL;
807 rdev->sb_start = 0;
808 rdev->sectors = 0;
810 if (rdev->bb_page) {
811 put_page(rdev->bb_page);
812 rdev->bb_page = NULL;
817 static void super_written(struct bio *bio, int error)
819 mdk_rdev_t *rdev = bio->bi_private;
820 mddev_t *mddev = rdev->mddev;
822 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
823 printk("md: super_written gets error=%d, uptodate=%d\n",
824 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
825 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
826 md_error(mddev, rdev);
829 if (atomic_dec_and_test(&mddev->pending_writes))
830 wake_up(&mddev->sb_wait);
831 bio_put(bio);
834 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
835 sector_t sector, int size, struct page *page)
837 /* write first size bytes of page to sector of rdev
838 * Increment mddev->pending_writes before returning
839 * and decrement it on completion, waking up sb_wait
840 * if zero is reached.
841 * If an error occurred, call md_error
843 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
845 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
846 bio->bi_sector = sector;
847 bio_add_page(bio, page, size, 0);
848 bio->bi_private = rdev;
849 bio->bi_end_io = super_written;
851 atomic_inc(&mddev->pending_writes);
852 submit_bio(REQ_WRITE | REQ_SYNC | REQ_FLUSH | REQ_FUA, bio);
855 void md_super_wait(mddev_t *mddev)
857 /* wait for all superblock writes that were scheduled to complete */
858 DEFINE_WAIT(wq);
859 for(;;) {
860 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
861 if (atomic_read(&mddev->pending_writes)==0)
862 break;
863 schedule();
865 finish_wait(&mddev->sb_wait, &wq);
868 static void bi_complete(struct bio *bio, int error)
870 complete((struct completion*)bio->bi_private);
873 int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
874 struct page *page, int rw, bool metadata_op)
876 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
877 struct completion event;
878 int ret;
880 rw |= REQ_SYNC;
882 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
883 rdev->meta_bdev : rdev->bdev;
884 if (metadata_op)
885 bio->bi_sector = sector + rdev->sb_start;
886 else
887 bio->bi_sector = sector + rdev->data_offset;
888 bio_add_page(bio, page, size, 0);
889 init_completion(&event);
890 bio->bi_private = &event;
891 bio->bi_end_io = bi_complete;
892 submit_bio(rw, bio);
893 wait_for_completion(&event);
895 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
896 bio_put(bio);
897 return ret;
899 EXPORT_SYMBOL_GPL(sync_page_io);
901 static int read_disk_sb(mdk_rdev_t * rdev, int size)
903 char b[BDEVNAME_SIZE];
904 if (!rdev->sb_page) {
905 MD_BUG();
906 return -EINVAL;
908 if (rdev->sb_loaded)
909 return 0;
912 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
913 goto fail;
914 rdev->sb_loaded = 1;
915 return 0;
917 fail:
918 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
919 bdevname(rdev->bdev,b));
920 return -EINVAL;
923 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
925 return sb1->set_uuid0 == sb2->set_uuid0 &&
926 sb1->set_uuid1 == sb2->set_uuid1 &&
927 sb1->set_uuid2 == sb2->set_uuid2 &&
928 sb1->set_uuid3 == sb2->set_uuid3;
931 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
933 int ret;
934 mdp_super_t *tmp1, *tmp2;
936 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
937 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
939 if (!tmp1 || !tmp2) {
940 ret = 0;
941 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
942 goto abort;
945 *tmp1 = *sb1;
946 *tmp2 = *sb2;
949 * nr_disks is not constant
951 tmp1->nr_disks = 0;
952 tmp2->nr_disks = 0;
954 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
955 abort:
956 kfree(tmp1);
957 kfree(tmp2);
958 return ret;
962 static u32 md_csum_fold(u32 csum)
964 csum = (csum & 0xffff) + (csum >> 16);
965 return (csum & 0xffff) + (csum >> 16);
968 static unsigned int calc_sb_csum(mdp_super_t * sb)
970 u64 newcsum = 0;
971 u32 *sb32 = (u32*)sb;
972 int i;
973 unsigned int disk_csum, csum;
975 disk_csum = sb->sb_csum;
976 sb->sb_csum = 0;
978 for (i = 0; i < MD_SB_BYTES/4 ; i++)
979 newcsum += sb32[i];
980 csum = (newcsum & 0xffffffff) + (newcsum>>32);
983 #ifdef CONFIG_ALPHA
984 /* This used to use csum_partial, which was wrong for several
985 * reasons including that different results are returned on
986 * different architectures. It isn't critical that we get exactly
987 * the same return value as before (we always csum_fold before
988 * testing, and that removes any differences). However as we
989 * know that csum_partial always returned a 16bit value on
990 * alphas, do a fold to maximise conformity to previous behaviour.
992 sb->sb_csum = md_csum_fold(disk_csum);
993 #else
994 sb->sb_csum = disk_csum;
995 #endif
996 return csum;
1001 * Handle superblock details.
1002 * We want to be able to handle multiple superblock formats
1003 * so we have a common interface to them all, and an array of
1004 * different handlers.
1005 * We rely on user-space to write the initial superblock, and support
1006 * reading and updating of superblocks.
1007 * Interface methods are:
1008 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
1009 * loads and validates a superblock on dev.
1010 * if refdev != NULL, compare superblocks on both devices
1011 * Return:
1012 * 0 - dev has a superblock that is compatible with refdev
1013 * 1 - dev has a superblock that is compatible and newer than refdev
1014 * so dev should be used as the refdev in future
1015 * -EINVAL superblock incompatible or invalid
1016 * -othererror e.g. -EIO
1018 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
1019 * Verify that dev is acceptable into mddev.
1020 * The first time, mddev->raid_disks will be 0, and data from
1021 * dev should be merged in. Subsequent calls check that dev
1022 * is new enough. Return 0 or -EINVAL
1024 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
1025 * Update the superblock for rdev with data in mddev
1026 * This does not write to disc.
1030 struct super_type {
1031 char *name;
1032 struct module *owner;
1033 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
1034 int minor_version);
1035 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
1036 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
1037 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
1038 sector_t num_sectors);
1042 * Check that the given mddev has no bitmap.
1044 * This function is called from the run method of all personalities that do not
1045 * support bitmaps. It prints an error message and returns non-zero if mddev
1046 * has a bitmap. Otherwise, it returns 0.
1049 int md_check_no_bitmap(mddev_t *mddev)
1051 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1052 return 0;
1053 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1054 mdname(mddev), mddev->pers->name);
1055 return 1;
1057 EXPORT_SYMBOL(md_check_no_bitmap);
1060 * load_super for 0.90.0
1062 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1064 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1065 mdp_super_t *sb;
1066 int ret;
1069 * Calculate the position of the superblock (512byte sectors),
1070 * it's at the end of the disk.
1072 * It also happens to be a multiple of 4Kb.
1074 rdev->sb_start = calc_dev_sboffset(rdev);
1076 ret = read_disk_sb(rdev, MD_SB_BYTES);
1077 if (ret) return ret;
1079 ret = -EINVAL;
1081 bdevname(rdev->bdev, b);
1082 sb = page_address(rdev->sb_page);
1084 if (sb->md_magic != MD_SB_MAGIC) {
1085 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1087 goto abort;
1090 if (sb->major_version != 0 ||
1091 sb->minor_version < 90 ||
1092 sb->minor_version > 91) {
1093 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1094 sb->major_version, sb->minor_version,
1096 goto abort;
1099 if (sb->raid_disks <= 0)
1100 goto abort;
1102 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1103 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1105 goto abort;
1108 rdev->preferred_minor = sb->md_minor;
1109 rdev->data_offset = 0;
1110 rdev->sb_size = MD_SB_BYTES;
1111 rdev->badblocks.shift = -1;
1113 if (sb->level == LEVEL_MULTIPATH)
1114 rdev->desc_nr = -1;
1115 else
1116 rdev->desc_nr = sb->this_disk.number;
1118 if (!refdev) {
1119 ret = 1;
1120 } else {
1121 __u64 ev1, ev2;
1122 mdp_super_t *refsb = page_address(refdev->sb_page);
1123 if (!uuid_equal(refsb, sb)) {
1124 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1125 b, bdevname(refdev->bdev,b2));
1126 goto abort;
1128 if (!sb_equal(refsb, sb)) {
1129 printk(KERN_WARNING "md: %s has same UUID"
1130 " but different superblock to %s\n",
1131 b, bdevname(refdev->bdev, b2));
1132 goto abort;
1134 ev1 = md_event(sb);
1135 ev2 = md_event(refsb);
1136 if (ev1 > ev2)
1137 ret = 1;
1138 else
1139 ret = 0;
1141 rdev->sectors = rdev->sb_start;
1143 if (rdev->sectors < sb->size * 2 && sb->level > 1)
1144 /* "this cannot possibly happen" ... */
1145 ret = -EINVAL;
1147 abort:
1148 return ret;
1152 * validate_super for 0.90.0
1154 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1156 mdp_disk_t *desc;
1157 mdp_super_t *sb = page_address(rdev->sb_page);
1158 __u64 ev1 = md_event(sb);
1160 rdev->raid_disk = -1;
1161 clear_bit(Faulty, &rdev->flags);
1162 clear_bit(In_sync, &rdev->flags);
1163 clear_bit(WriteMostly, &rdev->flags);
1165 if (mddev->raid_disks == 0) {
1166 mddev->major_version = 0;
1167 mddev->minor_version = sb->minor_version;
1168 mddev->patch_version = sb->patch_version;
1169 mddev->external = 0;
1170 mddev->chunk_sectors = sb->chunk_size >> 9;
1171 mddev->ctime = sb->ctime;
1172 mddev->utime = sb->utime;
1173 mddev->level = sb->level;
1174 mddev->clevel[0] = 0;
1175 mddev->layout = sb->layout;
1176 mddev->raid_disks = sb->raid_disks;
1177 mddev->dev_sectors = sb->size * 2;
1178 mddev->events = ev1;
1179 mddev->bitmap_info.offset = 0;
1180 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1182 if (mddev->minor_version >= 91) {
1183 mddev->reshape_position = sb->reshape_position;
1184 mddev->delta_disks = sb->delta_disks;
1185 mddev->new_level = sb->new_level;
1186 mddev->new_layout = sb->new_layout;
1187 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1188 } else {
1189 mddev->reshape_position = MaxSector;
1190 mddev->delta_disks = 0;
1191 mddev->new_level = mddev->level;
1192 mddev->new_layout = mddev->layout;
1193 mddev->new_chunk_sectors = mddev->chunk_sectors;
1196 if (sb->state & (1<<MD_SB_CLEAN))
1197 mddev->recovery_cp = MaxSector;
1198 else {
1199 if (sb->events_hi == sb->cp_events_hi &&
1200 sb->events_lo == sb->cp_events_lo) {
1201 mddev->recovery_cp = sb->recovery_cp;
1202 } else
1203 mddev->recovery_cp = 0;
1206 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1207 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1208 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1209 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1211 mddev->max_disks = MD_SB_DISKS;
1213 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1214 mddev->bitmap_info.file == NULL)
1215 mddev->bitmap_info.offset =
1216 mddev->bitmap_info.default_offset;
1218 } else if (mddev->pers == NULL) {
1219 /* Insist on good event counter while assembling, except
1220 * for spares (which don't need an event count) */
1221 ++ev1;
1222 if (sb->disks[rdev->desc_nr].state & (
1223 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1224 if (ev1 < mddev->events)
1225 return -EINVAL;
1226 } else if (mddev->bitmap) {
1227 /* if adding to array with a bitmap, then we can accept an
1228 * older device ... but not too old.
1230 if (ev1 < mddev->bitmap->events_cleared)
1231 return 0;
1232 } else {
1233 if (ev1 < mddev->events)
1234 /* just a hot-add of a new device, leave raid_disk at -1 */
1235 return 0;
1238 if (mddev->level != LEVEL_MULTIPATH) {
1239 desc = sb->disks + rdev->desc_nr;
1241 if (desc->state & (1<<MD_DISK_FAULTY))
1242 set_bit(Faulty, &rdev->flags);
1243 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1244 desc->raid_disk < mddev->raid_disks */) {
1245 set_bit(In_sync, &rdev->flags);
1246 rdev->raid_disk = desc->raid_disk;
1247 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1248 /* active but not in sync implies recovery up to
1249 * reshape position. We don't know exactly where
1250 * that is, so set to zero for now */
1251 if (mddev->minor_version >= 91) {
1252 rdev->recovery_offset = 0;
1253 rdev->raid_disk = desc->raid_disk;
1256 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1257 set_bit(WriteMostly, &rdev->flags);
1258 } else /* MULTIPATH are always insync */
1259 set_bit(In_sync, &rdev->flags);
1260 return 0;
1264 * sync_super for 0.90.0
1266 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1268 mdp_super_t *sb;
1269 mdk_rdev_t *rdev2;
1270 int next_spare = mddev->raid_disks;
1273 /* make rdev->sb match mddev data..
1275 * 1/ zero out disks
1276 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1277 * 3/ any empty disks < next_spare become removed
1279 * disks[0] gets initialised to REMOVED because
1280 * we cannot be sure from other fields if it has
1281 * been initialised or not.
1283 int i;
1284 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1286 rdev->sb_size = MD_SB_BYTES;
1288 sb = page_address(rdev->sb_page);
1290 memset(sb, 0, sizeof(*sb));
1292 sb->md_magic = MD_SB_MAGIC;
1293 sb->major_version = mddev->major_version;
1294 sb->patch_version = mddev->patch_version;
1295 sb->gvalid_words = 0; /* ignored */
1296 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1297 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1298 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1299 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1301 sb->ctime = mddev->ctime;
1302 sb->level = mddev->level;
1303 sb->size = mddev->dev_sectors / 2;
1304 sb->raid_disks = mddev->raid_disks;
1305 sb->md_minor = mddev->md_minor;
1306 sb->not_persistent = 0;
1307 sb->utime = mddev->utime;
1308 sb->state = 0;
1309 sb->events_hi = (mddev->events>>32);
1310 sb->events_lo = (u32)mddev->events;
1312 if (mddev->reshape_position == MaxSector)
1313 sb->minor_version = 90;
1314 else {
1315 sb->minor_version = 91;
1316 sb->reshape_position = mddev->reshape_position;
1317 sb->new_level = mddev->new_level;
1318 sb->delta_disks = mddev->delta_disks;
1319 sb->new_layout = mddev->new_layout;
1320 sb->new_chunk = mddev->new_chunk_sectors << 9;
1322 mddev->minor_version = sb->minor_version;
1323 if (mddev->in_sync)
1325 sb->recovery_cp = mddev->recovery_cp;
1326 sb->cp_events_hi = (mddev->events>>32);
1327 sb->cp_events_lo = (u32)mddev->events;
1328 if (mddev->recovery_cp == MaxSector)
1329 sb->state = (1<< MD_SB_CLEAN);
1330 } else
1331 sb->recovery_cp = 0;
1333 sb->layout = mddev->layout;
1334 sb->chunk_size = mddev->chunk_sectors << 9;
1336 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1337 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1339 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1340 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1341 mdp_disk_t *d;
1342 int desc_nr;
1343 int is_active = test_bit(In_sync, &rdev2->flags);
1345 if (rdev2->raid_disk >= 0 &&
1346 sb->minor_version >= 91)
1347 /* we have nowhere to store the recovery_offset,
1348 * but if it is not below the reshape_position,
1349 * we can piggy-back on that.
1351 is_active = 1;
1352 if (rdev2->raid_disk < 0 ||
1353 test_bit(Faulty, &rdev2->flags))
1354 is_active = 0;
1355 if (is_active)
1356 desc_nr = rdev2->raid_disk;
1357 else
1358 desc_nr = next_spare++;
1359 rdev2->desc_nr = desc_nr;
1360 d = &sb->disks[rdev2->desc_nr];
1361 nr_disks++;
1362 d->number = rdev2->desc_nr;
1363 d->major = MAJOR(rdev2->bdev->bd_dev);
1364 d->minor = MINOR(rdev2->bdev->bd_dev);
1365 if (is_active)
1366 d->raid_disk = rdev2->raid_disk;
1367 else
1368 d->raid_disk = rdev2->desc_nr; /* compatibility */
1369 if (test_bit(Faulty, &rdev2->flags))
1370 d->state = (1<<MD_DISK_FAULTY);
1371 else if (is_active) {
1372 d->state = (1<<MD_DISK_ACTIVE);
1373 if (test_bit(In_sync, &rdev2->flags))
1374 d->state |= (1<<MD_DISK_SYNC);
1375 active++;
1376 working++;
1377 } else {
1378 d->state = 0;
1379 spare++;
1380 working++;
1382 if (test_bit(WriteMostly, &rdev2->flags))
1383 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1385 /* now set the "removed" and "faulty" bits on any missing devices */
1386 for (i=0 ; i < mddev->raid_disks ; i++) {
1387 mdp_disk_t *d = &sb->disks[i];
1388 if (d->state == 0 && d->number == 0) {
1389 d->number = i;
1390 d->raid_disk = i;
1391 d->state = (1<<MD_DISK_REMOVED);
1392 d->state |= (1<<MD_DISK_FAULTY);
1393 failed++;
1396 sb->nr_disks = nr_disks;
1397 sb->active_disks = active;
1398 sb->working_disks = working;
1399 sb->failed_disks = failed;
1400 sb->spare_disks = spare;
1402 sb->this_disk = sb->disks[rdev->desc_nr];
1403 sb->sb_csum = calc_sb_csum(sb);
1407 * rdev_size_change for 0.90.0
1409 static unsigned long long
1410 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1412 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1413 return 0; /* component must fit device */
1414 if (rdev->mddev->bitmap_info.offset)
1415 return 0; /* can't move bitmap */
1416 rdev->sb_start = calc_dev_sboffset(rdev);
1417 if (!num_sectors || num_sectors > rdev->sb_start)
1418 num_sectors = rdev->sb_start;
1419 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1420 rdev->sb_page);
1421 md_super_wait(rdev->mddev);
1422 return num_sectors;
1427 * version 1 superblock
1430 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1432 __le32 disk_csum;
1433 u32 csum;
1434 unsigned long long newcsum;
1435 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1436 __le32 *isuper = (__le32*)sb;
1437 int i;
1439 disk_csum = sb->sb_csum;
1440 sb->sb_csum = 0;
1441 newcsum = 0;
1442 for (i=0; size>=4; size -= 4 )
1443 newcsum += le32_to_cpu(*isuper++);
1445 if (size == 2)
1446 newcsum += le16_to_cpu(*(__le16*) isuper);
1448 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1449 sb->sb_csum = disk_csum;
1450 return cpu_to_le32(csum);
1453 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1454 int acknowledged);
1455 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1457 struct mdp_superblock_1 *sb;
1458 int ret;
1459 sector_t sb_start;
1460 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1461 int bmask;
1464 * Calculate the position of the superblock in 512byte sectors.
1465 * It is always aligned to a 4K boundary and
1466 * depeding on minor_version, it can be:
1467 * 0: At least 8K, but less than 12K, from end of device
1468 * 1: At start of device
1469 * 2: 4K from start of device.
1471 switch(minor_version) {
1472 case 0:
1473 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1474 sb_start -= 8*2;
1475 sb_start &= ~(sector_t)(4*2-1);
1476 break;
1477 case 1:
1478 sb_start = 0;
1479 break;
1480 case 2:
1481 sb_start = 8;
1482 break;
1483 default:
1484 return -EINVAL;
1486 rdev->sb_start = sb_start;
1488 /* superblock is rarely larger than 1K, but it can be larger,
1489 * and it is safe to read 4k, so we do that
1491 ret = read_disk_sb(rdev, 4096);
1492 if (ret) return ret;
1495 sb = page_address(rdev->sb_page);
1497 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1498 sb->major_version != cpu_to_le32(1) ||
1499 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1500 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1501 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1502 return -EINVAL;
1504 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1505 printk("md: invalid superblock checksum on %s\n",
1506 bdevname(rdev->bdev,b));
1507 return -EINVAL;
1509 if (le64_to_cpu(sb->data_size) < 10) {
1510 printk("md: data_size too small on %s\n",
1511 bdevname(rdev->bdev,b));
1512 return -EINVAL;
1515 rdev->preferred_minor = 0xffff;
1516 rdev->data_offset = le64_to_cpu(sb->data_offset);
1517 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1519 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1520 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1521 if (rdev->sb_size & bmask)
1522 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1524 if (minor_version
1525 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1526 return -EINVAL;
1528 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1529 rdev->desc_nr = -1;
1530 else
1531 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1533 if (!rdev->bb_page) {
1534 rdev->bb_page = alloc_page(GFP_KERNEL);
1535 if (!rdev->bb_page)
1536 return -ENOMEM;
1538 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1539 rdev->badblocks.count == 0) {
1540 /* need to load the bad block list.
1541 * Currently we limit it to one page.
1543 s32 offset;
1544 sector_t bb_sector;
1545 u64 *bbp;
1546 int i;
1547 int sectors = le16_to_cpu(sb->bblog_size);
1548 if (sectors > (PAGE_SIZE / 512))
1549 return -EINVAL;
1550 offset = le32_to_cpu(sb->bblog_offset);
1551 if (offset == 0)
1552 return -EINVAL;
1553 bb_sector = (long long)offset;
1554 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1555 rdev->bb_page, READ, true))
1556 return -EIO;
1557 bbp = (u64 *)page_address(rdev->bb_page);
1558 rdev->badblocks.shift = sb->bblog_shift;
1559 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1560 u64 bb = le64_to_cpu(*bbp);
1561 int count = bb & (0x3ff);
1562 u64 sector = bb >> 10;
1563 sector <<= sb->bblog_shift;
1564 count <<= sb->bblog_shift;
1565 if (bb + 1 == 0)
1566 break;
1567 if (md_set_badblocks(&rdev->badblocks,
1568 sector, count, 1) == 0)
1569 return -EINVAL;
1571 } else if (sb->bblog_offset == 0)
1572 rdev->badblocks.shift = -1;
1574 if (!refdev) {
1575 ret = 1;
1576 } else {
1577 __u64 ev1, ev2;
1578 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1580 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1581 sb->level != refsb->level ||
1582 sb->layout != refsb->layout ||
1583 sb->chunksize != refsb->chunksize) {
1584 printk(KERN_WARNING "md: %s has strangely different"
1585 " superblock to %s\n",
1586 bdevname(rdev->bdev,b),
1587 bdevname(refdev->bdev,b2));
1588 return -EINVAL;
1590 ev1 = le64_to_cpu(sb->events);
1591 ev2 = le64_to_cpu(refsb->events);
1593 if (ev1 > ev2)
1594 ret = 1;
1595 else
1596 ret = 0;
1598 if (minor_version)
1599 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1600 le64_to_cpu(sb->data_offset);
1601 else
1602 rdev->sectors = rdev->sb_start;
1603 if (rdev->sectors < le64_to_cpu(sb->data_size))
1604 return -EINVAL;
1605 rdev->sectors = le64_to_cpu(sb->data_size);
1606 if (le64_to_cpu(sb->size) > rdev->sectors)
1607 return -EINVAL;
1608 return ret;
1611 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1613 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1614 __u64 ev1 = le64_to_cpu(sb->events);
1616 rdev->raid_disk = -1;
1617 clear_bit(Faulty, &rdev->flags);
1618 clear_bit(In_sync, &rdev->flags);
1619 clear_bit(WriteMostly, &rdev->flags);
1621 if (mddev->raid_disks == 0) {
1622 mddev->major_version = 1;
1623 mddev->patch_version = 0;
1624 mddev->external = 0;
1625 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1626 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1627 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1628 mddev->level = le32_to_cpu(sb->level);
1629 mddev->clevel[0] = 0;
1630 mddev->layout = le32_to_cpu(sb->layout);
1631 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1632 mddev->dev_sectors = le64_to_cpu(sb->size);
1633 mddev->events = ev1;
1634 mddev->bitmap_info.offset = 0;
1635 mddev->bitmap_info.default_offset = 1024 >> 9;
1637 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1638 memcpy(mddev->uuid, sb->set_uuid, 16);
1640 mddev->max_disks = (4096-256)/2;
1642 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1643 mddev->bitmap_info.file == NULL )
1644 mddev->bitmap_info.offset =
1645 (__s32)le32_to_cpu(sb->bitmap_offset);
1647 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1648 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1649 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1650 mddev->new_level = le32_to_cpu(sb->new_level);
1651 mddev->new_layout = le32_to_cpu(sb->new_layout);
1652 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1653 } else {
1654 mddev->reshape_position = MaxSector;
1655 mddev->delta_disks = 0;
1656 mddev->new_level = mddev->level;
1657 mddev->new_layout = mddev->layout;
1658 mddev->new_chunk_sectors = mddev->chunk_sectors;
1661 } else if (mddev->pers == NULL) {
1662 /* Insist of good event counter while assembling, except for
1663 * spares (which don't need an event count) */
1664 ++ev1;
1665 if (rdev->desc_nr >= 0 &&
1666 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1667 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1668 if (ev1 < mddev->events)
1669 return -EINVAL;
1670 } else if (mddev->bitmap) {
1671 /* If adding to array with a bitmap, then we can accept an
1672 * older device, but not too old.
1674 if (ev1 < mddev->bitmap->events_cleared)
1675 return 0;
1676 } else {
1677 if (ev1 < mddev->events)
1678 /* just a hot-add of a new device, leave raid_disk at -1 */
1679 return 0;
1681 if (mddev->level != LEVEL_MULTIPATH) {
1682 int role;
1683 if (rdev->desc_nr < 0 ||
1684 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1685 role = 0xffff;
1686 rdev->desc_nr = -1;
1687 } else
1688 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1689 switch(role) {
1690 case 0xffff: /* spare */
1691 break;
1692 case 0xfffe: /* faulty */
1693 set_bit(Faulty, &rdev->flags);
1694 break;
1695 default:
1696 if ((le32_to_cpu(sb->feature_map) &
1697 MD_FEATURE_RECOVERY_OFFSET))
1698 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1699 else
1700 set_bit(In_sync, &rdev->flags);
1701 rdev->raid_disk = role;
1702 break;
1704 if (sb->devflags & WriteMostly1)
1705 set_bit(WriteMostly, &rdev->flags);
1706 } else /* MULTIPATH are always insync */
1707 set_bit(In_sync, &rdev->flags);
1709 return 0;
1712 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1714 struct mdp_superblock_1 *sb;
1715 mdk_rdev_t *rdev2;
1716 int max_dev, i;
1717 /* make rdev->sb match mddev and rdev data. */
1719 sb = page_address(rdev->sb_page);
1721 sb->feature_map = 0;
1722 sb->pad0 = 0;
1723 sb->recovery_offset = cpu_to_le64(0);
1724 memset(sb->pad1, 0, sizeof(sb->pad1));
1725 memset(sb->pad3, 0, sizeof(sb->pad3));
1727 sb->utime = cpu_to_le64((__u64)mddev->utime);
1728 sb->events = cpu_to_le64(mddev->events);
1729 if (mddev->in_sync)
1730 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1731 else
1732 sb->resync_offset = cpu_to_le64(0);
1734 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1736 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1737 sb->size = cpu_to_le64(mddev->dev_sectors);
1738 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1739 sb->level = cpu_to_le32(mddev->level);
1740 sb->layout = cpu_to_le32(mddev->layout);
1742 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1743 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1744 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1747 if (rdev->raid_disk >= 0 &&
1748 !test_bit(In_sync, &rdev->flags)) {
1749 sb->feature_map |=
1750 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1751 sb->recovery_offset =
1752 cpu_to_le64(rdev->recovery_offset);
1755 if (mddev->reshape_position != MaxSector) {
1756 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1757 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1758 sb->new_layout = cpu_to_le32(mddev->new_layout);
1759 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1760 sb->new_level = cpu_to_le32(mddev->new_level);
1761 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1764 if (rdev->badblocks.count == 0)
1765 /* Nothing to do for bad blocks*/ ;
1766 else if (sb->bblog_offset == 0)
1767 /* Cannot record bad blocks on this device */
1768 md_error(mddev, rdev);
1769 else {
1770 struct badblocks *bb = &rdev->badblocks;
1771 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1772 u64 *p = bb->page;
1773 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1774 if (bb->changed) {
1775 unsigned seq;
1777 retry:
1778 seq = read_seqbegin(&bb->lock);
1780 memset(bbp, 0xff, PAGE_SIZE);
1782 for (i = 0 ; i < bb->count ; i++) {
1783 u64 internal_bb = *p++;
1784 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1785 | BB_LEN(internal_bb));
1786 *bbp++ = cpu_to_le64(store_bb);
1788 if (read_seqretry(&bb->lock, seq))
1789 goto retry;
1791 bb->sector = (rdev->sb_start +
1792 (int)le32_to_cpu(sb->bblog_offset));
1793 bb->size = le16_to_cpu(sb->bblog_size);
1794 bb->changed = 0;
1798 max_dev = 0;
1799 list_for_each_entry(rdev2, &mddev->disks, same_set)
1800 if (rdev2->desc_nr+1 > max_dev)
1801 max_dev = rdev2->desc_nr+1;
1803 if (max_dev > le32_to_cpu(sb->max_dev)) {
1804 int bmask;
1805 sb->max_dev = cpu_to_le32(max_dev);
1806 rdev->sb_size = max_dev * 2 + 256;
1807 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1808 if (rdev->sb_size & bmask)
1809 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1810 } else
1811 max_dev = le32_to_cpu(sb->max_dev);
1813 for (i=0; i<max_dev;i++)
1814 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1816 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1817 i = rdev2->desc_nr;
1818 if (test_bit(Faulty, &rdev2->flags))
1819 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1820 else if (test_bit(In_sync, &rdev2->flags))
1821 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1822 else if (rdev2->raid_disk >= 0)
1823 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1824 else
1825 sb->dev_roles[i] = cpu_to_le16(0xffff);
1828 sb->sb_csum = calc_sb_1_csum(sb);
1831 static unsigned long long
1832 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1834 struct mdp_superblock_1 *sb;
1835 sector_t max_sectors;
1836 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1837 return 0; /* component must fit device */
1838 if (rdev->sb_start < rdev->data_offset) {
1839 /* minor versions 1 and 2; superblock before data */
1840 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1841 max_sectors -= rdev->data_offset;
1842 if (!num_sectors || num_sectors > max_sectors)
1843 num_sectors = max_sectors;
1844 } else if (rdev->mddev->bitmap_info.offset) {
1845 /* minor version 0 with bitmap we can't move */
1846 return 0;
1847 } else {
1848 /* minor version 0; superblock after data */
1849 sector_t sb_start;
1850 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1851 sb_start &= ~(sector_t)(4*2 - 1);
1852 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1853 if (!num_sectors || num_sectors > max_sectors)
1854 num_sectors = max_sectors;
1855 rdev->sb_start = sb_start;
1857 sb = page_address(rdev->sb_page);
1858 sb->data_size = cpu_to_le64(num_sectors);
1859 sb->super_offset = rdev->sb_start;
1860 sb->sb_csum = calc_sb_1_csum(sb);
1861 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1862 rdev->sb_page);
1863 md_super_wait(rdev->mddev);
1864 return num_sectors;
1867 static struct super_type super_types[] = {
1868 [0] = {
1869 .name = "0.90.0",
1870 .owner = THIS_MODULE,
1871 .load_super = super_90_load,
1872 .validate_super = super_90_validate,
1873 .sync_super = super_90_sync,
1874 .rdev_size_change = super_90_rdev_size_change,
1876 [1] = {
1877 .name = "md-1",
1878 .owner = THIS_MODULE,
1879 .load_super = super_1_load,
1880 .validate_super = super_1_validate,
1881 .sync_super = super_1_sync,
1882 .rdev_size_change = super_1_rdev_size_change,
1886 static void sync_super(mddev_t *mddev, mdk_rdev_t *rdev)
1888 if (mddev->sync_super) {
1889 mddev->sync_super(mddev, rdev);
1890 return;
1893 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1895 super_types[mddev->major_version].sync_super(mddev, rdev);
1898 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1900 mdk_rdev_t *rdev, *rdev2;
1902 rcu_read_lock();
1903 rdev_for_each_rcu(rdev, mddev1)
1904 rdev_for_each_rcu(rdev2, mddev2)
1905 if (rdev->bdev->bd_contains ==
1906 rdev2->bdev->bd_contains) {
1907 rcu_read_unlock();
1908 return 1;
1910 rcu_read_unlock();
1911 return 0;
1914 static LIST_HEAD(pending_raid_disks);
1917 * Try to register data integrity profile for an mddev
1919 * This is called when an array is started and after a disk has been kicked
1920 * from the array. It only succeeds if all working and active component devices
1921 * are integrity capable with matching profiles.
1923 int md_integrity_register(mddev_t *mddev)
1925 mdk_rdev_t *rdev, *reference = NULL;
1927 if (list_empty(&mddev->disks))
1928 return 0; /* nothing to do */
1929 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1930 return 0; /* shouldn't register, or already is */
1931 list_for_each_entry(rdev, &mddev->disks, same_set) {
1932 /* skip spares and non-functional disks */
1933 if (test_bit(Faulty, &rdev->flags))
1934 continue;
1935 if (rdev->raid_disk < 0)
1936 continue;
1937 if (!reference) {
1938 /* Use the first rdev as the reference */
1939 reference = rdev;
1940 continue;
1942 /* does this rdev's profile match the reference profile? */
1943 if (blk_integrity_compare(reference->bdev->bd_disk,
1944 rdev->bdev->bd_disk) < 0)
1945 return -EINVAL;
1947 if (!reference || !bdev_get_integrity(reference->bdev))
1948 return 0;
1950 * All component devices are integrity capable and have matching
1951 * profiles, register the common profile for the md device.
1953 if (blk_integrity_register(mddev->gendisk,
1954 bdev_get_integrity(reference->bdev)) != 0) {
1955 printk(KERN_ERR "md: failed to register integrity for %s\n",
1956 mdname(mddev));
1957 return -EINVAL;
1959 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1960 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1961 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1962 mdname(mddev));
1963 return -EINVAL;
1965 return 0;
1967 EXPORT_SYMBOL(md_integrity_register);
1969 /* Disable data integrity if non-capable/non-matching disk is being added */
1970 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1972 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1973 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1975 if (!bi_mddev) /* nothing to do */
1976 return;
1977 if (rdev->raid_disk < 0) /* skip spares */
1978 return;
1979 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1980 rdev->bdev->bd_disk) >= 0)
1981 return;
1982 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1983 blk_integrity_unregister(mddev->gendisk);
1985 EXPORT_SYMBOL(md_integrity_add_rdev);
1987 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1989 char b[BDEVNAME_SIZE];
1990 struct kobject *ko;
1991 char *s;
1992 int err;
1994 if (rdev->mddev) {
1995 MD_BUG();
1996 return -EINVAL;
1999 /* prevent duplicates */
2000 if (find_rdev(mddev, rdev->bdev->bd_dev))
2001 return -EEXIST;
2003 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2004 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2005 rdev->sectors < mddev->dev_sectors)) {
2006 if (mddev->pers) {
2007 /* Cannot change size, so fail
2008 * If mddev->level <= 0, then we don't care
2009 * about aligning sizes (e.g. linear)
2011 if (mddev->level > 0)
2012 return -ENOSPC;
2013 } else
2014 mddev->dev_sectors = rdev->sectors;
2017 /* Verify rdev->desc_nr is unique.
2018 * If it is -1, assign a free number, else
2019 * check number is not in use
2021 if (rdev->desc_nr < 0) {
2022 int choice = 0;
2023 if (mddev->pers) choice = mddev->raid_disks;
2024 while (find_rdev_nr(mddev, choice))
2025 choice++;
2026 rdev->desc_nr = choice;
2027 } else {
2028 if (find_rdev_nr(mddev, rdev->desc_nr))
2029 return -EBUSY;
2031 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2032 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2033 mdname(mddev), mddev->max_disks);
2034 return -EBUSY;
2036 bdevname(rdev->bdev,b);
2037 while ( (s=strchr(b, '/')) != NULL)
2038 *s = '!';
2040 rdev->mddev = mddev;
2041 printk(KERN_INFO "md: bind<%s>\n", b);
2043 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2044 goto fail;
2046 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2047 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2048 /* failure here is OK */;
2049 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2051 list_add_rcu(&rdev->same_set, &mddev->disks);
2052 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2054 /* May as well allow recovery to be retried once */
2055 mddev->recovery_disabled++;
2057 return 0;
2059 fail:
2060 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2061 b, mdname(mddev));
2062 return err;
2065 static void md_delayed_delete(struct work_struct *ws)
2067 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
2068 kobject_del(&rdev->kobj);
2069 kobject_put(&rdev->kobj);
2072 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
2074 char b[BDEVNAME_SIZE];
2075 if (!rdev->mddev) {
2076 MD_BUG();
2077 return;
2079 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2080 list_del_rcu(&rdev->same_set);
2081 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2082 rdev->mddev = NULL;
2083 sysfs_remove_link(&rdev->kobj, "block");
2084 sysfs_put(rdev->sysfs_state);
2085 rdev->sysfs_state = NULL;
2086 kfree(rdev->badblocks.page);
2087 rdev->badblocks.count = 0;
2088 rdev->badblocks.page = NULL;
2089 /* We need to delay this, otherwise we can deadlock when
2090 * writing to 'remove' to "dev/state". We also need
2091 * to delay it due to rcu usage.
2093 synchronize_rcu();
2094 INIT_WORK(&rdev->del_work, md_delayed_delete);
2095 kobject_get(&rdev->kobj);
2096 queue_work(md_misc_wq, &rdev->del_work);
2100 * prevent the device from being mounted, repartitioned or
2101 * otherwise reused by a RAID array (or any other kernel
2102 * subsystem), by bd_claiming the device.
2104 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
2106 int err = 0;
2107 struct block_device *bdev;
2108 char b[BDEVNAME_SIZE];
2110 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2111 shared ? (mdk_rdev_t *)lock_rdev : rdev);
2112 if (IS_ERR(bdev)) {
2113 printk(KERN_ERR "md: could not open %s.\n",
2114 __bdevname(dev, b));
2115 return PTR_ERR(bdev);
2117 rdev->bdev = bdev;
2118 return err;
2121 static void unlock_rdev(mdk_rdev_t *rdev)
2123 struct block_device *bdev = rdev->bdev;
2124 rdev->bdev = NULL;
2125 if (!bdev)
2126 MD_BUG();
2127 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2130 void md_autodetect_dev(dev_t dev);
2132 static void export_rdev(mdk_rdev_t * rdev)
2134 char b[BDEVNAME_SIZE];
2135 printk(KERN_INFO "md: export_rdev(%s)\n",
2136 bdevname(rdev->bdev,b));
2137 if (rdev->mddev)
2138 MD_BUG();
2139 free_disk_sb(rdev);
2140 #ifndef MODULE
2141 if (test_bit(AutoDetected, &rdev->flags))
2142 md_autodetect_dev(rdev->bdev->bd_dev);
2143 #endif
2144 unlock_rdev(rdev);
2145 kobject_put(&rdev->kobj);
2148 static void kick_rdev_from_array(mdk_rdev_t * rdev)
2150 unbind_rdev_from_array(rdev);
2151 export_rdev(rdev);
2154 static void export_array(mddev_t *mddev)
2156 mdk_rdev_t *rdev, *tmp;
2158 rdev_for_each(rdev, tmp, mddev) {
2159 if (!rdev->mddev) {
2160 MD_BUG();
2161 continue;
2163 kick_rdev_from_array(rdev);
2165 if (!list_empty(&mddev->disks))
2166 MD_BUG();
2167 mddev->raid_disks = 0;
2168 mddev->major_version = 0;
2171 static void print_desc(mdp_disk_t *desc)
2173 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2174 desc->major,desc->minor,desc->raid_disk,desc->state);
2177 static void print_sb_90(mdp_super_t *sb)
2179 int i;
2181 printk(KERN_INFO
2182 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2183 sb->major_version, sb->minor_version, sb->patch_version,
2184 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2185 sb->ctime);
2186 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2187 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2188 sb->md_minor, sb->layout, sb->chunk_size);
2189 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2190 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2191 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2192 sb->failed_disks, sb->spare_disks,
2193 sb->sb_csum, (unsigned long)sb->events_lo);
2195 printk(KERN_INFO);
2196 for (i = 0; i < MD_SB_DISKS; i++) {
2197 mdp_disk_t *desc;
2199 desc = sb->disks + i;
2200 if (desc->number || desc->major || desc->minor ||
2201 desc->raid_disk || (desc->state && (desc->state != 4))) {
2202 printk(" D %2d: ", i);
2203 print_desc(desc);
2206 printk(KERN_INFO "md: THIS: ");
2207 print_desc(&sb->this_disk);
2210 static void print_sb_1(struct mdp_superblock_1 *sb)
2212 __u8 *uuid;
2214 uuid = sb->set_uuid;
2215 printk(KERN_INFO
2216 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2217 "md: Name: \"%s\" CT:%llu\n",
2218 le32_to_cpu(sb->major_version),
2219 le32_to_cpu(sb->feature_map),
2220 uuid,
2221 sb->set_name,
2222 (unsigned long long)le64_to_cpu(sb->ctime)
2223 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2225 uuid = sb->device_uuid;
2226 printk(KERN_INFO
2227 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2228 " RO:%llu\n"
2229 "md: Dev:%08x UUID: %pU\n"
2230 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2231 "md: (MaxDev:%u) \n",
2232 le32_to_cpu(sb->level),
2233 (unsigned long long)le64_to_cpu(sb->size),
2234 le32_to_cpu(sb->raid_disks),
2235 le32_to_cpu(sb->layout),
2236 le32_to_cpu(sb->chunksize),
2237 (unsigned long long)le64_to_cpu(sb->data_offset),
2238 (unsigned long long)le64_to_cpu(sb->data_size),
2239 (unsigned long long)le64_to_cpu(sb->super_offset),
2240 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2241 le32_to_cpu(sb->dev_number),
2242 uuid,
2243 sb->devflags,
2244 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2245 (unsigned long long)le64_to_cpu(sb->events),
2246 (unsigned long long)le64_to_cpu(sb->resync_offset),
2247 le32_to_cpu(sb->sb_csum),
2248 le32_to_cpu(sb->max_dev)
2252 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2254 char b[BDEVNAME_SIZE];
2255 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2256 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2257 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2258 rdev->desc_nr);
2259 if (rdev->sb_loaded) {
2260 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2261 switch (major_version) {
2262 case 0:
2263 print_sb_90(page_address(rdev->sb_page));
2264 break;
2265 case 1:
2266 print_sb_1(page_address(rdev->sb_page));
2267 break;
2269 } else
2270 printk(KERN_INFO "md: no rdev superblock!\n");
2273 static void md_print_devices(void)
2275 struct list_head *tmp;
2276 mdk_rdev_t *rdev;
2277 mddev_t *mddev;
2278 char b[BDEVNAME_SIZE];
2280 printk("\n");
2281 printk("md: **********************************\n");
2282 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2283 printk("md: **********************************\n");
2284 for_each_mddev(mddev, tmp) {
2286 if (mddev->bitmap)
2287 bitmap_print_sb(mddev->bitmap);
2288 else
2289 printk("%s: ", mdname(mddev));
2290 list_for_each_entry(rdev, &mddev->disks, same_set)
2291 printk("<%s>", bdevname(rdev->bdev,b));
2292 printk("\n");
2294 list_for_each_entry(rdev, &mddev->disks, same_set)
2295 print_rdev(rdev, mddev->major_version);
2297 printk("md: **********************************\n");
2298 printk("\n");
2302 static void sync_sbs(mddev_t * mddev, int nospares)
2304 /* Update each superblock (in-memory image), but
2305 * if we are allowed to, skip spares which already
2306 * have the right event counter, or have one earlier
2307 * (which would mean they aren't being marked as dirty
2308 * with the rest of the array)
2310 mdk_rdev_t *rdev;
2311 list_for_each_entry(rdev, &mddev->disks, same_set) {
2312 if (rdev->sb_events == mddev->events ||
2313 (nospares &&
2314 rdev->raid_disk < 0 &&
2315 rdev->sb_events+1 == mddev->events)) {
2316 /* Don't update this superblock */
2317 rdev->sb_loaded = 2;
2318 } else {
2319 sync_super(mddev, rdev);
2320 rdev->sb_loaded = 1;
2325 static void md_update_sb(mddev_t * mddev, int force_change)
2327 mdk_rdev_t *rdev;
2328 int sync_req;
2329 int nospares = 0;
2330 int any_badblocks_changed = 0;
2332 repeat:
2333 /* First make sure individual recovery_offsets are correct */
2334 list_for_each_entry(rdev, &mddev->disks, same_set) {
2335 if (rdev->raid_disk >= 0 &&
2336 mddev->delta_disks >= 0 &&
2337 !test_bit(In_sync, &rdev->flags) &&
2338 mddev->curr_resync_completed > rdev->recovery_offset)
2339 rdev->recovery_offset = mddev->curr_resync_completed;
2342 if (!mddev->persistent) {
2343 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2344 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2345 if (!mddev->external) {
2346 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2347 list_for_each_entry(rdev, &mddev->disks, same_set) {
2348 if (rdev->badblocks.changed) {
2349 md_ack_all_badblocks(&rdev->badblocks);
2350 md_error(mddev, rdev);
2352 clear_bit(Blocked, &rdev->flags);
2353 clear_bit(BlockedBadBlocks, &rdev->flags);
2354 wake_up(&rdev->blocked_wait);
2357 wake_up(&mddev->sb_wait);
2358 return;
2361 spin_lock_irq(&mddev->write_lock);
2363 mddev->utime = get_seconds();
2365 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2366 force_change = 1;
2367 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2368 /* just a clean<-> dirty transition, possibly leave spares alone,
2369 * though if events isn't the right even/odd, we will have to do
2370 * spares after all
2372 nospares = 1;
2373 if (force_change)
2374 nospares = 0;
2375 if (mddev->degraded)
2376 /* If the array is degraded, then skipping spares is both
2377 * dangerous and fairly pointless.
2378 * Dangerous because a device that was removed from the array
2379 * might have a event_count that still looks up-to-date,
2380 * so it can be re-added without a resync.
2381 * Pointless because if there are any spares to skip,
2382 * then a recovery will happen and soon that array won't
2383 * be degraded any more and the spare can go back to sleep then.
2385 nospares = 0;
2387 sync_req = mddev->in_sync;
2389 /* If this is just a dirty<->clean transition, and the array is clean
2390 * and 'events' is odd, we can roll back to the previous clean state */
2391 if (nospares
2392 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2393 && mddev->can_decrease_events
2394 && mddev->events != 1) {
2395 mddev->events--;
2396 mddev->can_decrease_events = 0;
2397 } else {
2398 /* otherwise we have to go forward and ... */
2399 mddev->events ++;
2400 mddev->can_decrease_events = nospares;
2403 if (!mddev->events) {
2405 * oops, this 64-bit counter should never wrap.
2406 * Either we are in around ~1 trillion A.C., assuming
2407 * 1 reboot per second, or we have a bug:
2409 MD_BUG();
2410 mddev->events --;
2413 list_for_each_entry(rdev, &mddev->disks, same_set) {
2414 if (rdev->badblocks.changed)
2415 any_badblocks_changed++;
2416 if (test_bit(Faulty, &rdev->flags))
2417 set_bit(FaultRecorded, &rdev->flags);
2420 sync_sbs(mddev, nospares);
2421 spin_unlock_irq(&mddev->write_lock);
2423 dprintk(KERN_INFO
2424 "md: updating %s RAID superblock on device (in sync %d)\n",
2425 mdname(mddev),mddev->in_sync);
2427 bitmap_update_sb(mddev->bitmap);
2428 list_for_each_entry(rdev, &mddev->disks, same_set) {
2429 char b[BDEVNAME_SIZE];
2430 dprintk(KERN_INFO "md: ");
2431 if (rdev->sb_loaded != 1)
2432 continue; /* no noise on spare devices */
2433 if (test_bit(Faulty, &rdev->flags))
2434 dprintk("(skipping faulty ");
2436 dprintk("%s ", bdevname(rdev->bdev,b));
2437 if (!test_bit(Faulty, &rdev->flags)) {
2438 md_super_write(mddev,rdev,
2439 rdev->sb_start, rdev->sb_size,
2440 rdev->sb_page);
2441 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2442 bdevname(rdev->bdev,b),
2443 (unsigned long long)rdev->sb_start);
2444 rdev->sb_events = mddev->events;
2445 if (rdev->badblocks.size) {
2446 md_super_write(mddev, rdev,
2447 rdev->badblocks.sector,
2448 rdev->badblocks.size << 9,
2449 rdev->bb_page);
2450 rdev->badblocks.size = 0;
2453 } else
2454 dprintk(")\n");
2455 if (mddev->level == LEVEL_MULTIPATH)
2456 /* only need to write one superblock... */
2457 break;
2459 md_super_wait(mddev);
2460 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2462 spin_lock_irq(&mddev->write_lock);
2463 if (mddev->in_sync != sync_req ||
2464 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2465 /* have to write it out again */
2466 spin_unlock_irq(&mddev->write_lock);
2467 goto repeat;
2469 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2470 spin_unlock_irq(&mddev->write_lock);
2471 wake_up(&mddev->sb_wait);
2472 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2473 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2475 list_for_each_entry(rdev, &mddev->disks, same_set) {
2476 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2477 clear_bit(Blocked, &rdev->flags);
2479 if (any_badblocks_changed)
2480 md_ack_all_badblocks(&rdev->badblocks);
2481 clear_bit(BlockedBadBlocks, &rdev->flags);
2482 wake_up(&rdev->blocked_wait);
2486 /* words written to sysfs files may, or may not, be \n terminated.
2487 * We want to accept with case. For this we use cmd_match.
2489 static int cmd_match(const char *cmd, const char *str)
2491 /* See if cmd, written into a sysfs file, matches
2492 * str. They must either be the same, or cmd can
2493 * have a trailing newline
2495 while (*cmd && *str && *cmd == *str) {
2496 cmd++;
2497 str++;
2499 if (*cmd == '\n')
2500 cmd++;
2501 if (*str || *cmd)
2502 return 0;
2503 return 1;
2506 struct rdev_sysfs_entry {
2507 struct attribute attr;
2508 ssize_t (*show)(mdk_rdev_t *, char *);
2509 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2512 static ssize_t
2513 state_show(mdk_rdev_t *rdev, char *page)
2515 char *sep = "";
2516 size_t len = 0;
2518 if (test_bit(Faulty, &rdev->flags) ||
2519 rdev->badblocks.unacked_exist) {
2520 len+= sprintf(page+len, "%sfaulty",sep);
2521 sep = ",";
2523 if (test_bit(In_sync, &rdev->flags)) {
2524 len += sprintf(page+len, "%sin_sync",sep);
2525 sep = ",";
2527 if (test_bit(WriteMostly, &rdev->flags)) {
2528 len += sprintf(page+len, "%swrite_mostly",sep);
2529 sep = ",";
2531 if (test_bit(Blocked, &rdev->flags) ||
2532 rdev->badblocks.unacked_exist) {
2533 len += sprintf(page+len, "%sblocked", sep);
2534 sep = ",";
2536 if (!test_bit(Faulty, &rdev->flags) &&
2537 !test_bit(In_sync, &rdev->flags)) {
2538 len += sprintf(page+len, "%sspare", sep);
2539 sep = ",";
2541 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2542 len += sprintf(page+len, "%swrite_error", sep);
2543 sep = ",";
2545 return len+sprintf(page+len, "\n");
2548 static ssize_t
2549 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2551 /* can write
2552 * faulty - simulates an error
2553 * remove - disconnects the device
2554 * writemostly - sets write_mostly
2555 * -writemostly - clears write_mostly
2556 * blocked - sets the Blocked flags
2557 * -blocked - clears the Blocked and possibly simulates an error
2558 * insync - sets Insync providing device isn't active
2559 * write_error - sets WriteErrorSeen
2560 * -write_error - clears WriteErrorSeen
2562 int err = -EINVAL;
2563 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2564 md_error(rdev->mddev, rdev);
2565 err = 0;
2566 } else if (cmd_match(buf, "remove")) {
2567 if (rdev->raid_disk >= 0)
2568 err = -EBUSY;
2569 else {
2570 mddev_t *mddev = rdev->mddev;
2571 kick_rdev_from_array(rdev);
2572 if (mddev->pers)
2573 md_update_sb(mddev, 1);
2574 md_new_event(mddev);
2575 err = 0;
2577 } else if (cmd_match(buf, "writemostly")) {
2578 set_bit(WriteMostly, &rdev->flags);
2579 err = 0;
2580 } else if (cmd_match(buf, "-writemostly")) {
2581 clear_bit(WriteMostly, &rdev->flags);
2582 err = 0;
2583 } else if (cmd_match(buf, "blocked")) {
2584 set_bit(Blocked, &rdev->flags);
2585 err = 0;
2586 } else if (cmd_match(buf, "-blocked")) {
2587 if (!test_bit(Faulty, &rdev->flags) &&
2588 test_bit(BlockedBadBlocks, &rdev->flags)) {
2589 /* metadata handler doesn't understand badblocks,
2590 * so we need to fail the device
2592 md_error(rdev->mddev, rdev);
2594 clear_bit(Blocked, &rdev->flags);
2595 clear_bit(BlockedBadBlocks, &rdev->flags);
2596 wake_up(&rdev->blocked_wait);
2597 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2598 md_wakeup_thread(rdev->mddev->thread);
2600 err = 0;
2601 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2602 set_bit(In_sync, &rdev->flags);
2603 err = 0;
2604 } else if (cmd_match(buf, "write_error")) {
2605 set_bit(WriteErrorSeen, &rdev->flags);
2606 err = 0;
2607 } else if (cmd_match(buf, "-write_error")) {
2608 clear_bit(WriteErrorSeen, &rdev->flags);
2609 err = 0;
2611 if (!err)
2612 sysfs_notify_dirent_safe(rdev->sysfs_state);
2613 return err ? err : len;
2615 static struct rdev_sysfs_entry rdev_state =
2616 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2618 static ssize_t
2619 errors_show(mdk_rdev_t *rdev, char *page)
2621 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2624 static ssize_t
2625 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2627 char *e;
2628 unsigned long n = simple_strtoul(buf, &e, 10);
2629 if (*buf && (*e == 0 || *e == '\n')) {
2630 atomic_set(&rdev->corrected_errors, n);
2631 return len;
2633 return -EINVAL;
2635 static struct rdev_sysfs_entry rdev_errors =
2636 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2638 static ssize_t
2639 slot_show(mdk_rdev_t *rdev, char *page)
2641 if (rdev->raid_disk < 0)
2642 return sprintf(page, "none\n");
2643 else
2644 return sprintf(page, "%d\n", rdev->raid_disk);
2647 static ssize_t
2648 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2650 char *e;
2651 int err;
2652 int slot = simple_strtoul(buf, &e, 10);
2653 if (strncmp(buf, "none", 4)==0)
2654 slot = -1;
2655 else if (e==buf || (*e && *e!= '\n'))
2656 return -EINVAL;
2657 if (rdev->mddev->pers && slot == -1) {
2658 /* Setting 'slot' on an active array requires also
2659 * updating the 'rd%d' link, and communicating
2660 * with the personality with ->hot_*_disk.
2661 * For now we only support removing
2662 * failed/spare devices. This normally happens automatically,
2663 * but not when the metadata is externally managed.
2665 if (rdev->raid_disk == -1)
2666 return -EEXIST;
2667 /* personality does all needed checks */
2668 if (rdev->mddev->pers->hot_remove_disk == NULL)
2669 return -EINVAL;
2670 err = rdev->mddev->pers->
2671 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2672 if (err)
2673 return err;
2674 sysfs_unlink_rdev(rdev->mddev, rdev);
2675 rdev->raid_disk = -1;
2676 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2677 md_wakeup_thread(rdev->mddev->thread);
2678 } else if (rdev->mddev->pers) {
2679 mdk_rdev_t *rdev2;
2680 /* Activating a spare .. or possibly reactivating
2681 * if we ever get bitmaps working here.
2684 if (rdev->raid_disk != -1)
2685 return -EBUSY;
2687 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2688 return -EBUSY;
2690 if (rdev->mddev->pers->hot_add_disk == NULL)
2691 return -EINVAL;
2693 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2694 if (rdev2->raid_disk == slot)
2695 return -EEXIST;
2697 if (slot >= rdev->mddev->raid_disks &&
2698 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2699 return -ENOSPC;
2701 rdev->raid_disk = slot;
2702 if (test_bit(In_sync, &rdev->flags))
2703 rdev->saved_raid_disk = slot;
2704 else
2705 rdev->saved_raid_disk = -1;
2706 err = rdev->mddev->pers->
2707 hot_add_disk(rdev->mddev, rdev);
2708 if (err) {
2709 rdev->raid_disk = -1;
2710 return err;
2711 } else
2712 sysfs_notify_dirent_safe(rdev->sysfs_state);
2713 if (sysfs_link_rdev(rdev->mddev, rdev))
2714 /* failure here is OK */;
2715 /* don't wakeup anyone, leave that to userspace. */
2716 } else {
2717 if (slot >= rdev->mddev->raid_disks &&
2718 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2719 return -ENOSPC;
2720 rdev->raid_disk = slot;
2721 /* assume it is working */
2722 clear_bit(Faulty, &rdev->flags);
2723 clear_bit(WriteMostly, &rdev->flags);
2724 set_bit(In_sync, &rdev->flags);
2725 sysfs_notify_dirent_safe(rdev->sysfs_state);
2727 return len;
2731 static struct rdev_sysfs_entry rdev_slot =
2732 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2734 static ssize_t
2735 offset_show(mdk_rdev_t *rdev, char *page)
2737 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2740 static ssize_t
2741 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2743 char *e;
2744 unsigned long long offset = simple_strtoull(buf, &e, 10);
2745 if (e==buf || (*e && *e != '\n'))
2746 return -EINVAL;
2747 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2748 return -EBUSY;
2749 if (rdev->sectors && rdev->mddev->external)
2750 /* Must set offset before size, so overlap checks
2751 * can be sane */
2752 return -EBUSY;
2753 rdev->data_offset = offset;
2754 return len;
2757 static struct rdev_sysfs_entry rdev_offset =
2758 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2760 static ssize_t
2761 rdev_size_show(mdk_rdev_t *rdev, char *page)
2763 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2766 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2768 /* check if two start/length pairs overlap */
2769 if (s1+l1 <= s2)
2770 return 0;
2771 if (s2+l2 <= s1)
2772 return 0;
2773 return 1;
2776 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2778 unsigned long long blocks;
2779 sector_t new;
2781 if (strict_strtoull(buf, 10, &blocks) < 0)
2782 return -EINVAL;
2784 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2785 return -EINVAL; /* sector conversion overflow */
2787 new = blocks * 2;
2788 if (new != blocks * 2)
2789 return -EINVAL; /* unsigned long long to sector_t overflow */
2791 *sectors = new;
2792 return 0;
2795 static ssize_t
2796 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2798 mddev_t *my_mddev = rdev->mddev;
2799 sector_t oldsectors = rdev->sectors;
2800 sector_t sectors;
2802 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2803 return -EINVAL;
2804 if (my_mddev->pers && rdev->raid_disk >= 0) {
2805 if (my_mddev->persistent) {
2806 sectors = super_types[my_mddev->major_version].
2807 rdev_size_change(rdev, sectors);
2808 if (!sectors)
2809 return -EBUSY;
2810 } else if (!sectors)
2811 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2812 rdev->data_offset;
2814 if (sectors < my_mddev->dev_sectors)
2815 return -EINVAL; /* component must fit device */
2817 rdev->sectors = sectors;
2818 if (sectors > oldsectors && my_mddev->external) {
2819 /* need to check that all other rdevs with the same ->bdev
2820 * do not overlap. We need to unlock the mddev to avoid
2821 * a deadlock. We have already changed rdev->sectors, and if
2822 * we have to change it back, we will have the lock again.
2824 mddev_t *mddev;
2825 int overlap = 0;
2826 struct list_head *tmp;
2828 mddev_unlock(my_mddev);
2829 for_each_mddev(mddev, tmp) {
2830 mdk_rdev_t *rdev2;
2832 mddev_lock(mddev);
2833 list_for_each_entry(rdev2, &mddev->disks, same_set)
2834 if (rdev->bdev == rdev2->bdev &&
2835 rdev != rdev2 &&
2836 overlaps(rdev->data_offset, rdev->sectors,
2837 rdev2->data_offset,
2838 rdev2->sectors)) {
2839 overlap = 1;
2840 break;
2842 mddev_unlock(mddev);
2843 if (overlap) {
2844 mddev_put(mddev);
2845 break;
2848 mddev_lock(my_mddev);
2849 if (overlap) {
2850 /* Someone else could have slipped in a size
2851 * change here, but doing so is just silly.
2852 * We put oldsectors back because we *know* it is
2853 * safe, and trust userspace not to race with
2854 * itself
2856 rdev->sectors = oldsectors;
2857 return -EBUSY;
2860 return len;
2863 static struct rdev_sysfs_entry rdev_size =
2864 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2867 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2869 unsigned long long recovery_start = rdev->recovery_offset;
2871 if (test_bit(In_sync, &rdev->flags) ||
2872 recovery_start == MaxSector)
2873 return sprintf(page, "none\n");
2875 return sprintf(page, "%llu\n", recovery_start);
2878 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2880 unsigned long long recovery_start;
2882 if (cmd_match(buf, "none"))
2883 recovery_start = MaxSector;
2884 else if (strict_strtoull(buf, 10, &recovery_start))
2885 return -EINVAL;
2887 if (rdev->mddev->pers &&
2888 rdev->raid_disk >= 0)
2889 return -EBUSY;
2891 rdev->recovery_offset = recovery_start;
2892 if (recovery_start == MaxSector)
2893 set_bit(In_sync, &rdev->flags);
2894 else
2895 clear_bit(In_sync, &rdev->flags);
2896 return len;
2899 static struct rdev_sysfs_entry rdev_recovery_start =
2900 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2903 static ssize_t
2904 badblocks_show(struct badblocks *bb, char *page, int unack);
2905 static ssize_t
2906 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2908 static ssize_t bb_show(mdk_rdev_t *rdev, char *page)
2910 return badblocks_show(&rdev->badblocks, page, 0);
2912 static ssize_t bb_store(mdk_rdev_t *rdev, const char *page, size_t len)
2914 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2915 /* Maybe that ack was all we needed */
2916 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2917 wake_up(&rdev->blocked_wait);
2918 return rv;
2920 static struct rdev_sysfs_entry rdev_bad_blocks =
2921 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2924 static ssize_t ubb_show(mdk_rdev_t *rdev, char *page)
2926 return badblocks_show(&rdev->badblocks, page, 1);
2928 static ssize_t ubb_store(mdk_rdev_t *rdev, const char *page, size_t len)
2930 return badblocks_store(&rdev->badblocks, page, len, 1);
2932 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2933 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2935 static struct attribute *rdev_default_attrs[] = {
2936 &rdev_state.attr,
2937 &rdev_errors.attr,
2938 &rdev_slot.attr,
2939 &rdev_offset.attr,
2940 &rdev_size.attr,
2941 &rdev_recovery_start.attr,
2942 &rdev_bad_blocks.attr,
2943 &rdev_unack_bad_blocks.attr,
2944 NULL,
2946 static ssize_t
2947 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2949 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2950 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2951 mddev_t *mddev = rdev->mddev;
2952 ssize_t rv;
2954 if (!entry->show)
2955 return -EIO;
2957 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2958 if (!rv) {
2959 if (rdev->mddev == NULL)
2960 rv = -EBUSY;
2961 else
2962 rv = entry->show(rdev, page);
2963 mddev_unlock(mddev);
2965 return rv;
2968 static ssize_t
2969 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2970 const char *page, size_t length)
2972 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2973 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2974 ssize_t rv;
2975 mddev_t *mddev = rdev->mddev;
2977 if (!entry->store)
2978 return -EIO;
2979 if (!capable(CAP_SYS_ADMIN))
2980 return -EACCES;
2981 rv = mddev ? mddev_lock(mddev): -EBUSY;
2982 if (!rv) {
2983 if (rdev->mddev == NULL)
2984 rv = -EBUSY;
2985 else
2986 rv = entry->store(rdev, page, length);
2987 mddev_unlock(mddev);
2989 return rv;
2992 static void rdev_free(struct kobject *ko)
2994 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2995 kfree(rdev);
2997 static const struct sysfs_ops rdev_sysfs_ops = {
2998 .show = rdev_attr_show,
2999 .store = rdev_attr_store,
3001 static struct kobj_type rdev_ktype = {
3002 .release = rdev_free,
3003 .sysfs_ops = &rdev_sysfs_ops,
3004 .default_attrs = rdev_default_attrs,
3007 int md_rdev_init(mdk_rdev_t *rdev)
3009 rdev->desc_nr = -1;
3010 rdev->saved_raid_disk = -1;
3011 rdev->raid_disk = -1;
3012 rdev->flags = 0;
3013 rdev->data_offset = 0;
3014 rdev->sb_events = 0;
3015 rdev->last_read_error.tv_sec = 0;
3016 rdev->last_read_error.tv_nsec = 0;
3017 rdev->sb_loaded = 0;
3018 rdev->bb_page = NULL;
3019 atomic_set(&rdev->nr_pending, 0);
3020 atomic_set(&rdev->read_errors, 0);
3021 atomic_set(&rdev->corrected_errors, 0);
3023 INIT_LIST_HEAD(&rdev->same_set);
3024 init_waitqueue_head(&rdev->blocked_wait);
3026 /* Add space to store bad block list.
3027 * This reserves the space even on arrays where it cannot
3028 * be used - I wonder if that matters
3030 rdev->badblocks.count = 0;
3031 rdev->badblocks.shift = 0;
3032 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3033 seqlock_init(&rdev->badblocks.lock);
3034 if (rdev->badblocks.page == NULL)
3035 return -ENOMEM;
3037 return 0;
3039 EXPORT_SYMBOL_GPL(md_rdev_init);
3041 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3043 * mark the device faulty if:
3045 * - the device is nonexistent (zero size)
3046 * - the device has no valid superblock
3048 * a faulty rdev _never_ has rdev->sb set.
3050 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
3052 char b[BDEVNAME_SIZE];
3053 int err;
3054 mdk_rdev_t *rdev;
3055 sector_t size;
3057 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3058 if (!rdev) {
3059 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3060 return ERR_PTR(-ENOMEM);
3063 err = md_rdev_init(rdev);
3064 if (err)
3065 goto abort_free;
3066 err = alloc_disk_sb(rdev);
3067 if (err)
3068 goto abort_free;
3070 err = lock_rdev(rdev, newdev, super_format == -2);
3071 if (err)
3072 goto abort_free;
3074 kobject_init(&rdev->kobj, &rdev_ktype);
3076 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3077 if (!size) {
3078 printk(KERN_WARNING
3079 "md: %s has zero or unknown size, marking faulty!\n",
3080 bdevname(rdev->bdev,b));
3081 err = -EINVAL;
3082 goto abort_free;
3085 if (super_format >= 0) {
3086 err = super_types[super_format].
3087 load_super(rdev, NULL, super_minor);
3088 if (err == -EINVAL) {
3089 printk(KERN_WARNING
3090 "md: %s does not have a valid v%d.%d "
3091 "superblock, not importing!\n",
3092 bdevname(rdev->bdev,b),
3093 super_format, super_minor);
3094 goto abort_free;
3096 if (err < 0) {
3097 printk(KERN_WARNING
3098 "md: could not read %s's sb, not importing!\n",
3099 bdevname(rdev->bdev,b));
3100 goto abort_free;
3103 if (super_format == -1)
3104 /* hot-add for 0.90, or non-persistent: so no badblocks */
3105 rdev->badblocks.shift = -1;
3107 return rdev;
3109 abort_free:
3110 if (rdev->bdev)
3111 unlock_rdev(rdev);
3112 free_disk_sb(rdev);
3113 kfree(rdev->badblocks.page);
3114 kfree(rdev);
3115 return ERR_PTR(err);
3119 * Check a full RAID array for plausibility
3123 static void analyze_sbs(mddev_t * mddev)
3125 int i;
3126 mdk_rdev_t *rdev, *freshest, *tmp;
3127 char b[BDEVNAME_SIZE];
3129 freshest = NULL;
3130 rdev_for_each(rdev, tmp, mddev)
3131 switch (super_types[mddev->major_version].
3132 load_super(rdev, freshest, mddev->minor_version)) {
3133 case 1:
3134 freshest = rdev;
3135 break;
3136 case 0:
3137 break;
3138 default:
3139 printk( KERN_ERR \
3140 "md: fatal superblock inconsistency in %s"
3141 " -- removing from array\n",
3142 bdevname(rdev->bdev,b));
3143 kick_rdev_from_array(rdev);
3147 super_types[mddev->major_version].
3148 validate_super(mddev, freshest);
3150 i = 0;
3151 rdev_for_each(rdev, tmp, mddev) {
3152 if (mddev->max_disks &&
3153 (rdev->desc_nr >= mddev->max_disks ||
3154 i > mddev->max_disks)) {
3155 printk(KERN_WARNING
3156 "md: %s: %s: only %d devices permitted\n",
3157 mdname(mddev), bdevname(rdev->bdev, b),
3158 mddev->max_disks);
3159 kick_rdev_from_array(rdev);
3160 continue;
3162 if (rdev != freshest)
3163 if (super_types[mddev->major_version].
3164 validate_super(mddev, rdev)) {
3165 printk(KERN_WARNING "md: kicking non-fresh %s"
3166 " from array!\n",
3167 bdevname(rdev->bdev,b));
3168 kick_rdev_from_array(rdev);
3169 continue;
3171 if (mddev->level == LEVEL_MULTIPATH) {
3172 rdev->desc_nr = i++;
3173 rdev->raid_disk = rdev->desc_nr;
3174 set_bit(In_sync, &rdev->flags);
3175 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3176 rdev->raid_disk = -1;
3177 clear_bit(In_sync, &rdev->flags);
3182 /* Read a fixed-point number.
3183 * Numbers in sysfs attributes should be in "standard" units where
3184 * possible, so time should be in seconds.
3185 * However we internally use a a much smaller unit such as
3186 * milliseconds or jiffies.
3187 * This function takes a decimal number with a possible fractional
3188 * component, and produces an integer which is the result of
3189 * multiplying that number by 10^'scale'.
3190 * all without any floating-point arithmetic.
3192 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3194 unsigned long result = 0;
3195 long decimals = -1;
3196 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3197 if (*cp == '.')
3198 decimals = 0;
3199 else if (decimals < scale) {
3200 unsigned int value;
3201 value = *cp - '0';
3202 result = result * 10 + value;
3203 if (decimals >= 0)
3204 decimals++;
3206 cp++;
3208 if (*cp == '\n')
3209 cp++;
3210 if (*cp)
3211 return -EINVAL;
3212 if (decimals < 0)
3213 decimals = 0;
3214 while (decimals < scale) {
3215 result *= 10;
3216 decimals ++;
3218 *res = result;
3219 return 0;
3223 static void md_safemode_timeout(unsigned long data);
3225 static ssize_t
3226 safe_delay_show(mddev_t *mddev, char *page)
3228 int msec = (mddev->safemode_delay*1000)/HZ;
3229 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3231 static ssize_t
3232 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
3234 unsigned long msec;
3236 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3237 return -EINVAL;
3238 if (msec == 0)
3239 mddev->safemode_delay = 0;
3240 else {
3241 unsigned long old_delay = mddev->safemode_delay;
3242 mddev->safemode_delay = (msec*HZ)/1000;
3243 if (mddev->safemode_delay == 0)
3244 mddev->safemode_delay = 1;
3245 if (mddev->safemode_delay < old_delay)
3246 md_safemode_timeout((unsigned long)mddev);
3248 return len;
3250 static struct md_sysfs_entry md_safe_delay =
3251 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3253 static ssize_t
3254 level_show(mddev_t *mddev, char *page)
3256 struct mdk_personality *p = mddev->pers;
3257 if (p)
3258 return sprintf(page, "%s\n", p->name);
3259 else if (mddev->clevel[0])
3260 return sprintf(page, "%s\n", mddev->clevel);
3261 else if (mddev->level != LEVEL_NONE)
3262 return sprintf(page, "%d\n", mddev->level);
3263 else
3264 return 0;
3267 static ssize_t
3268 level_store(mddev_t *mddev, const char *buf, size_t len)
3270 char clevel[16];
3271 ssize_t rv = len;
3272 struct mdk_personality *pers;
3273 long level;
3274 void *priv;
3275 mdk_rdev_t *rdev;
3277 if (mddev->pers == NULL) {
3278 if (len == 0)
3279 return 0;
3280 if (len >= sizeof(mddev->clevel))
3281 return -ENOSPC;
3282 strncpy(mddev->clevel, buf, len);
3283 if (mddev->clevel[len-1] == '\n')
3284 len--;
3285 mddev->clevel[len] = 0;
3286 mddev->level = LEVEL_NONE;
3287 return rv;
3290 /* request to change the personality. Need to ensure:
3291 * - array is not engaged in resync/recovery/reshape
3292 * - old personality can be suspended
3293 * - new personality will access other array.
3296 if (mddev->sync_thread ||
3297 mddev->reshape_position != MaxSector ||
3298 mddev->sysfs_active)
3299 return -EBUSY;
3301 if (!mddev->pers->quiesce) {
3302 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3303 mdname(mddev), mddev->pers->name);
3304 return -EINVAL;
3307 /* Now find the new personality */
3308 if (len == 0 || len >= sizeof(clevel))
3309 return -EINVAL;
3310 strncpy(clevel, buf, len);
3311 if (clevel[len-1] == '\n')
3312 len--;
3313 clevel[len] = 0;
3314 if (strict_strtol(clevel, 10, &level))
3315 level = LEVEL_NONE;
3317 if (request_module("md-%s", clevel) != 0)
3318 request_module("md-level-%s", clevel);
3319 spin_lock(&pers_lock);
3320 pers = find_pers(level, clevel);
3321 if (!pers || !try_module_get(pers->owner)) {
3322 spin_unlock(&pers_lock);
3323 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3324 return -EINVAL;
3326 spin_unlock(&pers_lock);
3328 if (pers == mddev->pers) {
3329 /* Nothing to do! */
3330 module_put(pers->owner);
3331 return rv;
3333 if (!pers->takeover) {
3334 module_put(pers->owner);
3335 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3336 mdname(mddev), clevel);
3337 return -EINVAL;
3340 list_for_each_entry(rdev, &mddev->disks, same_set)
3341 rdev->new_raid_disk = rdev->raid_disk;
3343 /* ->takeover must set new_* and/or delta_disks
3344 * if it succeeds, and may set them when it fails.
3346 priv = pers->takeover(mddev);
3347 if (IS_ERR(priv)) {
3348 mddev->new_level = mddev->level;
3349 mddev->new_layout = mddev->layout;
3350 mddev->new_chunk_sectors = mddev->chunk_sectors;
3351 mddev->raid_disks -= mddev->delta_disks;
3352 mddev->delta_disks = 0;
3353 module_put(pers->owner);
3354 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3355 mdname(mddev), clevel);
3356 return PTR_ERR(priv);
3359 /* Looks like we have a winner */
3360 mddev_suspend(mddev);
3361 mddev->pers->stop(mddev);
3363 if (mddev->pers->sync_request == NULL &&
3364 pers->sync_request != NULL) {
3365 /* need to add the md_redundancy_group */
3366 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3367 printk(KERN_WARNING
3368 "md: cannot register extra attributes for %s\n",
3369 mdname(mddev));
3370 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3372 if (mddev->pers->sync_request != NULL &&
3373 pers->sync_request == NULL) {
3374 /* need to remove the md_redundancy_group */
3375 if (mddev->to_remove == NULL)
3376 mddev->to_remove = &md_redundancy_group;
3379 if (mddev->pers->sync_request == NULL &&
3380 mddev->external) {
3381 /* We are converting from a no-redundancy array
3382 * to a redundancy array and metadata is managed
3383 * externally so we need to be sure that writes
3384 * won't block due to a need to transition
3385 * clean->dirty
3386 * until external management is started.
3388 mddev->in_sync = 0;
3389 mddev->safemode_delay = 0;
3390 mddev->safemode = 0;
3393 list_for_each_entry(rdev, &mddev->disks, same_set) {
3394 if (rdev->raid_disk < 0)
3395 continue;
3396 if (rdev->new_raid_disk >= mddev->raid_disks)
3397 rdev->new_raid_disk = -1;
3398 if (rdev->new_raid_disk == rdev->raid_disk)
3399 continue;
3400 sysfs_unlink_rdev(mddev, rdev);
3402 list_for_each_entry(rdev, &mddev->disks, same_set) {
3403 if (rdev->raid_disk < 0)
3404 continue;
3405 if (rdev->new_raid_disk == rdev->raid_disk)
3406 continue;
3407 rdev->raid_disk = rdev->new_raid_disk;
3408 if (rdev->raid_disk < 0)
3409 clear_bit(In_sync, &rdev->flags);
3410 else {
3411 if (sysfs_link_rdev(mddev, rdev))
3412 printk(KERN_WARNING "md: cannot register rd%d"
3413 " for %s after level change\n",
3414 rdev->raid_disk, mdname(mddev));
3418 module_put(mddev->pers->owner);
3419 mddev->pers = pers;
3420 mddev->private = priv;
3421 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3422 mddev->level = mddev->new_level;
3423 mddev->layout = mddev->new_layout;
3424 mddev->chunk_sectors = mddev->new_chunk_sectors;
3425 mddev->delta_disks = 0;
3426 mddev->degraded = 0;
3427 if (mddev->pers->sync_request == NULL) {
3428 /* this is now an array without redundancy, so
3429 * it must always be in_sync
3431 mddev->in_sync = 1;
3432 del_timer_sync(&mddev->safemode_timer);
3434 pers->run(mddev);
3435 mddev_resume(mddev);
3436 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3437 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3438 md_wakeup_thread(mddev->thread);
3439 sysfs_notify(&mddev->kobj, NULL, "level");
3440 md_new_event(mddev);
3441 return rv;
3444 static struct md_sysfs_entry md_level =
3445 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3448 static ssize_t
3449 layout_show(mddev_t *mddev, char *page)
3451 /* just a number, not meaningful for all levels */
3452 if (mddev->reshape_position != MaxSector &&
3453 mddev->layout != mddev->new_layout)
3454 return sprintf(page, "%d (%d)\n",
3455 mddev->new_layout, mddev->layout);
3456 return sprintf(page, "%d\n", mddev->layout);
3459 static ssize_t
3460 layout_store(mddev_t *mddev, const char *buf, size_t len)
3462 char *e;
3463 unsigned long n = simple_strtoul(buf, &e, 10);
3465 if (!*buf || (*e && *e != '\n'))
3466 return -EINVAL;
3468 if (mddev->pers) {
3469 int err;
3470 if (mddev->pers->check_reshape == NULL)
3471 return -EBUSY;
3472 mddev->new_layout = n;
3473 err = mddev->pers->check_reshape(mddev);
3474 if (err) {
3475 mddev->new_layout = mddev->layout;
3476 return err;
3478 } else {
3479 mddev->new_layout = n;
3480 if (mddev->reshape_position == MaxSector)
3481 mddev->layout = n;
3483 return len;
3485 static struct md_sysfs_entry md_layout =
3486 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3489 static ssize_t
3490 raid_disks_show(mddev_t *mddev, char *page)
3492 if (mddev->raid_disks == 0)
3493 return 0;
3494 if (mddev->reshape_position != MaxSector &&
3495 mddev->delta_disks != 0)
3496 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3497 mddev->raid_disks - mddev->delta_disks);
3498 return sprintf(page, "%d\n", mddev->raid_disks);
3501 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3503 static ssize_t
3504 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3506 char *e;
3507 int rv = 0;
3508 unsigned long n = simple_strtoul(buf, &e, 10);
3510 if (!*buf || (*e && *e != '\n'))
3511 return -EINVAL;
3513 if (mddev->pers)
3514 rv = update_raid_disks(mddev, n);
3515 else if (mddev->reshape_position != MaxSector) {
3516 int olddisks = mddev->raid_disks - mddev->delta_disks;
3517 mddev->delta_disks = n - olddisks;
3518 mddev->raid_disks = n;
3519 } else
3520 mddev->raid_disks = n;
3521 return rv ? rv : len;
3523 static struct md_sysfs_entry md_raid_disks =
3524 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3526 static ssize_t
3527 chunk_size_show(mddev_t *mddev, char *page)
3529 if (mddev->reshape_position != MaxSector &&
3530 mddev->chunk_sectors != mddev->new_chunk_sectors)
3531 return sprintf(page, "%d (%d)\n",
3532 mddev->new_chunk_sectors << 9,
3533 mddev->chunk_sectors << 9);
3534 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3537 static ssize_t
3538 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3540 char *e;
3541 unsigned long n = simple_strtoul(buf, &e, 10);
3543 if (!*buf || (*e && *e != '\n'))
3544 return -EINVAL;
3546 if (mddev->pers) {
3547 int err;
3548 if (mddev->pers->check_reshape == NULL)
3549 return -EBUSY;
3550 mddev->new_chunk_sectors = n >> 9;
3551 err = mddev->pers->check_reshape(mddev);
3552 if (err) {
3553 mddev->new_chunk_sectors = mddev->chunk_sectors;
3554 return err;
3556 } else {
3557 mddev->new_chunk_sectors = n >> 9;
3558 if (mddev->reshape_position == MaxSector)
3559 mddev->chunk_sectors = n >> 9;
3561 return len;
3563 static struct md_sysfs_entry md_chunk_size =
3564 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3566 static ssize_t
3567 resync_start_show(mddev_t *mddev, char *page)
3569 if (mddev->recovery_cp == MaxSector)
3570 return sprintf(page, "none\n");
3571 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3574 static ssize_t
3575 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3577 char *e;
3578 unsigned long long n = simple_strtoull(buf, &e, 10);
3580 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3581 return -EBUSY;
3582 if (cmd_match(buf, "none"))
3583 n = MaxSector;
3584 else if (!*buf || (*e && *e != '\n'))
3585 return -EINVAL;
3587 mddev->recovery_cp = n;
3588 return len;
3590 static struct md_sysfs_entry md_resync_start =
3591 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3594 * The array state can be:
3596 * clear
3597 * No devices, no size, no level
3598 * Equivalent to STOP_ARRAY ioctl
3599 * inactive
3600 * May have some settings, but array is not active
3601 * all IO results in error
3602 * When written, doesn't tear down array, but just stops it
3603 * suspended (not supported yet)
3604 * All IO requests will block. The array can be reconfigured.
3605 * Writing this, if accepted, will block until array is quiescent
3606 * readonly
3607 * no resync can happen. no superblocks get written.
3608 * write requests fail
3609 * read-auto
3610 * like readonly, but behaves like 'clean' on a write request.
3612 * clean - no pending writes, but otherwise active.
3613 * When written to inactive array, starts without resync
3614 * If a write request arrives then
3615 * if metadata is known, mark 'dirty' and switch to 'active'.
3616 * if not known, block and switch to write-pending
3617 * If written to an active array that has pending writes, then fails.
3618 * active
3619 * fully active: IO and resync can be happening.
3620 * When written to inactive array, starts with resync
3622 * write-pending
3623 * clean, but writes are blocked waiting for 'active' to be written.
3625 * active-idle
3626 * like active, but no writes have been seen for a while (100msec).
3629 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3630 write_pending, active_idle, bad_word};
3631 static char *array_states[] = {
3632 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3633 "write-pending", "active-idle", NULL };
3635 static int match_word(const char *word, char **list)
3637 int n;
3638 for (n=0; list[n]; n++)
3639 if (cmd_match(word, list[n]))
3640 break;
3641 return n;
3644 static ssize_t
3645 array_state_show(mddev_t *mddev, char *page)
3647 enum array_state st = inactive;
3649 if (mddev->pers)
3650 switch(mddev->ro) {
3651 case 1:
3652 st = readonly;
3653 break;
3654 case 2:
3655 st = read_auto;
3656 break;
3657 case 0:
3658 if (mddev->in_sync)
3659 st = clean;
3660 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3661 st = write_pending;
3662 else if (mddev->safemode)
3663 st = active_idle;
3664 else
3665 st = active;
3667 else {
3668 if (list_empty(&mddev->disks) &&
3669 mddev->raid_disks == 0 &&
3670 mddev->dev_sectors == 0)
3671 st = clear;
3672 else
3673 st = inactive;
3675 return sprintf(page, "%s\n", array_states[st]);
3678 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3679 static int md_set_readonly(mddev_t * mddev, int is_open);
3680 static int do_md_run(mddev_t * mddev);
3681 static int restart_array(mddev_t *mddev);
3683 static ssize_t
3684 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3686 int err = -EINVAL;
3687 enum array_state st = match_word(buf, array_states);
3688 switch(st) {
3689 case bad_word:
3690 break;
3691 case clear:
3692 /* stopping an active array */
3693 if (atomic_read(&mddev->openers) > 0)
3694 return -EBUSY;
3695 err = do_md_stop(mddev, 0, 0);
3696 break;
3697 case inactive:
3698 /* stopping an active array */
3699 if (mddev->pers) {
3700 if (atomic_read(&mddev->openers) > 0)
3701 return -EBUSY;
3702 err = do_md_stop(mddev, 2, 0);
3703 } else
3704 err = 0; /* already inactive */
3705 break;
3706 case suspended:
3707 break; /* not supported yet */
3708 case readonly:
3709 if (mddev->pers)
3710 err = md_set_readonly(mddev, 0);
3711 else {
3712 mddev->ro = 1;
3713 set_disk_ro(mddev->gendisk, 1);
3714 err = do_md_run(mddev);
3716 break;
3717 case read_auto:
3718 if (mddev->pers) {
3719 if (mddev->ro == 0)
3720 err = md_set_readonly(mddev, 0);
3721 else if (mddev->ro == 1)
3722 err = restart_array(mddev);
3723 if (err == 0) {
3724 mddev->ro = 2;
3725 set_disk_ro(mddev->gendisk, 0);
3727 } else {
3728 mddev->ro = 2;
3729 err = do_md_run(mddev);
3731 break;
3732 case clean:
3733 if (mddev->pers) {
3734 restart_array(mddev);
3735 spin_lock_irq(&mddev->write_lock);
3736 if (atomic_read(&mddev->writes_pending) == 0) {
3737 if (mddev->in_sync == 0) {
3738 mddev->in_sync = 1;
3739 if (mddev->safemode == 1)
3740 mddev->safemode = 0;
3741 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3743 err = 0;
3744 } else
3745 err = -EBUSY;
3746 spin_unlock_irq(&mddev->write_lock);
3747 } else
3748 err = -EINVAL;
3749 break;
3750 case active:
3751 if (mddev->pers) {
3752 restart_array(mddev);
3753 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3754 wake_up(&mddev->sb_wait);
3755 err = 0;
3756 } else {
3757 mddev->ro = 0;
3758 set_disk_ro(mddev->gendisk, 0);
3759 err = do_md_run(mddev);
3761 break;
3762 case write_pending:
3763 case active_idle:
3764 /* these cannot be set */
3765 break;
3767 if (err)
3768 return err;
3769 else {
3770 sysfs_notify_dirent_safe(mddev->sysfs_state);
3771 return len;
3774 static struct md_sysfs_entry md_array_state =
3775 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3777 static ssize_t
3778 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3779 return sprintf(page, "%d\n",
3780 atomic_read(&mddev->max_corr_read_errors));
3783 static ssize_t
3784 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3786 char *e;
3787 unsigned long n = simple_strtoul(buf, &e, 10);
3789 if (*buf && (*e == 0 || *e == '\n')) {
3790 atomic_set(&mddev->max_corr_read_errors, n);
3791 return len;
3793 return -EINVAL;
3796 static struct md_sysfs_entry max_corr_read_errors =
3797 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3798 max_corrected_read_errors_store);
3800 static ssize_t
3801 null_show(mddev_t *mddev, char *page)
3803 return -EINVAL;
3806 static ssize_t
3807 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3809 /* buf must be %d:%d\n? giving major and minor numbers */
3810 /* The new device is added to the array.
3811 * If the array has a persistent superblock, we read the
3812 * superblock to initialise info and check validity.
3813 * Otherwise, only checking done is that in bind_rdev_to_array,
3814 * which mainly checks size.
3816 char *e;
3817 int major = simple_strtoul(buf, &e, 10);
3818 int minor;
3819 dev_t dev;
3820 mdk_rdev_t *rdev;
3821 int err;
3823 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3824 return -EINVAL;
3825 minor = simple_strtoul(e+1, &e, 10);
3826 if (*e && *e != '\n')
3827 return -EINVAL;
3828 dev = MKDEV(major, minor);
3829 if (major != MAJOR(dev) ||
3830 minor != MINOR(dev))
3831 return -EOVERFLOW;
3834 if (mddev->persistent) {
3835 rdev = md_import_device(dev, mddev->major_version,
3836 mddev->minor_version);
3837 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3838 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3839 mdk_rdev_t, same_set);
3840 err = super_types[mddev->major_version]
3841 .load_super(rdev, rdev0, mddev->minor_version);
3842 if (err < 0)
3843 goto out;
3845 } else if (mddev->external)
3846 rdev = md_import_device(dev, -2, -1);
3847 else
3848 rdev = md_import_device(dev, -1, -1);
3850 if (IS_ERR(rdev))
3851 return PTR_ERR(rdev);
3852 err = bind_rdev_to_array(rdev, mddev);
3853 out:
3854 if (err)
3855 export_rdev(rdev);
3856 return err ? err : len;
3859 static struct md_sysfs_entry md_new_device =
3860 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3862 static ssize_t
3863 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3865 char *end;
3866 unsigned long chunk, end_chunk;
3868 if (!mddev->bitmap)
3869 goto out;
3870 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3871 while (*buf) {
3872 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3873 if (buf == end) break;
3874 if (*end == '-') { /* range */
3875 buf = end + 1;
3876 end_chunk = simple_strtoul(buf, &end, 0);
3877 if (buf == end) break;
3879 if (*end && !isspace(*end)) break;
3880 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3881 buf = skip_spaces(end);
3883 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3884 out:
3885 return len;
3888 static struct md_sysfs_entry md_bitmap =
3889 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3891 static ssize_t
3892 size_show(mddev_t *mddev, char *page)
3894 return sprintf(page, "%llu\n",
3895 (unsigned long long)mddev->dev_sectors / 2);
3898 static int update_size(mddev_t *mddev, sector_t num_sectors);
3900 static ssize_t
3901 size_store(mddev_t *mddev, const char *buf, size_t len)
3903 /* If array is inactive, we can reduce the component size, but
3904 * not increase it (except from 0).
3905 * If array is active, we can try an on-line resize
3907 sector_t sectors;
3908 int err = strict_blocks_to_sectors(buf, &sectors);
3910 if (err < 0)
3911 return err;
3912 if (mddev->pers) {
3913 err = update_size(mddev, sectors);
3914 md_update_sb(mddev, 1);
3915 } else {
3916 if (mddev->dev_sectors == 0 ||
3917 mddev->dev_sectors > sectors)
3918 mddev->dev_sectors = sectors;
3919 else
3920 err = -ENOSPC;
3922 return err ? err : len;
3925 static struct md_sysfs_entry md_size =
3926 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3929 /* Metdata version.
3930 * This is one of
3931 * 'none' for arrays with no metadata (good luck...)
3932 * 'external' for arrays with externally managed metadata,
3933 * or N.M for internally known formats
3935 static ssize_t
3936 metadata_show(mddev_t *mddev, char *page)
3938 if (mddev->persistent)
3939 return sprintf(page, "%d.%d\n",
3940 mddev->major_version, mddev->minor_version);
3941 else if (mddev->external)
3942 return sprintf(page, "external:%s\n", mddev->metadata_type);
3943 else
3944 return sprintf(page, "none\n");
3947 static ssize_t
3948 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3950 int major, minor;
3951 char *e;
3952 /* Changing the details of 'external' metadata is
3953 * always permitted. Otherwise there must be
3954 * no devices attached to the array.
3956 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3958 else if (!list_empty(&mddev->disks))
3959 return -EBUSY;
3961 if (cmd_match(buf, "none")) {
3962 mddev->persistent = 0;
3963 mddev->external = 0;
3964 mddev->major_version = 0;
3965 mddev->minor_version = 90;
3966 return len;
3968 if (strncmp(buf, "external:", 9) == 0) {
3969 size_t namelen = len-9;
3970 if (namelen >= sizeof(mddev->metadata_type))
3971 namelen = sizeof(mddev->metadata_type)-1;
3972 strncpy(mddev->metadata_type, buf+9, namelen);
3973 mddev->metadata_type[namelen] = 0;
3974 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3975 mddev->metadata_type[--namelen] = 0;
3976 mddev->persistent = 0;
3977 mddev->external = 1;
3978 mddev->major_version = 0;
3979 mddev->minor_version = 90;
3980 return len;
3982 major = simple_strtoul(buf, &e, 10);
3983 if (e==buf || *e != '.')
3984 return -EINVAL;
3985 buf = e+1;
3986 minor = simple_strtoul(buf, &e, 10);
3987 if (e==buf || (*e && *e != '\n') )
3988 return -EINVAL;
3989 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3990 return -ENOENT;
3991 mddev->major_version = major;
3992 mddev->minor_version = minor;
3993 mddev->persistent = 1;
3994 mddev->external = 0;
3995 return len;
3998 static struct md_sysfs_entry md_metadata =
3999 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4001 static ssize_t
4002 action_show(mddev_t *mddev, char *page)
4004 char *type = "idle";
4005 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4006 type = "frozen";
4007 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4008 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4009 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4010 type = "reshape";
4011 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4012 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4013 type = "resync";
4014 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4015 type = "check";
4016 else
4017 type = "repair";
4018 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4019 type = "recover";
4021 return sprintf(page, "%s\n", type);
4024 static void reap_sync_thread(mddev_t *mddev);
4026 static ssize_t
4027 action_store(mddev_t *mddev, const char *page, size_t len)
4029 if (!mddev->pers || !mddev->pers->sync_request)
4030 return -EINVAL;
4032 if (cmd_match(page, "frozen"))
4033 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4034 else
4035 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4037 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4038 if (mddev->sync_thread) {
4039 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4040 reap_sync_thread(mddev);
4042 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4043 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4044 return -EBUSY;
4045 else if (cmd_match(page, "resync"))
4046 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4047 else if (cmd_match(page, "recover")) {
4048 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4049 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4050 } else if (cmd_match(page, "reshape")) {
4051 int err;
4052 if (mddev->pers->start_reshape == NULL)
4053 return -EINVAL;
4054 err = mddev->pers->start_reshape(mddev);
4055 if (err)
4056 return err;
4057 sysfs_notify(&mddev->kobj, NULL, "degraded");
4058 } else {
4059 if (cmd_match(page, "check"))
4060 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4061 else if (!cmd_match(page, "repair"))
4062 return -EINVAL;
4063 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4064 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4066 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4067 md_wakeup_thread(mddev->thread);
4068 sysfs_notify_dirent_safe(mddev->sysfs_action);
4069 return len;
4072 static ssize_t
4073 mismatch_cnt_show(mddev_t *mddev, char *page)
4075 return sprintf(page, "%llu\n",
4076 (unsigned long long) mddev->resync_mismatches);
4079 static struct md_sysfs_entry md_scan_mode =
4080 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4083 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4085 static ssize_t
4086 sync_min_show(mddev_t *mddev, char *page)
4088 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4089 mddev->sync_speed_min ? "local": "system");
4092 static ssize_t
4093 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
4095 int min;
4096 char *e;
4097 if (strncmp(buf, "system", 6)==0) {
4098 mddev->sync_speed_min = 0;
4099 return len;
4101 min = simple_strtoul(buf, &e, 10);
4102 if (buf == e || (*e && *e != '\n') || min <= 0)
4103 return -EINVAL;
4104 mddev->sync_speed_min = min;
4105 return len;
4108 static struct md_sysfs_entry md_sync_min =
4109 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4111 static ssize_t
4112 sync_max_show(mddev_t *mddev, char *page)
4114 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4115 mddev->sync_speed_max ? "local": "system");
4118 static ssize_t
4119 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
4121 int max;
4122 char *e;
4123 if (strncmp(buf, "system", 6)==0) {
4124 mddev->sync_speed_max = 0;
4125 return len;
4127 max = simple_strtoul(buf, &e, 10);
4128 if (buf == e || (*e && *e != '\n') || max <= 0)
4129 return -EINVAL;
4130 mddev->sync_speed_max = max;
4131 return len;
4134 static struct md_sysfs_entry md_sync_max =
4135 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4137 static ssize_t
4138 degraded_show(mddev_t *mddev, char *page)
4140 return sprintf(page, "%d\n", mddev->degraded);
4142 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4144 static ssize_t
4145 sync_force_parallel_show(mddev_t *mddev, char *page)
4147 return sprintf(page, "%d\n", mddev->parallel_resync);
4150 static ssize_t
4151 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
4153 long n;
4155 if (strict_strtol(buf, 10, &n))
4156 return -EINVAL;
4158 if (n != 0 && n != 1)
4159 return -EINVAL;
4161 mddev->parallel_resync = n;
4163 if (mddev->sync_thread)
4164 wake_up(&resync_wait);
4166 return len;
4169 /* force parallel resync, even with shared block devices */
4170 static struct md_sysfs_entry md_sync_force_parallel =
4171 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4172 sync_force_parallel_show, sync_force_parallel_store);
4174 static ssize_t
4175 sync_speed_show(mddev_t *mddev, char *page)
4177 unsigned long resync, dt, db;
4178 if (mddev->curr_resync == 0)
4179 return sprintf(page, "none\n");
4180 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4181 dt = (jiffies - mddev->resync_mark) / HZ;
4182 if (!dt) dt++;
4183 db = resync - mddev->resync_mark_cnt;
4184 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4187 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4189 static ssize_t
4190 sync_completed_show(mddev_t *mddev, char *page)
4192 unsigned long long max_sectors, resync;
4194 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4195 return sprintf(page, "none\n");
4197 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4198 max_sectors = mddev->resync_max_sectors;
4199 else
4200 max_sectors = mddev->dev_sectors;
4202 resync = mddev->curr_resync_completed;
4203 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4206 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4208 static ssize_t
4209 min_sync_show(mddev_t *mddev, char *page)
4211 return sprintf(page, "%llu\n",
4212 (unsigned long long)mddev->resync_min);
4214 static ssize_t
4215 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
4217 unsigned long long min;
4218 if (strict_strtoull(buf, 10, &min))
4219 return -EINVAL;
4220 if (min > mddev->resync_max)
4221 return -EINVAL;
4222 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4223 return -EBUSY;
4225 /* Must be a multiple of chunk_size */
4226 if (mddev->chunk_sectors) {
4227 sector_t temp = min;
4228 if (sector_div(temp, mddev->chunk_sectors))
4229 return -EINVAL;
4231 mddev->resync_min = min;
4233 return len;
4236 static struct md_sysfs_entry md_min_sync =
4237 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4239 static ssize_t
4240 max_sync_show(mddev_t *mddev, char *page)
4242 if (mddev->resync_max == MaxSector)
4243 return sprintf(page, "max\n");
4244 else
4245 return sprintf(page, "%llu\n",
4246 (unsigned long long)mddev->resync_max);
4248 static ssize_t
4249 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
4251 if (strncmp(buf, "max", 3) == 0)
4252 mddev->resync_max = MaxSector;
4253 else {
4254 unsigned long long max;
4255 if (strict_strtoull(buf, 10, &max))
4256 return -EINVAL;
4257 if (max < mddev->resync_min)
4258 return -EINVAL;
4259 if (max < mddev->resync_max &&
4260 mddev->ro == 0 &&
4261 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4262 return -EBUSY;
4264 /* Must be a multiple of chunk_size */
4265 if (mddev->chunk_sectors) {
4266 sector_t temp = max;
4267 if (sector_div(temp, mddev->chunk_sectors))
4268 return -EINVAL;
4270 mddev->resync_max = max;
4272 wake_up(&mddev->recovery_wait);
4273 return len;
4276 static struct md_sysfs_entry md_max_sync =
4277 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4279 static ssize_t
4280 suspend_lo_show(mddev_t *mddev, char *page)
4282 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4285 static ssize_t
4286 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4288 char *e;
4289 unsigned long long new = simple_strtoull(buf, &e, 10);
4290 unsigned long long old = mddev->suspend_lo;
4292 if (mddev->pers == NULL ||
4293 mddev->pers->quiesce == NULL)
4294 return -EINVAL;
4295 if (buf == e || (*e && *e != '\n'))
4296 return -EINVAL;
4298 mddev->suspend_lo = new;
4299 if (new >= old)
4300 /* Shrinking suspended region */
4301 mddev->pers->quiesce(mddev, 2);
4302 else {
4303 /* Expanding suspended region - need to wait */
4304 mddev->pers->quiesce(mddev, 1);
4305 mddev->pers->quiesce(mddev, 0);
4307 return len;
4309 static struct md_sysfs_entry md_suspend_lo =
4310 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4313 static ssize_t
4314 suspend_hi_show(mddev_t *mddev, char *page)
4316 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4319 static ssize_t
4320 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4322 char *e;
4323 unsigned long long new = simple_strtoull(buf, &e, 10);
4324 unsigned long long old = mddev->suspend_hi;
4326 if (mddev->pers == NULL ||
4327 mddev->pers->quiesce == NULL)
4328 return -EINVAL;
4329 if (buf == e || (*e && *e != '\n'))
4330 return -EINVAL;
4332 mddev->suspend_hi = new;
4333 if (new <= old)
4334 /* Shrinking suspended region */
4335 mddev->pers->quiesce(mddev, 2);
4336 else {
4337 /* Expanding suspended region - need to wait */
4338 mddev->pers->quiesce(mddev, 1);
4339 mddev->pers->quiesce(mddev, 0);
4341 return len;
4343 static struct md_sysfs_entry md_suspend_hi =
4344 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4346 static ssize_t
4347 reshape_position_show(mddev_t *mddev, char *page)
4349 if (mddev->reshape_position != MaxSector)
4350 return sprintf(page, "%llu\n",
4351 (unsigned long long)mddev->reshape_position);
4352 strcpy(page, "none\n");
4353 return 5;
4356 static ssize_t
4357 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4359 char *e;
4360 unsigned long long new = simple_strtoull(buf, &e, 10);
4361 if (mddev->pers)
4362 return -EBUSY;
4363 if (buf == e || (*e && *e != '\n'))
4364 return -EINVAL;
4365 mddev->reshape_position = new;
4366 mddev->delta_disks = 0;
4367 mddev->new_level = mddev->level;
4368 mddev->new_layout = mddev->layout;
4369 mddev->new_chunk_sectors = mddev->chunk_sectors;
4370 return len;
4373 static struct md_sysfs_entry md_reshape_position =
4374 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4375 reshape_position_store);
4377 static ssize_t
4378 array_size_show(mddev_t *mddev, char *page)
4380 if (mddev->external_size)
4381 return sprintf(page, "%llu\n",
4382 (unsigned long long)mddev->array_sectors/2);
4383 else
4384 return sprintf(page, "default\n");
4387 static ssize_t
4388 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4390 sector_t sectors;
4392 if (strncmp(buf, "default", 7) == 0) {
4393 if (mddev->pers)
4394 sectors = mddev->pers->size(mddev, 0, 0);
4395 else
4396 sectors = mddev->array_sectors;
4398 mddev->external_size = 0;
4399 } else {
4400 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4401 return -EINVAL;
4402 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4403 return -E2BIG;
4405 mddev->external_size = 1;
4408 mddev->array_sectors = sectors;
4409 if (mddev->pers) {
4410 set_capacity(mddev->gendisk, mddev->array_sectors);
4411 revalidate_disk(mddev->gendisk);
4413 return len;
4416 static struct md_sysfs_entry md_array_size =
4417 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4418 array_size_store);
4420 static struct attribute *md_default_attrs[] = {
4421 &md_level.attr,
4422 &md_layout.attr,
4423 &md_raid_disks.attr,
4424 &md_chunk_size.attr,
4425 &md_size.attr,
4426 &md_resync_start.attr,
4427 &md_metadata.attr,
4428 &md_new_device.attr,
4429 &md_safe_delay.attr,
4430 &md_array_state.attr,
4431 &md_reshape_position.attr,
4432 &md_array_size.attr,
4433 &max_corr_read_errors.attr,
4434 NULL,
4437 static struct attribute *md_redundancy_attrs[] = {
4438 &md_scan_mode.attr,
4439 &md_mismatches.attr,
4440 &md_sync_min.attr,
4441 &md_sync_max.attr,
4442 &md_sync_speed.attr,
4443 &md_sync_force_parallel.attr,
4444 &md_sync_completed.attr,
4445 &md_min_sync.attr,
4446 &md_max_sync.attr,
4447 &md_suspend_lo.attr,
4448 &md_suspend_hi.attr,
4449 &md_bitmap.attr,
4450 &md_degraded.attr,
4451 NULL,
4453 static struct attribute_group md_redundancy_group = {
4454 .name = NULL,
4455 .attrs = md_redundancy_attrs,
4459 static ssize_t
4460 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4462 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4463 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4464 ssize_t rv;
4466 if (!entry->show)
4467 return -EIO;
4468 rv = mddev_lock(mddev);
4469 if (!rv) {
4470 rv = entry->show(mddev, page);
4471 mddev_unlock(mddev);
4473 return rv;
4476 static ssize_t
4477 md_attr_store(struct kobject *kobj, struct attribute *attr,
4478 const char *page, size_t length)
4480 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4481 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4482 ssize_t rv;
4484 if (!entry->store)
4485 return -EIO;
4486 if (!capable(CAP_SYS_ADMIN))
4487 return -EACCES;
4488 rv = mddev_lock(mddev);
4489 if (mddev->hold_active == UNTIL_IOCTL)
4490 mddev->hold_active = 0;
4491 if (!rv) {
4492 rv = entry->store(mddev, page, length);
4493 mddev_unlock(mddev);
4495 return rv;
4498 static void md_free(struct kobject *ko)
4500 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4502 if (mddev->sysfs_state)
4503 sysfs_put(mddev->sysfs_state);
4505 if (mddev->gendisk) {
4506 del_gendisk(mddev->gendisk);
4507 put_disk(mddev->gendisk);
4509 if (mddev->queue)
4510 blk_cleanup_queue(mddev->queue);
4512 kfree(mddev);
4515 static const struct sysfs_ops md_sysfs_ops = {
4516 .show = md_attr_show,
4517 .store = md_attr_store,
4519 static struct kobj_type md_ktype = {
4520 .release = md_free,
4521 .sysfs_ops = &md_sysfs_ops,
4522 .default_attrs = md_default_attrs,
4525 int mdp_major = 0;
4527 static void mddev_delayed_delete(struct work_struct *ws)
4529 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4531 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4532 kobject_del(&mddev->kobj);
4533 kobject_put(&mddev->kobj);
4536 static int md_alloc(dev_t dev, char *name)
4538 static DEFINE_MUTEX(disks_mutex);
4539 mddev_t *mddev = mddev_find(dev);
4540 struct gendisk *disk;
4541 int partitioned;
4542 int shift;
4543 int unit;
4544 int error;
4546 if (!mddev)
4547 return -ENODEV;
4549 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4550 shift = partitioned ? MdpMinorShift : 0;
4551 unit = MINOR(mddev->unit) >> shift;
4553 /* wait for any previous instance of this device to be
4554 * completely removed (mddev_delayed_delete).
4556 flush_workqueue(md_misc_wq);
4558 mutex_lock(&disks_mutex);
4559 error = -EEXIST;
4560 if (mddev->gendisk)
4561 goto abort;
4563 if (name) {
4564 /* Need to ensure that 'name' is not a duplicate.
4566 mddev_t *mddev2;
4567 spin_lock(&all_mddevs_lock);
4569 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4570 if (mddev2->gendisk &&
4571 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4572 spin_unlock(&all_mddevs_lock);
4573 goto abort;
4575 spin_unlock(&all_mddevs_lock);
4578 error = -ENOMEM;
4579 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4580 if (!mddev->queue)
4581 goto abort;
4582 mddev->queue->queuedata = mddev;
4584 blk_queue_make_request(mddev->queue, md_make_request);
4586 disk = alloc_disk(1 << shift);
4587 if (!disk) {
4588 blk_cleanup_queue(mddev->queue);
4589 mddev->queue = NULL;
4590 goto abort;
4592 disk->major = MAJOR(mddev->unit);
4593 disk->first_minor = unit << shift;
4594 if (name)
4595 strcpy(disk->disk_name, name);
4596 else if (partitioned)
4597 sprintf(disk->disk_name, "md_d%d", unit);
4598 else
4599 sprintf(disk->disk_name, "md%d", unit);
4600 disk->fops = &md_fops;
4601 disk->private_data = mddev;
4602 disk->queue = mddev->queue;
4603 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4604 /* Allow extended partitions. This makes the
4605 * 'mdp' device redundant, but we can't really
4606 * remove it now.
4608 disk->flags |= GENHD_FL_EXT_DEVT;
4609 mddev->gendisk = disk;
4610 /* As soon as we call add_disk(), another thread could get
4611 * through to md_open, so make sure it doesn't get too far
4613 mutex_lock(&mddev->open_mutex);
4614 add_disk(disk);
4616 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4617 &disk_to_dev(disk)->kobj, "%s", "md");
4618 if (error) {
4619 /* This isn't possible, but as kobject_init_and_add is marked
4620 * __must_check, we must do something with the result
4622 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4623 disk->disk_name);
4624 error = 0;
4626 if (mddev->kobj.sd &&
4627 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4628 printk(KERN_DEBUG "pointless warning\n");
4629 mutex_unlock(&mddev->open_mutex);
4630 abort:
4631 mutex_unlock(&disks_mutex);
4632 if (!error && mddev->kobj.sd) {
4633 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4634 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4636 mddev_put(mddev);
4637 return error;
4640 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4642 md_alloc(dev, NULL);
4643 return NULL;
4646 static int add_named_array(const char *val, struct kernel_param *kp)
4648 /* val must be "md_*" where * is not all digits.
4649 * We allocate an array with a large free minor number, and
4650 * set the name to val. val must not already be an active name.
4652 int len = strlen(val);
4653 char buf[DISK_NAME_LEN];
4655 while (len && val[len-1] == '\n')
4656 len--;
4657 if (len >= DISK_NAME_LEN)
4658 return -E2BIG;
4659 strlcpy(buf, val, len+1);
4660 if (strncmp(buf, "md_", 3) != 0)
4661 return -EINVAL;
4662 return md_alloc(0, buf);
4665 static void md_safemode_timeout(unsigned long data)
4667 mddev_t *mddev = (mddev_t *) data;
4669 if (!atomic_read(&mddev->writes_pending)) {
4670 mddev->safemode = 1;
4671 if (mddev->external)
4672 sysfs_notify_dirent_safe(mddev->sysfs_state);
4674 md_wakeup_thread(mddev->thread);
4677 static int start_dirty_degraded;
4679 int md_run(mddev_t *mddev)
4681 int err;
4682 mdk_rdev_t *rdev;
4683 struct mdk_personality *pers;
4685 if (list_empty(&mddev->disks))
4686 /* cannot run an array with no devices.. */
4687 return -EINVAL;
4689 if (mddev->pers)
4690 return -EBUSY;
4691 /* Cannot run until previous stop completes properly */
4692 if (mddev->sysfs_active)
4693 return -EBUSY;
4696 * Analyze all RAID superblock(s)
4698 if (!mddev->raid_disks) {
4699 if (!mddev->persistent)
4700 return -EINVAL;
4701 analyze_sbs(mddev);
4704 if (mddev->level != LEVEL_NONE)
4705 request_module("md-level-%d", mddev->level);
4706 else if (mddev->clevel[0])
4707 request_module("md-%s", mddev->clevel);
4710 * Drop all container device buffers, from now on
4711 * the only valid external interface is through the md
4712 * device.
4714 list_for_each_entry(rdev, &mddev->disks, same_set) {
4715 if (test_bit(Faulty, &rdev->flags))
4716 continue;
4717 sync_blockdev(rdev->bdev);
4718 invalidate_bdev(rdev->bdev);
4720 /* perform some consistency tests on the device.
4721 * We don't want the data to overlap the metadata,
4722 * Internal Bitmap issues have been handled elsewhere.
4724 if (rdev->meta_bdev) {
4725 /* Nothing to check */;
4726 } else if (rdev->data_offset < rdev->sb_start) {
4727 if (mddev->dev_sectors &&
4728 rdev->data_offset + mddev->dev_sectors
4729 > rdev->sb_start) {
4730 printk("md: %s: data overlaps metadata\n",
4731 mdname(mddev));
4732 return -EINVAL;
4734 } else {
4735 if (rdev->sb_start + rdev->sb_size/512
4736 > rdev->data_offset) {
4737 printk("md: %s: metadata overlaps data\n",
4738 mdname(mddev));
4739 return -EINVAL;
4742 sysfs_notify_dirent_safe(rdev->sysfs_state);
4745 if (mddev->bio_set == NULL)
4746 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4747 sizeof(mddev_t *));
4749 spin_lock(&pers_lock);
4750 pers = find_pers(mddev->level, mddev->clevel);
4751 if (!pers || !try_module_get(pers->owner)) {
4752 spin_unlock(&pers_lock);
4753 if (mddev->level != LEVEL_NONE)
4754 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4755 mddev->level);
4756 else
4757 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4758 mddev->clevel);
4759 return -EINVAL;
4761 mddev->pers = pers;
4762 spin_unlock(&pers_lock);
4763 if (mddev->level != pers->level) {
4764 mddev->level = pers->level;
4765 mddev->new_level = pers->level;
4767 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4769 if (mddev->reshape_position != MaxSector &&
4770 pers->start_reshape == NULL) {
4771 /* This personality cannot handle reshaping... */
4772 mddev->pers = NULL;
4773 module_put(pers->owner);
4774 return -EINVAL;
4777 if (pers->sync_request) {
4778 /* Warn if this is a potentially silly
4779 * configuration.
4781 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4782 mdk_rdev_t *rdev2;
4783 int warned = 0;
4785 list_for_each_entry(rdev, &mddev->disks, same_set)
4786 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4787 if (rdev < rdev2 &&
4788 rdev->bdev->bd_contains ==
4789 rdev2->bdev->bd_contains) {
4790 printk(KERN_WARNING
4791 "%s: WARNING: %s appears to be"
4792 " on the same physical disk as"
4793 " %s.\n",
4794 mdname(mddev),
4795 bdevname(rdev->bdev,b),
4796 bdevname(rdev2->bdev,b2));
4797 warned = 1;
4801 if (warned)
4802 printk(KERN_WARNING
4803 "True protection against single-disk"
4804 " failure might be compromised.\n");
4807 mddev->recovery = 0;
4808 /* may be over-ridden by personality */
4809 mddev->resync_max_sectors = mddev->dev_sectors;
4811 mddev->ok_start_degraded = start_dirty_degraded;
4813 if (start_readonly && mddev->ro == 0)
4814 mddev->ro = 2; /* read-only, but switch on first write */
4816 err = mddev->pers->run(mddev);
4817 if (err)
4818 printk(KERN_ERR "md: pers->run() failed ...\n");
4819 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4820 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4821 " but 'external_size' not in effect?\n", __func__);
4822 printk(KERN_ERR
4823 "md: invalid array_size %llu > default size %llu\n",
4824 (unsigned long long)mddev->array_sectors / 2,
4825 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4826 err = -EINVAL;
4827 mddev->pers->stop(mddev);
4829 if (err == 0 && mddev->pers->sync_request) {
4830 err = bitmap_create(mddev);
4831 if (err) {
4832 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4833 mdname(mddev), err);
4834 mddev->pers->stop(mddev);
4837 if (err) {
4838 module_put(mddev->pers->owner);
4839 mddev->pers = NULL;
4840 bitmap_destroy(mddev);
4841 return err;
4843 if (mddev->pers->sync_request) {
4844 if (mddev->kobj.sd &&
4845 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4846 printk(KERN_WARNING
4847 "md: cannot register extra attributes for %s\n",
4848 mdname(mddev));
4849 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4850 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4851 mddev->ro = 0;
4853 atomic_set(&mddev->writes_pending,0);
4854 atomic_set(&mddev->max_corr_read_errors,
4855 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4856 mddev->safemode = 0;
4857 mddev->safemode_timer.function = md_safemode_timeout;
4858 mddev->safemode_timer.data = (unsigned long) mddev;
4859 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4860 mddev->in_sync = 1;
4861 smp_wmb();
4862 mddev->ready = 1;
4863 list_for_each_entry(rdev, &mddev->disks, same_set)
4864 if (rdev->raid_disk >= 0)
4865 if (sysfs_link_rdev(mddev, rdev))
4866 /* failure here is OK */;
4868 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4870 if (mddev->flags)
4871 md_update_sb(mddev, 0);
4873 md_new_event(mddev);
4874 sysfs_notify_dirent_safe(mddev->sysfs_state);
4875 sysfs_notify_dirent_safe(mddev->sysfs_action);
4876 sysfs_notify(&mddev->kobj, NULL, "degraded");
4877 return 0;
4879 EXPORT_SYMBOL_GPL(md_run);
4881 static int do_md_run(mddev_t *mddev)
4883 int err;
4885 err = md_run(mddev);
4886 if (err)
4887 goto out;
4888 err = bitmap_load(mddev);
4889 if (err) {
4890 bitmap_destroy(mddev);
4891 goto out;
4894 md_wakeup_thread(mddev->thread);
4895 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4897 set_capacity(mddev->gendisk, mddev->array_sectors);
4898 revalidate_disk(mddev->gendisk);
4899 mddev->changed = 1;
4900 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4901 out:
4902 return err;
4905 static int restart_array(mddev_t *mddev)
4907 struct gendisk *disk = mddev->gendisk;
4909 /* Complain if it has no devices */
4910 if (list_empty(&mddev->disks))
4911 return -ENXIO;
4912 if (!mddev->pers)
4913 return -EINVAL;
4914 if (!mddev->ro)
4915 return -EBUSY;
4916 mddev->safemode = 0;
4917 mddev->ro = 0;
4918 set_disk_ro(disk, 0);
4919 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4920 mdname(mddev));
4921 /* Kick recovery or resync if necessary */
4922 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4923 md_wakeup_thread(mddev->thread);
4924 md_wakeup_thread(mddev->sync_thread);
4925 sysfs_notify_dirent_safe(mddev->sysfs_state);
4926 return 0;
4929 /* similar to deny_write_access, but accounts for our holding a reference
4930 * to the file ourselves */
4931 static int deny_bitmap_write_access(struct file * file)
4933 struct inode *inode = file->f_mapping->host;
4935 spin_lock(&inode->i_lock);
4936 if (atomic_read(&inode->i_writecount) > 1) {
4937 spin_unlock(&inode->i_lock);
4938 return -ETXTBSY;
4940 atomic_set(&inode->i_writecount, -1);
4941 spin_unlock(&inode->i_lock);
4943 return 0;
4946 void restore_bitmap_write_access(struct file *file)
4948 struct inode *inode = file->f_mapping->host;
4950 spin_lock(&inode->i_lock);
4951 atomic_set(&inode->i_writecount, 1);
4952 spin_unlock(&inode->i_lock);
4955 static void md_clean(mddev_t *mddev)
4957 mddev->array_sectors = 0;
4958 mddev->external_size = 0;
4959 mddev->dev_sectors = 0;
4960 mddev->raid_disks = 0;
4961 mddev->recovery_cp = 0;
4962 mddev->resync_min = 0;
4963 mddev->resync_max = MaxSector;
4964 mddev->reshape_position = MaxSector;
4965 mddev->external = 0;
4966 mddev->persistent = 0;
4967 mddev->level = LEVEL_NONE;
4968 mddev->clevel[0] = 0;
4969 mddev->flags = 0;
4970 mddev->ro = 0;
4971 mddev->metadata_type[0] = 0;
4972 mddev->chunk_sectors = 0;
4973 mddev->ctime = mddev->utime = 0;
4974 mddev->layout = 0;
4975 mddev->max_disks = 0;
4976 mddev->events = 0;
4977 mddev->can_decrease_events = 0;
4978 mddev->delta_disks = 0;
4979 mddev->new_level = LEVEL_NONE;
4980 mddev->new_layout = 0;
4981 mddev->new_chunk_sectors = 0;
4982 mddev->curr_resync = 0;
4983 mddev->resync_mismatches = 0;
4984 mddev->suspend_lo = mddev->suspend_hi = 0;
4985 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4986 mddev->recovery = 0;
4987 mddev->in_sync = 0;
4988 mddev->changed = 0;
4989 mddev->degraded = 0;
4990 mddev->safemode = 0;
4991 mddev->bitmap_info.offset = 0;
4992 mddev->bitmap_info.default_offset = 0;
4993 mddev->bitmap_info.chunksize = 0;
4994 mddev->bitmap_info.daemon_sleep = 0;
4995 mddev->bitmap_info.max_write_behind = 0;
4998 static void __md_stop_writes(mddev_t *mddev)
5000 if (mddev->sync_thread) {
5001 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5002 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5003 reap_sync_thread(mddev);
5006 del_timer_sync(&mddev->safemode_timer);
5008 bitmap_flush(mddev);
5009 md_super_wait(mddev);
5011 if (!mddev->in_sync || mddev->flags) {
5012 /* mark array as shutdown cleanly */
5013 mddev->in_sync = 1;
5014 md_update_sb(mddev, 1);
5018 void md_stop_writes(mddev_t *mddev)
5020 mddev_lock(mddev);
5021 __md_stop_writes(mddev);
5022 mddev_unlock(mddev);
5024 EXPORT_SYMBOL_GPL(md_stop_writes);
5026 void md_stop(mddev_t *mddev)
5028 mddev->ready = 0;
5029 mddev->pers->stop(mddev);
5030 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5031 mddev->to_remove = &md_redundancy_group;
5032 module_put(mddev->pers->owner);
5033 mddev->pers = NULL;
5034 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5036 EXPORT_SYMBOL_GPL(md_stop);
5038 static int md_set_readonly(mddev_t *mddev, int is_open)
5040 int err = 0;
5041 mutex_lock(&mddev->open_mutex);
5042 if (atomic_read(&mddev->openers) > is_open) {
5043 printk("md: %s still in use.\n",mdname(mddev));
5044 err = -EBUSY;
5045 goto out;
5047 if (mddev->pers) {
5048 __md_stop_writes(mddev);
5050 err = -ENXIO;
5051 if (mddev->ro==1)
5052 goto out;
5053 mddev->ro = 1;
5054 set_disk_ro(mddev->gendisk, 1);
5055 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5056 sysfs_notify_dirent_safe(mddev->sysfs_state);
5057 err = 0;
5059 out:
5060 mutex_unlock(&mddev->open_mutex);
5061 return err;
5064 /* mode:
5065 * 0 - completely stop and dis-assemble array
5066 * 2 - stop but do not disassemble array
5068 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
5070 struct gendisk *disk = mddev->gendisk;
5071 mdk_rdev_t *rdev;
5073 mutex_lock(&mddev->open_mutex);
5074 if (atomic_read(&mddev->openers) > is_open ||
5075 mddev->sysfs_active) {
5076 printk("md: %s still in use.\n",mdname(mddev));
5077 mutex_unlock(&mddev->open_mutex);
5078 return -EBUSY;
5081 if (mddev->pers) {
5082 if (mddev->ro)
5083 set_disk_ro(disk, 0);
5085 __md_stop_writes(mddev);
5086 md_stop(mddev);
5087 mddev->queue->merge_bvec_fn = NULL;
5088 mddev->queue->backing_dev_info.congested_fn = NULL;
5090 /* tell userspace to handle 'inactive' */
5091 sysfs_notify_dirent_safe(mddev->sysfs_state);
5093 list_for_each_entry(rdev, &mddev->disks, same_set)
5094 if (rdev->raid_disk >= 0)
5095 sysfs_unlink_rdev(mddev, rdev);
5097 set_capacity(disk, 0);
5098 mutex_unlock(&mddev->open_mutex);
5099 mddev->changed = 1;
5100 revalidate_disk(disk);
5102 if (mddev->ro)
5103 mddev->ro = 0;
5104 } else
5105 mutex_unlock(&mddev->open_mutex);
5107 * Free resources if final stop
5109 if (mode == 0) {
5110 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5112 bitmap_destroy(mddev);
5113 if (mddev->bitmap_info.file) {
5114 restore_bitmap_write_access(mddev->bitmap_info.file);
5115 fput(mddev->bitmap_info.file);
5116 mddev->bitmap_info.file = NULL;
5118 mddev->bitmap_info.offset = 0;
5120 export_array(mddev);
5122 md_clean(mddev);
5123 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5124 if (mddev->hold_active == UNTIL_STOP)
5125 mddev->hold_active = 0;
5127 blk_integrity_unregister(disk);
5128 md_new_event(mddev);
5129 sysfs_notify_dirent_safe(mddev->sysfs_state);
5130 return 0;
5133 #ifndef MODULE
5134 static void autorun_array(mddev_t *mddev)
5136 mdk_rdev_t *rdev;
5137 int err;
5139 if (list_empty(&mddev->disks))
5140 return;
5142 printk(KERN_INFO "md: running: ");
5144 list_for_each_entry(rdev, &mddev->disks, same_set) {
5145 char b[BDEVNAME_SIZE];
5146 printk("<%s>", bdevname(rdev->bdev,b));
5148 printk("\n");
5150 err = do_md_run(mddev);
5151 if (err) {
5152 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5153 do_md_stop(mddev, 0, 0);
5158 * lets try to run arrays based on all disks that have arrived
5159 * until now. (those are in pending_raid_disks)
5161 * the method: pick the first pending disk, collect all disks with
5162 * the same UUID, remove all from the pending list and put them into
5163 * the 'same_array' list. Then order this list based on superblock
5164 * update time (freshest comes first), kick out 'old' disks and
5165 * compare superblocks. If everything's fine then run it.
5167 * If "unit" is allocated, then bump its reference count
5169 static void autorun_devices(int part)
5171 mdk_rdev_t *rdev0, *rdev, *tmp;
5172 mddev_t *mddev;
5173 char b[BDEVNAME_SIZE];
5175 printk(KERN_INFO "md: autorun ...\n");
5176 while (!list_empty(&pending_raid_disks)) {
5177 int unit;
5178 dev_t dev;
5179 LIST_HEAD(candidates);
5180 rdev0 = list_entry(pending_raid_disks.next,
5181 mdk_rdev_t, same_set);
5183 printk(KERN_INFO "md: considering %s ...\n",
5184 bdevname(rdev0->bdev,b));
5185 INIT_LIST_HEAD(&candidates);
5186 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5187 if (super_90_load(rdev, rdev0, 0) >= 0) {
5188 printk(KERN_INFO "md: adding %s ...\n",
5189 bdevname(rdev->bdev,b));
5190 list_move(&rdev->same_set, &candidates);
5193 * now we have a set of devices, with all of them having
5194 * mostly sane superblocks. It's time to allocate the
5195 * mddev.
5197 if (part) {
5198 dev = MKDEV(mdp_major,
5199 rdev0->preferred_minor << MdpMinorShift);
5200 unit = MINOR(dev) >> MdpMinorShift;
5201 } else {
5202 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5203 unit = MINOR(dev);
5205 if (rdev0->preferred_minor != unit) {
5206 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5207 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5208 break;
5211 md_probe(dev, NULL, NULL);
5212 mddev = mddev_find(dev);
5213 if (!mddev || !mddev->gendisk) {
5214 if (mddev)
5215 mddev_put(mddev);
5216 printk(KERN_ERR
5217 "md: cannot allocate memory for md drive.\n");
5218 break;
5220 if (mddev_lock(mddev))
5221 printk(KERN_WARNING "md: %s locked, cannot run\n",
5222 mdname(mddev));
5223 else if (mddev->raid_disks || mddev->major_version
5224 || !list_empty(&mddev->disks)) {
5225 printk(KERN_WARNING
5226 "md: %s already running, cannot run %s\n",
5227 mdname(mddev), bdevname(rdev0->bdev,b));
5228 mddev_unlock(mddev);
5229 } else {
5230 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5231 mddev->persistent = 1;
5232 rdev_for_each_list(rdev, tmp, &candidates) {
5233 list_del_init(&rdev->same_set);
5234 if (bind_rdev_to_array(rdev, mddev))
5235 export_rdev(rdev);
5237 autorun_array(mddev);
5238 mddev_unlock(mddev);
5240 /* on success, candidates will be empty, on error
5241 * it won't...
5243 rdev_for_each_list(rdev, tmp, &candidates) {
5244 list_del_init(&rdev->same_set);
5245 export_rdev(rdev);
5247 mddev_put(mddev);
5249 printk(KERN_INFO "md: ... autorun DONE.\n");
5251 #endif /* !MODULE */
5253 static int get_version(void __user * arg)
5255 mdu_version_t ver;
5257 ver.major = MD_MAJOR_VERSION;
5258 ver.minor = MD_MINOR_VERSION;
5259 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5261 if (copy_to_user(arg, &ver, sizeof(ver)))
5262 return -EFAULT;
5264 return 0;
5267 static int get_array_info(mddev_t * mddev, void __user * arg)
5269 mdu_array_info_t info;
5270 int nr,working,insync,failed,spare;
5271 mdk_rdev_t *rdev;
5273 nr=working=insync=failed=spare=0;
5274 list_for_each_entry(rdev, &mddev->disks, same_set) {
5275 nr++;
5276 if (test_bit(Faulty, &rdev->flags))
5277 failed++;
5278 else {
5279 working++;
5280 if (test_bit(In_sync, &rdev->flags))
5281 insync++;
5282 else
5283 spare++;
5287 info.major_version = mddev->major_version;
5288 info.minor_version = mddev->minor_version;
5289 info.patch_version = MD_PATCHLEVEL_VERSION;
5290 info.ctime = mddev->ctime;
5291 info.level = mddev->level;
5292 info.size = mddev->dev_sectors / 2;
5293 if (info.size != mddev->dev_sectors / 2) /* overflow */
5294 info.size = -1;
5295 info.nr_disks = nr;
5296 info.raid_disks = mddev->raid_disks;
5297 info.md_minor = mddev->md_minor;
5298 info.not_persistent= !mddev->persistent;
5300 info.utime = mddev->utime;
5301 info.state = 0;
5302 if (mddev->in_sync)
5303 info.state = (1<<MD_SB_CLEAN);
5304 if (mddev->bitmap && mddev->bitmap_info.offset)
5305 info.state = (1<<MD_SB_BITMAP_PRESENT);
5306 info.active_disks = insync;
5307 info.working_disks = working;
5308 info.failed_disks = failed;
5309 info.spare_disks = spare;
5311 info.layout = mddev->layout;
5312 info.chunk_size = mddev->chunk_sectors << 9;
5314 if (copy_to_user(arg, &info, sizeof(info)))
5315 return -EFAULT;
5317 return 0;
5320 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5322 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5323 char *ptr, *buf = NULL;
5324 int err = -ENOMEM;
5326 if (md_allow_write(mddev))
5327 file = kmalloc(sizeof(*file), GFP_NOIO);
5328 else
5329 file = kmalloc(sizeof(*file), GFP_KERNEL);
5331 if (!file)
5332 goto out;
5334 /* bitmap disabled, zero the first byte and copy out */
5335 if (!mddev->bitmap || !mddev->bitmap->file) {
5336 file->pathname[0] = '\0';
5337 goto copy_out;
5340 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5341 if (!buf)
5342 goto out;
5344 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5345 if (IS_ERR(ptr))
5346 goto out;
5348 strcpy(file->pathname, ptr);
5350 copy_out:
5351 err = 0;
5352 if (copy_to_user(arg, file, sizeof(*file)))
5353 err = -EFAULT;
5354 out:
5355 kfree(buf);
5356 kfree(file);
5357 return err;
5360 static int get_disk_info(mddev_t * mddev, void __user * arg)
5362 mdu_disk_info_t info;
5363 mdk_rdev_t *rdev;
5365 if (copy_from_user(&info, arg, sizeof(info)))
5366 return -EFAULT;
5368 rdev = find_rdev_nr(mddev, info.number);
5369 if (rdev) {
5370 info.major = MAJOR(rdev->bdev->bd_dev);
5371 info.minor = MINOR(rdev->bdev->bd_dev);
5372 info.raid_disk = rdev->raid_disk;
5373 info.state = 0;
5374 if (test_bit(Faulty, &rdev->flags))
5375 info.state |= (1<<MD_DISK_FAULTY);
5376 else if (test_bit(In_sync, &rdev->flags)) {
5377 info.state |= (1<<MD_DISK_ACTIVE);
5378 info.state |= (1<<MD_DISK_SYNC);
5380 if (test_bit(WriteMostly, &rdev->flags))
5381 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5382 } else {
5383 info.major = info.minor = 0;
5384 info.raid_disk = -1;
5385 info.state = (1<<MD_DISK_REMOVED);
5388 if (copy_to_user(arg, &info, sizeof(info)))
5389 return -EFAULT;
5391 return 0;
5394 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5396 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5397 mdk_rdev_t *rdev;
5398 dev_t dev = MKDEV(info->major,info->minor);
5400 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5401 return -EOVERFLOW;
5403 if (!mddev->raid_disks) {
5404 int err;
5405 /* expecting a device which has a superblock */
5406 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5407 if (IS_ERR(rdev)) {
5408 printk(KERN_WARNING
5409 "md: md_import_device returned %ld\n",
5410 PTR_ERR(rdev));
5411 return PTR_ERR(rdev);
5413 if (!list_empty(&mddev->disks)) {
5414 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5415 mdk_rdev_t, same_set);
5416 err = super_types[mddev->major_version]
5417 .load_super(rdev, rdev0, mddev->minor_version);
5418 if (err < 0) {
5419 printk(KERN_WARNING
5420 "md: %s has different UUID to %s\n",
5421 bdevname(rdev->bdev,b),
5422 bdevname(rdev0->bdev,b2));
5423 export_rdev(rdev);
5424 return -EINVAL;
5427 err = bind_rdev_to_array(rdev, mddev);
5428 if (err)
5429 export_rdev(rdev);
5430 return err;
5434 * add_new_disk can be used once the array is assembled
5435 * to add "hot spares". They must already have a superblock
5436 * written
5438 if (mddev->pers) {
5439 int err;
5440 if (!mddev->pers->hot_add_disk) {
5441 printk(KERN_WARNING
5442 "%s: personality does not support diskops!\n",
5443 mdname(mddev));
5444 return -EINVAL;
5446 if (mddev->persistent)
5447 rdev = md_import_device(dev, mddev->major_version,
5448 mddev->minor_version);
5449 else
5450 rdev = md_import_device(dev, -1, -1);
5451 if (IS_ERR(rdev)) {
5452 printk(KERN_WARNING
5453 "md: md_import_device returned %ld\n",
5454 PTR_ERR(rdev));
5455 return PTR_ERR(rdev);
5457 /* set saved_raid_disk if appropriate */
5458 if (!mddev->persistent) {
5459 if (info->state & (1<<MD_DISK_SYNC) &&
5460 info->raid_disk < mddev->raid_disks) {
5461 rdev->raid_disk = info->raid_disk;
5462 set_bit(In_sync, &rdev->flags);
5463 } else
5464 rdev->raid_disk = -1;
5465 } else
5466 super_types[mddev->major_version].
5467 validate_super(mddev, rdev);
5468 if ((info->state & (1<<MD_DISK_SYNC)) &&
5469 (!test_bit(In_sync, &rdev->flags) ||
5470 rdev->raid_disk != info->raid_disk)) {
5471 /* This was a hot-add request, but events doesn't
5472 * match, so reject it.
5474 export_rdev(rdev);
5475 return -EINVAL;
5478 if (test_bit(In_sync, &rdev->flags))
5479 rdev->saved_raid_disk = rdev->raid_disk;
5480 else
5481 rdev->saved_raid_disk = -1;
5483 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5484 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5485 set_bit(WriteMostly, &rdev->flags);
5486 else
5487 clear_bit(WriteMostly, &rdev->flags);
5489 rdev->raid_disk = -1;
5490 err = bind_rdev_to_array(rdev, mddev);
5491 if (!err && !mddev->pers->hot_remove_disk) {
5492 /* If there is hot_add_disk but no hot_remove_disk
5493 * then added disks for geometry changes,
5494 * and should be added immediately.
5496 super_types[mddev->major_version].
5497 validate_super(mddev, rdev);
5498 err = mddev->pers->hot_add_disk(mddev, rdev);
5499 if (err)
5500 unbind_rdev_from_array(rdev);
5502 if (err)
5503 export_rdev(rdev);
5504 else
5505 sysfs_notify_dirent_safe(rdev->sysfs_state);
5507 md_update_sb(mddev, 1);
5508 if (mddev->degraded)
5509 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5510 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5511 if (!err)
5512 md_new_event(mddev);
5513 md_wakeup_thread(mddev->thread);
5514 return err;
5517 /* otherwise, add_new_disk is only allowed
5518 * for major_version==0 superblocks
5520 if (mddev->major_version != 0) {
5521 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5522 mdname(mddev));
5523 return -EINVAL;
5526 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5527 int err;
5528 rdev = md_import_device(dev, -1, 0);
5529 if (IS_ERR(rdev)) {
5530 printk(KERN_WARNING
5531 "md: error, md_import_device() returned %ld\n",
5532 PTR_ERR(rdev));
5533 return PTR_ERR(rdev);
5535 rdev->desc_nr = info->number;
5536 if (info->raid_disk < mddev->raid_disks)
5537 rdev->raid_disk = info->raid_disk;
5538 else
5539 rdev->raid_disk = -1;
5541 if (rdev->raid_disk < mddev->raid_disks)
5542 if (info->state & (1<<MD_DISK_SYNC))
5543 set_bit(In_sync, &rdev->flags);
5545 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5546 set_bit(WriteMostly, &rdev->flags);
5548 if (!mddev->persistent) {
5549 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5550 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5551 } else
5552 rdev->sb_start = calc_dev_sboffset(rdev);
5553 rdev->sectors = rdev->sb_start;
5555 err = bind_rdev_to_array(rdev, mddev);
5556 if (err) {
5557 export_rdev(rdev);
5558 return err;
5562 return 0;
5565 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5567 char b[BDEVNAME_SIZE];
5568 mdk_rdev_t *rdev;
5570 rdev = find_rdev(mddev, dev);
5571 if (!rdev)
5572 return -ENXIO;
5574 if (rdev->raid_disk >= 0)
5575 goto busy;
5577 kick_rdev_from_array(rdev);
5578 md_update_sb(mddev, 1);
5579 md_new_event(mddev);
5581 return 0;
5582 busy:
5583 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5584 bdevname(rdev->bdev,b), mdname(mddev));
5585 return -EBUSY;
5588 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5590 char b[BDEVNAME_SIZE];
5591 int err;
5592 mdk_rdev_t *rdev;
5594 if (!mddev->pers)
5595 return -ENODEV;
5597 if (mddev->major_version != 0) {
5598 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5599 " version-0 superblocks.\n",
5600 mdname(mddev));
5601 return -EINVAL;
5603 if (!mddev->pers->hot_add_disk) {
5604 printk(KERN_WARNING
5605 "%s: personality does not support diskops!\n",
5606 mdname(mddev));
5607 return -EINVAL;
5610 rdev = md_import_device(dev, -1, 0);
5611 if (IS_ERR(rdev)) {
5612 printk(KERN_WARNING
5613 "md: error, md_import_device() returned %ld\n",
5614 PTR_ERR(rdev));
5615 return -EINVAL;
5618 if (mddev->persistent)
5619 rdev->sb_start = calc_dev_sboffset(rdev);
5620 else
5621 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5623 rdev->sectors = rdev->sb_start;
5625 if (test_bit(Faulty, &rdev->flags)) {
5626 printk(KERN_WARNING
5627 "md: can not hot-add faulty %s disk to %s!\n",
5628 bdevname(rdev->bdev,b), mdname(mddev));
5629 err = -EINVAL;
5630 goto abort_export;
5632 clear_bit(In_sync, &rdev->flags);
5633 rdev->desc_nr = -1;
5634 rdev->saved_raid_disk = -1;
5635 err = bind_rdev_to_array(rdev, mddev);
5636 if (err)
5637 goto abort_export;
5640 * The rest should better be atomic, we can have disk failures
5641 * noticed in interrupt contexts ...
5644 rdev->raid_disk = -1;
5646 md_update_sb(mddev, 1);
5649 * Kick recovery, maybe this spare has to be added to the
5650 * array immediately.
5652 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5653 md_wakeup_thread(mddev->thread);
5654 md_new_event(mddev);
5655 return 0;
5657 abort_export:
5658 export_rdev(rdev);
5659 return err;
5662 static int set_bitmap_file(mddev_t *mddev, int fd)
5664 int err;
5666 if (mddev->pers) {
5667 if (!mddev->pers->quiesce)
5668 return -EBUSY;
5669 if (mddev->recovery || mddev->sync_thread)
5670 return -EBUSY;
5671 /* we should be able to change the bitmap.. */
5675 if (fd >= 0) {
5676 if (mddev->bitmap)
5677 return -EEXIST; /* cannot add when bitmap is present */
5678 mddev->bitmap_info.file = fget(fd);
5680 if (mddev->bitmap_info.file == NULL) {
5681 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5682 mdname(mddev));
5683 return -EBADF;
5686 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5687 if (err) {
5688 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5689 mdname(mddev));
5690 fput(mddev->bitmap_info.file);
5691 mddev->bitmap_info.file = NULL;
5692 return err;
5694 mddev->bitmap_info.offset = 0; /* file overrides offset */
5695 } else if (mddev->bitmap == NULL)
5696 return -ENOENT; /* cannot remove what isn't there */
5697 err = 0;
5698 if (mddev->pers) {
5699 mddev->pers->quiesce(mddev, 1);
5700 if (fd >= 0) {
5701 err = bitmap_create(mddev);
5702 if (!err)
5703 err = bitmap_load(mddev);
5705 if (fd < 0 || err) {
5706 bitmap_destroy(mddev);
5707 fd = -1; /* make sure to put the file */
5709 mddev->pers->quiesce(mddev, 0);
5711 if (fd < 0) {
5712 if (mddev->bitmap_info.file) {
5713 restore_bitmap_write_access(mddev->bitmap_info.file);
5714 fput(mddev->bitmap_info.file);
5716 mddev->bitmap_info.file = NULL;
5719 return err;
5723 * set_array_info is used two different ways
5724 * The original usage is when creating a new array.
5725 * In this usage, raid_disks is > 0 and it together with
5726 * level, size, not_persistent,layout,chunksize determine the
5727 * shape of the array.
5728 * This will always create an array with a type-0.90.0 superblock.
5729 * The newer usage is when assembling an array.
5730 * In this case raid_disks will be 0, and the major_version field is
5731 * use to determine which style super-blocks are to be found on the devices.
5732 * The minor and patch _version numbers are also kept incase the
5733 * super_block handler wishes to interpret them.
5735 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5738 if (info->raid_disks == 0) {
5739 /* just setting version number for superblock loading */
5740 if (info->major_version < 0 ||
5741 info->major_version >= ARRAY_SIZE(super_types) ||
5742 super_types[info->major_version].name == NULL) {
5743 /* maybe try to auto-load a module? */
5744 printk(KERN_INFO
5745 "md: superblock version %d not known\n",
5746 info->major_version);
5747 return -EINVAL;
5749 mddev->major_version = info->major_version;
5750 mddev->minor_version = info->minor_version;
5751 mddev->patch_version = info->patch_version;
5752 mddev->persistent = !info->not_persistent;
5753 /* ensure mddev_put doesn't delete this now that there
5754 * is some minimal configuration.
5756 mddev->ctime = get_seconds();
5757 return 0;
5759 mddev->major_version = MD_MAJOR_VERSION;
5760 mddev->minor_version = MD_MINOR_VERSION;
5761 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5762 mddev->ctime = get_seconds();
5764 mddev->level = info->level;
5765 mddev->clevel[0] = 0;
5766 mddev->dev_sectors = 2 * (sector_t)info->size;
5767 mddev->raid_disks = info->raid_disks;
5768 /* don't set md_minor, it is determined by which /dev/md* was
5769 * openned
5771 if (info->state & (1<<MD_SB_CLEAN))
5772 mddev->recovery_cp = MaxSector;
5773 else
5774 mddev->recovery_cp = 0;
5775 mddev->persistent = ! info->not_persistent;
5776 mddev->external = 0;
5778 mddev->layout = info->layout;
5779 mddev->chunk_sectors = info->chunk_size >> 9;
5781 mddev->max_disks = MD_SB_DISKS;
5783 if (mddev->persistent)
5784 mddev->flags = 0;
5785 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5787 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5788 mddev->bitmap_info.offset = 0;
5790 mddev->reshape_position = MaxSector;
5793 * Generate a 128 bit UUID
5795 get_random_bytes(mddev->uuid, 16);
5797 mddev->new_level = mddev->level;
5798 mddev->new_chunk_sectors = mddev->chunk_sectors;
5799 mddev->new_layout = mddev->layout;
5800 mddev->delta_disks = 0;
5802 return 0;
5805 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5807 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5809 if (mddev->external_size)
5810 return;
5812 mddev->array_sectors = array_sectors;
5814 EXPORT_SYMBOL(md_set_array_sectors);
5816 static int update_size(mddev_t *mddev, sector_t num_sectors)
5818 mdk_rdev_t *rdev;
5819 int rv;
5820 int fit = (num_sectors == 0);
5822 if (mddev->pers->resize == NULL)
5823 return -EINVAL;
5824 /* The "num_sectors" is the number of sectors of each device that
5825 * is used. This can only make sense for arrays with redundancy.
5826 * linear and raid0 always use whatever space is available. We can only
5827 * consider changing this number if no resync or reconstruction is
5828 * happening, and if the new size is acceptable. It must fit before the
5829 * sb_start or, if that is <data_offset, it must fit before the size
5830 * of each device. If num_sectors is zero, we find the largest size
5831 * that fits.
5833 if (mddev->sync_thread)
5834 return -EBUSY;
5835 if (mddev->bitmap)
5836 /* Sorry, cannot grow a bitmap yet, just remove it,
5837 * grow, and re-add.
5839 return -EBUSY;
5840 list_for_each_entry(rdev, &mddev->disks, same_set) {
5841 sector_t avail = rdev->sectors;
5843 if (fit && (num_sectors == 0 || num_sectors > avail))
5844 num_sectors = avail;
5845 if (avail < num_sectors)
5846 return -ENOSPC;
5848 rv = mddev->pers->resize(mddev, num_sectors);
5849 if (!rv)
5850 revalidate_disk(mddev->gendisk);
5851 return rv;
5854 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5856 int rv;
5857 /* change the number of raid disks */
5858 if (mddev->pers->check_reshape == NULL)
5859 return -EINVAL;
5860 if (raid_disks <= 0 ||
5861 (mddev->max_disks && raid_disks >= mddev->max_disks))
5862 return -EINVAL;
5863 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5864 return -EBUSY;
5865 mddev->delta_disks = raid_disks - mddev->raid_disks;
5867 rv = mddev->pers->check_reshape(mddev);
5868 if (rv < 0)
5869 mddev->delta_disks = 0;
5870 return rv;
5875 * update_array_info is used to change the configuration of an
5876 * on-line array.
5877 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5878 * fields in the info are checked against the array.
5879 * Any differences that cannot be handled will cause an error.
5880 * Normally, only one change can be managed at a time.
5882 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5884 int rv = 0;
5885 int cnt = 0;
5886 int state = 0;
5888 /* calculate expected state,ignoring low bits */
5889 if (mddev->bitmap && mddev->bitmap_info.offset)
5890 state |= (1 << MD_SB_BITMAP_PRESENT);
5892 if (mddev->major_version != info->major_version ||
5893 mddev->minor_version != info->minor_version ||
5894 /* mddev->patch_version != info->patch_version || */
5895 mddev->ctime != info->ctime ||
5896 mddev->level != info->level ||
5897 /* mddev->layout != info->layout || */
5898 !mddev->persistent != info->not_persistent||
5899 mddev->chunk_sectors != info->chunk_size >> 9 ||
5900 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5901 ((state^info->state) & 0xfffffe00)
5903 return -EINVAL;
5904 /* Check there is only one change */
5905 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5906 cnt++;
5907 if (mddev->raid_disks != info->raid_disks)
5908 cnt++;
5909 if (mddev->layout != info->layout)
5910 cnt++;
5911 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5912 cnt++;
5913 if (cnt == 0)
5914 return 0;
5915 if (cnt > 1)
5916 return -EINVAL;
5918 if (mddev->layout != info->layout) {
5919 /* Change layout
5920 * we don't need to do anything at the md level, the
5921 * personality will take care of it all.
5923 if (mddev->pers->check_reshape == NULL)
5924 return -EINVAL;
5925 else {
5926 mddev->new_layout = info->layout;
5927 rv = mddev->pers->check_reshape(mddev);
5928 if (rv)
5929 mddev->new_layout = mddev->layout;
5930 return rv;
5933 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5934 rv = update_size(mddev, (sector_t)info->size * 2);
5936 if (mddev->raid_disks != info->raid_disks)
5937 rv = update_raid_disks(mddev, info->raid_disks);
5939 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5940 if (mddev->pers->quiesce == NULL)
5941 return -EINVAL;
5942 if (mddev->recovery || mddev->sync_thread)
5943 return -EBUSY;
5944 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5945 /* add the bitmap */
5946 if (mddev->bitmap)
5947 return -EEXIST;
5948 if (mddev->bitmap_info.default_offset == 0)
5949 return -EINVAL;
5950 mddev->bitmap_info.offset =
5951 mddev->bitmap_info.default_offset;
5952 mddev->pers->quiesce(mddev, 1);
5953 rv = bitmap_create(mddev);
5954 if (!rv)
5955 rv = bitmap_load(mddev);
5956 if (rv)
5957 bitmap_destroy(mddev);
5958 mddev->pers->quiesce(mddev, 0);
5959 } else {
5960 /* remove the bitmap */
5961 if (!mddev->bitmap)
5962 return -ENOENT;
5963 if (mddev->bitmap->file)
5964 return -EINVAL;
5965 mddev->pers->quiesce(mddev, 1);
5966 bitmap_destroy(mddev);
5967 mddev->pers->quiesce(mddev, 0);
5968 mddev->bitmap_info.offset = 0;
5971 md_update_sb(mddev, 1);
5972 return rv;
5975 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5977 mdk_rdev_t *rdev;
5979 if (mddev->pers == NULL)
5980 return -ENODEV;
5982 rdev = find_rdev(mddev, dev);
5983 if (!rdev)
5984 return -ENODEV;
5986 md_error(mddev, rdev);
5987 return 0;
5991 * We have a problem here : there is no easy way to give a CHS
5992 * virtual geometry. We currently pretend that we have a 2 heads
5993 * 4 sectors (with a BIG number of cylinders...). This drives
5994 * dosfs just mad... ;-)
5996 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5998 mddev_t *mddev = bdev->bd_disk->private_data;
6000 geo->heads = 2;
6001 geo->sectors = 4;
6002 geo->cylinders = mddev->array_sectors / 8;
6003 return 0;
6006 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6007 unsigned int cmd, unsigned long arg)
6009 int err = 0;
6010 void __user *argp = (void __user *)arg;
6011 mddev_t *mddev = NULL;
6012 int ro;
6014 if (!capable(CAP_SYS_ADMIN))
6015 return -EACCES;
6018 * Commands dealing with the RAID driver but not any
6019 * particular array:
6021 switch (cmd)
6023 case RAID_VERSION:
6024 err = get_version(argp);
6025 goto done;
6027 case PRINT_RAID_DEBUG:
6028 err = 0;
6029 md_print_devices();
6030 goto done;
6032 #ifndef MODULE
6033 case RAID_AUTORUN:
6034 err = 0;
6035 autostart_arrays(arg);
6036 goto done;
6037 #endif
6038 default:;
6042 * Commands creating/starting a new array:
6045 mddev = bdev->bd_disk->private_data;
6047 if (!mddev) {
6048 BUG();
6049 goto abort;
6052 err = mddev_lock(mddev);
6053 if (err) {
6054 printk(KERN_INFO
6055 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6056 err, cmd);
6057 goto abort;
6060 switch (cmd)
6062 case SET_ARRAY_INFO:
6064 mdu_array_info_t info;
6065 if (!arg)
6066 memset(&info, 0, sizeof(info));
6067 else if (copy_from_user(&info, argp, sizeof(info))) {
6068 err = -EFAULT;
6069 goto abort_unlock;
6071 if (mddev->pers) {
6072 err = update_array_info(mddev, &info);
6073 if (err) {
6074 printk(KERN_WARNING "md: couldn't update"
6075 " array info. %d\n", err);
6076 goto abort_unlock;
6078 goto done_unlock;
6080 if (!list_empty(&mddev->disks)) {
6081 printk(KERN_WARNING
6082 "md: array %s already has disks!\n",
6083 mdname(mddev));
6084 err = -EBUSY;
6085 goto abort_unlock;
6087 if (mddev->raid_disks) {
6088 printk(KERN_WARNING
6089 "md: array %s already initialised!\n",
6090 mdname(mddev));
6091 err = -EBUSY;
6092 goto abort_unlock;
6094 err = set_array_info(mddev, &info);
6095 if (err) {
6096 printk(KERN_WARNING "md: couldn't set"
6097 " array info. %d\n", err);
6098 goto abort_unlock;
6101 goto done_unlock;
6103 default:;
6107 * Commands querying/configuring an existing array:
6109 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6110 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6111 if ((!mddev->raid_disks && !mddev->external)
6112 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6113 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6114 && cmd != GET_BITMAP_FILE) {
6115 err = -ENODEV;
6116 goto abort_unlock;
6120 * Commands even a read-only array can execute:
6122 switch (cmd)
6124 case GET_ARRAY_INFO:
6125 err = get_array_info(mddev, argp);
6126 goto done_unlock;
6128 case GET_BITMAP_FILE:
6129 err = get_bitmap_file(mddev, argp);
6130 goto done_unlock;
6132 case GET_DISK_INFO:
6133 err = get_disk_info(mddev, argp);
6134 goto done_unlock;
6136 case RESTART_ARRAY_RW:
6137 err = restart_array(mddev);
6138 goto done_unlock;
6140 case STOP_ARRAY:
6141 err = do_md_stop(mddev, 0, 1);
6142 goto done_unlock;
6144 case STOP_ARRAY_RO:
6145 err = md_set_readonly(mddev, 1);
6146 goto done_unlock;
6148 case BLKROSET:
6149 if (get_user(ro, (int __user *)(arg))) {
6150 err = -EFAULT;
6151 goto done_unlock;
6153 err = -EINVAL;
6155 /* if the bdev is going readonly the value of mddev->ro
6156 * does not matter, no writes are coming
6158 if (ro)
6159 goto done_unlock;
6161 /* are we are already prepared for writes? */
6162 if (mddev->ro != 1)
6163 goto done_unlock;
6165 /* transitioning to readauto need only happen for
6166 * arrays that call md_write_start
6168 if (mddev->pers) {
6169 err = restart_array(mddev);
6170 if (err == 0) {
6171 mddev->ro = 2;
6172 set_disk_ro(mddev->gendisk, 0);
6175 goto done_unlock;
6179 * The remaining ioctls are changing the state of the
6180 * superblock, so we do not allow them on read-only arrays.
6181 * However non-MD ioctls (e.g. get-size) will still come through
6182 * here and hit the 'default' below, so only disallow
6183 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6185 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6186 if (mddev->ro == 2) {
6187 mddev->ro = 0;
6188 sysfs_notify_dirent_safe(mddev->sysfs_state);
6189 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6190 md_wakeup_thread(mddev->thread);
6191 } else {
6192 err = -EROFS;
6193 goto abort_unlock;
6197 switch (cmd)
6199 case ADD_NEW_DISK:
6201 mdu_disk_info_t info;
6202 if (copy_from_user(&info, argp, sizeof(info)))
6203 err = -EFAULT;
6204 else
6205 err = add_new_disk(mddev, &info);
6206 goto done_unlock;
6209 case HOT_REMOVE_DISK:
6210 err = hot_remove_disk(mddev, new_decode_dev(arg));
6211 goto done_unlock;
6213 case HOT_ADD_DISK:
6214 err = hot_add_disk(mddev, new_decode_dev(arg));
6215 goto done_unlock;
6217 case SET_DISK_FAULTY:
6218 err = set_disk_faulty(mddev, new_decode_dev(arg));
6219 goto done_unlock;
6221 case RUN_ARRAY:
6222 err = do_md_run(mddev);
6223 goto done_unlock;
6225 case SET_BITMAP_FILE:
6226 err = set_bitmap_file(mddev, (int)arg);
6227 goto done_unlock;
6229 default:
6230 err = -EINVAL;
6231 goto abort_unlock;
6234 done_unlock:
6235 abort_unlock:
6236 if (mddev->hold_active == UNTIL_IOCTL &&
6237 err != -EINVAL)
6238 mddev->hold_active = 0;
6239 mddev_unlock(mddev);
6241 return err;
6242 done:
6243 if (err)
6244 MD_BUG();
6245 abort:
6246 return err;
6248 #ifdef CONFIG_COMPAT
6249 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6250 unsigned int cmd, unsigned long arg)
6252 switch (cmd) {
6253 case HOT_REMOVE_DISK:
6254 case HOT_ADD_DISK:
6255 case SET_DISK_FAULTY:
6256 case SET_BITMAP_FILE:
6257 /* These take in integer arg, do not convert */
6258 break;
6259 default:
6260 arg = (unsigned long)compat_ptr(arg);
6261 break;
6264 return md_ioctl(bdev, mode, cmd, arg);
6266 #endif /* CONFIG_COMPAT */
6268 static int md_open(struct block_device *bdev, fmode_t mode)
6271 * Succeed if we can lock the mddev, which confirms that
6272 * it isn't being stopped right now.
6274 mddev_t *mddev = mddev_find(bdev->bd_dev);
6275 int err;
6277 if (mddev->gendisk != bdev->bd_disk) {
6278 /* we are racing with mddev_put which is discarding this
6279 * bd_disk.
6281 mddev_put(mddev);
6282 /* Wait until bdev->bd_disk is definitely gone */
6283 flush_workqueue(md_misc_wq);
6284 /* Then retry the open from the top */
6285 return -ERESTARTSYS;
6287 BUG_ON(mddev != bdev->bd_disk->private_data);
6289 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6290 goto out;
6292 err = 0;
6293 atomic_inc(&mddev->openers);
6294 mutex_unlock(&mddev->open_mutex);
6296 check_disk_change(bdev);
6297 out:
6298 return err;
6301 static int md_release(struct gendisk *disk, fmode_t mode)
6303 mddev_t *mddev = disk->private_data;
6305 BUG_ON(!mddev);
6306 atomic_dec(&mddev->openers);
6307 mddev_put(mddev);
6309 return 0;
6312 static int md_media_changed(struct gendisk *disk)
6314 mddev_t *mddev = disk->private_data;
6316 return mddev->changed;
6319 static int md_revalidate(struct gendisk *disk)
6321 mddev_t *mddev = disk->private_data;
6323 mddev->changed = 0;
6324 return 0;
6326 static const struct block_device_operations md_fops =
6328 .owner = THIS_MODULE,
6329 .open = md_open,
6330 .release = md_release,
6331 .ioctl = md_ioctl,
6332 #ifdef CONFIG_COMPAT
6333 .compat_ioctl = md_compat_ioctl,
6334 #endif
6335 .getgeo = md_getgeo,
6336 .media_changed = md_media_changed,
6337 .revalidate_disk= md_revalidate,
6340 static int md_thread(void * arg)
6342 mdk_thread_t *thread = arg;
6345 * md_thread is a 'system-thread', it's priority should be very
6346 * high. We avoid resource deadlocks individually in each
6347 * raid personality. (RAID5 does preallocation) We also use RR and
6348 * the very same RT priority as kswapd, thus we will never get
6349 * into a priority inversion deadlock.
6351 * we definitely have to have equal or higher priority than
6352 * bdflush, otherwise bdflush will deadlock if there are too
6353 * many dirty RAID5 blocks.
6356 allow_signal(SIGKILL);
6357 while (!kthread_should_stop()) {
6359 /* We need to wait INTERRUPTIBLE so that
6360 * we don't add to the load-average.
6361 * That means we need to be sure no signals are
6362 * pending
6364 if (signal_pending(current))
6365 flush_signals(current);
6367 wait_event_interruptible_timeout
6368 (thread->wqueue,
6369 test_bit(THREAD_WAKEUP, &thread->flags)
6370 || kthread_should_stop(),
6371 thread->timeout);
6373 clear_bit(THREAD_WAKEUP, &thread->flags);
6374 if (!kthread_should_stop())
6375 thread->run(thread->mddev);
6378 return 0;
6381 void md_wakeup_thread(mdk_thread_t *thread)
6383 if (thread) {
6384 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6385 set_bit(THREAD_WAKEUP, &thread->flags);
6386 wake_up(&thread->wqueue);
6390 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6391 const char *name)
6393 mdk_thread_t *thread;
6395 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6396 if (!thread)
6397 return NULL;
6399 init_waitqueue_head(&thread->wqueue);
6401 thread->run = run;
6402 thread->mddev = mddev;
6403 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6404 thread->tsk = kthread_run(md_thread, thread,
6405 "%s_%s",
6406 mdname(thread->mddev),
6407 name ?: mddev->pers->name);
6408 if (IS_ERR(thread->tsk)) {
6409 kfree(thread);
6410 return NULL;
6412 return thread;
6415 void md_unregister_thread(mdk_thread_t *thread)
6417 if (!thread)
6418 return;
6419 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6421 kthread_stop(thread->tsk);
6422 kfree(thread);
6425 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6427 if (!mddev) {
6428 MD_BUG();
6429 return;
6432 if (!rdev || test_bit(Faulty, &rdev->flags))
6433 return;
6435 if (!mddev->pers || !mddev->pers->error_handler)
6436 return;
6437 mddev->pers->error_handler(mddev,rdev);
6438 if (mddev->degraded)
6439 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6440 sysfs_notify_dirent_safe(rdev->sysfs_state);
6441 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6442 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6443 md_wakeup_thread(mddev->thread);
6444 if (mddev->event_work.func)
6445 queue_work(md_misc_wq, &mddev->event_work);
6446 md_new_event_inintr(mddev);
6449 /* seq_file implementation /proc/mdstat */
6451 static void status_unused(struct seq_file *seq)
6453 int i = 0;
6454 mdk_rdev_t *rdev;
6456 seq_printf(seq, "unused devices: ");
6458 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6459 char b[BDEVNAME_SIZE];
6460 i++;
6461 seq_printf(seq, "%s ",
6462 bdevname(rdev->bdev,b));
6464 if (!i)
6465 seq_printf(seq, "<none>");
6467 seq_printf(seq, "\n");
6471 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6473 sector_t max_sectors, resync, res;
6474 unsigned long dt, db;
6475 sector_t rt;
6476 int scale;
6477 unsigned int per_milli;
6479 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6481 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6482 max_sectors = mddev->resync_max_sectors;
6483 else
6484 max_sectors = mddev->dev_sectors;
6487 * Should not happen.
6489 if (!max_sectors) {
6490 MD_BUG();
6491 return;
6493 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6494 * in a sector_t, and (max_sectors>>scale) will fit in a
6495 * u32, as those are the requirements for sector_div.
6496 * Thus 'scale' must be at least 10
6498 scale = 10;
6499 if (sizeof(sector_t) > sizeof(unsigned long)) {
6500 while ( max_sectors/2 > (1ULL<<(scale+32)))
6501 scale++;
6503 res = (resync>>scale)*1000;
6504 sector_div(res, (u32)((max_sectors>>scale)+1));
6506 per_milli = res;
6508 int i, x = per_milli/50, y = 20-x;
6509 seq_printf(seq, "[");
6510 for (i = 0; i < x; i++)
6511 seq_printf(seq, "=");
6512 seq_printf(seq, ">");
6513 for (i = 0; i < y; i++)
6514 seq_printf(seq, ".");
6515 seq_printf(seq, "] ");
6517 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6518 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6519 "reshape" :
6520 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6521 "check" :
6522 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6523 "resync" : "recovery"))),
6524 per_milli/10, per_milli % 10,
6525 (unsigned long long) resync/2,
6526 (unsigned long long) max_sectors/2);
6529 * dt: time from mark until now
6530 * db: blocks written from mark until now
6531 * rt: remaining time
6533 * rt is a sector_t, so could be 32bit or 64bit.
6534 * So we divide before multiply in case it is 32bit and close
6535 * to the limit.
6536 * We scale the divisor (db) by 32 to avoid losing precision
6537 * near the end of resync when the number of remaining sectors
6538 * is close to 'db'.
6539 * We then divide rt by 32 after multiplying by db to compensate.
6540 * The '+1' avoids division by zero if db is very small.
6542 dt = ((jiffies - mddev->resync_mark) / HZ);
6543 if (!dt) dt++;
6544 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6545 - mddev->resync_mark_cnt;
6547 rt = max_sectors - resync; /* number of remaining sectors */
6548 sector_div(rt, db/32+1);
6549 rt *= dt;
6550 rt >>= 5;
6552 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6553 ((unsigned long)rt % 60)/6);
6555 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6558 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6560 struct list_head *tmp;
6561 loff_t l = *pos;
6562 mddev_t *mddev;
6564 if (l >= 0x10000)
6565 return NULL;
6566 if (!l--)
6567 /* header */
6568 return (void*)1;
6570 spin_lock(&all_mddevs_lock);
6571 list_for_each(tmp,&all_mddevs)
6572 if (!l--) {
6573 mddev = list_entry(tmp, mddev_t, all_mddevs);
6574 mddev_get(mddev);
6575 spin_unlock(&all_mddevs_lock);
6576 return mddev;
6578 spin_unlock(&all_mddevs_lock);
6579 if (!l--)
6580 return (void*)2;/* tail */
6581 return NULL;
6584 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6586 struct list_head *tmp;
6587 mddev_t *next_mddev, *mddev = v;
6589 ++*pos;
6590 if (v == (void*)2)
6591 return NULL;
6593 spin_lock(&all_mddevs_lock);
6594 if (v == (void*)1)
6595 tmp = all_mddevs.next;
6596 else
6597 tmp = mddev->all_mddevs.next;
6598 if (tmp != &all_mddevs)
6599 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6600 else {
6601 next_mddev = (void*)2;
6602 *pos = 0x10000;
6604 spin_unlock(&all_mddevs_lock);
6606 if (v != (void*)1)
6607 mddev_put(mddev);
6608 return next_mddev;
6612 static void md_seq_stop(struct seq_file *seq, void *v)
6614 mddev_t *mddev = v;
6616 if (mddev && v != (void*)1 && v != (void*)2)
6617 mddev_put(mddev);
6620 static int md_seq_show(struct seq_file *seq, void *v)
6622 mddev_t *mddev = v;
6623 sector_t sectors;
6624 mdk_rdev_t *rdev;
6625 struct bitmap *bitmap;
6627 if (v == (void*)1) {
6628 struct mdk_personality *pers;
6629 seq_printf(seq, "Personalities : ");
6630 spin_lock(&pers_lock);
6631 list_for_each_entry(pers, &pers_list, list)
6632 seq_printf(seq, "[%s] ", pers->name);
6634 spin_unlock(&pers_lock);
6635 seq_printf(seq, "\n");
6636 seq->poll_event = atomic_read(&md_event_count);
6637 return 0;
6639 if (v == (void*)2) {
6640 status_unused(seq);
6641 return 0;
6644 if (mddev_lock(mddev) < 0)
6645 return -EINTR;
6647 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6648 seq_printf(seq, "%s : %sactive", mdname(mddev),
6649 mddev->pers ? "" : "in");
6650 if (mddev->pers) {
6651 if (mddev->ro==1)
6652 seq_printf(seq, " (read-only)");
6653 if (mddev->ro==2)
6654 seq_printf(seq, " (auto-read-only)");
6655 seq_printf(seq, " %s", mddev->pers->name);
6658 sectors = 0;
6659 list_for_each_entry(rdev, &mddev->disks, same_set) {
6660 char b[BDEVNAME_SIZE];
6661 seq_printf(seq, " %s[%d]",
6662 bdevname(rdev->bdev,b), rdev->desc_nr);
6663 if (test_bit(WriteMostly, &rdev->flags))
6664 seq_printf(seq, "(W)");
6665 if (test_bit(Faulty, &rdev->flags)) {
6666 seq_printf(seq, "(F)");
6667 continue;
6668 } else if (rdev->raid_disk < 0)
6669 seq_printf(seq, "(S)"); /* spare */
6670 sectors += rdev->sectors;
6673 if (!list_empty(&mddev->disks)) {
6674 if (mddev->pers)
6675 seq_printf(seq, "\n %llu blocks",
6676 (unsigned long long)
6677 mddev->array_sectors / 2);
6678 else
6679 seq_printf(seq, "\n %llu blocks",
6680 (unsigned long long)sectors / 2);
6682 if (mddev->persistent) {
6683 if (mddev->major_version != 0 ||
6684 mddev->minor_version != 90) {
6685 seq_printf(seq," super %d.%d",
6686 mddev->major_version,
6687 mddev->minor_version);
6689 } else if (mddev->external)
6690 seq_printf(seq, " super external:%s",
6691 mddev->metadata_type);
6692 else
6693 seq_printf(seq, " super non-persistent");
6695 if (mddev->pers) {
6696 mddev->pers->status(seq, mddev);
6697 seq_printf(seq, "\n ");
6698 if (mddev->pers->sync_request) {
6699 if (mddev->curr_resync > 2) {
6700 status_resync(seq, mddev);
6701 seq_printf(seq, "\n ");
6702 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6703 seq_printf(seq, "\tresync=DELAYED\n ");
6704 else if (mddev->recovery_cp < MaxSector)
6705 seq_printf(seq, "\tresync=PENDING\n ");
6707 } else
6708 seq_printf(seq, "\n ");
6710 if ((bitmap = mddev->bitmap)) {
6711 unsigned long chunk_kb;
6712 unsigned long flags;
6713 spin_lock_irqsave(&bitmap->lock, flags);
6714 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6715 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6716 "%lu%s chunk",
6717 bitmap->pages - bitmap->missing_pages,
6718 bitmap->pages,
6719 (bitmap->pages - bitmap->missing_pages)
6720 << (PAGE_SHIFT - 10),
6721 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6722 chunk_kb ? "KB" : "B");
6723 if (bitmap->file) {
6724 seq_printf(seq, ", file: ");
6725 seq_path(seq, &bitmap->file->f_path, " \t\n");
6728 seq_printf(seq, "\n");
6729 spin_unlock_irqrestore(&bitmap->lock, flags);
6732 seq_printf(seq, "\n");
6734 mddev_unlock(mddev);
6736 return 0;
6739 static const struct seq_operations md_seq_ops = {
6740 .start = md_seq_start,
6741 .next = md_seq_next,
6742 .stop = md_seq_stop,
6743 .show = md_seq_show,
6746 static int md_seq_open(struct inode *inode, struct file *file)
6748 struct seq_file *seq;
6749 int error;
6751 error = seq_open(file, &md_seq_ops);
6752 if (error)
6753 return error;
6755 seq = file->private_data;
6756 seq->poll_event = atomic_read(&md_event_count);
6757 return error;
6760 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6762 struct seq_file *seq = filp->private_data;
6763 int mask;
6765 poll_wait(filp, &md_event_waiters, wait);
6767 /* always allow read */
6768 mask = POLLIN | POLLRDNORM;
6770 if (seq->poll_event != atomic_read(&md_event_count))
6771 mask |= POLLERR | POLLPRI;
6772 return mask;
6775 static const struct file_operations md_seq_fops = {
6776 .owner = THIS_MODULE,
6777 .open = md_seq_open,
6778 .read = seq_read,
6779 .llseek = seq_lseek,
6780 .release = seq_release_private,
6781 .poll = mdstat_poll,
6784 int register_md_personality(struct mdk_personality *p)
6786 spin_lock(&pers_lock);
6787 list_add_tail(&p->list, &pers_list);
6788 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6789 spin_unlock(&pers_lock);
6790 return 0;
6793 int unregister_md_personality(struct mdk_personality *p)
6795 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6796 spin_lock(&pers_lock);
6797 list_del_init(&p->list);
6798 spin_unlock(&pers_lock);
6799 return 0;
6802 static int is_mddev_idle(mddev_t *mddev, int init)
6804 mdk_rdev_t * rdev;
6805 int idle;
6806 int curr_events;
6808 idle = 1;
6809 rcu_read_lock();
6810 rdev_for_each_rcu(rdev, mddev) {
6811 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6812 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6813 (int)part_stat_read(&disk->part0, sectors[1]) -
6814 atomic_read(&disk->sync_io);
6815 /* sync IO will cause sync_io to increase before the disk_stats
6816 * as sync_io is counted when a request starts, and
6817 * disk_stats is counted when it completes.
6818 * So resync activity will cause curr_events to be smaller than
6819 * when there was no such activity.
6820 * non-sync IO will cause disk_stat to increase without
6821 * increasing sync_io so curr_events will (eventually)
6822 * be larger than it was before. Once it becomes
6823 * substantially larger, the test below will cause
6824 * the array to appear non-idle, and resync will slow
6825 * down.
6826 * If there is a lot of outstanding resync activity when
6827 * we set last_event to curr_events, then all that activity
6828 * completing might cause the array to appear non-idle
6829 * and resync will be slowed down even though there might
6830 * not have been non-resync activity. This will only
6831 * happen once though. 'last_events' will soon reflect
6832 * the state where there is little or no outstanding
6833 * resync requests, and further resync activity will
6834 * always make curr_events less than last_events.
6837 if (init || curr_events - rdev->last_events > 64) {
6838 rdev->last_events = curr_events;
6839 idle = 0;
6842 rcu_read_unlock();
6843 return idle;
6846 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6848 /* another "blocks" (512byte) blocks have been synced */
6849 atomic_sub(blocks, &mddev->recovery_active);
6850 wake_up(&mddev->recovery_wait);
6851 if (!ok) {
6852 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6853 md_wakeup_thread(mddev->thread);
6854 // stop recovery, signal do_sync ....
6859 /* md_write_start(mddev, bi)
6860 * If we need to update some array metadata (e.g. 'active' flag
6861 * in superblock) before writing, schedule a superblock update
6862 * and wait for it to complete.
6864 void md_write_start(mddev_t *mddev, struct bio *bi)
6866 int did_change = 0;
6867 if (bio_data_dir(bi) != WRITE)
6868 return;
6870 BUG_ON(mddev->ro == 1);
6871 if (mddev->ro == 2) {
6872 /* need to switch to read/write */
6873 mddev->ro = 0;
6874 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6875 md_wakeup_thread(mddev->thread);
6876 md_wakeup_thread(mddev->sync_thread);
6877 did_change = 1;
6879 atomic_inc(&mddev->writes_pending);
6880 if (mddev->safemode == 1)
6881 mddev->safemode = 0;
6882 if (mddev->in_sync) {
6883 spin_lock_irq(&mddev->write_lock);
6884 if (mddev->in_sync) {
6885 mddev->in_sync = 0;
6886 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6887 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6888 md_wakeup_thread(mddev->thread);
6889 did_change = 1;
6891 spin_unlock_irq(&mddev->write_lock);
6893 if (did_change)
6894 sysfs_notify_dirent_safe(mddev->sysfs_state);
6895 wait_event(mddev->sb_wait,
6896 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6899 void md_write_end(mddev_t *mddev)
6901 if (atomic_dec_and_test(&mddev->writes_pending)) {
6902 if (mddev->safemode == 2)
6903 md_wakeup_thread(mddev->thread);
6904 else if (mddev->safemode_delay)
6905 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6909 /* md_allow_write(mddev)
6910 * Calling this ensures that the array is marked 'active' so that writes
6911 * may proceed without blocking. It is important to call this before
6912 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6913 * Must be called with mddev_lock held.
6915 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6916 * is dropped, so return -EAGAIN after notifying userspace.
6918 int md_allow_write(mddev_t *mddev)
6920 if (!mddev->pers)
6921 return 0;
6922 if (mddev->ro)
6923 return 0;
6924 if (!mddev->pers->sync_request)
6925 return 0;
6927 spin_lock_irq(&mddev->write_lock);
6928 if (mddev->in_sync) {
6929 mddev->in_sync = 0;
6930 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6931 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6932 if (mddev->safemode_delay &&
6933 mddev->safemode == 0)
6934 mddev->safemode = 1;
6935 spin_unlock_irq(&mddev->write_lock);
6936 md_update_sb(mddev, 0);
6937 sysfs_notify_dirent_safe(mddev->sysfs_state);
6938 } else
6939 spin_unlock_irq(&mddev->write_lock);
6941 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6942 return -EAGAIN;
6943 else
6944 return 0;
6946 EXPORT_SYMBOL_GPL(md_allow_write);
6948 #define SYNC_MARKS 10
6949 #define SYNC_MARK_STEP (3*HZ)
6950 void md_do_sync(mddev_t *mddev)
6952 mddev_t *mddev2;
6953 unsigned int currspeed = 0,
6954 window;
6955 sector_t max_sectors,j, io_sectors;
6956 unsigned long mark[SYNC_MARKS];
6957 sector_t mark_cnt[SYNC_MARKS];
6958 int last_mark,m;
6959 struct list_head *tmp;
6960 sector_t last_check;
6961 int skipped = 0;
6962 mdk_rdev_t *rdev;
6963 char *desc;
6965 /* just incase thread restarts... */
6966 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6967 return;
6968 if (mddev->ro) /* never try to sync a read-only array */
6969 return;
6971 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6972 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6973 desc = "data-check";
6974 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6975 desc = "requested-resync";
6976 else
6977 desc = "resync";
6978 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6979 desc = "reshape";
6980 else
6981 desc = "recovery";
6983 /* we overload curr_resync somewhat here.
6984 * 0 == not engaged in resync at all
6985 * 2 == checking that there is no conflict with another sync
6986 * 1 == like 2, but have yielded to allow conflicting resync to
6987 * commense
6988 * other == active in resync - this many blocks
6990 * Before starting a resync we must have set curr_resync to
6991 * 2, and then checked that every "conflicting" array has curr_resync
6992 * less than ours. When we find one that is the same or higher
6993 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6994 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6995 * This will mean we have to start checking from the beginning again.
6999 do {
7000 mddev->curr_resync = 2;
7002 try_again:
7003 if (kthread_should_stop())
7004 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7006 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7007 goto skip;
7008 for_each_mddev(mddev2, tmp) {
7009 if (mddev2 == mddev)
7010 continue;
7011 if (!mddev->parallel_resync
7012 && mddev2->curr_resync
7013 && match_mddev_units(mddev, mddev2)) {
7014 DEFINE_WAIT(wq);
7015 if (mddev < mddev2 && mddev->curr_resync == 2) {
7016 /* arbitrarily yield */
7017 mddev->curr_resync = 1;
7018 wake_up(&resync_wait);
7020 if (mddev > mddev2 && mddev->curr_resync == 1)
7021 /* no need to wait here, we can wait the next
7022 * time 'round when curr_resync == 2
7024 continue;
7025 /* We need to wait 'interruptible' so as not to
7026 * contribute to the load average, and not to
7027 * be caught by 'softlockup'
7029 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7030 if (!kthread_should_stop() &&
7031 mddev2->curr_resync >= mddev->curr_resync) {
7032 printk(KERN_INFO "md: delaying %s of %s"
7033 " until %s has finished (they"
7034 " share one or more physical units)\n",
7035 desc, mdname(mddev), mdname(mddev2));
7036 mddev_put(mddev2);
7037 if (signal_pending(current))
7038 flush_signals(current);
7039 schedule();
7040 finish_wait(&resync_wait, &wq);
7041 goto try_again;
7043 finish_wait(&resync_wait, &wq);
7046 } while (mddev->curr_resync < 2);
7048 j = 0;
7049 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7050 /* resync follows the size requested by the personality,
7051 * which defaults to physical size, but can be virtual size
7053 max_sectors = mddev->resync_max_sectors;
7054 mddev->resync_mismatches = 0;
7055 /* we don't use the checkpoint if there's a bitmap */
7056 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7057 j = mddev->resync_min;
7058 else if (!mddev->bitmap)
7059 j = mddev->recovery_cp;
7061 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7062 max_sectors = mddev->dev_sectors;
7063 else {
7064 /* recovery follows the physical size of devices */
7065 max_sectors = mddev->dev_sectors;
7066 j = MaxSector;
7067 rcu_read_lock();
7068 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7069 if (rdev->raid_disk >= 0 &&
7070 !test_bit(Faulty, &rdev->flags) &&
7071 !test_bit(In_sync, &rdev->flags) &&
7072 rdev->recovery_offset < j)
7073 j = rdev->recovery_offset;
7074 rcu_read_unlock();
7077 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7078 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7079 " %d KB/sec/disk.\n", speed_min(mddev));
7080 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7081 "(but not more than %d KB/sec) for %s.\n",
7082 speed_max(mddev), desc);
7084 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7086 io_sectors = 0;
7087 for (m = 0; m < SYNC_MARKS; m++) {
7088 mark[m] = jiffies;
7089 mark_cnt[m] = io_sectors;
7091 last_mark = 0;
7092 mddev->resync_mark = mark[last_mark];
7093 mddev->resync_mark_cnt = mark_cnt[last_mark];
7096 * Tune reconstruction:
7098 window = 32*(PAGE_SIZE/512);
7099 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7100 window/2, (unsigned long long)max_sectors/2);
7102 atomic_set(&mddev->recovery_active, 0);
7103 last_check = 0;
7105 if (j>2) {
7106 printk(KERN_INFO
7107 "md: resuming %s of %s from checkpoint.\n",
7108 desc, mdname(mddev));
7109 mddev->curr_resync = j;
7111 mddev->curr_resync_completed = j;
7113 while (j < max_sectors) {
7114 sector_t sectors;
7116 skipped = 0;
7118 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7119 ((mddev->curr_resync > mddev->curr_resync_completed &&
7120 (mddev->curr_resync - mddev->curr_resync_completed)
7121 > (max_sectors >> 4)) ||
7122 (j - mddev->curr_resync_completed)*2
7123 >= mddev->resync_max - mddev->curr_resync_completed
7124 )) {
7125 /* time to update curr_resync_completed */
7126 wait_event(mddev->recovery_wait,
7127 atomic_read(&mddev->recovery_active) == 0);
7128 mddev->curr_resync_completed = j;
7129 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7130 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7133 while (j >= mddev->resync_max && !kthread_should_stop()) {
7134 /* As this condition is controlled by user-space,
7135 * we can block indefinitely, so use '_interruptible'
7136 * to avoid triggering warnings.
7138 flush_signals(current); /* just in case */
7139 wait_event_interruptible(mddev->recovery_wait,
7140 mddev->resync_max > j
7141 || kthread_should_stop());
7144 if (kthread_should_stop())
7145 goto interrupted;
7147 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7148 currspeed < speed_min(mddev));
7149 if (sectors == 0) {
7150 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7151 goto out;
7154 if (!skipped) { /* actual IO requested */
7155 io_sectors += sectors;
7156 atomic_add(sectors, &mddev->recovery_active);
7159 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7160 break;
7162 j += sectors;
7163 if (j>1) mddev->curr_resync = j;
7164 mddev->curr_mark_cnt = io_sectors;
7165 if (last_check == 0)
7166 /* this is the earliest that rebuild will be
7167 * visible in /proc/mdstat
7169 md_new_event(mddev);
7171 if (last_check + window > io_sectors || j == max_sectors)
7172 continue;
7174 last_check = io_sectors;
7175 repeat:
7176 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7177 /* step marks */
7178 int next = (last_mark+1) % SYNC_MARKS;
7180 mddev->resync_mark = mark[next];
7181 mddev->resync_mark_cnt = mark_cnt[next];
7182 mark[next] = jiffies;
7183 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7184 last_mark = next;
7188 if (kthread_should_stop())
7189 goto interrupted;
7193 * this loop exits only if either when we are slower than
7194 * the 'hard' speed limit, or the system was IO-idle for
7195 * a jiffy.
7196 * the system might be non-idle CPU-wise, but we only care
7197 * about not overloading the IO subsystem. (things like an
7198 * e2fsck being done on the RAID array should execute fast)
7200 cond_resched();
7202 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7203 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7205 if (currspeed > speed_min(mddev)) {
7206 if ((currspeed > speed_max(mddev)) ||
7207 !is_mddev_idle(mddev, 0)) {
7208 msleep(500);
7209 goto repeat;
7213 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7215 * this also signals 'finished resyncing' to md_stop
7217 out:
7218 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7220 /* tell personality that we are finished */
7221 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7223 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7224 mddev->curr_resync > 2) {
7225 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7226 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7227 if (mddev->curr_resync >= mddev->recovery_cp) {
7228 printk(KERN_INFO
7229 "md: checkpointing %s of %s.\n",
7230 desc, mdname(mddev));
7231 mddev->recovery_cp = mddev->curr_resync;
7233 } else
7234 mddev->recovery_cp = MaxSector;
7235 } else {
7236 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7237 mddev->curr_resync = MaxSector;
7238 rcu_read_lock();
7239 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7240 if (rdev->raid_disk >= 0 &&
7241 mddev->delta_disks >= 0 &&
7242 !test_bit(Faulty, &rdev->flags) &&
7243 !test_bit(In_sync, &rdev->flags) &&
7244 rdev->recovery_offset < mddev->curr_resync)
7245 rdev->recovery_offset = mddev->curr_resync;
7246 rcu_read_unlock();
7249 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7251 skip:
7252 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7253 /* We completed so min/max setting can be forgotten if used. */
7254 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7255 mddev->resync_min = 0;
7256 mddev->resync_max = MaxSector;
7257 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7258 mddev->resync_min = mddev->curr_resync_completed;
7259 mddev->curr_resync = 0;
7260 wake_up(&resync_wait);
7261 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7262 md_wakeup_thread(mddev->thread);
7263 return;
7265 interrupted:
7267 * got a signal, exit.
7269 printk(KERN_INFO
7270 "md: md_do_sync() got signal ... exiting\n");
7271 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7272 goto out;
7275 EXPORT_SYMBOL_GPL(md_do_sync);
7277 static int remove_and_add_spares(mddev_t *mddev)
7279 mdk_rdev_t *rdev;
7280 int spares = 0;
7282 mddev->curr_resync_completed = 0;
7284 list_for_each_entry(rdev, &mddev->disks, same_set)
7285 if (rdev->raid_disk >= 0 &&
7286 !test_bit(Blocked, &rdev->flags) &&
7287 (test_bit(Faulty, &rdev->flags) ||
7288 ! test_bit(In_sync, &rdev->flags)) &&
7289 atomic_read(&rdev->nr_pending)==0) {
7290 if (mddev->pers->hot_remove_disk(
7291 mddev, rdev->raid_disk)==0) {
7292 sysfs_unlink_rdev(mddev, rdev);
7293 rdev->raid_disk = -1;
7297 if (mddev->degraded) {
7298 list_for_each_entry(rdev, &mddev->disks, same_set) {
7299 if (rdev->raid_disk >= 0 &&
7300 !test_bit(In_sync, &rdev->flags) &&
7301 !test_bit(Faulty, &rdev->flags))
7302 spares++;
7303 if (rdev->raid_disk < 0
7304 && !test_bit(Faulty, &rdev->flags)) {
7305 rdev->recovery_offset = 0;
7306 if (mddev->pers->
7307 hot_add_disk(mddev, rdev) == 0) {
7308 if (sysfs_link_rdev(mddev, rdev))
7309 /* failure here is OK */;
7310 spares++;
7311 md_new_event(mddev);
7312 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7313 } else
7314 break;
7318 return spares;
7321 static void reap_sync_thread(mddev_t *mddev)
7323 mdk_rdev_t *rdev;
7325 /* resync has finished, collect result */
7326 md_unregister_thread(mddev->sync_thread);
7327 mddev->sync_thread = NULL;
7328 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7329 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7330 /* success...*/
7331 /* activate any spares */
7332 if (mddev->pers->spare_active(mddev))
7333 sysfs_notify(&mddev->kobj, NULL,
7334 "degraded");
7336 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7337 mddev->pers->finish_reshape)
7338 mddev->pers->finish_reshape(mddev);
7339 md_update_sb(mddev, 1);
7341 /* if array is no-longer degraded, then any saved_raid_disk
7342 * information must be scrapped
7344 if (!mddev->degraded)
7345 list_for_each_entry(rdev, &mddev->disks, same_set)
7346 rdev->saved_raid_disk = -1;
7348 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7349 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7350 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7351 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7352 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7353 /* flag recovery needed just to double check */
7354 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7355 sysfs_notify_dirent_safe(mddev->sysfs_action);
7356 md_new_event(mddev);
7357 if (mddev->event_work.func)
7358 queue_work(md_misc_wq, &mddev->event_work);
7362 * This routine is regularly called by all per-raid-array threads to
7363 * deal with generic issues like resync and super-block update.
7364 * Raid personalities that don't have a thread (linear/raid0) do not
7365 * need this as they never do any recovery or update the superblock.
7367 * It does not do any resync itself, but rather "forks" off other threads
7368 * to do that as needed.
7369 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7370 * "->recovery" and create a thread at ->sync_thread.
7371 * When the thread finishes it sets MD_RECOVERY_DONE
7372 * and wakeups up this thread which will reap the thread and finish up.
7373 * This thread also removes any faulty devices (with nr_pending == 0).
7375 * The overall approach is:
7376 * 1/ if the superblock needs updating, update it.
7377 * 2/ If a recovery thread is running, don't do anything else.
7378 * 3/ If recovery has finished, clean up, possibly marking spares active.
7379 * 4/ If there are any faulty devices, remove them.
7380 * 5/ If array is degraded, try to add spares devices
7381 * 6/ If array has spares or is not in-sync, start a resync thread.
7383 void md_check_recovery(mddev_t *mddev)
7385 if (mddev->suspended)
7386 return;
7388 if (mddev->bitmap)
7389 bitmap_daemon_work(mddev);
7391 if (signal_pending(current)) {
7392 if (mddev->pers->sync_request && !mddev->external) {
7393 printk(KERN_INFO "md: %s in immediate safe mode\n",
7394 mdname(mddev));
7395 mddev->safemode = 2;
7397 flush_signals(current);
7400 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7401 return;
7402 if ( ! (
7403 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7404 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7405 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7406 (mddev->external == 0 && mddev->safemode == 1) ||
7407 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7408 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7410 return;
7412 if (mddev_trylock(mddev)) {
7413 int spares = 0;
7415 if (mddev->ro) {
7416 /* Only thing we do on a ro array is remove
7417 * failed devices.
7419 mdk_rdev_t *rdev;
7420 list_for_each_entry(rdev, &mddev->disks, same_set)
7421 if (rdev->raid_disk >= 0 &&
7422 !test_bit(Blocked, &rdev->flags) &&
7423 test_bit(Faulty, &rdev->flags) &&
7424 atomic_read(&rdev->nr_pending)==0) {
7425 if (mddev->pers->hot_remove_disk(
7426 mddev, rdev->raid_disk)==0) {
7427 sysfs_unlink_rdev(mddev, rdev);
7428 rdev->raid_disk = -1;
7431 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7432 goto unlock;
7435 if (!mddev->external) {
7436 int did_change = 0;
7437 spin_lock_irq(&mddev->write_lock);
7438 if (mddev->safemode &&
7439 !atomic_read(&mddev->writes_pending) &&
7440 !mddev->in_sync &&
7441 mddev->recovery_cp == MaxSector) {
7442 mddev->in_sync = 1;
7443 did_change = 1;
7444 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7446 if (mddev->safemode == 1)
7447 mddev->safemode = 0;
7448 spin_unlock_irq(&mddev->write_lock);
7449 if (did_change)
7450 sysfs_notify_dirent_safe(mddev->sysfs_state);
7453 if (mddev->flags)
7454 md_update_sb(mddev, 0);
7456 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7457 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7458 /* resync/recovery still happening */
7459 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7460 goto unlock;
7462 if (mddev->sync_thread) {
7463 reap_sync_thread(mddev);
7464 goto unlock;
7466 /* Set RUNNING before clearing NEEDED to avoid
7467 * any transients in the value of "sync_action".
7469 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7470 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7471 /* Clear some bits that don't mean anything, but
7472 * might be left set
7474 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7475 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7477 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7478 goto unlock;
7479 /* no recovery is running.
7480 * remove any failed drives, then
7481 * add spares if possible.
7482 * Spare are also removed and re-added, to allow
7483 * the personality to fail the re-add.
7486 if (mddev->reshape_position != MaxSector) {
7487 if (mddev->pers->check_reshape == NULL ||
7488 mddev->pers->check_reshape(mddev) != 0)
7489 /* Cannot proceed */
7490 goto unlock;
7491 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7492 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7493 } else if ((spares = remove_and_add_spares(mddev))) {
7494 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7495 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7496 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7497 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7498 } else if (mddev->recovery_cp < MaxSector) {
7499 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7500 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7501 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7502 /* nothing to be done ... */
7503 goto unlock;
7505 if (mddev->pers->sync_request) {
7506 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7507 /* We are adding a device or devices to an array
7508 * which has the bitmap stored on all devices.
7509 * So make sure all bitmap pages get written
7511 bitmap_write_all(mddev->bitmap);
7513 mddev->sync_thread = md_register_thread(md_do_sync,
7514 mddev,
7515 "resync");
7516 if (!mddev->sync_thread) {
7517 printk(KERN_ERR "%s: could not start resync"
7518 " thread...\n",
7519 mdname(mddev));
7520 /* leave the spares where they are, it shouldn't hurt */
7521 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7522 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7523 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7524 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7525 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7526 } else
7527 md_wakeup_thread(mddev->sync_thread);
7528 sysfs_notify_dirent_safe(mddev->sysfs_action);
7529 md_new_event(mddev);
7531 unlock:
7532 if (!mddev->sync_thread) {
7533 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7534 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7535 &mddev->recovery))
7536 if (mddev->sysfs_action)
7537 sysfs_notify_dirent_safe(mddev->sysfs_action);
7539 mddev_unlock(mddev);
7543 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7545 sysfs_notify_dirent_safe(rdev->sysfs_state);
7546 wait_event_timeout(rdev->blocked_wait,
7547 !test_bit(Blocked, &rdev->flags) &&
7548 !test_bit(BlockedBadBlocks, &rdev->flags),
7549 msecs_to_jiffies(5000));
7550 rdev_dec_pending(rdev, mddev);
7552 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7555 /* Bad block management.
7556 * We can record which blocks on each device are 'bad' and so just
7557 * fail those blocks, or that stripe, rather than the whole device.
7558 * Entries in the bad-block table are 64bits wide. This comprises:
7559 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7560 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7561 * A 'shift' can be set so that larger blocks are tracked and
7562 * consequently larger devices can be covered.
7563 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7565 * Locking of the bad-block table uses a seqlock so md_is_badblock
7566 * might need to retry if it is very unlucky.
7567 * We will sometimes want to check for bad blocks in a bi_end_io function,
7568 * so we use the write_seqlock_irq variant.
7570 * When looking for a bad block we specify a range and want to
7571 * know if any block in the range is bad. So we binary-search
7572 * to the last range that starts at-or-before the given endpoint,
7573 * (or "before the sector after the target range")
7574 * then see if it ends after the given start.
7575 * We return
7576 * 0 if there are no known bad blocks in the range
7577 * 1 if there are known bad block which are all acknowledged
7578 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7579 * plus the start/length of the first bad section we overlap.
7581 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7582 sector_t *first_bad, int *bad_sectors)
7584 int hi;
7585 int lo = 0;
7586 u64 *p = bb->page;
7587 int rv = 0;
7588 sector_t target = s + sectors;
7589 unsigned seq;
7591 if (bb->shift > 0) {
7592 /* round the start down, and the end up */
7593 s >>= bb->shift;
7594 target += (1<<bb->shift) - 1;
7595 target >>= bb->shift;
7596 sectors = target - s;
7598 /* 'target' is now the first block after the bad range */
7600 retry:
7601 seq = read_seqbegin(&bb->lock);
7603 hi = bb->count;
7605 /* Binary search between lo and hi for 'target'
7606 * i.e. for the last range that starts before 'target'
7608 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7609 * are known not to be the last range before target.
7610 * VARIANT: hi-lo is the number of possible
7611 * ranges, and decreases until it reaches 1
7613 while (hi - lo > 1) {
7614 int mid = (lo + hi) / 2;
7615 sector_t a = BB_OFFSET(p[mid]);
7616 if (a < target)
7617 /* This could still be the one, earlier ranges
7618 * could not. */
7619 lo = mid;
7620 else
7621 /* This and later ranges are definitely out. */
7622 hi = mid;
7624 /* 'lo' might be the last that started before target, but 'hi' isn't */
7625 if (hi > lo) {
7626 /* need to check all range that end after 's' to see if
7627 * any are unacknowledged.
7629 while (lo >= 0 &&
7630 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7631 if (BB_OFFSET(p[lo]) < target) {
7632 /* starts before the end, and finishes after
7633 * the start, so they must overlap
7635 if (rv != -1 && BB_ACK(p[lo]))
7636 rv = 1;
7637 else
7638 rv = -1;
7639 *first_bad = BB_OFFSET(p[lo]);
7640 *bad_sectors = BB_LEN(p[lo]);
7642 lo--;
7646 if (read_seqretry(&bb->lock, seq))
7647 goto retry;
7649 return rv;
7651 EXPORT_SYMBOL_GPL(md_is_badblock);
7654 * Add a range of bad blocks to the table.
7655 * This might extend the table, or might contract it
7656 * if two adjacent ranges can be merged.
7657 * We binary-search to find the 'insertion' point, then
7658 * decide how best to handle it.
7660 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7661 int acknowledged)
7663 u64 *p;
7664 int lo, hi;
7665 int rv = 1;
7667 if (bb->shift < 0)
7668 /* badblocks are disabled */
7669 return 0;
7671 if (bb->shift) {
7672 /* round the start down, and the end up */
7673 sector_t next = s + sectors;
7674 s >>= bb->shift;
7675 next += (1<<bb->shift) - 1;
7676 next >>= bb->shift;
7677 sectors = next - s;
7680 write_seqlock_irq(&bb->lock);
7682 p = bb->page;
7683 lo = 0;
7684 hi = bb->count;
7685 /* Find the last range that starts at-or-before 's' */
7686 while (hi - lo > 1) {
7687 int mid = (lo + hi) / 2;
7688 sector_t a = BB_OFFSET(p[mid]);
7689 if (a <= s)
7690 lo = mid;
7691 else
7692 hi = mid;
7694 if (hi > lo && BB_OFFSET(p[lo]) > s)
7695 hi = lo;
7697 if (hi > lo) {
7698 /* we found a range that might merge with the start
7699 * of our new range
7701 sector_t a = BB_OFFSET(p[lo]);
7702 sector_t e = a + BB_LEN(p[lo]);
7703 int ack = BB_ACK(p[lo]);
7704 if (e >= s) {
7705 /* Yes, we can merge with a previous range */
7706 if (s == a && s + sectors >= e)
7707 /* new range covers old */
7708 ack = acknowledged;
7709 else
7710 ack = ack && acknowledged;
7712 if (e < s + sectors)
7713 e = s + sectors;
7714 if (e - a <= BB_MAX_LEN) {
7715 p[lo] = BB_MAKE(a, e-a, ack);
7716 s = e;
7717 } else {
7718 /* does not all fit in one range,
7719 * make p[lo] maximal
7721 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7722 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7723 s = a + BB_MAX_LEN;
7725 sectors = e - s;
7728 if (sectors && hi < bb->count) {
7729 /* 'hi' points to the first range that starts after 's'.
7730 * Maybe we can merge with the start of that range */
7731 sector_t a = BB_OFFSET(p[hi]);
7732 sector_t e = a + BB_LEN(p[hi]);
7733 int ack = BB_ACK(p[hi]);
7734 if (a <= s + sectors) {
7735 /* merging is possible */
7736 if (e <= s + sectors) {
7737 /* full overlap */
7738 e = s + sectors;
7739 ack = acknowledged;
7740 } else
7741 ack = ack && acknowledged;
7743 a = s;
7744 if (e - a <= BB_MAX_LEN) {
7745 p[hi] = BB_MAKE(a, e-a, ack);
7746 s = e;
7747 } else {
7748 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7749 s = a + BB_MAX_LEN;
7751 sectors = e - s;
7752 lo = hi;
7753 hi++;
7756 if (sectors == 0 && hi < bb->count) {
7757 /* we might be able to combine lo and hi */
7758 /* Note: 's' is at the end of 'lo' */
7759 sector_t a = BB_OFFSET(p[hi]);
7760 int lolen = BB_LEN(p[lo]);
7761 int hilen = BB_LEN(p[hi]);
7762 int newlen = lolen + hilen - (s - a);
7763 if (s >= a && newlen < BB_MAX_LEN) {
7764 /* yes, we can combine them */
7765 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7766 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7767 memmove(p + hi, p + hi + 1,
7768 (bb->count - hi - 1) * 8);
7769 bb->count--;
7772 while (sectors) {
7773 /* didn't merge (it all).
7774 * Need to add a range just before 'hi' */
7775 if (bb->count >= MD_MAX_BADBLOCKS) {
7776 /* No room for more */
7777 rv = 0;
7778 break;
7779 } else {
7780 int this_sectors = sectors;
7781 memmove(p + hi + 1, p + hi,
7782 (bb->count - hi) * 8);
7783 bb->count++;
7785 if (this_sectors > BB_MAX_LEN)
7786 this_sectors = BB_MAX_LEN;
7787 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7788 sectors -= this_sectors;
7789 s += this_sectors;
7793 bb->changed = 1;
7794 if (!acknowledged)
7795 bb->unacked_exist = 1;
7796 write_sequnlock_irq(&bb->lock);
7798 return rv;
7801 int rdev_set_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors,
7802 int acknowledged)
7804 int rv = md_set_badblocks(&rdev->badblocks,
7805 s + rdev->data_offset, sectors, acknowledged);
7806 if (rv) {
7807 /* Make sure they get written out promptly */
7808 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7809 md_wakeup_thread(rdev->mddev->thread);
7811 return rv;
7813 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7816 * Remove a range of bad blocks from the table.
7817 * This may involve extending the table if we spilt a region,
7818 * but it must not fail. So if the table becomes full, we just
7819 * drop the remove request.
7821 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7823 u64 *p;
7824 int lo, hi;
7825 sector_t target = s + sectors;
7826 int rv = 0;
7828 if (bb->shift > 0) {
7829 /* When clearing we round the start up and the end down.
7830 * This should not matter as the shift should align with
7831 * the block size and no rounding should ever be needed.
7832 * However it is better the think a block is bad when it
7833 * isn't than to think a block is not bad when it is.
7835 s += (1<<bb->shift) - 1;
7836 s >>= bb->shift;
7837 target >>= bb->shift;
7838 sectors = target - s;
7841 write_seqlock_irq(&bb->lock);
7843 p = bb->page;
7844 lo = 0;
7845 hi = bb->count;
7846 /* Find the last range that starts before 'target' */
7847 while (hi - lo > 1) {
7848 int mid = (lo + hi) / 2;
7849 sector_t a = BB_OFFSET(p[mid]);
7850 if (a < target)
7851 lo = mid;
7852 else
7853 hi = mid;
7855 if (hi > lo) {
7856 /* p[lo] is the last range that could overlap the
7857 * current range. Earlier ranges could also overlap,
7858 * but only this one can overlap the end of the range.
7860 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7861 /* Partial overlap, leave the tail of this range */
7862 int ack = BB_ACK(p[lo]);
7863 sector_t a = BB_OFFSET(p[lo]);
7864 sector_t end = a + BB_LEN(p[lo]);
7866 if (a < s) {
7867 /* we need to split this range */
7868 if (bb->count >= MD_MAX_BADBLOCKS) {
7869 rv = 0;
7870 goto out;
7872 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7873 bb->count++;
7874 p[lo] = BB_MAKE(a, s-a, ack);
7875 lo++;
7877 p[lo] = BB_MAKE(target, end - target, ack);
7878 /* there is no longer an overlap */
7879 hi = lo;
7880 lo--;
7882 while (lo >= 0 &&
7883 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7884 /* This range does overlap */
7885 if (BB_OFFSET(p[lo]) < s) {
7886 /* Keep the early parts of this range. */
7887 int ack = BB_ACK(p[lo]);
7888 sector_t start = BB_OFFSET(p[lo]);
7889 p[lo] = BB_MAKE(start, s - start, ack);
7890 /* now low doesn't overlap, so.. */
7891 break;
7893 lo--;
7895 /* 'lo' is strictly before, 'hi' is strictly after,
7896 * anything between needs to be discarded
7898 if (hi - lo > 1) {
7899 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7900 bb->count -= (hi - lo - 1);
7904 bb->changed = 1;
7905 out:
7906 write_sequnlock_irq(&bb->lock);
7907 return rv;
7910 int rdev_clear_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors)
7912 return md_clear_badblocks(&rdev->badblocks,
7913 s + rdev->data_offset,
7914 sectors);
7916 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7919 * Acknowledge all bad blocks in a list.
7920 * This only succeeds if ->changed is clear. It is used by
7921 * in-kernel metadata updates
7923 void md_ack_all_badblocks(struct badblocks *bb)
7925 if (bb->page == NULL || bb->changed)
7926 /* no point even trying */
7927 return;
7928 write_seqlock_irq(&bb->lock);
7930 if (bb->changed == 0) {
7931 u64 *p = bb->page;
7932 int i;
7933 for (i = 0; i < bb->count ; i++) {
7934 if (!BB_ACK(p[i])) {
7935 sector_t start = BB_OFFSET(p[i]);
7936 int len = BB_LEN(p[i]);
7937 p[i] = BB_MAKE(start, len, 1);
7940 bb->unacked_exist = 0;
7942 write_sequnlock_irq(&bb->lock);
7944 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7946 /* sysfs access to bad-blocks list.
7947 * We present two files.
7948 * 'bad-blocks' lists sector numbers and lengths of ranges that
7949 * are recorded as bad. The list is truncated to fit within
7950 * the one-page limit of sysfs.
7951 * Writing "sector length" to this file adds an acknowledged
7952 * bad block list.
7953 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
7954 * been acknowledged. Writing to this file adds bad blocks
7955 * without acknowledging them. This is largely for testing.
7958 static ssize_t
7959 badblocks_show(struct badblocks *bb, char *page, int unack)
7961 size_t len;
7962 int i;
7963 u64 *p = bb->page;
7964 unsigned seq;
7966 if (bb->shift < 0)
7967 return 0;
7969 retry:
7970 seq = read_seqbegin(&bb->lock);
7972 len = 0;
7973 i = 0;
7975 while (len < PAGE_SIZE && i < bb->count) {
7976 sector_t s = BB_OFFSET(p[i]);
7977 unsigned int length = BB_LEN(p[i]);
7978 int ack = BB_ACK(p[i]);
7979 i++;
7981 if (unack && ack)
7982 continue;
7984 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
7985 (unsigned long long)s << bb->shift,
7986 length << bb->shift);
7988 if (unack && len == 0)
7989 bb->unacked_exist = 0;
7991 if (read_seqretry(&bb->lock, seq))
7992 goto retry;
7994 return len;
7997 #define DO_DEBUG 1
7999 static ssize_t
8000 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8002 unsigned long long sector;
8003 int length;
8004 char newline;
8005 #ifdef DO_DEBUG
8006 /* Allow clearing via sysfs *only* for testing/debugging.
8007 * Normally only a successful write may clear a badblock
8009 int clear = 0;
8010 if (page[0] == '-') {
8011 clear = 1;
8012 page++;
8014 #endif /* DO_DEBUG */
8016 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8017 case 3:
8018 if (newline != '\n')
8019 return -EINVAL;
8020 case 2:
8021 if (length <= 0)
8022 return -EINVAL;
8023 break;
8024 default:
8025 return -EINVAL;
8028 #ifdef DO_DEBUG
8029 if (clear) {
8030 md_clear_badblocks(bb, sector, length);
8031 return len;
8033 #endif /* DO_DEBUG */
8034 if (md_set_badblocks(bb, sector, length, !unack))
8035 return len;
8036 else
8037 return -ENOSPC;
8040 static int md_notify_reboot(struct notifier_block *this,
8041 unsigned long code, void *x)
8043 struct list_head *tmp;
8044 mddev_t *mddev;
8046 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8048 printk(KERN_INFO "md: stopping all md devices.\n");
8050 for_each_mddev(mddev, tmp)
8051 if (mddev_trylock(mddev)) {
8052 /* Force a switch to readonly even array
8053 * appears to still be in use. Hence
8054 * the '100'.
8056 md_set_readonly(mddev, 100);
8057 mddev_unlock(mddev);
8060 * certain more exotic SCSI devices are known to be
8061 * volatile wrt too early system reboots. While the
8062 * right place to handle this issue is the given
8063 * driver, we do want to have a safe RAID driver ...
8065 mdelay(1000*1);
8067 return NOTIFY_DONE;
8070 static struct notifier_block md_notifier = {
8071 .notifier_call = md_notify_reboot,
8072 .next = NULL,
8073 .priority = INT_MAX, /* before any real devices */
8076 static void md_geninit(void)
8078 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8080 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8083 static int __init md_init(void)
8085 int ret = -ENOMEM;
8087 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8088 if (!md_wq)
8089 goto err_wq;
8091 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8092 if (!md_misc_wq)
8093 goto err_misc_wq;
8095 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8096 goto err_md;
8098 if ((ret = register_blkdev(0, "mdp")) < 0)
8099 goto err_mdp;
8100 mdp_major = ret;
8102 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8103 md_probe, NULL, NULL);
8104 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8105 md_probe, NULL, NULL);
8107 register_reboot_notifier(&md_notifier);
8108 raid_table_header = register_sysctl_table(raid_root_table);
8110 md_geninit();
8111 return 0;
8113 err_mdp:
8114 unregister_blkdev(MD_MAJOR, "md");
8115 err_md:
8116 destroy_workqueue(md_misc_wq);
8117 err_misc_wq:
8118 destroy_workqueue(md_wq);
8119 err_wq:
8120 return ret;
8123 #ifndef MODULE
8126 * Searches all registered partitions for autorun RAID arrays
8127 * at boot time.
8130 static LIST_HEAD(all_detected_devices);
8131 struct detected_devices_node {
8132 struct list_head list;
8133 dev_t dev;
8136 void md_autodetect_dev(dev_t dev)
8138 struct detected_devices_node *node_detected_dev;
8140 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8141 if (node_detected_dev) {
8142 node_detected_dev->dev = dev;
8143 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8144 } else {
8145 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8146 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8151 static void autostart_arrays(int part)
8153 mdk_rdev_t *rdev;
8154 struct detected_devices_node *node_detected_dev;
8155 dev_t dev;
8156 int i_scanned, i_passed;
8158 i_scanned = 0;
8159 i_passed = 0;
8161 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8163 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8164 i_scanned++;
8165 node_detected_dev = list_entry(all_detected_devices.next,
8166 struct detected_devices_node, list);
8167 list_del(&node_detected_dev->list);
8168 dev = node_detected_dev->dev;
8169 kfree(node_detected_dev);
8170 rdev = md_import_device(dev,0, 90);
8171 if (IS_ERR(rdev))
8172 continue;
8174 if (test_bit(Faulty, &rdev->flags)) {
8175 MD_BUG();
8176 continue;
8178 set_bit(AutoDetected, &rdev->flags);
8179 list_add(&rdev->same_set, &pending_raid_disks);
8180 i_passed++;
8183 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8184 i_scanned, i_passed);
8186 autorun_devices(part);
8189 #endif /* !MODULE */
8191 static __exit void md_exit(void)
8193 mddev_t *mddev;
8194 struct list_head *tmp;
8196 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8197 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8199 unregister_blkdev(MD_MAJOR,"md");
8200 unregister_blkdev(mdp_major, "mdp");
8201 unregister_reboot_notifier(&md_notifier);
8202 unregister_sysctl_table(raid_table_header);
8203 remove_proc_entry("mdstat", NULL);
8204 for_each_mddev(mddev, tmp) {
8205 export_array(mddev);
8206 mddev->hold_active = 0;
8208 destroy_workqueue(md_misc_wq);
8209 destroy_workqueue(md_wq);
8212 subsys_initcall(md_init);
8213 module_exit(md_exit)
8215 static int get_ro(char *buffer, struct kernel_param *kp)
8217 return sprintf(buffer, "%d", start_readonly);
8219 static int set_ro(const char *val, struct kernel_param *kp)
8221 char *e;
8222 int num = simple_strtoul(val, &e, 10);
8223 if (*val && (*e == '\0' || *e == '\n')) {
8224 start_readonly = num;
8225 return 0;
8227 return -EINVAL;
8230 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8231 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8233 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8235 EXPORT_SYMBOL(register_md_personality);
8236 EXPORT_SYMBOL(unregister_md_personality);
8237 EXPORT_SYMBOL(md_error);
8238 EXPORT_SYMBOL(md_done_sync);
8239 EXPORT_SYMBOL(md_write_start);
8240 EXPORT_SYMBOL(md_write_end);
8241 EXPORT_SYMBOL(md_register_thread);
8242 EXPORT_SYMBOL(md_unregister_thread);
8243 EXPORT_SYMBOL(md_wakeup_thread);
8244 EXPORT_SYMBOL(md_check_recovery);
8245 MODULE_LICENSE("GPL");
8246 MODULE_DESCRIPTION("MD RAID framework");
8247 MODULE_ALIAS("md");
8248 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);