3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License v2.0 as published by
9 * the Free Software Foundation
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * PV guests under Xen are running in an non-contiguous memory architecture.
18 * When PCI pass-through is utilized, this necessitates an IOMMU for
19 * translating bus (DMA) to virtual and vice-versa and also providing a
20 * mechanism to have contiguous pages for device drivers operations (say DMA
23 * Specifically, under Xen the Linux idea of pages is an illusion. It
24 * assumes that pages start at zero and go up to the available memory. To
25 * help with that, the Linux Xen MMU provides a lookup mechanism to
26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28 * memory is not contiguous. Xen hypervisor stitches memory for guests
29 * from different pools, which means there is no guarantee that PFN==MFN
30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31 * allocated in descending order (high to low), meaning the guest might
32 * never get any MFN's under the 4GB mark.
36 #include <linux/bootmem.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/export.h>
39 #include <xen/swiotlb-xen.h>
41 #include <xen/xen-ops.h>
43 * Used to do a quick range check in swiotlb_tbl_unmap_single and
44 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
48 static char *xen_io_tlb_start
, *xen_io_tlb_end
;
49 static unsigned long xen_io_tlb_nslabs
;
51 * Quick lookup value of the bus address of the IOTLB.
56 static dma_addr_t
xen_phys_to_bus(phys_addr_t paddr
)
58 return phys_to_machine(XPADDR(paddr
)).maddr
;
61 static phys_addr_t
xen_bus_to_phys(dma_addr_t baddr
)
63 return machine_to_phys(XMADDR(baddr
)).paddr
;
66 static dma_addr_t
xen_virt_to_bus(void *address
)
68 return xen_phys_to_bus(virt_to_phys(address
));
71 static int check_pages_physically_contiguous(unsigned long pfn
,
75 unsigned long next_mfn
;
79 next_mfn
= pfn_to_mfn(pfn
);
80 nr_pages
= (offset
+ length
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
82 for (i
= 1; i
< nr_pages
; i
++) {
83 if (pfn_to_mfn(++pfn
) != ++next_mfn
)
89 static int range_straddles_page_boundary(phys_addr_t p
, size_t size
)
91 unsigned long pfn
= PFN_DOWN(p
);
92 unsigned int offset
= p
& ~PAGE_MASK
;
94 if (offset
+ size
<= PAGE_SIZE
)
96 if (check_pages_physically_contiguous(pfn
, offset
, size
))
101 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr
)
103 unsigned long mfn
= PFN_DOWN(dma_addr
);
104 unsigned long pfn
= mfn_to_local_pfn(mfn
);
107 /* If the address is outside our domain, it CAN
108 * have the same virtual address as another address
109 * in our domain. Therefore _only_ check address within our domain.
111 if (pfn_valid(pfn
)) {
112 paddr
= PFN_PHYS(pfn
);
113 return paddr
>= virt_to_phys(xen_io_tlb_start
) &&
114 paddr
< virt_to_phys(xen_io_tlb_end
);
119 static int max_dma_bits
= 32;
122 xen_swiotlb_fixup(void *buf
, size_t size
, unsigned long nslabs
)
127 dma_bits
= get_order(IO_TLB_SEGSIZE
<< IO_TLB_SHIFT
) + PAGE_SHIFT
;
131 int slabs
= min(nslabs
- i
, (unsigned long)IO_TLB_SEGSIZE
);
134 rc
= xen_create_contiguous_region(
135 (unsigned long)buf
+ (i
<< IO_TLB_SHIFT
),
136 get_order(slabs
<< IO_TLB_SHIFT
),
138 } while (rc
&& dma_bits
++ < max_dma_bits
);
143 } while (i
< nslabs
);
147 void __init
xen_swiotlb_init(int verbose
)
151 unsigned long nr_tbl
;
153 nr_tbl
= swioltb_nr_tbl();
155 xen_io_tlb_nslabs
= nr_tbl
;
157 xen_io_tlb_nslabs
= (64 * 1024 * 1024 >> IO_TLB_SHIFT
);
158 xen_io_tlb_nslabs
= ALIGN(xen_io_tlb_nslabs
, IO_TLB_SEGSIZE
);
161 bytes
= xen_io_tlb_nslabs
<< IO_TLB_SHIFT
;
164 * Get IO TLB memory from any location.
166 xen_io_tlb_start
= alloc_bootmem(bytes
);
167 if (!xen_io_tlb_start
)
168 panic("Cannot allocate SWIOTLB buffer");
170 xen_io_tlb_end
= xen_io_tlb_start
+ bytes
;
172 * And replace that memory with pages under 4GB.
174 rc
= xen_swiotlb_fixup(xen_io_tlb_start
,
180 start_dma_addr
= xen_virt_to_bus(xen_io_tlb_start
);
181 swiotlb_init_with_tbl(xen_io_tlb_start
, xen_io_tlb_nslabs
, verbose
);
185 panic("DMA(%d): Failed to exchange pages allocated for DMA with Xen! "\
186 "We either don't have the permission or you do not have enough"\
187 "free memory under 4GB!\n", rc
);
191 xen_swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
192 dma_addr_t
*dma_handle
, gfp_t flags
)
195 int order
= get_order(size
);
196 u64 dma_mask
= DMA_BIT_MASK(32);
197 unsigned long vstart
;
200 * Ignore region specifiers - the kernel's ideas of
201 * pseudo-phys memory layout has nothing to do with the
202 * machine physical layout. We can't allocate highmem
203 * because we can't return a pointer to it.
205 flags
&= ~(__GFP_DMA
| __GFP_HIGHMEM
);
207 if (dma_alloc_from_coherent(hwdev
, size
, dma_handle
, &ret
))
210 vstart
= __get_free_pages(flags
, order
);
211 ret
= (void *)vstart
;
213 if (hwdev
&& hwdev
->coherent_dma_mask
)
214 dma_mask
= dma_alloc_coherent_mask(hwdev
, flags
);
217 if (xen_create_contiguous_region(vstart
, order
,
218 fls64(dma_mask
)) != 0) {
219 free_pages(vstart
, order
);
222 memset(ret
, 0, size
);
223 *dma_handle
= virt_to_machine(ret
).maddr
;
227 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent
);
230 xen_swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
233 int order
= get_order(size
);
235 if (dma_release_from_coherent(hwdev
, order
, vaddr
))
238 xen_destroy_contiguous_region((unsigned long)vaddr
, order
);
239 free_pages((unsigned long)vaddr
, order
);
241 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent
);
245 * Map a single buffer of the indicated size for DMA in streaming mode. The
246 * physical address to use is returned.
248 * Once the device is given the dma address, the device owns this memory until
249 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
251 dma_addr_t
xen_swiotlb_map_page(struct device
*dev
, struct page
*page
,
252 unsigned long offset
, size_t size
,
253 enum dma_data_direction dir
,
254 struct dma_attrs
*attrs
)
256 phys_addr_t phys
= page_to_phys(page
) + offset
;
257 dma_addr_t dev_addr
= xen_phys_to_bus(phys
);
260 BUG_ON(dir
== DMA_NONE
);
262 * If the address happens to be in the device's DMA window,
263 * we can safely return the device addr and not worry about bounce
266 if (dma_capable(dev
, dev_addr
, size
) &&
267 !range_straddles_page_boundary(phys
, size
) && !swiotlb_force
)
271 * Oh well, have to allocate and map a bounce buffer.
273 map
= swiotlb_tbl_map_single(dev
, start_dma_addr
, phys
, size
, dir
);
275 return DMA_ERROR_CODE
;
277 dev_addr
= xen_virt_to_bus(map
);
280 * Ensure that the address returned is DMA'ble
282 if (!dma_capable(dev
, dev_addr
, size
))
283 panic("map_single: bounce buffer is not DMA'ble");
287 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page
);
290 * Unmap a single streaming mode DMA translation. The dma_addr and size must
291 * match what was provided for in a previous xen_swiotlb_map_page call. All
292 * other usages are undefined.
294 * After this call, reads by the cpu to the buffer are guaranteed to see
295 * whatever the device wrote there.
297 static void xen_unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
,
298 size_t size
, enum dma_data_direction dir
)
300 phys_addr_t paddr
= xen_bus_to_phys(dev_addr
);
302 BUG_ON(dir
== DMA_NONE
);
304 /* NOTE: We use dev_addr here, not paddr! */
305 if (is_xen_swiotlb_buffer(dev_addr
)) {
306 swiotlb_tbl_unmap_single(hwdev
, phys_to_virt(paddr
), size
, dir
);
310 if (dir
!= DMA_FROM_DEVICE
)
314 * phys_to_virt doesn't work with hihgmem page but we could
315 * call dma_mark_clean() with hihgmem page here. However, we
316 * are fine since dma_mark_clean() is null on POWERPC. We can
317 * make dma_mark_clean() take a physical address if necessary.
319 dma_mark_clean(phys_to_virt(paddr
), size
);
322 void xen_swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
323 size_t size
, enum dma_data_direction dir
,
324 struct dma_attrs
*attrs
)
326 xen_unmap_single(hwdev
, dev_addr
, size
, dir
);
328 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page
);
331 * Make physical memory consistent for a single streaming mode DMA translation
334 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
335 * using the cpu, yet do not wish to teardown the dma mapping, you must
336 * call this function before doing so. At the next point you give the dma
337 * address back to the card, you must first perform a
338 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
341 xen_swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
342 size_t size
, enum dma_data_direction dir
,
343 enum dma_sync_target target
)
345 phys_addr_t paddr
= xen_bus_to_phys(dev_addr
);
347 BUG_ON(dir
== DMA_NONE
);
349 /* NOTE: We use dev_addr here, not paddr! */
350 if (is_xen_swiotlb_buffer(dev_addr
)) {
351 swiotlb_tbl_sync_single(hwdev
, phys_to_virt(paddr
), size
, dir
,
356 if (dir
!= DMA_FROM_DEVICE
)
359 dma_mark_clean(phys_to_virt(paddr
), size
);
363 xen_swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
364 size_t size
, enum dma_data_direction dir
)
366 xen_swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
368 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu
);
371 xen_swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
372 size_t size
, enum dma_data_direction dir
)
374 xen_swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
376 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device
);
379 * Map a set of buffers described by scatterlist in streaming mode for DMA.
380 * This is the scatter-gather version of the above xen_swiotlb_map_page
381 * interface. Here the scatter gather list elements are each tagged with the
382 * appropriate dma address and length. They are obtained via
383 * sg_dma_{address,length}(SG).
385 * NOTE: An implementation may be able to use a smaller number of
386 * DMA address/length pairs than there are SG table elements.
387 * (for example via virtual mapping capabilities)
388 * The routine returns the number of addr/length pairs actually
389 * used, at most nents.
391 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
395 xen_swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
396 int nelems
, enum dma_data_direction dir
,
397 struct dma_attrs
*attrs
)
399 struct scatterlist
*sg
;
402 BUG_ON(dir
== DMA_NONE
);
404 for_each_sg(sgl
, sg
, nelems
, i
) {
405 phys_addr_t paddr
= sg_phys(sg
);
406 dma_addr_t dev_addr
= xen_phys_to_bus(paddr
);
409 !dma_capable(hwdev
, dev_addr
, sg
->length
) ||
410 range_straddles_page_boundary(paddr
, sg
->length
)) {
411 void *map
= swiotlb_tbl_map_single(hwdev
,
416 /* Don't panic here, we expect map_sg users
417 to do proper error handling. */
418 xen_swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
420 sgl
[0].dma_length
= 0;
421 return DMA_ERROR_CODE
;
423 sg
->dma_address
= xen_virt_to_bus(map
);
425 sg
->dma_address
= dev_addr
;
426 sg
->dma_length
= sg
->length
;
430 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs
);
433 xen_swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
434 enum dma_data_direction dir
)
436 return xen_swiotlb_map_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
438 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg
);
441 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
442 * concerning calls here are the same as for swiotlb_unmap_page() above.
445 xen_swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
446 int nelems
, enum dma_data_direction dir
,
447 struct dma_attrs
*attrs
)
449 struct scatterlist
*sg
;
452 BUG_ON(dir
== DMA_NONE
);
454 for_each_sg(sgl
, sg
, nelems
, i
)
455 xen_unmap_single(hwdev
, sg
->dma_address
, sg
->dma_length
, dir
);
458 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs
);
461 xen_swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
462 enum dma_data_direction dir
)
464 return xen_swiotlb_unmap_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
466 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg
);
469 * Make physical memory consistent for a set of streaming mode DMA translations
472 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
476 xen_swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
477 int nelems
, enum dma_data_direction dir
,
478 enum dma_sync_target target
)
480 struct scatterlist
*sg
;
483 for_each_sg(sgl
, sg
, nelems
, i
)
484 xen_swiotlb_sync_single(hwdev
, sg
->dma_address
,
485 sg
->dma_length
, dir
, target
);
489 xen_swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
490 int nelems
, enum dma_data_direction dir
)
492 xen_swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
494 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu
);
497 xen_swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
498 int nelems
, enum dma_data_direction dir
)
500 xen_swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
502 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device
);
505 xen_swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
509 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error
);
512 * Return whether the given device DMA address mask can be supported
513 * properly. For example, if your device can only drive the low 24-bits
514 * during bus mastering, then you would pass 0x00ffffff as the mask to
518 xen_swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
520 return xen_virt_to_bus(xen_io_tlb_end
- 1) <= mask
;
522 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported
);