4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/export.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 #include <linux/syscore_ops.h>
42 #include <linux/compat.h>
43 #include <linux/syscalls.h>
44 #include <linux/kprobes.h>
45 #include <linux/user_namespace.h>
47 #include <linux/kmsg_dump.h>
49 #include <asm/uaccess.h>
51 #include <asm/unistd.h>
53 #ifndef SET_UNALIGN_CTL
54 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
56 #ifndef GET_UNALIGN_CTL
57 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
60 # define SET_FPEMU_CTL(a,b) (-EINVAL)
63 # define GET_FPEMU_CTL(a,b) (-EINVAL)
66 # define SET_FPEXC_CTL(a,b) (-EINVAL)
69 # define GET_FPEXC_CTL(a,b) (-EINVAL)
72 # define GET_ENDIAN(a,b) (-EINVAL)
75 # define SET_ENDIAN(a,b) (-EINVAL)
78 # define GET_TSC_CTL(a) (-EINVAL)
81 # define SET_TSC_CTL(a) (-EINVAL)
85 * this is where the system-wide overflow UID and GID are defined, for
86 * architectures that now have 32-bit UID/GID but didn't in the past
89 int overflowuid
= DEFAULT_OVERFLOWUID
;
90 int overflowgid
= DEFAULT_OVERFLOWGID
;
93 EXPORT_SYMBOL(overflowuid
);
94 EXPORT_SYMBOL(overflowgid
);
98 * the same as above, but for filesystems which can only store a 16-bit
99 * UID and GID. as such, this is needed on all architectures
102 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
103 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
105 EXPORT_SYMBOL(fs_overflowuid
);
106 EXPORT_SYMBOL(fs_overflowgid
);
109 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
114 EXPORT_SYMBOL(cad_pid
);
117 * If set, this is used for preparing the system to power off.
120 void (*pm_power_off_prepare
)(void);
123 * Returns true if current's euid is same as p's uid or euid,
124 * or has CAP_SYS_NICE to p's user_ns.
126 * Called with rcu_read_lock, creds are safe
128 static bool set_one_prio_perm(struct task_struct
*p
)
130 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
132 if (pcred
->user
->user_ns
== cred
->user
->user_ns
&&
133 (pcred
->uid
== cred
->euid
||
134 pcred
->euid
== cred
->euid
))
136 if (ns_capable(pcred
->user
->user_ns
, CAP_SYS_NICE
))
142 * set the priority of a task
143 * - the caller must hold the RCU read lock
145 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
149 if (!set_one_prio_perm(p
)) {
153 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
157 no_nice
= security_task_setnice(p
, niceval
);
164 set_user_nice(p
, niceval
);
169 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
171 struct task_struct
*g
, *p
;
172 struct user_struct
*user
;
173 const struct cred
*cred
= current_cred();
177 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
180 /* normalize: avoid signed division (rounding problems) */
188 read_lock(&tasklist_lock
);
192 p
= find_task_by_vpid(who
);
196 error
= set_one_prio(p
, niceval
, error
);
200 pgrp
= find_vpid(who
);
202 pgrp
= task_pgrp(current
);
203 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
204 error
= set_one_prio(p
, niceval
, error
);
205 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
208 user
= (struct user_struct
*) cred
->user
;
211 else if ((who
!= cred
->uid
) &&
212 !(user
= find_user(who
)))
213 goto out_unlock
; /* No processes for this user */
215 do_each_thread(g
, p
) {
216 if (__task_cred(p
)->uid
== who
)
217 error
= set_one_prio(p
, niceval
, error
);
218 } while_each_thread(g
, p
);
219 if (who
!= cred
->uid
)
220 free_uid(user
); /* For find_user() */
224 read_unlock(&tasklist_lock
);
231 * Ugh. To avoid negative return values, "getpriority()" will
232 * not return the normal nice-value, but a negated value that
233 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
234 * to stay compatible.
236 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
238 struct task_struct
*g
, *p
;
239 struct user_struct
*user
;
240 const struct cred
*cred
= current_cred();
241 long niceval
, retval
= -ESRCH
;
244 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
248 read_lock(&tasklist_lock
);
252 p
= find_task_by_vpid(who
);
256 niceval
= 20 - task_nice(p
);
257 if (niceval
> retval
)
263 pgrp
= find_vpid(who
);
265 pgrp
= task_pgrp(current
);
266 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
267 niceval
= 20 - task_nice(p
);
268 if (niceval
> retval
)
270 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
273 user
= (struct user_struct
*) cred
->user
;
276 else if ((who
!= cred
->uid
) &&
277 !(user
= find_user(who
)))
278 goto out_unlock
; /* No processes for this user */
280 do_each_thread(g
, p
) {
281 if (__task_cred(p
)->uid
== who
) {
282 niceval
= 20 - task_nice(p
);
283 if (niceval
> retval
)
286 } while_each_thread(g
, p
);
287 if (who
!= cred
->uid
)
288 free_uid(user
); /* for find_user() */
292 read_unlock(&tasklist_lock
);
299 * emergency_restart - reboot the system
301 * Without shutting down any hardware or taking any locks
302 * reboot the system. This is called when we know we are in
303 * trouble so this is our best effort to reboot. This is
304 * safe to call in interrupt context.
306 void emergency_restart(void)
308 kmsg_dump(KMSG_DUMP_EMERG
);
309 machine_emergency_restart();
311 EXPORT_SYMBOL_GPL(emergency_restart
);
313 void kernel_restart_prepare(char *cmd
)
315 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
316 system_state
= SYSTEM_RESTART
;
317 usermodehelper_disable();
323 * register_reboot_notifier - Register function to be called at reboot time
324 * @nb: Info about notifier function to be called
326 * Registers a function with the list of functions
327 * to be called at reboot time.
329 * Currently always returns zero, as blocking_notifier_chain_register()
330 * always returns zero.
332 int register_reboot_notifier(struct notifier_block
*nb
)
334 return blocking_notifier_chain_register(&reboot_notifier_list
, nb
);
336 EXPORT_SYMBOL(register_reboot_notifier
);
339 * unregister_reboot_notifier - Unregister previously registered reboot notifier
340 * @nb: Hook to be unregistered
342 * Unregisters a previously registered reboot
345 * Returns zero on success, or %-ENOENT on failure.
347 int unregister_reboot_notifier(struct notifier_block
*nb
)
349 return blocking_notifier_chain_unregister(&reboot_notifier_list
, nb
);
351 EXPORT_SYMBOL(unregister_reboot_notifier
);
354 * kernel_restart - reboot the system
355 * @cmd: pointer to buffer containing command to execute for restart
358 * Shutdown everything and perform a clean reboot.
359 * This is not safe to call in interrupt context.
361 void kernel_restart(char *cmd
)
363 kernel_restart_prepare(cmd
);
365 printk(KERN_EMERG
"Restarting system.\n");
367 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
368 kmsg_dump(KMSG_DUMP_RESTART
);
369 machine_restart(cmd
);
371 EXPORT_SYMBOL_GPL(kernel_restart
);
373 static void kernel_shutdown_prepare(enum system_states state
)
375 blocking_notifier_call_chain(&reboot_notifier_list
,
376 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
377 system_state
= state
;
378 usermodehelper_disable();
382 * kernel_halt - halt the system
384 * Shutdown everything and perform a clean system halt.
386 void kernel_halt(void)
388 kernel_shutdown_prepare(SYSTEM_HALT
);
390 printk(KERN_EMERG
"System halted.\n");
391 kmsg_dump(KMSG_DUMP_HALT
);
395 EXPORT_SYMBOL_GPL(kernel_halt
);
398 * kernel_power_off - power_off the system
400 * Shutdown everything and perform a clean system power_off.
402 void kernel_power_off(void)
404 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
405 if (pm_power_off_prepare
)
406 pm_power_off_prepare();
407 disable_nonboot_cpus();
409 printk(KERN_EMERG
"Power down.\n");
410 kmsg_dump(KMSG_DUMP_POWEROFF
);
413 EXPORT_SYMBOL_GPL(kernel_power_off
);
415 static DEFINE_MUTEX(reboot_mutex
);
418 * Reboot system call: for obvious reasons only root may call it,
419 * and even root needs to set up some magic numbers in the registers
420 * so that some mistake won't make this reboot the whole machine.
421 * You can also set the meaning of the ctrl-alt-del-key here.
423 * reboot doesn't sync: do that yourself before calling this.
425 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
431 /* We only trust the superuser with rebooting the system. */
432 if (!capable(CAP_SYS_BOOT
))
435 /* For safety, we require "magic" arguments. */
436 if (magic1
!= LINUX_REBOOT_MAGIC1
||
437 (magic2
!= LINUX_REBOOT_MAGIC2
&&
438 magic2
!= LINUX_REBOOT_MAGIC2A
&&
439 magic2
!= LINUX_REBOOT_MAGIC2B
&&
440 magic2
!= LINUX_REBOOT_MAGIC2C
))
443 /* Instead of trying to make the power_off code look like
444 * halt when pm_power_off is not set do it the easy way.
446 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
447 cmd
= LINUX_REBOOT_CMD_HALT
;
449 mutex_lock(&reboot_mutex
);
451 case LINUX_REBOOT_CMD_RESTART
:
452 kernel_restart(NULL
);
455 case LINUX_REBOOT_CMD_CAD_ON
:
459 case LINUX_REBOOT_CMD_CAD_OFF
:
463 case LINUX_REBOOT_CMD_HALT
:
466 panic("cannot halt");
468 case LINUX_REBOOT_CMD_POWER_OFF
:
473 case LINUX_REBOOT_CMD_RESTART2
:
474 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
478 buffer
[sizeof(buffer
) - 1] = '\0';
480 kernel_restart(buffer
);
484 case LINUX_REBOOT_CMD_KEXEC
:
485 ret
= kernel_kexec();
489 #ifdef CONFIG_HIBERNATION
490 case LINUX_REBOOT_CMD_SW_SUSPEND
:
499 mutex_unlock(&reboot_mutex
);
503 static void deferred_cad(struct work_struct
*dummy
)
505 kernel_restart(NULL
);
509 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
510 * As it's called within an interrupt, it may NOT sync: the only choice
511 * is whether to reboot at once, or just ignore the ctrl-alt-del.
513 void ctrl_alt_del(void)
515 static DECLARE_WORK(cad_work
, deferred_cad
);
518 schedule_work(&cad_work
);
520 kill_cad_pid(SIGINT
, 1);
524 * Unprivileged users may change the real gid to the effective gid
525 * or vice versa. (BSD-style)
527 * If you set the real gid at all, or set the effective gid to a value not
528 * equal to the real gid, then the saved gid is set to the new effective gid.
530 * This makes it possible for a setgid program to completely drop its
531 * privileges, which is often a useful assertion to make when you are doing
532 * a security audit over a program.
534 * The general idea is that a program which uses just setregid() will be
535 * 100% compatible with BSD. A program which uses just setgid() will be
536 * 100% compatible with POSIX with saved IDs.
538 * SMP: There are not races, the GIDs are checked only by filesystem
539 * operations (as far as semantic preservation is concerned).
541 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
543 const struct cred
*old
;
547 new = prepare_creds();
550 old
= current_cred();
553 if (rgid
!= (gid_t
) -1) {
554 if (old
->gid
== rgid
||
556 nsown_capable(CAP_SETGID
))
561 if (egid
!= (gid_t
) -1) {
562 if (old
->gid
== egid
||
565 nsown_capable(CAP_SETGID
))
571 if (rgid
!= (gid_t
) -1 ||
572 (egid
!= (gid_t
) -1 && egid
!= old
->gid
))
573 new->sgid
= new->egid
;
574 new->fsgid
= new->egid
;
576 return commit_creds(new);
584 * setgid() is implemented like SysV w/ SAVED_IDS
586 * SMP: Same implicit races as above.
588 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
590 const struct cred
*old
;
594 new = prepare_creds();
597 old
= current_cred();
600 if (nsown_capable(CAP_SETGID
))
601 new->gid
= new->egid
= new->sgid
= new->fsgid
= gid
;
602 else if (gid
== old
->gid
|| gid
== old
->sgid
)
603 new->egid
= new->fsgid
= gid
;
607 return commit_creds(new);
615 * change the user struct in a credentials set to match the new UID
617 static int set_user(struct cred
*new)
619 struct user_struct
*new_user
;
621 new_user
= alloc_uid(current_user_ns(), new->uid
);
626 * We don't fail in case of NPROC limit excess here because too many
627 * poorly written programs don't check set*uid() return code, assuming
628 * it never fails if called by root. We may still enforce NPROC limit
629 * for programs doing set*uid()+execve() by harmlessly deferring the
630 * failure to the execve() stage.
632 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
633 new_user
!= INIT_USER
)
634 current
->flags
|= PF_NPROC_EXCEEDED
;
636 current
->flags
&= ~PF_NPROC_EXCEEDED
;
639 new->user
= new_user
;
644 * Unprivileged users may change the real uid to the effective uid
645 * or vice versa. (BSD-style)
647 * If you set the real uid at all, or set the effective uid to a value not
648 * equal to the real uid, then the saved uid is set to the new effective uid.
650 * This makes it possible for a setuid program to completely drop its
651 * privileges, which is often a useful assertion to make when you are doing
652 * a security audit over a program.
654 * The general idea is that a program which uses just setreuid() will be
655 * 100% compatible with BSD. A program which uses just setuid() will be
656 * 100% compatible with POSIX with saved IDs.
658 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
660 const struct cred
*old
;
664 new = prepare_creds();
667 old
= current_cred();
670 if (ruid
!= (uid_t
) -1) {
672 if (old
->uid
!= ruid
&&
674 !nsown_capable(CAP_SETUID
))
678 if (euid
!= (uid_t
) -1) {
680 if (old
->uid
!= euid
&&
683 !nsown_capable(CAP_SETUID
))
687 if (new->uid
!= old
->uid
) {
688 retval
= set_user(new);
692 if (ruid
!= (uid_t
) -1 ||
693 (euid
!= (uid_t
) -1 && euid
!= old
->uid
))
694 new->suid
= new->euid
;
695 new->fsuid
= new->euid
;
697 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
701 return commit_creds(new);
709 * setuid() is implemented like SysV with SAVED_IDS
711 * Note that SAVED_ID's is deficient in that a setuid root program
712 * like sendmail, for example, cannot set its uid to be a normal
713 * user and then switch back, because if you're root, setuid() sets
714 * the saved uid too. If you don't like this, blame the bright people
715 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
716 * will allow a root program to temporarily drop privileges and be able to
717 * regain them by swapping the real and effective uid.
719 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
721 const struct cred
*old
;
725 new = prepare_creds();
728 old
= current_cred();
731 if (nsown_capable(CAP_SETUID
)) {
732 new->suid
= new->uid
= uid
;
733 if (uid
!= old
->uid
) {
734 retval
= set_user(new);
738 } else if (uid
!= old
->uid
&& uid
!= new->suid
) {
742 new->fsuid
= new->euid
= uid
;
744 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
748 return commit_creds(new);
757 * This function implements a generic ability to update ruid, euid,
758 * and suid. This allows you to implement the 4.4 compatible seteuid().
760 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
762 const struct cred
*old
;
766 new = prepare_creds();
770 old
= current_cred();
773 if (!nsown_capable(CAP_SETUID
)) {
774 if (ruid
!= (uid_t
) -1 && ruid
!= old
->uid
&&
775 ruid
!= old
->euid
&& ruid
!= old
->suid
)
777 if (euid
!= (uid_t
) -1 && euid
!= old
->uid
&&
778 euid
!= old
->euid
&& euid
!= old
->suid
)
780 if (suid
!= (uid_t
) -1 && suid
!= old
->uid
&&
781 suid
!= old
->euid
&& suid
!= old
->suid
)
785 if (ruid
!= (uid_t
) -1) {
787 if (ruid
!= old
->uid
) {
788 retval
= set_user(new);
793 if (euid
!= (uid_t
) -1)
795 if (suid
!= (uid_t
) -1)
797 new->fsuid
= new->euid
;
799 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
803 return commit_creds(new);
810 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruid
, uid_t __user
*, euid
, uid_t __user
*, suid
)
812 const struct cred
*cred
= current_cred();
815 if (!(retval
= put_user(cred
->uid
, ruid
)) &&
816 !(retval
= put_user(cred
->euid
, euid
)))
817 retval
= put_user(cred
->suid
, suid
);
823 * Same as above, but for rgid, egid, sgid.
825 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
827 const struct cred
*old
;
831 new = prepare_creds();
834 old
= current_cred();
837 if (!nsown_capable(CAP_SETGID
)) {
838 if (rgid
!= (gid_t
) -1 && rgid
!= old
->gid
&&
839 rgid
!= old
->egid
&& rgid
!= old
->sgid
)
841 if (egid
!= (gid_t
) -1 && egid
!= old
->gid
&&
842 egid
!= old
->egid
&& egid
!= old
->sgid
)
844 if (sgid
!= (gid_t
) -1 && sgid
!= old
->gid
&&
845 sgid
!= old
->egid
&& sgid
!= old
->sgid
)
849 if (rgid
!= (gid_t
) -1)
851 if (egid
!= (gid_t
) -1)
853 if (sgid
!= (gid_t
) -1)
855 new->fsgid
= new->egid
;
857 return commit_creds(new);
864 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgid
, gid_t __user
*, egid
, gid_t __user
*, sgid
)
866 const struct cred
*cred
= current_cred();
869 if (!(retval
= put_user(cred
->gid
, rgid
)) &&
870 !(retval
= put_user(cred
->egid
, egid
)))
871 retval
= put_user(cred
->sgid
, sgid
);
878 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
879 * is used for "access()" and for the NFS daemon (letting nfsd stay at
880 * whatever uid it wants to). It normally shadows "euid", except when
881 * explicitly set by setfsuid() or for access..
883 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
885 const struct cred
*old
;
889 new = prepare_creds();
891 return current_fsuid();
892 old
= current_cred();
893 old_fsuid
= old
->fsuid
;
895 if (uid
== old
->uid
|| uid
== old
->euid
||
896 uid
== old
->suid
|| uid
== old
->fsuid
||
897 nsown_capable(CAP_SETUID
)) {
898 if (uid
!= old_fsuid
) {
900 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
914 * Samma på svenska..
916 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
918 const struct cred
*old
;
922 new = prepare_creds();
924 return current_fsgid();
925 old
= current_cred();
926 old_fsgid
= old
->fsgid
;
928 if (gid
== old
->gid
|| gid
== old
->egid
||
929 gid
== old
->sgid
|| gid
== old
->fsgid
||
930 nsown_capable(CAP_SETGID
)) {
931 if (gid
!= old_fsgid
) {
945 void do_sys_times(struct tms
*tms
)
947 cputime_t tgutime
, tgstime
, cutime
, cstime
;
949 spin_lock_irq(¤t
->sighand
->siglock
);
950 thread_group_times(current
, &tgutime
, &tgstime
);
951 cutime
= current
->signal
->cutime
;
952 cstime
= current
->signal
->cstime
;
953 spin_unlock_irq(¤t
->sighand
->siglock
);
954 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
955 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
956 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
957 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
960 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
966 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
969 force_successful_syscall_return();
970 return (long) jiffies_64_to_clock_t(get_jiffies_64());
974 * This needs some heavy checking ...
975 * I just haven't the stomach for it. I also don't fully
976 * understand sessions/pgrp etc. Let somebody who does explain it.
978 * OK, I think I have the protection semantics right.... this is really
979 * only important on a multi-user system anyway, to make sure one user
980 * can't send a signal to a process owned by another. -TYT, 12/12/91
982 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
985 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
987 struct task_struct
*p
;
988 struct task_struct
*group_leader
= current
->group_leader
;
993 pid
= task_pid_vnr(group_leader
);
1000 /* From this point forward we keep holding onto the tasklist lock
1001 * so that our parent does not change from under us. -DaveM
1003 write_lock_irq(&tasklist_lock
);
1006 p
= find_task_by_vpid(pid
);
1011 if (!thread_group_leader(p
))
1014 if (same_thread_group(p
->real_parent
, group_leader
)) {
1016 if (task_session(p
) != task_session(group_leader
))
1023 if (p
!= group_leader
)
1028 if (p
->signal
->leader
)
1033 struct task_struct
*g
;
1035 pgrp
= find_vpid(pgid
);
1036 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1037 if (!g
|| task_session(g
) != task_session(group_leader
))
1041 err
= security_task_setpgid(p
, pgid
);
1045 if (task_pgrp(p
) != pgrp
)
1046 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1050 /* All paths lead to here, thus we are safe. -DaveM */
1051 write_unlock_irq(&tasklist_lock
);
1056 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1058 struct task_struct
*p
;
1064 grp
= task_pgrp(current
);
1067 p
= find_task_by_vpid(pid
);
1074 retval
= security_task_getpgid(p
);
1078 retval
= pid_vnr(grp
);
1084 #ifdef __ARCH_WANT_SYS_GETPGRP
1086 SYSCALL_DEFINE0(getpgrp
)
1088 return sys_getpgid(0);
1093 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1095 struct task_struct
*p
;
1101 sid
= task_session(current
);
1104 p
= find_task_by_vpid(pid
);
1107 sid
= task_session(p
);
1111 retval
= security_task_getsid(p
);
1115 retval
= pid_vnr(sid
);
1121 SYSCALL_DEFINE0(setsid
)
1123 struct task_struct
*group_leader
= current
->group_leader
;
1124 struct pid
*sid
= task_pid(group_leader
);
1125 pid_t session
= pid_vnr(sid
);
1128 write_lock_irq(&tasklist_lock
);
1129 /* Fail if I am already a session leader */
1130 if (group_leader
->signal
->leader
)
1133 /* Fail if a process group id already exists that equals the
1134 * proposed session id.
1136 if (pid_task(sid
, PIDTYPE_PGID
))
1139 group_leader
->signal
->leader
= 1;
1140 __set_special_pids(sid
);
1142 proc_clear_tty(group_leader
);
1146 write_unlock_irq(&tasklist_lock
);
1148 proc_sid_connector(group_leader
);
1149 sched_autogroup_create_attach(group_leader
);
1154 DECLARE_RWSEM(uts_sem
);
1156 #ifdef COMPAT_UTS_MACHINE
1157 #define override_architecture(name) \
1158 (personality(current->personality) == PER_LINUX32 && \
1159 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1160 sizeof(COMPAT_UTS_MACHINE)))
1162 #define override_architecture(name) 0
1165 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1169 down_read(&uts_sem
);
1170 if (copy_to_user(name
, utsname(), sizeof *name
))
1174 if (!errno
&& override_architecture(name
))
1179 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1183 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1190 down_read(&uts_sem
);
1191 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1195 if (!error
&& override_architecture(name
))
1200 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1206 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1209 down_read(&uts_sem
);
1210 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1212 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1213 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1215 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1216 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1218 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1219 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1221 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1222 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1224 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1227 if (!error
&& override_architecture(name
))
1229 return error
? -EFAULT
: 0;
1233 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1236 char tmp
[__NEW_UTS_LEN
];
1238 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1241 if (len
< 0 || len
> __NEW_UTS_LEN
)
1243 down_write(&uts_sem
);
1245 if (!copy_from_user(tmp
, name
, len
)) {
1246 struct new_utsname
*u
= utsname();
1248 memcpy(u
->nodename
, tmp
, len
);
1249 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1256 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1258 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1261 struct new_utsname
*u
;
1265 down_read(&uts_sem
);
1267 i
= 1 + strlen(u
->nodename
);
1271 if (copy_to_user(name
, u
->nodename
, i
))
1280 * Only setdomainname; getdomainname can be implemented by calling
1283 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1286 char tmp
[__NEW_UTS_LEN
];
1288 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1290 if (len
< 0 || len
> __NEW_UTS_LEN
)
1293 down_write(&uts_sem
);
1295 if (!copy_from_user(tmp
, name
, len
)) {
1296 struct new_utsname
*u
= utsname();
1298 memcpy(u
->domainname
, tmp
, len
);
1299 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1306 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1308 struct rlimit value
;
1311 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1313 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1318 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1321 * Back compatibility for getrlimit. Needed for some apps.
1324 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1325 struct rlimit __user
*, rlim
)
1328 if (resource
>= RLIM_NLIMITS
)
1331 task_lock(current
->group_leader
);
1332 x
= current
->signal
->rlim
[resource
];
1333 task_unlock(current
->group_leader
);
1334 if (x
.rlim_cur
> 0x7FFFFFFF)
1335 x
.rlim_cur
= 0x7FFFFFFF;
1336 if (x
.rlim_max
> 0x7FFFFFFF)
1337 x
.rlim_max
= 0x7FFFFFFF;
1338 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1343 static inline bool rlim64_is_infinity(__u64 rlim64
)
1345 #if BITS_PER_LONG < 64
1346 return rlim64
>= ULONG_MAX
;
1348 return rlim64
== RLIM64_INFINITY
;
1352 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1354 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1355 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1357 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1358 if (rlim
->rlim_max
== RLIM_INFINITY
)
1359 rlim64
->rlim_max
= RLIM64_INFINITY
;
1361 rlim64
->rlim_max
= rlim
->rlim_max
;
1364 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1366 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1367 rlim
->rlim_cur
= RLIM_INFINITY
;
1369 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1370 if (rlim64_is_infinity(rlim64
->rlim_max
))
1371 rlim
->rlim_max
= RLIM_INFINITY
;
1373 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1376 /* make sure you are allowed to change @tsk limits before calling this */
1377 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1378 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1380 struct rlimit
*rlim
;
1383 if (resource
>= RLIM_NLIMITS
)
1386 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1388 if (resource
== RLIMIT_NOFILE
&&
1389 new_rlim
->rlim_max
> sysctl_nr_open
)
1393 /* protect tsk->signal and tsk->sighand from disappearing */
1394 read_lock(&tasklist_lock
);
1395 if (!tsk
->sighand
) {
1400 rlim
= tsk
->signal
->rlim
+ resource
;
1401 task_lock(tsk
->group_leader
);
1403 /* Keep the capable check against init_user_ns until
1404 cgroups can contain all limits */
1405 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1406 !capable(CAP_SYS_RESOURCE
))
1409 retval
= security_task_setrlimit(tsk
->group_leader
,
1410 resource
, new_rlim
);
1411 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1413 * The caller is asking for an immediate RLIMIT_CPU
1414 * expiry. But we use the zero value to mean "it was
1415 * never set". So let's cheat and make it one second
1418 new_rlim
->rlim_cur
= 1;
1427 task_unlock(tsk
->group_leader
);
1430 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1431 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1432 * very long-standing error, and fixing it now risks breakage of
1433 * applications, so we live with it
1435 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1436 new_rlim
->rlim_cur
!= RLIM_INFINITY
)
1437 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1439 read_unlock(&tasklist_lock
);
1443 /* rcu lock must be held */
1444 static int check_prlimit_permission(struct task_struct
*task
)
1446 const struct cred
*cred
= current_cred(), *tcred
;
1448 if (current
== task
)
1451 tcred
= __task_cred(task
);
1452 if (cred
->user
->user_ns
== tcred
->user
->user_ns
&&
1453 (cred
->uid
== tcred
->euid
&&
1454 cred
->uid
== tcred
->suid
&&
1455 cred
->uid
== tcred
->uid
&&
1456 cred
->gid
== tcred
->egid
&&
1457 cred
->gid
== tcred
->sgid
&&
1458 cred
->gid
== tcred
->gid
))
1460 if (ns_capable(tcred
->user
->user_ns
, CAP_SYS_RESOURCE
))
1466 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1467 const struct rlimit64 __user
*, new_rlim
,
1468 struct rlimit64 __user
*, old_rlim
)
1470 struct rlimit64 old64
, new64
;
1471 struct rlimit old
, new;
1472 struct task_struct
*tsk
;
1476 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1478 rlim64_to_rlim(&new64
, &new);
1482 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1487 ret
= check_prlimit_permission(tsk
);
1492 get_task_struct(tsk
);
1495 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1496 old_rlim
? &old
: NULL
);
1498 if (!ret
&& old_rlim
) {
1499 rlim_to_rlim64(&old
, &old64
);
1500 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1504 put_task_struct(tsk
);
1508 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1510 struct rlimit new_rlim
;
1512 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1514 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1518 * It would make sense to put struct rusage in the task_struct,
1519 * except that would make the task_struct be *really big*. After
1520 * task_struct gets moved into malloc'ed memory, it would
1521 * make sense to do this. It will make moving the rest of the information
1522 * a lot simpler! (Which we're not doing right now because we're not
1523 * measuring them yet).
1525 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1526 * races with threads incrementing their own counters. But since word
1527 * reads are atomic, we either get new values or old values and we don't
1528 * care which for the sums. We always take the siglock to protect reading
1529 * the c* fields from p->signal from races with exit.c updating those
1530 * fields when reaping, so a sample either gets all the additions of a
1531 * given child after it's reaped, or none so this sample is before reaping.
1534 * We need to take the siglock for CHILDEREN, SELF and BOTH
1535 * for the cases current multithreaded, non-current single threaded
1536 * non-current multithreaded. Thread traversal is now safe with
1538 * Strictly speaking, we donot need to take the siglock if we are current and
1539 * single threaded, as no one else can take our signal_struct away, no one
1540 * else can reap the children to update signal->c* counters, and no one else
1541 * can race with the signal-> fields. If we do not take any lock, the
1542 * signal-> fields could be read out of order while another thread was just
1543 * exiting. So we should place a read memory barrier when we avoid the lock.
1544 * On the writer side, write memory barrier is implied in __exit_signal
1545 * as __exit_signal releases the siglock spinlock after updating the signal->
1546 * fields. But we don't do this yet to keep things simple.
1550 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1552 r
->ru_nvcsw
+= t
->nvcsw
;
1553 r
->ru_nivcsw
+= t
->nivcsw
;
1554 r
->ru_minflt
+= t
->min_flt
;
1555 r
->ru_majflt
+= t
->maj_flt
;
1556 r
->ru_inblock
+= task_io_get_inblock(t
);
1557 r
->ru_oublock
+= task_io_get_oublock(t
);
1560 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1562 struct task_struct
*t
;
1563 unsigned long flags
;
1564 cputime_t tgutime
, tgstime
, utime
, stime
;
1565 unsigned long maxrss
= 0;
1567 memset((char *) r
, 0, sizeof *r
);
1568 utime
= stime
= cputime_zero
;
1570 if (who
== RUSAGE_THREAD
) {
1571 task_times(current
, &utime
, &stime
);
1572 accumulate_thread_rusage(p
, r
);
1573 maxrss
= p
->signal
->maxrss
;
1577 if (!lock_task_sighand(p
, &flags
))
1582 case RUSAGE_CHILDREN
:
1583 utime
= p
->signal
->cutime
;
1584 stime
= p
->signal
->cstime
;
1585 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1586 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1587 r
->ru_minflt
= p
->signal
->cmin_flt
;
1588 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1589 r
->ru_inblock
= p
->signal
->cinblock
;
1590 r
->ru_oublock
= p
->signal
->coublock
;
1591 maxrss
= p
->signal
->cmaxrss
;
1593 if (who
== RUSAGE_CHILDREN
)
1597 thread_group_times(p
, &tgutime
, &tgstime
);
1598 utime
= cputime_add(utime
, tgutime
);
1599 stime
= cputime_add(stime
, tgstime
);
1600 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1601 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1602 r
->ru_minflt
+= p
->signal
->min_flt
;
1603 r
->ru_majflt
+= p
->signal
->maj_flt
;
1604 r
->ru_inblock
+= p
->signal
->inblock
;
1605 r
->ru_oublock
+= p
->signal
->oublock
;
1606 if (maxrss
< p
->signal
->maxrss
)
1607 maxrss
= p
->signal
->maxrss
;
1610 accumulate_thread_rusage(t
, r
);
1618 unlock_task_sighand(p
, &flags
);
1621 cputime_to_timeval(utime
, &r
->ru_utime
);
1622 cputime_to_timeval(stime
, &r
->ru_stime
);
1624 if (who
!= RUSAGE_CHILDREN
) {
1625 struct mm_struct
*mm
= get_task_mm(p
);
1627 setmax_mm_hiwater_rss(&maxrss
, mm
);
1631 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1634 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1637 k_getrusage(p
, who
, &r
);
1638 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1641 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1643 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1644 who
!= RUSAGE_THREAD
)
1646 return getrusage(current
, who
, ru
);
1649 SYSCALL_DEFINE1(umask
, int, mask
)
1651 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1655 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
1656 unsigned long, arg4
, unsigned long, arg5
)
1658 struct task_struct
*me
= current
;
1659 unsigned char comm
[sizeof(me
->comm
)];
1662 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1663 if (error
!= -ENOSYS
)
1668 case PR_SET_PDEATHSIG
:
1669 if (!valid_signal(arg2
)) {
1673 me
->pdeath_signal
= arg2
;
1676 case PR_GET_PDEATHSIG
:
1677 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
1679 case PR_GET_DUMPABLE
:
1680 error
= get_dumpable(me
->mm
);
1682 case PR_SET_DUMPABLE
:
1683 if (arg2
< 0 || arg2
> 1) {
1687 set_dumpable(me
->mm
, arg2
);
1691 case PR_SET_UNALIGN
:
1692 error
= SET_UNALIGN_CTL(me
, arg2
);
1694 case PR_GET_UNALIGN
:
1695 error
= GET_UNALIGN_CTL(me
, arg2
);
1698 error
= SET_FPEMU_CTL(me
, arg2
);
1701 error
= GET_FPEMU_CTL(me
, arg2
);
1704 error
= SET_FPEXC_CTL(me
, arg2
);
1707 error
= GET_FPEXC_CTL(me
, arg2
);
1710 error
= PR_TIMING_STATISTICAL
;
1713 if (arg2
!= PR_TIMING_STATISTICAL
)
1720 comm
[sizeof(me
->comm
)-1] = 0;
1721 if (strncpy_from_user(comm
, (char __user
*)arg2
,
1722 sizeof(me
->comm
) - 1) < 0)
1724 set_task_comm(me
, comm
);
1727 get_task_comm(comm
, me
);
1728 if (copy_to_user((char __user
*)arg2
, comm
,
1733 error
= GET_ENDIAN(me
, arg2
);
1736 error
= SET_ENDIAN(me
, arg2
);
1739 case PR_GET_SECCOMP
:
1740 error
= prctl_get_seccomp();
1742 case PR_SET_SECCOMP
:
1743 error
= prctl_set_seccomp(arg2
);
1746 error
= GET_TSC_CTL(arg2
);
1749 error
= SET_TSC_CTL(arg2
);
1751 case PR_TASK_PERF_EVENTS_DISABLE
:
1752 error
= perf_event_task_disable();
1754 case PR_TASK_PERF_EVENTS_ENABLE
:
1755 error
= perf_event_task_enable();
1757 case PR_GET_TIMERSLACK
:
1758 error
= current
->timer_slack_ns
;
1760 case PR_SET_TIMERSLACK
:
1762 current
->timer_slack_ns
=
1763 current
->default_timer_slack_ns
;
1765 current
->timer_slack_ns
= arg2
;
1772 case PR_MCE_KILL_CLEAR
:
1775 current
->flags
&= ~PF_MCE_PROCESS
;
1777 case PR_MCE_KILL_SET
:
1778 current
->flags
|= PF_MCE_PROCESS
;
1779 if (arg3
== PR_MCE_KILL_EARLY
)
1780 current
->flags
|= PF_MCE_EARLY
;
1781 else if (arg3
== PR_MCE_KILL_LATE
)
1782 current
->flags
&= ~PF_MCE_EARLY
;
1783 else if (arg3
== PR_MCE_KILL_DEFAULT
)
1785 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
1794 case PR_MCE_KILL_GET
:
1795 if (arg2
| arg3
| arg4
| arg5
)
1797 if (current
->flags
& PF_MCE_PROCESS
)
1798 error
= (current
->flags
& PF_MCE_EARLY
) ?
1799 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
1801 error
= PR_MCE_KILL_DEFAULT
;
1810 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
1811 struct getcpu_cache __user
*, unused
)
1814 int cpu
= raw_smp_processor_id();
1816 err
|= put_user(cpu
, cpup
);
1818 err
|= put_user(cpu_to_node(cpu
), nodep
);
1819 return err
? -EFAULT
: 0;
1822 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1824 static void argv_cleanup(struct subprocess_info
*info
)
1826 argv_free(info
->argv
);
1830 * orderly_poweroff - Trigger an orderly system poweroff
1831 * @force: force poweroff if command execution fails
1833 * This may be called from any context to trigger a system shutdown.
1834 * If the orderly shutdown fails, it will force an immediate shutdown.
1836 int orderly_poweroff(bool force
)
1839 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
1840 static char *envp
[] = {
1842 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1846 struct subprocess_info
*info
;
1849 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
1850 __func__
, poweroff_cmd
);
1854 info
= call_usermodehelper_setup(argv
[0], argv
, envp
, GFP_ATOMIC
);
1860 call_usermodehelper_setfns(info
, NULL
, argv_cleanup
, NULL
);
1862 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
1866 printk(KERN_WARNING
"Failed to start orderly shutdown: "
1867 "forcing the issue\n");
1869 /* I guess this should try to kick off some daemon to
1870 sync and poweroff asap. Or not even bother syncing
1871 if we're doing an emergency shutdown? */
1878 EXPORT_SYMBOL_GPL(orderly_poweroff
);