[ACPI] fix 2.6.13 boot hang regression on HT box w/ broken BIOS
[linux-2.6/next.git] / lib / reed_solomon / reed_solomon.c
blobf5fef948a415e0cb3118b0a22eaab4f374e044b3
1 /*
2 * lib/reed_solomon/rslib.c
4 * Overview:
5 * Generic Reed Solomon encoder / decoder library
7 * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
9 * Reed Solomon code lifted from reed solomon library written by Phil Karn
10 * Copyright 2002 Phil Karn, KA9Q
12 * $Id: rslib.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
18 * Description:
20 * The generic Reed Solomon library provides runtime configurable
21 * encoding / decoding of RS codes.
22 * Each user must call init_rs to get a pointer to a rs_control
23 * structure for the given rs parameters. This structure is either
24 * generated or a already available matching control structure is used.
25 * If a structure is generated then the polynomial arrays for
26 * fast encoding / decoding are built. This can take some time so
27 * make sure not to call this function from a time critical path.
28 * Usually a module / driver should initialize the necessary
29 * rs_control structure on module / driver init and release it
30 * on exit.
31 * The encoding puts the calculated syndrome into a given syndrome
32 * buffer.
33 * The decoding is a two step process. The first step calculates
34 * the syndrome over the received (data + syndrome) and calls the
35 * second stage, which does the decoding / error correction itself.
36 * Many hw encoders provide a syndrome calculation over the received
37 * data + syndrome and can call the second stage directly.
41 #include <linux/errno.h>
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/module.h>
45 #include <linux/rslib.h>
46 #include <linux/slab.h>
47 #include <asm/semaphore.h>
49 /* This list holds all currently allocated rs control structures */
50 static LIST_HEAD (rslist);
51 /* Protection for the list */
52 static DECLARE_MUTEX(rslistlock);
54 /**
55 * rs_init - Initialize a Reed-Solomon codec
57 * @symsize: symbol size, bits (1-8)
58 * @gfpoly: Field generator polynomial coefficients
59 * @fcr: first root of RS code generator polynomial, index form
60 * @prim: primitive element to generate polynomial roots
61 * @nroots: RS code generator polynomial degree (number of roots)
63 * Allocate a control structure and the polynom arrays for faster
64 * en/decoding. Fill the arrays according to the given parameters
66 static struct rs_control *rs_init(int symsize, int gfpoly, int fcr,
67 int prim, int nroots)
69 struct rs_control *rs;
70 int i, j, sr, root, iprim;
72 /* Allocate the control structure */
73 rs = kmalloc(sizeof (struct rs_control), GFP_KERNEL);
74 if (rs == NULL)
75 return NULL;
77 INIT_LIST_HEAD(&rs->list);
79 rs->mm = symsize;
80 rs->nn = (1 << symsize) - 1;
81 rs->fcr = fcr;
82 rs->prim = prim;
83 rs->nroots = nroots;
84 rs->gfpoly = gfpoly;
86 /* Allocate the arrays */
87 rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);
88 if (rs->alpha_to == NULL)
89 goto errrs;
91 rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);
92 if (rs->index_of == NULL)
93 goto erralp;
95 rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), GFP_KERNEL);
96 if(rs->genpoly == NULL)
97 goto erridx;
99 /* Generate Galois field lookup tables */
100 rs->index_of[0] = rs->nn; /* log(zero) = -inf */
101 rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */
102 sr = 1;
103 for (i = 0; i < rs->nn; i++) {
104 rs->index_of[sr] = i;
105 rs->alpha_to[i] = sr;
106 sr <<= 1;
107 if (sr & (1 << symsize))
108 sr ^= gfpoly;
109 sr &= rs->nn;
111 /* If it's not primitive, exit */
112 if(sr != 1)
113 goto errpol;
115 /* Find prim-th root of 1, used in decoding */
116 for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn);
117 /* prim-th root of 1, index form */
118 rs->iprim = iprim / prim;
120 /* Form RS code generator polynomial from its roots */
121 rs->genpoly[0] = 1;
122 for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {
123 rs->genpoly[i + 1] = 1;
124 /* Multiply rs->genpoly[] by @**(root + x) */
125 for (j = i; j > 0; j--) {
126 if (rs->genpoly[j] != 0) {
127 rs->genpoly[j] = rs->genpoly[j -1] ^
128 rs->alpha_to[rs_modnn(rs,
129 rs->index_of[rs->genpoly[j]] + root)];
130 } else
131 rs->genpoly[j] = rs->genpoly[j - 1];
133 /* rs->genpoly[0] can never be zero */
134 rs->genpoly[0] =
135 rs->alpha_to[rs_modnn(rs,
136 rs->index_of[rs->genpoly[0]] + root)];
138 /* convert rs->genpoly[] to index form for quicker encoding */
139 for (i = 0; i <= nroots; i++)
140 rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
141 return rs;
143 /* Error exit */
144 errpol:
145 kfree(rs->genpoly);
146 erridx:
147 kfree(rs->index_of);
148 erralp:
149 kfree(rs->alpha_to);
150 errrs:
151 kfree(rs);
152 return NULL;
157 * free_rs - Free the rs control structure, if its not longer used
159 * @rs: the control structure which is not longer used by the
160 * caller
162 void free_rs(struct rs_control *rs)
164 down(&rslistlock);
165 rs->users--;
166 if(!rs->users) {
167 list_del(&rs->list);
168 kfree(rs->alpha_to);
169 kfree(rs->index_of);
170 kfree(rs->genpoly);
171 kfree(rs);
173 up(&rslistlock);
177 * init_rs - Find a matching or allocate a new rs control structure
179 * @symsize: the symbol size (number of bits)
180 * @gfpoly: the extended Galois field generator polynomial coefficients,
181 * with the 0th coefficient in the low order bit. The polynomial
182 * must be primitive;
183 * @fcr: the first consecutive root of the rs code generator polynomial
184 * in index form
185 * @prim: primitive element to generate polynomial roots
186 * @nroots: RS code generator polynomial degree (number of roots)
188 struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
189 int nroots)
191 struct list_head *tmp;
192 struct rs_control *rs;
194 /* Sanity checks */
195 if (symsize < 1)
196 return NULL;
197 if (fcr < 0 || fcr >= (1<<symsize))
198 return NULL;
199 if (prim <= 0 || prim >= (1<<symsize))
200 return NULL;
201 if (nroots < 0 || nroots >= (1<<symsize))
202 return NULL;
204 down(&rslistlock);
206 /* Walk through the list and look for a matching entry */
207 list_for_each(tmp, &rslist) {
208 rs = list_entry(tmp, struct rs_control, list);
209 if (symsize != rs->mm)
210 continue;
211 if (gfpoly != rs->gfpoly)
212 continue;
213 if (fcr != rs->fcr)
214 continue;
215 if (prim != rs->prim)
216 continue;
217 if (nroots != rs->nroots)
218 continue;
219 /* We have a matching one already */
220 rs->users++;
221 goto out;
224 /* Create a new one */
225 rs = rs_init(symsize, gfpoly, fcr, prim, nroots);
226 if (rs) {
227 rs->users = 1;
228 list_add(&rs->list, &rslist);
230 out:
231 up(&rslistlock);
232 return rs;
235 #ifdef CONFIG_REED_SOLOMON_ENC8
237 * encode_rs8 - Calculate the parity for data values (8bit data width)
239 * @rs: the rs control structure
240 * @data: data field of a given type
241 * @len: data length
242 * @par: parity data, must be initialized by caller (usually all 0)
243 * @invmsk: invert data mask (will be xored on data)
245 * The parity uses a uint16_t data type to enable
246 * symbol size > 8. The calling code must take care of encoding of the
247 * syndrome result for storage itself.
249 int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par,
250 uint16_t invmsk)
252 #include "encode_rs.c"
254 EXPORT_SYMBOL_GPL(encode_rs8);
255 #endif
257 #ifdef CONFIG_REED_SOLOMON_DEC8
259 * decode_rs8 - Decode codeword (8bit data width)
261 * @rs: the rs control structure
262 * @data: data field of a given type
263 * @par: received parity data field
264 * @len: data length
265 * @s: syndrome data field (if NULL, syndrome is calculated)
266 * @no_eras: number of erasures
267 * @eras_pos: position of erasures, can be NULL
268 * @invmsk: invert data mask (will be xored on data, not on parity!)
269 * @corr: buffer to store correction bitmask on eras_pos
271 * The syndrome and parity uses a uint16_t data type to enable
272 * symbol size > 8. The calling code must take care of decoding of the
273 * syndrome result and the received parity before calling this code.
275 int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len,
276 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
277 uint16_t *corr)
279 #include "decode_rs.c"
281 EXPORT_SYMBOL_GPL(decode_rs8);
282 #endif
284 #ifdef CONFIG_REED_SOLOMON_ENC16
286 * encode_rs16 - Calculate the parity for data values (16bit data width)
288 * @rs: the rs control structure
289 * @data: data field of a given type
290 * @len: data length
291 * @par: parity data, must be initialized by caller (usually all 0)
292 * @invmsk: invert data mask (will be xored on data, not on parity!)
294 * Each field in the data array contains up to symbol size bits of valid data.
296 int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par,
297 uint16_t invmsk)
299 #include "encode_rs.c"
301 EXPORT_SYMBOL_GPL(encode_rs16);
302 #endif
304 #ifdef CONFIG_REED_SOLOMON_DEC16
306 * decode_rs16 - Decode codeword (16bit data width)
308 * @rs: the rs control structure
309 * @data: data field of a given type
310 * @par: received parity data field
311 * @len: data length
312 * @s: syndrome data field (if NULL, syndrome is calculated)
313 * @no_eras: number of erasures
314 * @eras_pos: position of erasures, can be NULL
315 * @invmsk: invert data mask (will be xored on data, not on parity!)
316 * @corr: buffer to store correction bitmask on eras_pos
318 * Each field in the data array contains up to symbol size bits of valid data.
320 int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len,
321 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
322 uint16_t *corr)
324 #include "decode_rs.c"
326 EXPORT_SYMBOL_GPL(decode_rs16);
327 #endif
329 EXPORT_SYMBOL_GPL(init_rs);
330 EXPORT_SYMBOL_GPL(free_rs);
332 MODULE_LICENSE("GPL");
333 MODULE_DESCRIPTION("Reed Solomon encoder/decoder");
334 MODULE_AUTHOR("Phil Karn, Thomas Gleixner");