staging:iio:adc: unused header removals.
[linux-2.6/next.git] / drivers / dma / imx-sdma.c
blob7bd7e98548cd34e495910f093ee44e821c1de67b
1 /*
2 * drivers/dma/imx-sdma.c
4 * This file contains a driver for the Freescale Smart DMA engine
6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 * Based on code from Freescale:
10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 * The code contained herein is licensed under the GNU General Public
13 * License. You may obtain a copy of the GNU General Public License
14 * Version 2 or later at the following locations:
16 * http://www.opensource.org/licenses/gpl-license.html
17 * http://www.gnu.org/copyleft/gpl.html
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/interrupt.h>
24 #include <linux/clk.h>
25 #include <linux/wait.h>
26 #include <linux/sched.h>
27 #include <linux/semaphore.h>
28 #include <linux/spinlock.h>
29 #include <linux/device.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/firmware.h>
32 #include <linux/slab.h>
33 #include <linux/platform_device.h>
34 #include <linux/dmaengine.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
38 #include <asm/irq.h>
39 #include <mach/sdma.h>
40 #include <mach/dma.h>
41 #include <mach/hardware.h>
43 /* SDMA registers */
44 #define SDMA_H_C0PTR 0x000
45 #define SDMA_H_INTR 0x004
46 #define SDMA_H_STATSTOP 0x008
47 #define SDMA_H_START 0x00c
48 #define SDMA_H_EVTOVR 0x010
49 #define SDMA_H_DSPOVR 0x014
50 #define SDMA_H_HOSTOVR 0x018
51 #define SDMA_H_EVTPEND 0x01c
52 #define SDMA_H_DSPENBL 0x020
53 #define SDMA_H_RESET 0x024
54 #define SDMA_H_EVTERR 0x028
55 #define SDMA_H_INTRMSK 0x02c
56 #define SDMA_H_PSW 0x030
57 #define SDMA_H_EVTERRDBG 0x034
58 #define SDMA_H_CONFIG 0x038
59 #define SDMA_ONCE_ENB 0x040
60 #define SDMA_ONCE_DATA 0x044
61 #define SDMA_ONCE_INSTR 0x048
62 #define SDMA_ONCE_STAT 0x04c
63 #define SDMA_ONCE_CMD 0x050
64 #define SDMA_EVT_MIRROR 0x054
65 #define SDMA_ILLINSTADDR 0x058
66 #define SDMA_CHN0ADDR 0x05c
67 #define SDMA_ONCE_RTB 0x060
68 #define SDMA_XTRIG_CONF1 0x070
69 #define SDMA_XTRIG_CONF2 0x074
70 #define SDMA_CHNENBL0_IMX35 0x200
71 #define SDMA_CHNENBL0_IMX31 0x080
72 #define SDMA_CHNPRI_0 0x100
75 * Buffer descriptor status values.
77 #define BD_DONE 0x01
78 #define BD_WRAP 0x02
79 #define BD_CONT 0x04
80 #define BD_INTR 0x08
81 #define BD_RROR 0x10
82 #define BD_LAST 0x20
83 #define BD_EXTD 0x80
86 * Data Node descriptor status values.
88 #define DND_END_OF_FRAME 0x80
89 #define DND_END_OF_XFER 0x40
90 #define DND_DONE 0x20
91 #define DND_UNUSED 0x01
94 * IPCV2 descriptor status values.
96 #define BD_IPCV2_END_OF_FRAME 0x40
98 #define IPCV2_MAX_NODES 50
100 * Error bit set in the CCB status field by the SDMA,
101 * in setbd routine, in case of a transfer error
103 #define DATA_ERROR 0x10000000
106 * Buffer descriptor commands.
108 #define C0_ADDR 0x01
109 #define C0_LOAD 0x02
110 #define C0_DUMP 0x03
111 #define C0_SETCTX 0x07
112 #define C0_GETCTX 0x03
113 #define C0_SETDM 0x01
114 #define C0_SETPM 0x04
115 #define C0_GETDM 0x02
116 #define C0_GETPM 0x08
118 * Change endianness indicator in the BD command field
120 #define CHANGE_ENDIANNESS 0x80
123 * Mode/Count of data node descriptors - IPCv2
125 struct sdma_mode_count {
126 u32 count : 16; /* size of the buffer pointed by this BD */
127 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
128 u32 command : 8; /* command mostlky used for channel 0 */
132 * Buffer descriptor
134 struct sdma_buffer_descriptor {
135 struct sdma_mode_count mode;
136 u32 buffer_addr; /* address of the buffer described */
137 u32 ext_buffer_addr; /* extended buffer address */
138 } __attribute__ ((packed));
141 * struct sdma_channel_control - Channel control Block
143 * @current_bd_ptr current buffer descriptor processed
144 * @base_bd_ptr first element of buffer descriptor array
145 * @unused padding. The SDMA engine expects an array of 128 byte
146 * control blocks
148 struct sdma_channel_control {
149 u32 current_bd_ptr;
150 u32 base_bd_ptr;
151 u32 unused[2];
152 } __attribute__ ((packed));
155 * struct sdma_state_registers - SDMA context for a channel
157 * @pc: program counter
158 * @t: test bit: status of arithmetic & test instruction
159 * @rpc: return program counter
160 * @sf: source fault while loading data
161 * @spc: loop start program counter
162 * @df: destination fault while storing data
163 * @epc: loop end program counter
164 * @lm: loop mode
166 struct sdma_state_registers {
167 u32 pc :14;
168 u32 unused1: 1;
169 u32 t : 1;
170 u32 rpc :14;
171 u32 unused0: 1;
172 u32 sf : 1;
173 u32 spc :14;
174 u32 unused2: 1;
175 u32 df : 1;
176 u32 epc :14;
177 u32 lm : 2;
178 } __attribute__ ((packed));
181 * struct sdma_context_data - sdma context specific to a channel
183 * @channel_state: channel state bits
184 * @gReg: general registers
185 * @mda: burst dma destination address register
186 * @msa: burst dma source address register
187 * @ms: burst dma status register
188 * @md: burst dma data register
189 * @pda: peripheral dma destination address register
190 * @psa: peripheral dma source address register
191 * @ps: peripheral dma status register
192 * @pd: peripheral dma data register
193 * @ca: CRC polynomial register
194 * @cs: CRC accumulator register
195 * @dda: dedicated core destination address register
196 * @dsa: dedicated core source address register
197 * @ds: dedicated core status register
198 * @dd: dedicated core data register
200 struct sdma_context_data {
201 struct sdma_state_registers channel_state;
202 u32 gReg[8];
203 u32 mda;
204 u32 msa;
205 u32 ms;
206 u32 md;
207 u32 pda;
208 u32 psa;
209 u32 ps;
210 u32 pd;
211 u32 ca;
212 u32 cs;
213 u32 dda;
214 u32 dsa;
215 u32 ds;
216 u32 dd;
217 u32 scratch0;
218 u32 scratch1;
219 u32 scratch2;
220 u32 scratch3;
221 u32 scratch4;
222 u32 scratch5;
223 u32 scratch6;
224 u32 scratch7;
225 } __attribute__ ((packed));
227 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
229 struct sdma_engine;
232 * struct sdma_channel - housekeeping for a SDMA channel
234 * @sdma pointer to the SDMA engine for this channel
235 * @channel the channel number, matches dmaengine chan_id + 1
236 * @direction transfer type. Needed for setting SDMA script
237 * @peripheral_type Peripheral type. Needed for setting SDMA script
238 * @event_id0 aka dma request line
239 * @event_id1 for channels that use 2 events
240 * @word_size peripheral access size
241 * @buf_tail ID of the buffer that was processed
242 * @done channel completion
243 * @num_bd max NUM_BD. number of descriptors currently handling
245 struct sdma_channel {
246 struct sdma_engine *sdma;
247 unsigned int channel;
248 enum dma_data_direction direction;
249 enum sdma_peripheral_type peripheral_type;
250 unsigned int event_id0;
251 unsigned int event_id1;
252 enum dma_slave_buswidth word_size;
253 unsigned int buf_tail;
254 struct completion done;
255 unsigned int num_bd;
256 struct sdma_buffer_descriptor *bd;
257 dma_addr_t bd_phys;
258 unsigned int pc_from_device, pc_to_device;
259 unsigned long flags;
260 dma_addr_t per_address;
261 u32 event_mask0, event_mask1;
262 u32 watermark_level;
263 u32 shp_addr, per_addr;
264 struct dma_chan chan;
265 spinlock_t lock;
266 struct dma_async_tx_descriptor desc;
267 dma_cookie_t last_completed;
268 enum dma_status status;
271 #define IMX_DMA_SG_LOOP (1 << 0)
273 #define MAX_DMA_CHANNELS 32
274 #define MXC_SDMA_DEFAULT_PRIORITY 1
275 #define MXC_SDMA_MIN_PRIORITY 1
276 #define MXC_SDMA_MAX_PRIORITY 7
278 #define SDMA_FIRMWARE_MAGIC 0x414d4453
281 * struct sdma_firmware_header - Layout of the firmware image
283 * @magic "SDMA"
284 * @version_major increased whenever layout of struct sdma_script_start_addrs
285 * changes.
286 * @version_minor firmware minor version (for binary compatible changes)
287 * @script_addrs_start offset of struct sdma_script_start_addrs in this image
288 * @num_script_addrs Number of script addresses in this image
289 * @ram_code_start offset of SDMA ram image in this firmware image
290 * @ram_code_size size of SDMA ram image
291 * @script_addrs Stores the start address of the SDMA scripts
292 * (in SDMA memory space)
294 struct sdma_firmware_header {
295 u32 magic;
296 u32 version_major;
297 u32 version_minor;
298 u32 script_addrs_start;
299 u32 num_script_addrs;
300 u32 ram_code_start;
301 u32 ram_code_size;
304 enum sdma_devtype {
305 IMX31_SDMA, /* runs on i.mx31 */
306 IMX35_SDMA, /* runs on i.mx35 and later */
309 struct sdma_engine {
310 struct device *dev;
311 struct device_dma_parameters dma_parms;
312 struct sdma_channel channel[MAX_DMA_CHANNELS];
313 struct sdma_channel_control *channel_control;
314 void __iomem *regs;
315 enum sdma_devtype devtype;
316 unsigned int num_events;
317 struct sdma_context_data *context;
318 dma_addr_t context_phys;
319 struct dma_device dma_device;
320 struct clk *clk;
321 struct sdma_script_start_addrs *script_addrs;
324 static struct platform_device_id sdma_devtypes[] = {
326 .name = "imx31-sdma",
327 .driver_data = IMX31_SDMA,
328 }, {
329 .name = "imx35-sdma",
330 .driver_data = IMX35_SDMA,
331 }, {
332 /* sentinel */
335 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
337 static const struct of_device_id sdma_dt_ids[] = {
338 { .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
339 { .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
340 { /* sentinel */ }
342 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
344 #define SDMA_H_CONFIG_DSPDMA (1 << 12) /* indicates if the DSPDMA is used */
345 #define SDMA_H_CONFIG_RTD_PINS (1 << 11) /* indicates if Real-Time Debug pins are enabled */
346 #define SDMA_H_CONFIG_ACR (1 << 4) /* indicates if AHB freq /core freq = 2 or 1 */
347 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
349 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
351 u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
352 SDMA_CHNENBL0_IMX35);
353 return chnenbl0 + event * 4;
356 static int sdma_config_ownership(struct sdma_channel *sdmac,
357 bool event_override, bool mcu_override, bool dsp_override)
359 struct sdma_engine *sdma = sdmac->sdma;
360 int channel = sdmac->channel;
361 u32 evt, mcu, dsp;
363 if (event_override && mcu_override && dsp_override)
364 return -EINVAL;
366 evt = __raw_readl(sdma->regs + SDMA_H_EVTOVR);
367 mcu = __raw_readl(sdma->regs + SDMA_H_HOSTOVR);
368 dsp = __raw_readl(sdma->regs + SDMA_H_DSPOVR);
370 if (dsp_override)
371 dsp &= ~(1 << channel);
372 else
373 dsp |= (1 << channel);
375 if (event_override)
376 evt &= ~(1 << channel);
377 else
378 evt |= (1 << channel);
380 if (mcu_override)
381 mcu &= ~(1 << channel);
382 else
383 mcu |= (1 << channel);
385 __raw_writel(evt, sdma->regs + SDMA_H_EVTOVR);
386 __raw_writel(mcu, sdma->regs + SDMA_H_HOSTOVR);
387 __raw_writel(dsp, sdma->regs + SDMA_H_DSPOVR);
389 return 0;
393 * sdma_run_channel - run a channel and wait till it's done
395 static int sdma_run_channel(struct sdma_channel *sdmac)
397 struct sdma_engine *sdma = sdmac->sdma;
398 int channel = sdmac->channel;
399 int ret;
401 init_completion(&sdmac->done);
403 __raw_writel(1 << channel, sdma->regs + SDMA_H_START);
405 ret = wait_for_completion_timeout(&sdmac->done, HZ);
407 return ret ? 0 : -ETIMEDOUT;
410 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
411 u32 address)
413 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
414 void *buf_virt;
415 dma_addr_t buf_phys;
416 int ret;
418 buf_virt = dma_alloc_coherent(NULL,
419 size,
420 &buf_phys, GFP_KERNEL);
421 if (!buf_virt)
422 return -ENOMEM;
424 bd0->mode.command = C0_SETPM;
425 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
426 bd0->mode.count = size / 2;
427 bd0->buffer_addr = buf_phys;
428 bd0->ext_buffer_addr = address;
430 memcpy(buf_virt, buf, size);
432 ret = sdma_run_channel(&sdma->channel[0]);
434 dma_free_coherent(NULL, size, buf_virt, buf_phys);
436 return ret;
439 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
441 struct sdma_engine *sdma = sdmac->sdma;
442 int channel = sdmac->channel;
443 u32 val;
444 u32 chnenbl = chnenbl_ofs(sdma, event);
446 val = __raw_readl(sdma->regs + chnenbl);
447 val |= (1 << channel);
448 __raw_writel(val, sdma->regs + chnenbl);
451 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
453 struct sdma_engine *sdma = sdmac->sdma;
454 int channel = sdmac->channel;
455 u32 chnenbl = chnenbl_ofs(sdma, event);
456 u32 val;
458 val = __raw_readl(sdma->regs + chnenbl);
459 val &= ~(1 << channel);
460 __raw_writel(val, sdma->regs + chnenbl);
463 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
465 struct sdma_buffer_descriptor *bd;
468 * loop mode. Iterate over descriptors, re-setup them and
469 * call callback function.
471 while (1) {
472 bd = &sdmac->bd[sdmac->buf_tail];
474 if (bd->mode.status & BD_DONE)
475 break;
477 if (bd->mode.status & BD_RROR)
478 sdmac->status = DMA_ERROR;
479 else
480 sdmac->status = DMA_IN_PROGRESS;
482 bd->mode.status |= BD_DONE;
483 sdmac->buf_tail++;
484 sdmac->buf_tail %= sdmac->num_bd;
486 if (sdmac->desc.callback)
487 sdmac->desc.callback(sdmac->desc.callback_param);
491 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
493 struct sdma_buffer_descriptor *bd;
494 int i, error = 0;
497 * non loop mode. Iterate over all descriptors, collect
498 * errors and call callback function
500 for (i = 0; i < sdmac->num_bd; i++) {
501 bd = &sdmac->bd[i];
503 if (bd->mode.status & (BD_DONE | BD_RROR))
504 error = -EIO;
507 if (error)
508 sdmac->status = DMA_ERROR;
509 else
510 sdmac->status = DMA_SUCCESS;
512 if (sdmac->desc.callback)
513 sdmac->desc.callback(sdmac->desc.callback_param);
514 sdmac->last_completed = sdmac->desc.cookie;
517 static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
519 complete(&sdmac->done);
521 /* not interested in channel 0 interrupts */
522 if (sdmac->channel == 0)
523 return;
525 if (sdmac->flags & IMX_DMA_SG_LOOP)
526 sdma_handle_channel_loop(sdmac);
527 else
528 mxc_sdma_handle_channel_normal(sdmac);
531 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
533 struct sdma_engine *sdma = dev_id;
534 u32 stat;
536 stat = __raw_readl(sdma->regs + SDMA_H_INTR);
537 __raw_writel(stat, sdma->regs + SDMA_H_INTR);
539 while (stat) {
540 int channel = fls(stat) - 1;
541 struct sdma_channel *sdmac = &sdma->channel[channel];
543 mxc_sdma_handle_channel(sdmac);
545 stat &= ~(1 << channel);
548 return IRQ_HANDLED;
552 * sets the pc of SDMA script according to the peripheral type
554 static void sdma_get_pc(struct sdma_channel *sdmac,
555 enum sdma_peripheral_type peripheral_type)
557 struct sdma_engine *sdma = sdmac->sdma;
558 int per_2_emi = 0, emi_2_per = 0;
560 * These are needed once we start to support transfers between
561 * two peripherals or memory-to-memory transfers
563 int per_2_per = 0, emi_2_emi = 0;
565 sdmac->pc_from_device = 0;
566 sdmac->pc_to_device = 0;
568 switch (peripheral_type) {
569 case IMX_DMATYPE_MEMORY:
570 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
571 break;
572 case IMX_DMATYPE_DSP:
573 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
574 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
575 break;
576 case IMX_DMATYPE_FIRI:
577 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
578 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
579 break;
580 case IMX_DMATYPE_UART:
581 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
582 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
583 break;
584 case IMX_DMATYPE_UART_SP:
585 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
586 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
587 break;
588 case IMX_DMATYPE_ATA:
589 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
590 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
591 break;
592 case IMX_DMATYPE_CSPI:
593 case IMX_DMATYPE_EXT:
594 case IMX_DMATYPE_SSI:
595 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
596 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
597 break;
598 case IMX_DMATYPE_SSI_SP:
599 case IMX_DMATYPE_MMC:
600 case IMX_DMATYPE_SDHC:
601 case IMX_DMATYPE_CSPI_SP:
602 case IMX_DMATYPE_ESAI:
603 case IMX_DMATYPE_MSHC_SP:
604 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
605 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
606 break;
607 case IMX_DMATYPE_ASRC:
608 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
609 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
610 per_2_per = sdma->script_addrs->per_2_per_addr;
611 break;
612 case IMX_DMATYPE_MSHC:
613 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
614 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
615 break;
616 case IMX_DMATYPE_CCM:
617 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
618 break;
619 case IMX_DMATYPE_SPDIF:
620 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
621 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
622 break;
623 case IMX_DMATYPE_IPU_MEMORY:
624 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
625 break;
626 default:
627 break;
630 sdmac->pc_from_device = per_2_emi;
631 sdmac->pc_to_device = emi_2_per;
634 static int sdma_load_context(struct sdma_channel *sdmac)
636 struct sdma_engine *sdma = sdmac->sdma;
637 int channel = sdmac->channel;
638 int load_address;
639 struct sdma_context_data *context = sdma->context;
640 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
641 int ret;
643 if (sdmac->direction == DMA_FROM_DEVICE) {
644 load_address = sdmac->pc_from_device;
645 } else {
646 load_address = sdmac->pc_to_device;
649 if (load_address < 0)
650 return load_address;
652 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
653 dev_dbg(sdma->dev, "wml = 0x%08x\n", sdmac->watermark_level);
654 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
655 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
656 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", sdmac->event_mask0);
657 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", sdmac->event_mask1);
659 memset(context, 0, sizeof(*context));
660 context->channel_state.pc = load_address;
662 /* Send by context the event mask,base address for peripheral
663 * and watermark level
665 context->gReg[0] = sdmac->event_mask1;
666 context->gReg[1] = sdmac->event_mask0;
667 context->gReg[2] = sdmac->per_addr;
668 context->gReg[6] = sdmac->shp_addr;
669 context->gReg[7] = sdmac->watermark_level;
671 bd0->mode.command = C0_SETDM;
672 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
673 bd0->mode.count = sizeof(*context) / 4;
674 bd0->buffer_addr = sdma->context_phys;
675 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
677 ret = sdma_run_channel(&sdma->channel[0]);
679 return ret;
682 static void sdma_disable_channel(struct sdma_channel *sdmac)
684 struct sdma_engine *sdma = sdmac->sdma;
685 int channel = sdmac->channel;
687 __raw_writel(1 << channel, sdma->regs + SDMA_H_STATSTOP);
688 sdmac->status = DMA_ERROR;
691 static int sdma_config_channel(struct sdma_channel *sdmac)
693 int ret;
695 sdma_disable_channel(sdmac);
697 sdmac->event_mask0 = 0;
698 sdmac->event_mask1 = 0;
699 sdmac->shp_addr = 0;
700 sdmac->per_addr = 0;
702 if (sdmac->event_id0) {
703 if (sdmac->event_id0 > 32)
704 return -EINVAL;
705 sdma_event_enable(sdmac, sdmac->event_id0);
708 switch (sdmac->peripheral_type) {
709 case IMX_DMATYPE_DSP:
710 sdma_config_ownership(sdmac, false, true, true);
711 break;
712 case IMX_DMATYPE_MEMORY:
713 sdma_config_ownership(sdmac, false, true, false);
714 break;
715 default:
716 sdma_config_ownership(sdmac, true, true, false);
717 break;
720 sdma_get_pc(sdmac, sdmac->peripheral_type);
722 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
723 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
724 /* Handle multiple event channels differently */
725 if (sdmac->event_id1) {
726 sdmac->event_mask1 = 1 << (sdmac->event_id1 % 32);
727 if (sdmac->event_id1 > 31)
728 sdmac->watermark_level |= 1 << 31;
729 sdmac->event_mask0 = 1 << (sdmac->event_id0 % 32);
730 if (sdmac->event_id0 > 31)
731 sdmac->watermark_level |= 1 << 30;
732 } else {
733 sdmac->event_mask0 = 1 << sdmac->event_id0;
734 sdmac->event_mask1 = 1 << (sdmac->event_id0 - 32);
736 /* Watermark Level */
737 sdmac->watermark_level |= sdmac->watermark_level;
738 /* Address */
739 sdmac->shp_addr = sdmac->per_address;
740 } else {
741 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
744 ret = sdma_load_context(sdmac);
746 return ret;
749 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
750 unsigned int priority)
752 struct sdma_engine *sdma = sdmac->sdma;
753 int channel = sdmac->channel;
755 if (priority < MXC_SDMA_MIN_PRIORITY
756 || priority > MXC_SDMA_MAX_PRIORITY) {
757 return -EINVAL;
760 __raw_writel(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
762 return 0;
765 static int sdma_request_channel(struct sdma_channel *sdmac)
767 struct sdma_engine *sdma = sdmac->sdma;
768 int channel = sdmac->channel;
769 int ret = -EBUSY;
771 sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
772 if (!sdmac->bd) {
773 ret = -ENOMEM;
774 goto out;
777 memset(sdmac->bd, 0, PAGE_SIZE);
779 sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
780 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
782 clk_enable(sdma->clk);
784 sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
786 init_completion(&sdmac->done);
788 sdmac->buf_tail = 0;
790 return 0;
791 out:
793 return ret;
796 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
798 __raw_writel(1 << channel, sdma->regs + SDMA_H_START);
801 static dma_cookie_t sdma_assign_cookie(struct sdma_channel *sdmac)
803 dma_cookie_t cookie = sdmac->chan.cookie;
805 if (++cookie < 0)
806 cookie = 1;
808 sdmac->chan.cookie = cookie;
809 sdmac->desc.cookie = cookie;
811 return cookie;
814 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
816 return container_of(chan, struct sdma_channel, chan);
819 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
821 struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
822 struct sdma_engine *sdma = sdmac->sdma;
823 dma_cookie_t cookie;
825 spin_lock_irq(&sdmac->lock);
827 cookie = sdma_assign_cookie(sdmac);
829 sdma_enable_channel(sdma, sdmac->channel);
831 spin_unlock_irq(&sdmac->lock);
833 return cookie;
836 static int sdma_alloc_chan_resources(struct dma_chan *chan)
838 struct sdma_channel *sdmac = to_sdma_chan(chan);
839 struct imx_dma_data *data = chan->private;
840 int prio, ret;
842 if (!data)
843 return -EINVAL;
845 switch (data->priority) {
846 case DMA_PRIO_HIGH:
847 prio = 3;
848 break;
849 case DMA_PRIO_MEDIUM:
850 prio = 2;
851 break;
852 case DMA_PRIO_LOW:
853 default:
854 prio = 1;
855 break;
858 sdmac->peripheral_type = data->peripheral_type;
859 sdmac->event_id0 = data->dma_request;
860 ret = sdma_set_channel_priority(sdmac, prio);
861 if (ret)
862 return ret;
864 ret = sdma_request_channel(sdmac);
865 if (ret)
866 return ret;
868 dma_async_tx_descriptor_init(&sdmac->desc, chan);
869 sdmac->desc.tx_submit = sdma_tx_submit;
870 /* txd.flags will be overwritten in prep funcs */
871 sdmac->desc.flags = DMA_CTRL_ACK;
873 return 0;
876 static void sdma_free_chan_resources(struct dma_chan *chan)
878 struct sdma_channel *sdmac = to_sdma_chan(chan);
879 struct sdma_engine *sdma = sdmac->sdma;
881 sdma_disable_channel(sdmac);
883 if (sdmac->event_id0)
884 sdma_event_disable(sdmac, sdmac->event_id0);
885 if (sdmac->event_id1)
886 sdma_event_disable(sdmac, sdmac->event_id1);
888 sdmac->event_id0 = 0;
889 sdmac->event_id1 = 0;
891 sdma_set_channel_priority(sdmac, 0);
893 dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
895 clk_disable(sdma->clk);
898 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
899 struct dma_chan *chan, struct scatterlist *sgl,
900 unsigned int sg_len, enum dma_data_direction direction,
901 unsigned long flags)
903 struct sdma_channel *sdmac = to_sdma_chan(chan);
904 struct sdma_engine *sdma = sdmac->sdma;
905 int ret, i, count;
906 int channel = sdmac->channel;
907 struct scatterlist *sg;
909 if (sdmac->status == DMA_IN_PROGRESS)
910 return NULL;
911 sdmac->status = DMA_IN_PROGRESS;
913 sdmac->flags = 0;
915 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
916 sg_len, channel);
918 sdmac->direction = direction;
919 ret = sdma_load_context(sdmac);
920 if (ret)
921 goto err_out;
923 if (sg_len > NUM_BD) {
924 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
925 channel, sg_len, NUM_BD);
926 ret = -EINVAL;
927 goto err_out;
930 for_each_sg(sgl, sg, sg_len, i) {
931 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
932 int param;
934 bd->buffer_addr = sg->dma_address;
936 count = sg->length;
938 if (count > 0xffff) {
939 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
940 channel, count, 0xffff);
941 ret = -EINVAL;
942 goto err_out;
945 bd->mode.count = count;
947 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
948 ret = -EINVAL;
949 goto err_out;
952 switch (sdmac->word_size) {
953 case DMA_SLAVE_BUSWIDTH_4_BYTES:
954 bd->mode.command = 0;
955 if (count & 3 || sg->dma_address & 3)
956 return NULL;
957 break;
958 case DMA_SLAVE_BUSWIDTH_2_BYTES:
959 bd->mode.command = 2;
960 if (count & 1 || sg->dma_address & 1)
961 return NULL;
962 break;
963 case DMA_SLAVE_BUSWIDTH_1_BYTE:
964 bd->mode.command = 1;
965 break;
966 default:
967 return NULL;
970 param = BD_DONE | BD_EXTD | BD_CONT;
972 if (i + 1 == sg_len) {
973 param |= BD_INTR;
974 param |= BD_LAST;
975 param &= ~BD_CONT;
978 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
979 i, count, sg->dma_address,
980 param & BD_WRAP ? "wrap" : "",
981 param & BD_INTR ? " intr" : "");
983 bd->mode.status = param;
986 sdmac->num_bd = sg_len;
987 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
989 return &sdmac->desc;
990 err_out:
991 sdmac->status = DMA_ERROR;
992 return NULL;
995 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
996 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
997 size_t period_len, enum dma_data_direction direction)
999 struct sdma_channel *sdmac = to_sdma_chan(chan);
1000 struct sdma_engine *sdma = sdmac->sdma;
1001 int num_periods = buf_len / period_len;
1002 int channel = sdmac->channel;
1003 int ret, i = 0, buf = 0;
1005 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1007 if (sdmac->status == DMA_IN_PROGRESS)
1008 return NULL;
1010 sdmac->status = DMA_IN_PROGRESS;
1012 sdmac->flags |= IMX_DMA_SG_LOOP;
1013 sdmac->direction = direction;
1014 ret = sdma_load_context(sdmac);
1015 if (ret)
1016 goto err_out;
1018 if (num_periods > NUM_BD) {
1019 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1020 channel, num_periods, NUM_BD);
1021 goto err_out;
1024 if (period_len > 0xffff) {
1025 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1026 channel, period_len, 0xffff);
1027 goto err_out;
1030 while (buf < buf_len) {
1031 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1032 int param;
1034 bd->buffer_addr = dma_addr;
1036 bd->mode.count = period_len;
1038 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1039 goto err_out;
1040 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1041 bd->mode.command = 0;
1042 else
1043 bd->mode.command = sdmac->word_size;
1045 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1046 if (i + 1 == num_periods)
1047 param |= BD_WRAP;
1049 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1050 i, period_len, dma_addr,
1051 param & BD_WRAP ? "wrap" : "",
1052 param & BD_INTR ? " intr" : "");
1054 bd->mode.status = param;
1056 dma_addr += period_len;
1057 buf += period_len;
1059 i++;
1062 sdmac->num_bd = num_periods;
1063 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1065 return &sdmac->desc;
1066 err_out:
1067 sdmac->status = DMA_ERROR;
1068 return NULL;
1071 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1072 unsigned long arg)
1074 struct sdma_channel *sdmac = to_sdma_chan(chan);
1075 struct dma_slave_config *dmaengine_cfg = (void *)arg;
1077 switch (cmd) {
1078 case DMA_TERMINATE_ALL:
1079 sdma_disable_channel(sdmac);
1080 return 0;
1081 case DMA_SLAVE_CONFIG:
1082 if (dmaengine_cfg->direction == DMA_FROM_DEVICE) {
1083 sdmac->per_address = dmaengine_cfg->src_addr;
1084 sdmac->watermark_level = dmaengine_cfg->src_maxburst;
1085 sdmac->word_size = dmaengine_cfg->src_addr_width;
1086 } else {
1087 sdmac->per_address = dmaengine_cfg->dst_addr;
1088 sdmac->watermark_level = dmaengine_cfg->dst_maxburst;
1089 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1091 return sdma_config_channel(sdmac);
1092 default:
1093 return -ENOSYS;
1096 return -EINVAL;
1099 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1100 dma_cookie_t cookie,
1101 struct dma_tx_state *txstate)
1103 struct sdma_channel *sdmac = to_sdma_chan(chan);
1104 dma_cookie_t last_used;
1106 last_used = chan->cookie;
1108 dma_set_tx_state(txstate, sdmac->last_completed, last_used, 0);
1110 return sdmac->status;
1113 static void sdma_issue_pending(struct dma_chan *chan)
1116 * Nothing to do. We only have a single descriptor
1120 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1122 static void sdma_add_scripts(struct sdma_engine *sdma,
1123 const struct sdma_script_start_addrs *addr)
1125 s32 *addr_arr = (u32 *)addr;
1126 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1127 int i;
1129 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1130 if (addr_arr[i] > 0)
1131 saddr_arr[i] = addr_arr[i];
1134 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1135 const char *fw_name)
1137 const struct firmware *fw;
1138 const struct sdma_firmware_header *header;
1139 int ret;
1140 const struct sdma_script_start_addrs *addr;
1141 unsigned short *ram_code;
1143 ret = request_firmware(&fw, fw_name, sdma->dev);
1144 if (ret)
1145 return ret;
1147 if (fw->size < sizeof(*header))
1148 goto err_firmware;
1150 header = (struct sdma_firmware_header *)fw->data;
1152 if (header->magic != SDMA_FIRMWARE_MAGIC)
1153 goto err_firmware;
1154 if (header->ram_code_start + header->ram_code_size > fw->size)
1155 goto err_firmware;
1157 addr = (void *)header + header->script_addrs_start;
1158 ram_code = (void *)header + header->ram_code_start;
1160 clk_enable(sdma->clk);
1161 /* download the RAM image for SDMA */
1162 sdma_load_script(sdma, ram_code,
1163 header->ram_code_size,
1164 addr->ram_code_start_addr);
1165 clk_disable(sdma->clk);
1167 sdma_add_scripts(sdma, addr);
1169 dev_info(sdma->dev, "loaded firmware %d.%d\n",
1170 header->version_major,
1171 header->version_minor);
1173 err_firmware:
1174 release_firmware(fw);
1176 return ret;
1179 static int __init sdma_init(struct sdma_engine *sdma)
1181 int i, ret;
1182 dma_addr_t ccb_phys;
1184 switch (sdma->devtype) {
1185 case IMX31_SDMA:
1186 sdma->num_events = 32;
1187 break;
1188 case IMX35_SDMA:
1189 sdma->num_events = 48;
1190 break;
1191 default:
1192 dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1193 sdma->devtype);
1194 return -ENODEV;
1197 clk_enable(sdma->clk);
1199 /* Be sure SDMA has not started yet */
1200 __raw_writel(0, sdma->regs + SDMA_H_C0PTR);
1202 sdma->channel_control = dma_alloc_coherent(NULL,
1203 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1204 sizeof(struct sdma_context_data),
1205 &ccb_phys, GFP_KERNEL);
1207 if (!sdma->channel_control) {
1208 ret = -ENOMEM;
1209 goto err_dma_alloc;
1212 sdma->context = (void *)sdma->channel_control +
1213 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1214 sdma->context_phys = ccb_phys +
1215 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1217 /* Zero-out the CCB structures array just allocated */
1218 memset(sdma->channel_control, 0,
1219 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1221 /* disable all channels */
1222 for (i = 0; i < sdma->num_events; i++)
1223 __raw_writel(0, sdma->regs + chnenbl_ofs(sdma, i));
1225 /* All channels have priority 0 */
1226 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1227 __raw_writel(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1229 ret = sdma_request_channel(&sdma->channel[0]);
1230 if (ret)
1231 goto err_dma_alloc;
1233 sdma_config_ownership(&sdma->channel[0], false, true, false);
1235 /* Set Command Channel (Channel Zero) */
1236 __raw_writel(0x4050, sdma->regs + SDMA_CHN0ADDR);
1238 /* Set bits of CONFIG register but with static context switching */
1239 /* FIXME: Check whether to set ACR bit depending on clock ratios */
1240 __raw_writel(0, sdma->regs + SDMA_H_CONFIG);
1242 __raw_writel(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1244 /* Set bits of CONFIG register with given context switching mode */
1245 __raw_writel(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1247 /* Initializes channel's priorities */
1248 sdma_set_channel_priority(&sdma->channel[0], 7);
1250 clk_disable(sdma->clk);
1252 return 0;
1254 err_dma_alloc:
1255 clk_disable(sdma->clk);
1256 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1257 return ret;
1260 static int __init sdma_probe(struct platform_device *pdev)
1262 const struct of_device_id *of_id =
1263 of_match_device(sdma_dt_ids, &pdev->dev);
1264 struct device_node *np = pdev->dev.of_node;
1265 const char *fw_name;
1266 int ret;
1267 int irq;
1268 struct resource *iores;
1269 struct sdma_platform_data *pdata = pdev->dev.platform_data;
1270 int i;
1271 struct sdma_engine *sdma;
1273 sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1274 if (!sdma)
1275 return -ENOMEM;
1277 sdma->dev = &pdev->dev;
1279 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1280 irq = platform_get_irq(pdev, 0);
1281 if (!iores || irq < 0) {
1282 ret = -EINVAL;
1283 goto err_irq;
1286 if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1287 ret = -EBUSY;
1288 goto err_request_region;
1291 sdma->clk = clk_get(&pdev->dev, NULL);
1292 if (IS_ERR(sdma->clk)) {
1293 ret = PTR_ERR(sdma->clk);
1294 goto err_clk;
1297 sdma->regs = ioremap(iores->start, resource_size(iores));
1298 if (!sdma->regs) {
1299 ret = -ENOMEM;
1300 goto err_ioremap;
1303 ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1304 if (ret)
1305 goto err_request_irq;
1307 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1308 if (!sdma->script_addrs) {
1309 ret = -ENOMEM;
1310 goto err_alloc;
1313 if (of_id)
1314 pdev->id_entry = of_id->data;
1315 sdma->devtype = pdev->id_entry->driver_data;
1317 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1318 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1320 INIT_LIST_HEAD(&sdma->dma_device.channels);
1321 /* Initialize channel parameters */
1322 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1323 struct sdma_channel *sdmac = &sdma->channel[i];
1325 sdmac->sdma = sdma;
1326 spin_lock_init(&sdmac->lock);
1328 sdmac->chan.device = &sdma->dma_device;
1329 sdmac->channel = i;
1332 * Add the channel to the DMAC list. Do not add channel 0 though
1333 * because we need it internally in the SDMA driver. This also means
1334 * that channel 0 in dmaengine counting matches sdma channel 1.
1336 if (i)
1337 list_add_tail(&sdmac->chan.device_node,
1338 &sdma->dma_device.channels);
1341 ret = sdma_init(sdma);
1342 if (ret)
1343 goto err_init;
1345 if (pdata && pdata->script_addrs)
1346 sdma_add_scripts(sdma, pdata->script_addrs);
1348 if (pdata) {
1349 sdma_get_firmware(sdma, pdata->fw_name);
1350 } else {
1352 * Because that device tree does not encode ROM script address,
1353 * the RAM script in firmware is mandatory for device tree
1354 * probe, otherwise it fails.
1356 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1357 &fw_name);
1358 if (ret) {
1359 dev_err(&pdev->dev, "failed to get firmware name\n");
1360 goto err_init;
1363 ret = sdma_get_firmware(sdma, fw_name);
1364 if (ret) {
1365 dev_err(&pdev->dev, "failed to get firmware\n");
1366 goto err_init;
1370 sdma->dma_device.dev = &pdev->dev;
1372 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1373 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1374 sdma->dma_device.device_tx_status = sdma_tx_status;
1375 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1376 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1377 sdma->dma_device.device_control = sdma_control;
1378 sdma->dma_device.device_issue_pending = sdma_issue_pending;
1379 sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1380 dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1382 ret = dma_async_device_register(&sdma->dma_device);
1383 if (ret) {
1384 dev_err(&pdev->dev, "unable to register\n");
1385 goto err_init;
1388 dev_info(sdma->dev, "initialized\n");
1390 return 0;
1392 err_init:
1393 kfree(sdma->script_addrs);
1394 err_alloc:
1395 free_irq(irq, sdma);
1396 err_request_irq:
1397 iounmap(sdma->regs);
1398 err_ioremap:
1399 clk_put(sdma->clk);
1400 err_clk:
1401 release_mem_region(iores->start, resource_size(iores));
1402 err_request_region:
1403 err_irq:
1404 kfree(sdma);
1405 return ret;
1408 static int __exit sdma_remove(struct platform_device *pdev)
1410 return -EBUSY;
1413 static struct platform_driver sdma_driver = {
1414 .driver = {
1415 .name = "imx-sdma",
1416 .of_match_table = sdma_dt_ids,
1418 .id_table = sdma_devtypes,
1419 .remove = __exit_p(sdma_remove),
1422 static int __init sdma_module_init(void)
1424 return platform_driver_probe(&sdma_driver, sdma_probe);
1426 module_init(sdma_module_init);
1428 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1429 MODULE_DESCRIPTION("i.MX SDMA driver");
1430 MODULE_LICENSE("GPL");