PCI: add an option to allow ASPM enabled forcibly
[linux-2.6/next.git] / net / mac80211 / rx.c
blob6d9ae67c27ca6f48f4e63cc3d36354fab9e21dc6
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/kernel.h>
14 #include <linux/skbuff.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/rcupdate.h>
18 #include <net/mac80211.h>
19 #include <net/ieee80211_radiotap.h>
21 #include "ieee80211_i.h"
22 #include "led.h"
23 #include "mesh.h"
24 #include "wep.h"
25 #include "wpa.h"
26 #include "tkip.h"
27 #include "wme.h"
29 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
30 struct tid_ampdu_rx *tid_agg_rx,
31 struct sk_buff *skb, u16 mpdu_seq_num,
32 int bar_req);
34 * monitor mode reception
36 * This function cleans up the SKB, i.e. it removes all the stuff
37 * only useful for monitoring.
39 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
40 struct sk_buff *skb,
41 int rtap_len)
43 skb_pull(skb, rtap_len);
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 skb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 skb = NULL;
56 return skb;
59 static inline int should_drop_frame(struct ieee80211_rx_status *status,
60 struct sk_buff *skb,
61 int present_fcs_len,
62 int radiotap_len)
64 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
66 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
67 return 1;
68 if (unlikely(skb->len < 16 + present_fcs_len + radiotap_len))
69 return 1;
70 if (ieee80211_is_ctl(hdr->frame_control) &&
71 !ieee80211_is_pspoll(hdr->frame_control) &&
72 !ieee80211_is_back_req(hdr->frame_control))
73 return 1;
74 return 0;
77 static int
78 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
79 struct ieee80211_rx_status *status)
81 int len;
83 /* always present fields */
84 len = sizeof(struct ieee80211_radiotap_header) + 9;
86 if (status->flag & RX_FLAG_TSFT)
87 len += 8;
88 if (local->hw.flags & IEEE80211_HW_SIGNAL_DB ||
89 local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
90 len += 1;
91 if (local->hw.flags & IEEE80211_HW_NOISE_DBM)
92 len += 1;
94 if (len & 1) /* padding for RX_FLAGS if necessary */
95 len++;
97 /* make sure radiotap starts at a naturally aligned address */
98 if (len % 8)
99 len = roundup(len, 8);
101 return len;
105 * ieee80211_add_rx_radiotap_header - add radiotap header
107 * add a radiotap header containing all the fields which the hardware provided.
109 static void
110 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
111 struct sk_buff *skb,
112 struct ieee80211_rx_status *status,
113 struct ieee80211_rate *rate,
114 int rtap_len)
116 struct ieee80211_radiotap_header *rthdr;
117 unsigned char *pos;
119 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
120 memset(rthdr, 0, rtap_len);
122 /* radiotap header, set always present flags */
123 rthdr->it_present =
124 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
125 (1 << IEEE80211_RADIOTAP_RATE) |
126 (1 << IEEE80211_RADIOTAP_CHANNEL) |
127 (1 << IEEE80211_RADIOTAP_ANTENNA) |
128 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
129 rthdr->it_len = cpu_to_le16(rtap_len);
131 pos = (unsigned char *)(rthdr+1);
133 /* the order of the following fields is important */
135 /* IEEE80211_RADIOTAP_TSFT */
136 if (status->flag & RX_FLAG_TSFT) {
137 *(__le64 *)pos = cpu_to_le64(status->mactime);
138 rthdr->it_present |=
139 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
140 pos += 8;
143 /* IEEE80211_RADIOTAP_FLAGS */
144 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
145 *pos |= IEEE80211_RADIOTAP_F_FCS;
146 pos++;
148 /* IEEE80211_RADIOTAP_RATE */
149 *pos = rate->bitrate / 5;
150 pos++;
152 /* IEEE80211_RADIOTAP_CHANNEL */
153 *(__le16 *)pos = cpu_to_le16(status->freq);
154 pos += 2;
155 if (status->band == IEEE80211_BAND_5GHZ)
156 *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_OFDM |
157 IEEE80211_CHAN_5GHZ);
158 else
159 *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_DYN |
160 IEEE80211_CHAN_2GHZ);
161 pos += 2;
163 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
164 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
165 *pos = status->signal;
166 rthdr->it_present |=
167 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
168 pos++;
171 /* IEEE80211_RADIOTAP_DBM_ANTNOISE */
172 if (local->hw.flags & IEEE80211_HW_NOISE_DBM) {
173 *pos = status->noise;
174 rthdr->it_present |=
175 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTNOISE);
176 pos++;
179 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
181 /* IEEE80211_RADIOTAP_ANTENNA */
182 *pos = status->antenna;
183 pos++;
185 /* IEEE80211_RADIOTAP_DB_ANTSIGNAL */
186 if (local->hw.flags & IEEE80211_HW_SIGNAL_DB) {
187 *pos = status->signal;
188 rthdr->it_present |=
189 cpu_to_le32(1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL);
190 pos++;
193 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
195 /* IEEE80211_RADIOTAP_RX_FLAGS */
196 /* ensure 2 byte alignment for the 2 byte field as required */
197 if ((pos - (unsigned char *)rthdr) & 1)
198 pos++;
199 /* FIXME: when radiotap gets a 'bad PLCP' flag use it here */
200 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
201 *(__le16 *)pos |= cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS);
202 pos += 2;
206 * This function copies a received frame to all monitor interfaces and
207 * returns a cleaned-up SKB that no longer includes the FCS nor the
208 * radiotap header the driver might have added.
210 static struct sk_buff *
211 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
212 struct ieee80211_rx_status *status,
213 struct ieee80211_rate *rate)
215 struct ieee80211_sub_if_data *sdata;
216 int needed_headroom = 0;
217 struct sk_buff *skb, *skb2;
218 struct net_device *prev_dev = NULL;
219 int present_fcs_len = 0;
220 int rtap_len = 0;
223 * First, we may need to make a copy of the skb because
224 * (1) we need to modify it for radiotap (if not present), and
225 * (2) the other RX handlers will modify the skb we got.
227 * We don't need to, of course, if we aren't going to return
228 * the SKB because it has a bad FCS/PLCP checksum.
230 if (status->flag & RX_FLAG_RADIOTAP)
231 rtap_len = ieee80211_get_radiotap_len(origskb->data);
232 else
233 /* room for the radiotap header based on driver features */
234 needed_headroom = ieee80211_rx_radiotap_len(local, status);
236 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
237 present_fcs_len = FCS_LEN;
239 if (!local->monitors) {
240 if (should_drop_frame(status, origskb, present_fcs_len,
241 rtap_len)) {
242 dev_kfree_skb(origskb);
243 return NULL;
246 return remove_monitor_info(local, origskb, rtap_len);
249 if (should_drop_frame(status, origskb, present_fcs_len, rtap_len)) {
250 /* only need to expand headroom if necessary */
251 skb = origskb;
252 origskb = NULL;
255 * This shouldn't trigger often because most devices have an
256 * RX header they pull before we get here, and that should
257 * be big enough for our radiotap information. We should
258 * probably export the length to drivers so that we can have
259 * them allocate enough headroom to start with.
261 if (skb_headroom(skb) < needed_headroom &&
262 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
263 dev_kfree_skb(skb);
264 return NULL;
266 } else {
268 * Need to make a copy and possibly remove radiotap header
269 * and FCS from the original.
271 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
273 origskb = remove_monitor_info(local, origskb, rtap_len);
275 if (!skb)
276 return origskb;
279 /* if necessary, prepend radiotap information */
280 if (!(status->flag & RX_FLAG_RADIOTAP))
281 ieee80211_add_rx_radiotap_header(local, skb, status, rate,
282 needed_headroom);
284 skb_reset_mac_header(skb);
285 skb->ip_summed = CHECKSUM_UNNECESSARY;
286 skb->pkt_type = PACKET_OTHERHOST;
287 skb->protocol = htons(ETH_P_802_2);
289 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
290 if (!netif_running(sdata->dev))
291 continue;
293 if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR)
294 continue;
296 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
297 continue;
299 if (prev_dev) {
300 skb2 = skb_clone(skb, GFP_ATOMIC);
301 if (skb2) {
302 skb2->dev = prev_dev;
303 netif_rx(skb2);
307 prev_dev = sdata->dev;
308 sdata->dev->stats.rx_packets++;
309 sdata->dev->stats.rx_bytes += skb->len;
312 if (prev_dev) {
313 skb->dev = prev_dev;
314 netif_rx(skb);
315 } else
316 dev_kfree_skb(skb);
318 return origskb;
322 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
324 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
325 int tid;
327 /* does the frame have a qos control field? */
328 if (ieee80211_is_data_qos(hdr->frame_control)) {
329 u8 *qc = ieee80211_get_qos_ctl(hdr);
330 /* frame has qos control */
331 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
332 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
333 rx->flags |= IEEE80211_RX_AMSDU;
334 else
335 rx->flags &= ~IEEE80211_RX_AMSDU;
336 } else {
338 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
340 * Sequence numbers for management frames, QoS data
341 * frames with a broadcast/multicast address in the
342 * Address 1 field, and all non-QoS data frames sent
343 * by QoS STAs are assigned using an additional single
344 * modulo-4096 counter, [...]
346 * We also use that counter for non-QoS STAs.
348 tid = NUM_RX_DATA_QUEUES - 1;
351 rx->queue = tid;
352 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
353 * For now, set skb->priority to 0 for other cases. */
354 rx->skb->priority = (tid > 7) ? 0 : tid;
357 static void ieee80211_verify_ip_alignment(struct ieee80211_rx_data *rx)
359 #ifdef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT
360 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
361 int hdrlen;
363 if (!ieee80211_is_data_present(hdr->frame_control))
364 return;
367 * Drivers are required to align the payload data in a way that
368 * guarantees that the contained IP header is aligned to a four-
369 * byte boundary. In the case of regular frames, this simply means
370 * aligning the payload to a four-byte boundary (because either
371 * the IP header is directly contained, or IV/RFC1042 headers that
372 * have a length divisible by four are in front of it.
374 * With A-MSDU frames, however, the payload data address must
375 * yield two modulo four because there are 14-byte 802.3 headers
376 * within the A-MSDU frames that push the IP header further back
377 * to a multiple of four again. Thankfully, the specs were sane
378 * enough this time around to require padding each A-MSDU subframe
379 * to a length that is a multiple of four.
381 * Padding like atheros hardware adds which is inbetween the 802.11
382 * header and the payload is not supported, the driver is required
383 * to move the 802.11 header further back in that case.
385 hdrlen = ieee80211_hdrlen(hdr->frame_control);
386 if (rx->flags & IEEE80211_RX_AMSDU)
387 hdrlen += ETH_HLEN;
388 WARN_ON_ONCE(((unsigned long)(rx->skb->data + hdrlen)) & 3);
389 #endif
393 /* rx handlers */
395 static ieee80211_rx_result debug_noinline
396 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
398 struct ieee80211_local *local = rx->local;
399 struct sk_buff *skb = rx->skb;
401 if (unlikely(local->sta_hw_scanning))
402 return ieee80211_sta_rx_scan(rx->dev, skb, rx->status);
404 if (unlikely(local->sta_sw_scanning)) {
405 /* drop all the other packets during a software scan anyway */
406 if (ieee80211_sta_rx_scan(rx->dev, skb, rx->status)
407 != RX_QUEUED)
408 dev_kfree_skb(skb);
409 return RX_QUEUED;
412 if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) {
413 /* scanning finished during invoking of handlers */
414 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
415 return RX_DROP_UNUSABLE;
418 return RX_CONTINUE;
421 static ieee80211_rx_result
422 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
424 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
425 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
427 if (ieee80211_is_data(hdr->frame_control)) {
428 if (!ieee80211_has_a4(hdr->frame_control))
429 return RX_DROP_MONITOR;
430 if (memcmp(hdr->addr4, rx->dev->dev_addr, ETH_ALEN) == 0)
431 return RX_DROP_MONITOR;
434 /* If there is not an established peer link and this is not a peer link
435 * establisment frame, beacon or probe, drop the frame.
438 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
439 struct ieee80211_mgmt *mgmt;
441 if (!ieee80211_is_mgmt(hdr->frame_control))
442 return RX_DROP_MONITOR;
444 if (ieee80211_is_action(hdr->frame_control)) {
445 mgmt = (struct ieee80211_mgmt *)hdr;
446 if (mgmt->u.action.category != PLINK_CATEGORY)
447 return RX_DROP_MONITOR;
448 return RX_CONTINUE;
451 if (ieee80211_is_probe_req(hdr->frame_control) ||
452 ieee80211_is_probe_resp(hdr->frame_control) ||
453 ieee80211_is_beacon(hdr->frame_control))
454 return RX_CONTINUE;
456 return RX_DROP_MONITOR;
460 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
462 if (ieee80211_is_data(hdr->frame_control) &&
463 is_multicast_ether_addr(hdr->addr1) &&
464 mesh_rmc_check(hdr->addr4, msh_h_get(hdr, hdrlen), rx->dev))
465 return RX_DROP_MONITOR;
466 #undef msh_h_get
468 return RX_CONTINUE;
472 static ieee80211_rx_result debug_noinline
473 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
475 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
477 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
478 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
479 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
480 rx->sta->last_seq_ctrl[rx->queue] ==
481 hdr->seq_ctrl)) {
482 if (rx->flags & IEEE80211_RX_RA_MATCH) {
483 rx->local->dot11FrameDuplicateCount++;
484 rx->sta->num_duplicates++;
486 return RX_DROP_MONITOR;
487 } else
488 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
491 if (unlikely(rx->skb->len < 16)) {
492 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
493 return RX_DROP_MONITOR;
496 /* Drop disallowed frame classes based on STA auth/assoc state;
497 * IEEE 802.11, Chap 5.5.
499 * 80211.o does filtering only based on association state, i.e., it
500 * drops Class 3 frames from not associated stations. hostapd sends
501 * deauth/disassoc frames when needed. In addition, hostapd is
502 * responsible for filtering on both auth and assoc states.
505 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
506 return ieee80211_rx_mesh_check(rx);
508 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
509 ieee80211_is_pspoll(hdr->frame_control)) &&
510 rx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
511 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
512 if ((!ieee80211_has_fromds(hdr->frame_control) &&
513 !ieee80211_has_tods(hdr->frame_control) &&
514 ieee80211_is_data(hdr->frame_control)) ||
515 !(rx->flags & IEEE80211_RX_RA_MATCH)) {
516 /* Drop IBSS frames and frames for other hosts
517 * silently. */
518 return RX_DROP_MONITOR;
521 return RX_DROP_MONITOR;
524 return RX_CONTINUE;
528 static ieee80211_rx_result debug_noinline
529 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
531 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
532 int keyidx;
533 int hdrlen;
534 ieee80211_rx_result result = RX_DROP_UNUSABLE;
535 struct ieee80211_key *stakey = NULL;
538 * Key selection 101
540 * There are three types of keys:
541 * - GTK (group keys)
542 * - PTK (pairwise keys)
543 * - STK (station-to-station pairwise keys)
545 * When selecting a key, we have to distinguish between multicast
546 * (including broadcast) and unicast frames, the latter can only
547 * use PTKs and STKs while the former always use GTKs. Unless, of
548 * course, actual WEP keys ("pre-RSNA") are used, then unicast
549 * frames can also use key indizes like GTKs. Hence, if we don't
550 * have a PTK/STK we check the key index for a WEP key.
552 * Note that in a regular BSS, multicast frames are sent by the
553 * AP only, associated stations unicast the frame to the AP first
554 * which then multicasts it on their behalf.
556 * There is also a slight problem in IBSS mode: GTKs are negotiated
557 * with each station, that is something we don't currently handle.
558 * The spec seems to expect that one negotiates the same key with
559 * every station but there's no such requirement; VLANs could be
560 * possible.
563 if (!ieee80211_has_protected(hdr->frame_control))
564 return RX_CONTINUE;
567 * No point in finding a key and decrypting if the frame is neither
568 * addressed to us nor a multicast frame.
570 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
571 return RX_CONTINUE;
573 if (rx->sta)
574 stakey = rcu_dereference(rx->sta->key);
576 if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
577 rx->key = stakey;
578 } else {
580 * The device doesn't give us the IV so we won't be
581 * able to look up the key. That's ok though, we
582 * don't need to decrypt the frame, we just won't
583 * be able to keep statistics accurate.
584 * Except for key threshold notifications, should
585 * we somehow allow the driver to tell us which key
586 * the hardware used if this flag is set?
588 if ((rx->status->flag & RX_FLAG_DECRYPTED) &&
589 (rx->status->flag & RX_FLAG_IV_STRIPPED))
590 return RX_CONTINUE;
592 hdrlen = ieee80211_hdrlen(hdr->frame_control);
594 if (rx->skb->len < 8 + hdrlen)
595 return RX_DROP_UNUSABLE; /* TODO: count this? */
598 * no need to call ieee80211_wep_get_keyidx,
599 * it verifies a bunch of things we've done already
601 keyidx = rx->skb->data[hdrlen + 3] >> 6;
603 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
606 * RSNA-protected unicast frames should always be sent with
607 * pairwise or station-to-station keys, but for WEP we allow
608 * using a key index as well.
610 if (rx->key && rx->key->conf.alg != ALG_WEP &&
611 !is_multicast_ether_addr(hdr->addr1))
612 rx->key = NULL;
615 if (rx->key) {
616 rx->key->tx_rx_count++;
617 /* TODO: add threshold stuff again */
618 } else {
619 return RX_DROP_MONITOR;
622 /* Check for weak IVs if possible */
623 if (rx->sta && rx->key->conf.alg == ALG_WEP &&
624 ieee80211_is_data(hdr->frame_control) &&
625 (!(rx->status->flag & RX_FLAG_IV_STRIPPED) ||
626 !(rx->status->flag & RX_FLAG_DECRYPTED)) &&
627 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
628 rx->sta->wep_weak_iv_count++;
630 switch (rx->key->conf.alg) {
631 case ALG_WEP:
632 result = ieee80211_crypto_wep_decrypt(rx);
633 break;
634 case ALG_TKIP:
635 result = ieee80211_crypto_tkip_decrypt(rx);
636 break;
637 case ALG_CCMP:
638 result = ieee80211_crypto_ccmp_decrypt(rx);
639 break;
642 /* either the frame has been decrypted or will be dropped */
643 rx->status->flag |= RX_FLAG_DECRYPTED;
645 return result;
648 static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
650 struct ieee80211_sub_if_data *sdata;
651 DECLARE_MAC_BUF(mac);
653 sdata = sta->sdata;
655 atomic_inc(&sdata->bss->num_sta_ps);
656 set_and_clear_sta_flags(sta, WLAN_STA_PS, WLAN_STA_PSPOLL);
657 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
658 printk(KERN_DEBUG "%s: STA %s aid %d enters power save mode\n",
659 dev->name, print_mac(mac, sta->addr), sta->aid);
660 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
663 static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
665 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
666 struct sk_buff *skb;
667 int sent = 0;
668 struct ieee80211_sub_if_data *sdata;
669 struct ieee80211_tx_info *info;
670 DECLARE_MAC_BUF(mac);
672 sdata = sta->sdata;
674 atomic_dec(&sdata->bss->num_sta_ps);
676 clear_sta_flags(sta, WLAN_STA_PS | WLAN_STA_PSPOLL);
678 if (!skb_queue_empty(&sta->ps_tx_buf))
679 sta_info_clear_tim_bit(sta);
681 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
682 printk(KERN_DEBUG "%s: STA %s aid %d exits power save mode\n",
683 dev->name, print_mac(mac, sta->addr), sta->aid);
684 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
686 /* Send all buffered frames to the station */
687 while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
688 info = IEEE80211_SKB_CB(skb);
689 sent++;
690 info->flags |= IEEE80211_TX_CTL_REQUEUE;
691 dev_queue_xmit(skb);
693 while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
694 info = IEEE80211_SKB_CB(skb);
695 local->total_ps_buffered--;
696 sent++;
697 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
698 printk(KERN_DEBUG "%s: STA %s aid %d send PS frame "
699 "since STA not sleeping anymore\n", dev->name,
700 print_mac(mac, sta->addr), sta->aid);
701 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
702 info->flags |= IEEE80211_TX_CTL_REQUEUE;
703 dev_queue_xmit(skb);
706 return sent;
709 static ieee80211_rx_result debug_noinline
710 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
712 struct sta_info *sta = rx->sta;
713 struct net_device *dev = rx->dev;
714 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
716 if (!sta)
717 return RX_CONTINUE;
719 /* Update last_rx only for IBSS packets which are for the current
720 * BSSID to avoid keeping the current IBSS network alive in cases where
721 * other STAs are using different BSSID. */
722 if (rx->sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
723 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
724 IEEE80211_IF_TYPE_IBSS);
725 if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
726 sta->last_rx = jiffies;
727 } else
728 if (!is_multicast_ether_addr(hdr->addr1) ||
729 rx->sdata->vif.type == IEEE80211_IF_TYPE_STA) {
730 /* Update last_rx only for unicast frames in order to prevent
731 * the Probe Request frames (the only broadcast frames from a
732 * STA in infrastructure mode) from keeping a connection alive.
733 * Mesh beacons will update last_rx when if they are found to
734 * match the current local configuration when processed.
736 sta->last_rx = jiffies;
739 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
740 return RX_CONTINUE;
742 sta->rx_fragments++;
743 sta->rx_bytes += rx->skb->len;
744 sta->last_signal = rx->status->signal;
745 sta->last_qual = rx->status->qual;
746 sta->last_noise = rx->status->noise;
748 if (!ieee80211_has_morefrags(hdr->frame_control) &&
749 (rx->sdata->vif.type == IEEE80211_IF_TYPE_AP ||
750 rx->sdata->vif.type == IEEE80211_IF_TYPE_VLAN)) {
751 /* Change STA power saving mode only in the end of a frame
752 * exchange sequence */
753 if (test_sta_flags(sta, WLAN_STA_PS) &&
754 !ieee80211_has_pm(hdr->frame_control))
755 rx->sent_ps_buffered += ap_sta_ps_end(dev, sta);
756 else if (!test_sta_flags(sta, WLAN_STA_PS) &&
757 ieee80211_has_pm(hdr->frame_control))
758 ap_sta_ps_start(dev, sta);
761 /* Drop data::nullfunc frames silently, since they are used only to
762 * control station power saving mode. */
763 if (ieee80211_is_nullfunc(hdr->frame_control)) {
764 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
765 /* Update counter and free packet here to avoid counting this
766 * as a dropped packed. */
767 sta->rx_packets++;
768 dev_kfree_skb(rx->skb);
769 return RX_QUEUED;
772 return RX_CONTINUE;
773 } /* ieee80211_rx_h_sta_process */
775 static inline struct ieee80211_fragment_entry *
776 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
777 unsigned int frag, unsigned int seq, int rx_queue,
778 struct sk_buff **skb)
780 struct ieee80211_fragment_entry *entry;
781 int idx;
783 idx = sdata->fragment_next;
784 entry = &sdata->fragments[sdata->fragment_next++];
785 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
786 sdata->fragment_next = 0;
788 if (!skb_queue_empty(&entry->skb_list)) {
789 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
790 struct ieee80211_hdr *hdr =
791 (struct ieee80211_hdr *) entry->skb_list.next->data;
792 DECLARE_MAC_BUF(mac);
793 DECLARE_MAC_BUF(mac2);
794 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
795 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
796 "addr1=%s addr2=%s\n",
797 sdata->dev->name, idx,
798 jiffies - entry->first_frag_time, entry->seq,
799 entry->last_frag, print_mac(mac, hdr->addr1),
800 print_mac(mac2, hdr->addr2));
801 #endif
802 __skb_queue_purge(&entry->skb_list);
805 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
806 *skb = NULL;
807 entry->first_frag_time = jiffies;
808 entry->seq = seq;
809 entry->rx_queue = rx_queue;
810 entry->last_frag = frag;
811 entry->ccmp = 0;
812 entry->extra_len = 0;
814 return entry;
817 static inline struct ieee80211_fragment_entry *
818 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
819 u16 fc, unsigned int frag, unsigned int seq,
820 int rx_queue, struct ieee80211_hdr *hdr)
822 struct ieee80211_fragment_entry *entry;
823 int i, idx;
825 idx = sdata->fragment_next;
826 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
827 struct ieee80211_hdr *f_hdr;
828 u16 f_fc;
830 idx--;
831 if (idx < 0)
832 idx = IEEE80211_FRAGMENT_MAX - 1;
834 entry = &sdata->fragments[idx];
835 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
836 entry->rx_queue != rx_queue ||
837 entry->last_frag + 1 != frag)
838 continue;
840 f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
841 f_fc = le16_to_cpu(f_hdr->frame_control);
843 if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
844 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
845 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
846 continue;
848 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
849 __skb_queue_purge(&entry->skb_list);
850 continue;
852 return entry;
855 return NULL;
858 static ieee80211_rx_result debug_noinline
859 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
861 struct ieee80211_hdr *hdr;
862 u16 sc;
863 unsigned int frag, seq;
864 struct ieee80211_fragment_entry *entry;
865 struct sk_buff *skb;
866 DECLARE_MAC_BUF(mac);
868 hdr = (struct ieee80211_hdr *) rx->skb->data;
869 sc = le16_to_cpu(hdr->seq_ctrl);
870 frag = sc & IEEE80211_SCTL_FRAG;
872 if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
873 (rx->skb)->len < 24 ||
874 is_multicast_ether_addr(hdr->addr1))) {
875 /* not fragmented */
876 goto out;
878 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
880 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
882 if (frag == 0) {
883 /* This is the first fragment of a new frame. */
884 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
885 rx->queue, &(rx->skb));
886 if (rx->key && rx->key->conf.alg == ALG_CCMP &&
887 (rx->fc & IEEE80211_FCTL_PROTECTED)) {
888 /* Store CCMP PN so that we can verify that the next
889 * fragment has a sequential PN value. */
890 entry->ccmp = 1;
891 memcpy(entry->last_pn,
892 rx->key->u.ccmp.rx_pn[rx->queue],
893 CCMP_PN_LEN);
895 return RX_QUEUED;
898 /* This is a fragment for a frame that should already be pending in
899 * fragment cache. Add this fragment to the end of the pending entry.
901 entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
902 rx->queue, hdr);
903 if (!entry) {
904 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
905 return RX_DROP_MONITOR;
908 /* Verify that MPDUs within one MSDU have sequential PN values.
909 * (IEEE 802.11i, 8.3.3.4.5) */
910 if (entry->ccmp) {
911 int i;
912 u8 pn[CCMP_PN_LEN], *rpn;
913 if (!rx->key || rx->key->conf.alg != ALG_CCMP)
914 return RX_DROP_UNUSABLE;
915 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
916 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
917 pn[i]++;
918 if (pn[i])
919 break;
921 rpn = rx->key->u.ccmp.rx_pn[rx->queue];
922 if (memcmp(pn, rpn, CCMP_PN_LEN))
923 return RX_DROP_UNUSABLE;
924 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
927 skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
928 __skb_queue_tail(&entry->skb_list, rx->skb);
929 entry->last_frag = frag;
930 entry->extra_len += rx->skb->len;
931 if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
932 rx->skb = NULL;
933 return RX_QUEUED;
936 rx->skb = __skb_dequeue(&entry->skb_list);
937 if (skb_tailroom(rx->skb) < entry->extra_len) {
938 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
939 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
940 GFP_ATOMIC))) {
941 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
942 __skb_queue_purge(&entry->skb_list);
943 return RX_DROP_UNUSABLE;
946 while ((skb = __skb_dequeue(&entry->skb_list))) {
947 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
948 dev_kfree_skb(skb);
951 /* Complete frame has been reassembled - process it now */
952 rx->flags |= IEEE80211_RX_FRAGMENTED;
954 out:
955 if (rx->sta)
956 rx->sta->rx_packets++;
957 if (is_multicast_ether_addr(hdr->addr1))
958 rx->local->dot11MulticastReceivedFrameCount++;
959 else
960 ieee80211_led_rx(rx->local);
961 return RX_CONTINUE;
964 static ieee80211_rx_result debug_noinline
965 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
967 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
968 struct sk_buff *skb;
969 int no_pending_pkts;
970 DECLARE_MAC_BUF(mac);
972 if (likely(!rx->sta ||
973 (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
974 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
975 !(rx->flags & IEEE80211_RX_RA_MATCH)))
976 return RX_CONTINUE;
978 if ((sdata->vif.type != IEEE80211_IF_TYPE_AP) &&
979 (sdata->vif.type != IEEE80211_IF_TYPE_VLAN))
980 return RX_DROP_UNUSABLE;
982 skb = skb_dequeue(&rx->sta->tx_filtered);
983 if (!skb) {
984 skb = skb_dequeue(&rx->sta->ps_tx_buf);
985 if (skb)
986 rx->local->total_ps_buffered--;
988 no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
989 skb_queue_empty(&rx->sta->ps_tx_buf);
991 if (skb) {
992 struct ieee80211_hdr *hdr =
993 (struct ieee80211_hdr *) skb->data;
996 * Tell TX path to send one frame even though the STA may
997 * still remain is PS mode after this frame exchange.
999 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1001 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1002 printk(KERN_DEBUG "STA %s aid %d: PS Poll (entries after %d)\n",
1003 print_mac(mac, rx->sta->addr), rx->sta->aid,
1004 skb_queue_len(&rx->sta->ps_tx_buf));
1005 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1007 /* Use MoreData flag to indicate whether there are more
1008 * buffered frames for this STA */
1009 if (no_pending_pkts)
1010 hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1011 else
1012 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1014 dev_queue_xmit(skb);
1016 if (no_pending_pkts)
1017 sta_info_clear_tim_bit(rx->sta);
1018 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1019 } else if (!rx->sent_ps_buffered) {
1021 * FIXME: This can be the result of a race condition between
1022 * us expiring a frame and the station polling for it.
1023 * Should we send it a null-func frame indicating we
1024 * have nothing buffered for it?
1026 printk(KERN_DEBUG "%s: STA %s sent PS Poll even "
1027 "though there are no buffered frames for it\n",
1028 rx->dev->name, print_mac(mac, rx->sta->addr));
1029 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1032 /* Free PS Poll skb here instead of returning RX_DROP that would
1033 * count as an dropped frame. */
1034 dev_kfree_skb(rx->skb);
1036 return RX_QUEUED;
1039 static ieee80211_rx_result debug_noinline
1040 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1042 u8 *data = rx->skb->data;
1043 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1045 if (!ieee80211_is_data_qos(hdr->frame_control))
1046 return RX_CONTINUE;
1048 /* remove the qos control field, update frame type and meta-data */
1049 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1050 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1051 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1052 /* change frame type to non QOS */
1053 rx->fc &= ~IEEE80211_STYPE_QOS_DATA;
1054 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1056 return RX_CONTINUE;
1059 static int
1060 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1062 if (unlikely(!rx->sta ||
1063 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1064 return -EACCES;
1066 return 0;
1069 static int
1070 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx)
1073 * Pass through unencrypted frames if the hardware has
1074 * decrypted them already.
1076 if (rx->status->flag & RX_FLAG_DECRYPTED)
1077 return 0;
1079 /* Drop unencrypted frames if key is set. */
1080 if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
1081 (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
1082 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
1083 (rx->key || rx->sdata->drop_unencrypted)))
1084 return -EACCES;
1086 return 0;
1089 static int
1090 ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1092 struct net_device *dev = rx->dev;
1093 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
1094 u16 fc, hdrlen, ethertype;
1095 u8 *payload;
1096 u8 dst[ETH_ALEN];
1097 u8 src[ETH_ALEN] __aligned(2);
1098 struct sk_buff *skb = rx->skb;
1099 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1100 DECLARE_MAC_BUF(mac);
1101 DECLARE_MAC_BUF(mac2);
1102 DECLARE_MAC_BUF(mac3);
1103 DECLARE_MAC_BUF(mac4);
1105 fc = rx->fc;
1107 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1108 return -1;
1110 hdrlen = ieee80211_get_hdrlen(fc);
1112 if (ieee80211_vif_is_mesh(&sdata->vif)) {
1113 int meshhdrlen = ieee80211_get_mesh_hdrlen(
1114 (struct ieee80211s_hdr *) (skb->data + hdrlen));
1115 /* Copy on cb:
1116 * - mesh header: to be used for mesh forwarding
1117 * decision. It will also be used as mesh header template at
1118 * tx.c:ieee80211_subif_start_xmit() if interface
1119 * type is mesh and skb->pkt_type == PACKET_OTHERHOST
1120 * - ta: to be used if a RERR needs to be sent.
1122 memcpy(skb->cb, skb->data + hdrlen, meshhdrlen);
1123 memcpy(MESH_PREQ(skb), hdr->addr2, ETH_ALEN);
1124 hdrlen += meshhdrlen;
1127 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
1128 * header
1129 * IEEE 802.11 address fields:
1130 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
1131 * 0 0 DA SA BSSID n/a
1132 * 0 1 DA BSSID SA n/a
1133 * 1 0 BSSID SA DA n/a
1134 * 1 1 RA TA DA SA
1137 switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
1138 case IEEE80211_FCTL_TODS:
1139 /* BSSID SA DA */
1140 memcpy(dst, hdr->addr3, ETH_ALEN);
1141 memcpy(src, hdr->addr2, ETH_ALEN);
1143 if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_AP &&
1144 sdata->vif.type != IEEE80211_IF_TYPE_VLAN))
1145 return -1;
1146 break;
1147 case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
1148 /* RA TA DA SA */
1149 memcpy(dst, hdr->addr3, ETH_ALEN);
1150 memcpy(src, hdr->addr4, ETH_ALEN);
1152 if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_WDS &&
1153 sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT))
1154 return -1;
1155 break;
1156 case IEEE80211_FCTL_FROMDS:
1157 /* DA BSSID SA */
1158 memcpy(dst, hdr->addr1, ETH_ALEN);
1159 memcpy(src, hdr->addr3, ETH_ALEN);
1161 if (sdata->vif.type != IEEE80211_IF_TYPE_STA ||
1162 (is_multicast_ether_addr(dst) &&
1163 !compare_ether_addr(src, dev->dev_addr)))
1164 return -1;
1165 break;
1166 case 0:
1167 /* DA SA BSSID */
1168 memcpy(dst, hdr->addr1, ETH_ALEN);
1169 memcpy(src, hdr->addr2, ETH_ALEN);
1171 if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
1172 return -1;
1173 break;
1176 if (unlikely(skb->len - hdrlen < 8))
1177 return -1;
1179 payload = skb->data + hdrlen;
1180 ethertype = (payload[6] << 8) | payload[7];
1182 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1183 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1184 compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
1185 /* remove RFC1042 or Bridge-Tunnel encapsulation and
1186 * replace EtherType */
1187 skb_pull(skb, hdrlen + 6);
1188 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
1189 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
1190 } else {
1191 struct ethhdr *ehdr;
1192 __be16 len;
1194 skb_pull(skb, hdrlen);
1195 len = htons(skb->len);
1196 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
1197 memcpy(ehdr->h_dest, dst, ETH_ALEN);
1198 memcpy(ehdr->h_source, src, ETH_ALEN);
1199 ehdr->h_proto = len;
1201 return 0;
1205 * requires that rx->skb is a frame with ethernet header
1207 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx)
1209 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1210 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1211 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1214 * Allow EAPOL frames to us/the PAE group address regardless
1215 * of whether the frame was encrypted or not.
1217 if (ehdr->h_proto == htons(ETH_P_PAE) &&
1218 (compare_ether_addr(ehdr->h_dest, rx->dev->dev_addr) == 0 ||
1219 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1220 return true;
1222 if (ieee80211_802_1x_port_control(rx) ||
1223 ieee80211_drop_unencrypted(rx))
1224 return false;
1226 return true;
1230 * requires that rx->skb is a frame with ethernet header
1232 static void
1233 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1235 struct net_device *dev = rx->dev;
1236 struct ieee80211_local *local = rx->local;
1237 struct sk_buff *skb, *xmit_skb;
1238 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1239 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1240 struct sta_info *dsta;
1242 skb = rx->skb;
1243 xmit_skb = NULL;
1245 if (local->bridge_packets && (sdata->vif.type == IEEE80211_IF_TYPE_AP ||
1246 sdata->vif.type == IEEE80211_IF_TYPE_VLAN) &&
1247 (rx->flags & IEEE80211_RX_RA_MATCH)) {
1248 if (is_multicast_ether_addr(ehdr->h_dest)) {
1250 * send multicast frames both to higher layers in
1251 * local net stack and back to the wireless medium
1253 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1254 if (!xmit_skb && net_ratelimit())
1255 printk(KERN_DEBUG "%s: failed to clone "
1256 "multicast frame\n", dev->name);
1257 } else {
1258 dsta = sta_info_get(local, skb->data);
1259 if (dsta && dsta->sdata->dev == dev) {
1261 * The destination station is associated to
1262 * this AP (in this VLAN), so send the frame
1263 * directly to it and do not pass it to local
1264 * net stack.
1266 xmit_skb = skb;
1267 skb = NULL;
1272 /* Mesh forwarding */
1273 if (ieee80211_vif_is_mesh(&sdata->vif)) {
1274 u8 *mesh_ttl = &((struct ieee80211s_hdr *)skb->cb)->ttl;
1275 (*mesh_ttl)--;
1277 if (is_multicast_ether_addr(skb->data)) {
1278 if (*mesh_ttl > 0) {
1279 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1280 if (xmit_skb)
1281 xmit_skb->pkt_type = PACKET_OTHERHOST;
1282 else if (net_ratelimit())
1283 printk(KERN_DEBUG "%s: failed to clone "
1284 "multicast frame\n", dev->name);
1285 } else
1286 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.sta,
1287 dropped_frames_ttl);
1288 } else if (skb->pkt_type != PACKET_OTHERHOST &&
1289 compare_ether_addr(dev->dev_addr, skb->data) != 0) {
1290 if (*mesh_ttl == 0) {
1291 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.sta,
1292 dropped_frames_ttl);
1293 dev_kfree_skb(skb);
1294 skb = NULL;
1295 } else {
1296 xmit_skb = skb;
1297 xmit_skb->pkt_type = PACKET_OTHERHOST;
1298 if (!(dev->flags & IFF_PROMISC))
1299 skb = NULL;
1304 if (skb) {
1305 /* deliver to local stack */
1306 skb->protocol = eth_type_trans(skb, dev);
1307 memset(skb->cb, 0, sizeof(skb->cb));
1308 netif_rx(skb);
1311 if (xmit_skb) {
1312 /* send to wireless media */
1313 xmit_skb->protocol = htons(ETH_P_802_3);
1314 skb_reset_network_header(xmit_skb);
1315 skb_reset_mac_header(xmit_skb);
1316 dev_queue_xmit(xmit_skb);
1320 static ieee80211_rx_result debug_noinline
1321 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1323 struct net_device *dev = rx->dev;
1324 struct ieee80211_local *local = rx->local;
1325 u16 fc, ethertype;
1326 u8 *payload;
1327 struct sk_buff *skb = rx->skb, *frame = NULL;
1328 const struct ethhdr *eth;
1329 int remaining, err;
1330 u8 dst[ETH_ALEN];
1331 u8 src[ETH_ALEN];
1332 DECLARE_MAC_BUF(mac);
1334 fc = rx->fc;
1335 if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1336 return RX_CONTINUE;
1338 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1339 return RX_DROP_MONITOR;
1341 if (!(rx->flags & IEEE80211_RX_AMSDU))
1342 return RX_CONTINUE;
1344 err = ieee80211_data_to_8023(rx);
1345 if (unlikely(err))
1346 return RX_DROP_UNUSABLE;
1348 skb->dev = dev;
1350 dev->stats.rx_packets++;
1351 dev->stats.rx_bytes += skb->len;
1353 /* skip the wrapping header */
1354 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
1355 if (!eth)
1356 return RX_DROP_UNUSABLE;
1358 while (skb != frame) {
1359 u8 padding;
1360 __be16 len = eth->h_proto;
1361 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
1363 remaining = skb->len;
1364 memcpy(dst, eth->h_dest, ETH_ALEN);
1365 memcpy(src, eth->h_source, ETH_ALEN);
1367 padding = ((4 - subframe_len) & 0x3);
1368 /* the last MSDU has no padding */
1369 if (subframe_len > remaining)
1370 return RX_DROP_UNUSABLE;
1372 skb_pull(skb, sizeof(struct ethhdr));
1373 /* if last subframe reuse skb */
1374 if (remaining <= subframe_len + padding)
1375 frame = skb;
1376 else {
1377 frame = dev_alloc_skb(local->hw.extra_tx_headroom +
1378 subframe_len);
1380 if (frame == NULL)
1381 return RX_DROP_UNUSABLE;
1383 skb_reserve(frame, local->hw.extra_tx_headroom +
1384 sizeof(struct ethhdr));
1385 memcpy(skb_put(frame, ntohs(len)), skb->data,
1386 ntohs(len));
1388 eth = (struct ethhdr *) skb_pull(skb, ntohs(len) +
1389 padding);
1390 if (!eth) {
1391 dev_kfree_skb(frame);
1392 return RX_DROP_UNUSABLE;
1396 skb_reset_network_header(frame);
1397 frame->dev = dev;
1398 frame->priority = skb->priority;
1399 rx->skb = frame;
1401 payload = frame->data;
1402 ethertype = (payload[6] << 8) | payload[7];
1404 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1405 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1406 compare_ether_addr(payload,
1407 bridge_tunnel_header) == 0)) {
1408 /* remove RFC1042 or Bridge-Tunnel
1409 * encapsulation and replace EtherType */
1410 skb_pull(frame, 6);
1411 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1412 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1413 } else {
1414 memcpy(skb_push(frame, sizeof(__be16)),
1415 &len, sizeof(__be16));
1416 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1417 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1420 if (!ieee80211_frame_allowed(rx)) {
1421 if (skb == frame) /* last frame */
1422 return RX_DROP_UNUSABLE;
1423 dev_kfree_skb(frame);
1424 continue;
1427 ieee80211_deliver_skb(rx);
1430 return RX_QUEUED;
1433 static ieee80211_rx_result debug_noinline
1434 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1436 struct net_device *dev = rx->dev;
1437 u16 fc;
1438 int err;
1440 fc = rx->fc;
1441 if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1442 return RX_CONTINUE;
1444 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1445 return RX_DROP_MONITOR;
1447 err = ieee80211_data_to_8023(rx);
1448 if (unlikely(err))
1449 return RX_DROP_UNUSABLE;
1451 if (!ieee80211_frame_allowed(rx))
1452 return RX_DROP_MONITOR;
1454 rx->skb->dev = dev;
1456 dev->stats.rx_packets++;
1457 dev->stats.rx_bytes += rx->skb->len;
1459 ieee80211_deliver_skb(rx);
1461 return RX_QUEUED;
1464 static ieee80211_rx_result debug_noinline
1465 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
1467 struct ieee80211_local *local = rx->local;
1468 struct ieee80211_hw *hw = &local->hw;
1469 struct sk_buff *skb = rx->skb;
1470 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1471 struct tid_ampdu_rx *tid_agg_rx;
1472 u16 start_seq_num;
1473 u16 tid;
1475 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1476 return RX_CONTINUE;
1478 if (ieee80211_is_back_req(bar->frame_control)) {
1479 if (!rx->sta)
1480 return RX_CONTINUE;
1481 tid = le16_to_cpu(bar->control) >> 12;
1482 if (rx->sta->ampdu_mlme.tid_state_rx[tid]
1483 != HT_AGG_STATE_OPERATIONAL)
1484 return RX_CONTINUE;
1485 tid_agg_rx = rx->sta->ampdu_mlme.tid_rx[tid];
1487 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4;
1489 /* reset session timer */
1490 if (tid_agg_rx->timeout) {
1491 unsigned long expires =
1492 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
1493 mod_timer(&tid_agg_rx->session_timer, expires);
1496 /* manage reordering buffer according to requested */
1497 /* sequence number */
1498 rcu_read_lock();
1499 ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, NULL,
1500 start_seq_num, 1);
1501 rcu_read_unlock();
1502 return RX_DROP_UNUSABLE;
1505 return RX_CONTINUE;
1508 static ieee80211_rx_result debug_noinline
1509 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
1511 struct ieee80211_sub_if_data *sdata;
1513 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1514 return RX_DROP_MONITOR;
1516 sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
1517 if ((sdata->vif.type == IEEE80211_IF_TYPE_STA ||
1518 sdata->vif.type == IEEE80211_IF_TYPE_IBSS ||
1519 sdata->vif.type == IEEE80211_IF_TYPE_MESH_POINT) &&
1520 !(sdata->flags & IEEE80211_SDATA_USERSPACE_MLME))
1521 ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->status);
1522 else
1523 return RX_DROP_MONITOR;
1525 return RX_QUEUED;
1528 static void ieee80211_rx_michael_mic_report(struct net_device *dev,
1529 struct ieee80211_hdr *hdr,
1530 struct ieee80211_rx_data *rx)
1532 int keyidx;
1533 unsigned int hdrlen;
1534 DECLARE_MAC_BUF(mac);
1535 DECLARE_MAC_BUF(mac2);
1537 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1538 if (rx->skb->len >= hdrlen + 4)
1539 keyidx = rx->skb->data[hdrlen + 3] >> 6;
1540 else
1541 keyidx = -1;
1543 if (!rx->sta) {
1545 * Some hardware seem to generate incorrect Michael MIC
1546 * reports; ignore them to avoid triggering countermeasures.
1548 goto ignore;
1551 if (!ieee80211_has_protected(hdr->frame_control))
1552 goto ignore;
1554 if (rx->sdata->vif.type == IEEE80211_IF_TYPE_AP && keyidx) {
1556 * APs with pairwise keys should never receive Michael MIC
1557 * errors for non-zero keyidx because these are reserved for
1558 * group keys and only the AP is sending real multicast
1559 * frames in the BSS.
1561 goto ignore;
1564 if (!ieee80211_is_data(hdr->frame_control) &&
1565 !ieee80211_is_auth(hdr->frame_control))
1566 goto ignore;
1568 mac80211_ev_michael_mic_failure(rx->dev, keyidx, hdr);
1569 ignore:
1570 dev_kfree_skb(rx->skb);
1571 rx->skb = NULL;
1574 /* TODO: use IEEE80211_RX_FRAGMENTED */
1575 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx)
1577 struct ieee80211_sub_if_data *sdata;
1578 struct ieee80211_local *local = rx->local;
1579 struct ieee80211_rtap_hdr {
1580 struct ieee80211_radiotap_header hdr;
1581 u8 flags;
1582 u8 rate;
1583 __le16 chan_freq;
1584 __le16 chan_flags;
1585 } __attribute__ ((packed)) *rthdr;
1586 struct sk_buff *skb = rx->skb, *skb2;
1587 struct net_device *prev_dev = NULL;
1588 struct ieee80211_rx_status *status = rx->status;
1590 if (rx->flags & IEEE80211_RX_CMNTR_REPORTED)
1591 goto out_free_skb;
1593 if (skb_headroom(skb) < sizeof(*rthdr) &&
1594 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
1595 goto out_free_skb;
1597 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
1598 memset(rthdr, 0, sizeof(*rthdr));
1599 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
1600 rthdr->hdr.it_present =
1601 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
1602 (1 << IEEE80211_RADIOTAP_RATE) |
1603 (1 << IEEE80211_RADIOTAP_CHANNEL));
1605 rthdr->rate = rx->rate->bitrate / 5;
1606 rthdr->chan_freq = cpu_to_le16(status->freq);
1608 if (status->band == IEEE80211_BAND_5GHZ)
1609 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
1610 IEEE80211_CHAN_5GHZ);
1611 else
1612 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
1613 IEEE80211_CHAN_2GHZ);
1615 skb_set_mac_header(skb, 0);
1616 skb->ip_summed = CHECKSUM_UNNECESSARY;
1617 skb->pkt_type = PACKET_OTHERHOST;
1618 skb->protocol = htons(ETH_P_802_2);
1620 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1621 if (!netif_running(sdata->dev))
1622 continue;
1624 if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR ||
1625 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
1626 continue;
1628 if (prev_dev) {
1629 skb2 = skb_clone(skb, GFP_ATOMIC);
1630 if (skb2) {
1631 skb2->dev = prev_dev;
1632 netif_rx(skb2);
1636 prev_dev = sdata->dev;
1637 sdata->dev->stats.rx_packets++;
1638 sdata->dev->stats.rx_bytes += skb->len;
1641 if (prev_dev) {
1642 skb->dev = prev_dev;
1643 netif_rx(skb);
1644 skb = NULL;
1645 } else
1646 goto out_free_skb;
1648 rx->flags |= IEEE80211_RX_CMNTR_REPORTED;
1649 return;
1651 out_free_skb:
1652 dev_kfree_skb(skb);
1656 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
1657 struct ieee80211_rx_data *rx,
1658 struct sk_buff *skb)
1660 ieee80211_rx_result res = RX_DROP_MONITOR;
1662 rx->skb = skb;
1663 rx->sdata = sdata;
1664 rx->dev = sdata->dev;
1666 #define CALL_RXH(rxh) \
1667 res = rxh(rx); \
1668 if (res != RX_CONTINUE) \
1669 goto rxh_done;
1671 CALL_RXH(ieee80211_rx_h_passive_scan)
1672 CALL_RXH(ieee80211_rx_h_check)
1673 CALL_RXH(ieee80211_rx_h_decrypt)
1674 CALL_RXH(ieee80211_rx_h_sta_process)
1675 CALL_RXH(ieee80211_rx_h_defragment)
1676 CALL_RXH(ieee80211_rx_h_ps_poll)
1677 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
1678 /* must be after MMIC verify so header is counted in MPDU mic */
1679 CALL_RXH(ieee80211_rx_h_remove_qos_control)
1680 CALL_RXH(ieee80211_rx_h_amsdu)
1681 CALL_RXH(ieee80211_rx_h_data)
1682 CALL_RXH(ieee80211_rx_h_ctrl)
1683 CALL_RXH(ieee80211_rx_h_mgmt)
1685 #undef CALL_RXH
1687 rxh_done:
1688 switch (res) {
1689 case RX_DROP_MONITOR:
1690 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
1691 if (rx->sta)
1692 rx->sta->rx_dropped++;
1693 /* fall through */
1694 case RX_CONTINUE:
1695 ieee80211_rx_cooked_monitor(rx);
1696 break;
1697 case RX_DROP_UNUSABLE:
1698 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
1699 if (rx->sta)
1700 rx->sta->rx_dropped++;
1701 dev_kfree_skb(rx->skb);
1702 break;
1703 case RX_QUEUED:
1704 I802_DEBUG_INC(sdata->local->rx_handlers_queued);
1705 break;
1709 /* main receive path */
1711 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
1712 u8 *bssid, struct ieee80211_rx_data *rx,
1713 struct ieee80211_hdr *hdr)
1715 int multicast = is_multicast_ether_addr(hdr->addr1);
1717 switch (sdata->vif.type) {
1718 case IEEE80211_IF_TYPE_STA:
1719 if (!bssid)
1720 return 0;
1721 if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1722 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1723 return 0;
1724 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1725 } else if (!multicast &&
1726 compare_ether_addr(sdata->dev->dev_addr,
1727 hdr->addr1) != 0) {
1728 if (!(sdata->dev->flags & IFF_PROMISC))
1729 return 0;
1730 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1732 break;
1733 case IEEE80211_IF_TYPE_IBSS:
1734 if (!bssid)
1735 return 0;
1736 if (ieee80211_is_beacon(hdr->frame_control)) {
1737 if (!rx->sta)
1738 rx->sta = ieee80211_ibss_add_sta(sdata->dev,
1739 rx->skb, bssid, hdr->addr2,
1740 BIT(rx->status->rate_idx));
1741 return 1;
1743 else if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1744 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1745 return 0;
1746 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1747 } else if (!multicast &&
1748 compare_ether_addr(sdata->dev->dev_addr,
1749 hdr->addr1) != 0) {
1750 if (!(sdata->dev->flags & IFF_PROMISC))
1751 return 0;
1752 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1753 } else if (!rx->sta)
1754 rx->sta = ieee80211_ibss_add_sta(sdata->dev, rx->skb,
1755 bssid, hdr->addr2,
1756 BIT(rx->status->rate_idx));
1757 break;
1758 case IEEE80211_IF_TYPE_MESH_POINT:
1759 if (!multicast &&
1760 compare_ether_addr(sdata->dev->dev_addr,
1761 hdr->addr1) != 0) {
1762 if (!(sdata->dev->flags & IFF_PROMISC))
1763 return 0;
1765 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1767 break;
1768 case IEEE80211_IF_TYPE_VLAN:
1769 case IEEE80211_IF_TYPE_AP:
1770 if (!bssid) {
1771 if (compare_ether_addr(sdata->dev->dev_addr,
1772 hdr->addr1))
1773 return 0;
1774 } else if (!ieee80211_bssid_match(bssid,
1775 sdata->dev->dev_addr)) {
1776 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1777 return 0;
1778 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1780 break;
1781 case IEEE80211_IF_TYPE_WDS:
1782 if (bssid || !ieee80211_is_data(hdr->frame_control))
1783 return 0;
1784 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
1785 return 0;
1786 break;
1787 case IEEE80211_IF_TYPE_MNTR:
1788 /* take everything */
1789 break;
1790 case IEEE80211_IF_TYPE_INVALID:
1791 /* should never get here */
1792 WARN_ON(1);
1793 break;
1796 return 1;
1800 * This is the actual Rx frames handler. as it blongs to Rx path it must
1801 * be called with rcu_read_lock protection.
1803 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
1804 struct sk_buff *skb,
1805 struct ieee80211_rx_status *status,
1806 struct ieee80211_rate *rate)
1808 struct ieee80211_local *local = hw_to_local(hw);
1809 struct ieee80211_sub_if_data *sdata;
1810 struct ieee80211_hdr *hdr;
1811 struct ieee80211_rx_data rx;
1812 u16 type;
1813 int prepares;
1814 struct ieee80211_sub_if_data *prev = NULL;
1815 struct sk_buff *skb_new;
1816 u8 *bssid;
1818 hdr = (struct ieee80211_hdr *) skb->data;
1819 memset(&rx, 0, sizeof(rx));
1820 rx.skb = skb;
1821 rx.local = local;
1823 rx.status = status;
1824 rx.rate = rate;
1825 rx.fc = le16_to_cpu(hdr->frame_control);
1826 type = rx.fc & IEEE80211_FCTL_FTYPE;
1828 if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT)
1829 local->dot11ReceivedFragmentCount++;
1831 rx.sta = sta_info_get(local, hdr->addr2);
1832 if (rx.sta) {
1833 rx.sdata = rx.sta->sdata;
1834 rx.dev = rx.sta->sdata->dev;
1837 if ((status->flag & RX_FLAG_MMIC_ERROR)) {
1838 ieee80211_rx_michael_mic_report(local->mdev, hdr, &rx);
1839 return;
1842 if (unlikely(local->sta_sw_scanning || local->sta_hw_scanning))
1843 rx.flags |= IEEE80211_RX_IN_SCAN;
1845 ieee80211_parse_qos(&rx);
1846 ieee80211_verify_ip_alignment(&rx);
1848 skb = rx.skb;
1850 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1851 if (!netif_running(sdata->dev))
1852 continue;
1854 if (sdata->vif.type == IEEE80211_IF_TYPE_MNTR)
1855 continue;
1857 bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
1858 rx.flags |= IEEE80211_RX_RA_MATCH;
1859 prepares = prepare_for_handlers(sdata, bssid, &rx, hdr);
1861 if (!prepares)
1862 continue;
1865 * frame is destined for this interface, but if it's not
1866 * also for the previous one we handle that after the
1867 * loop to avoid copying the SKB once too much
1870 if (!prev) {
1871 prev = sdata;
1872 continue;
1876 * frame was destined for the previous interface
1877 * so invoke RX handlers for it
1880 skb_new = skb_copy(skb, GFP_ATOMIC);
1881 if (!skb_new) {
1882 if (net_ratelimit())
1883 printk(KERN_DEBUG "%s: failed to copy "
1884 "multicast frame for %s\n",
1885 wiphy_name(local->hw.wiphy),
1886 prev->dev->name);
1887 continue;
1889 rx.fc = le16_to_cpu(hdr->frame_control);
1890 ieee80211_invoke_rx_handlers(prev, &rx, skb_new);
1891 prev = sdata;
1893 if (prev) {
1894 rx.fc = le16_to_cpu(hdr->frame_control);
1895 ieee80211_invoke_rx_handlers(prev, &rx, skb);
1896 } else
1897 dev_kfree_skb(skb);
1900 #define SEQ_MODULO 0x1000
1901 #define SEQ_MASK 0xfff
1903 static inline int seq_less(u16 sq1, u16 sq2)
1905 return (((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1));
1908 static inline u16 seq_inc(u16 sq)
1910 return ((sq + 1) & SEQ_MASK);
1913 static inline u16 seq_sub(u16 sq1, u16 sq2)
1915 return ((sq1 - sq2) & SEQ_MASK);
1920 * As it function blongs to Rx path it must be called with
1921 * the proper rcu_read_lock protection for its flow.
1923 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
1924 struct tid_ampdu_rx *tid_agg_rx,
1925 struct sk_buff *skb, u16 mpdu_seq_num,
1926 int bar_req)
1928 struct ieee80211_local *local = hw_to_local(hw);
1929 struct ieee80211_rx_status status;
1930 u16 head_seq_num, buf_size;
1931 int index;
1932 struct ieee80211_supported_band *sband;
1933 struct ieee80211_rate *rate;
1935 buf_size = tid_agg_rx->buf_size;
1936 head_seq_num = tid_agg_rx->head_seq_num;
1938 /* frame with out of date sequence number */
1939 if (seq_less(mpdu_seq_num, head_seq_num)) {
1940 dev_kfree_skb(skb);
1941 return 1;
1944 /* if frame sequence number exceeds our buffering window size or
1945 * block Ack Request arrived - release stored frames */
1946 if ((!seq_less(mpdu_seq_num, head_seq_num + buf_size)) || (bar_req)) {
1947 /* new head to the ordering buffer */
1948 if (bar_req)
1949 head_seq_num = mpdu_seq_num;
1950 else
1951 head_seq_num =
1952 seq_inc(seq_sub(mpdu_seq_num, buf_size));
1953 /* release stored frames up to new head to stack */
1954 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1955 index = seq_sub(tid_agg_rx->head_seq_num,
1956 tid_agg_rx->ssn)
1957 % tid_agg_rx->buf_size;
1959 if (tid_agg_rx->reorder_buf[index]) {
1960 /* release the reordered frames to stack */
1961 memcpy(&status,
1962 tid_agg_rx->reorder_buf[index]->cb,
1963 sizeof(status));
1964 sband = local->hw.wiphy->bands[status.band];
1965 rate = &sband->bitrates[status.rate_idx];
1966 __ieee80211_rx_handle_packet(hw,
1967 tid_agg_rx->reorder_buf[index],
1968 &status, rate);
1969 tid_agg_rx->stored_mpdu_num--;
1970 tid_agg_rx->reorder_buf[index] = NULL;
1972 tid_agg_rx->head_seq_num =
1973 seq_inc(tid_agg_rx->head_seq_num);
1975 if (bar_req)
1976 return 1;
1979 /* now the new frame is always in the range of the reordering */
1980 /* buffer window */
1981 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn)
1982 % tid_agg_rx->buf_size;
1983 /* check if we already stored this frame */
1984 if (tid_agg_rx->reorder_buf[index]) {
1985 dev_kfree_skb(skb);
1986 return 1;
1989 /* if arrived mpdu is in the right order and nothing else stored */
1990 /* release it immediately */
1991 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1992 tid_agg_rx->stored_mpdu_num == 0) {
1993 tid_agg_rx->head_seq_num =
1994 seq_inc(tid_agg_rx->head_seq_num);
1995 return 0;
1998 /* put the frame in the reordering buffer */
1999 tid_agg_rx->reorder_buf[index] = skb;
2000 tid_agg_rx->stored_mpdu_num++;
2001 /* release the buffer until next missing frame */
2002 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn)
2003 % tid_agg_rx->buf_size;
2004 while (tid_agg_rx->reorder_buf[index]) {
2005 /* release the reordered frame back to stack */
2006 memcpy(&status, tid_agg_rx->reorder_buf[index]->cb,
2007 sizeof(status));
2008 sband = local->hw.wiphy->bands[status.band];
2009 rate = &sband->bitrates[status.rate_idx];
2010 __ieee80211_rx_handle_packet(hw, tid_agg_rx->reorder_buf[index],
2011 &status, rate);
2012 tid_agg_rx->stored_mpdu_num--;
2013 tid_agg_rx->reorder_buf[index] = NULL;
2014 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
2015 index = seq_sub(tid_agg_rx->head_seq_num,
2016 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
2018 return 1;
2021 static u8 ieee80211_rx_reorder_ampdu(struct ieee80211_local *local,
2022 struct sk_buff *skb)
2024 struct ieee80211_hw *hw = &local->hw;
2025 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2026 struct sta_info *sta;
2027 struct tid_ampdu_rx *tid_agg_rx;
2028 u16 sc;
2029 u16 mpdu_seq_num;
2030 u8 ret = 0;
2031 int tid;
2033 sta = sta_info_get(local, hdr->addr2);
2034 if (!sta)
2035 return ret;
2037 /* filter the QoS data rx stream according to
2038 * STA/TID and check if this STA/TID is on aggregation */
2039 if (!ieee80211_is_data_qos(hdr->frame_control))
2040 goto end_reorder;
2042 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
2044 if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_OPERATIONAL)
2045 goto end_reorder;
2047 tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
2049 /* qos null data frames are excluded */
2050 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
2051 goto end_reorder;
2053 /* new un-ordered ampdu frame - process it */
2055 /* reset session timer */
2056 if (tid_agg_rx->timeout) {
2057 unsigned long expires =
2058 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
2059 mod_timer(&tid_agg_rx->session_timer, expires);
2062 /* if this mpdu is fragmented - terminate rx aggregation session */
2063 sc = le16_to_cpu(hdr->seq_ctrl);
2064 if (sc & IEEE80211_SCTL_FRAG) {
2065 ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
2066 tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP);
2067 ret = 1;
2068 goto end_reorder;
2071 /* according to mpdu sequence number deal with reordering buffer */
2072 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
2073 ret = ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb,
2074 mpdu_seq_num, 0);
2075 end_reorder:
2076 return ret;
2080 * This is the receive path handler. It is called by a low level driver when an
2081 * 802.11 MPDU is received from the hardware.
2083 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
2084 struct ieee80211_rx_status *status)
2086 struct ieee80211_local *local = hw_to_local(hw);
2087 struct ieee80211_rate *rate = NULL;
2088 struct ieee80211_supported_band *sband;
2090 if (status->band < 0 ||
2091 status->band >= IEEE80211_NUM_BANDS) {
2092 WARN_ON(1);
2093 return;
2096 sband = local->hw.wiphy->bands[status->band];
2098 if (!sband ||
2099 status->rate_idx < 0 ||
2100 status->rate_idx >= sband->n_bitrates) {
2101 WARN_ON(1);
2102 return;
2105 rate = &sband->bitrates[status->rate_idx];
2108 * key references and virtual interfaces are protected using RCU
2109 * and this requires that we are in a read-side RCU section during
2110 * receive processing
2112 rcu_read_lock();
2115 * Frames with failed FCS/PLCP checksum are not returned,
2116 * all other frames are returned without radiotap header
2117 * if it was previously present.
2118 * Also, frames with less than 16 bytes are dropped.
2120 skb = ieee80211_rx_monitor(local, skb, status, rate);
2121 if (!skb) {
2122 rcu_read_unlock();
2123 return;
2126 if (!ieee80211_rx_reorder_ampdu(local, skb))
2127 __ieee80211_rx_handle_packet(hw, skb, status, rate);
2129 rcu_read_unlock();
2131 EXPORT_SYMBOL(__ieee80211_rx);
2133 /* This is a version of the rx handler that can be called from hard irq
2134 * context. Post the skb on the queue and schedule the tasklet */
2135 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
2136 struct ieee80211_rx_status *status)
2138 struct ieee80211_local *local = hw_to_local(hw);
2140 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2142 skb->dev = local->mdev;
2143 /* copy status into skb->cb for use by tasklet */
2144 memcpy(skb->cb, status, sizeof(*status));
2145 skb->pkt_type = IEEE80211_RX_MSG;
2146 skb_queue_tail(&local->skb_queue, skb);
2147 tasklet_schedule(&local->tasklet);
2149 EXPORT_SYMBOL(ieee80211_rx_irqsafe);