2 * Kernel Debugger Architecture Independent Main Code
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/kernel.h>
17 #include <linux/reboot.h>
18 #include <linux/sched.h>
19 #include <linux/sysrq.h>
20 #include <linux/smp.h>
21 #include <linux/utsname.h>
22 #include <linux/vmalloc.h>
23 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/kallsyms.h>
27 #include <linux/kgdb.h>
28 #include <linux/kdb.h>
29 #include <linux/notifier.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/nmi.h>
33 #include <linux/time.h>
34 #include <linux/ptrace.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/kdebug.h>
38 #include <linux/proc_fs.h>
39 #include <linux/uaccess.h>
40 #include <linux/slab.h>
41 #include "kdb_private.h"
44 char kdb_grep_string
[GREP_LEN
];
45 int kdb_grepping_flag
;
46 EXPORT_SYMBOL(kdb_grepping_flag
);
48 int kdb_grep_trailing
;
51 * Kernel debugger state flags
57 * kdb_lock protects updates to kdb_initial_cpu. Used to
58 * single thread processors through the kernel debugger.
60 int kdb_initial_cpu
= -1; /* cpu number that owns kdb */
62 int kdb_state
; /* General KDB state */
64 struct task_struct
*kdb_current_task
;
65 EXPORT_SYMBOL(kdb_current_task
);
66 struct pt_regs
*kdb_current_regs
;
68 const char *kdb_diemsg
;
69 static int kdb_go_count
;
70 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
71 static unsigned int kdb_continue_catastrophic
=
72 CONFIG_KDB_CONTINUE_CATASTROPHIC
;
74 static unsigned int kdb_continue_catastrophic
;
77 /* kdb_commands describes the available commands. */
78 static kdbtab_t
*kdb_commands
;
79 #define KDB_BASE_CMD_MAX 50
80 static int kdb_max_commands
= KDB_BASE_CMD_MAX
;
81 static kdbtab_t kdb_base_commands
[KDB_BASE_CMD_MAX
];
82 #define for_each_kdbcmd(cmd, num) \
83 for ((cmd) = kdb_base_commands, (num) = 0; \
84 num < kdb_max_commands; \
85 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
87 typedef struct _kdbmsg
{
88 int km_diag
; /* kdb diagnostic */
89 char *km_msg
; /* Corresponding message text */
92 #define KDBMSG(msgnum, text) \
93 { KDB_##msgnum, text }
95 static kdbmsg_t kdbmsgs
[] = {
96 KDBMSG(NOTFOUND
, "Command Not Found"),
97 KDBMSG(ARGCOUNT
, "Improper argument count, see usage."),
98 KDBMSG(BADWIDTH
, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
99 "8 is only allowed on 64 bit systems"),
100 KDBMSG(BADRADIX
, "Illegal value for RADIX use 8, 10 or 16"),
101 KDBMSG(NOTENV
, "Cannot find environment variable"),
102 KDBMSG(NOENVVALUE
, "Environment variable should have value"),
103 KDBMSG(NOTIMP
, "Command not implemented"),
104 KDBMSG(ENVFULL
, "Environment full"),
105 KDBMSG(ENVBUFFULL
, "Environment buffer full"),
106 KDBMSG(TOOMANYBPT
, "Too many breakpoints defined"),
107 #ifdef CONFIG_CPU_XSCALE
108 KDBMSG(TOOMANYDBREGS
, "More breakpoints than ibcr registers defined"),
110 KDBMSG(TOOMANYDBREGS
, "More breakpoints than db registers defined"),
112 KDBMSG(DUPBPT
, "Duplicate breakpoint address"),
113 KDBMSG(BPTNOTFOUND
, "Breakpoint not found"),
114 KDBMSG(BADMODE
, "Invalid IDMODE"),
115 KDBMSG(BADINT
, "Illegal numeric value"),
116 KDBMSG(INVADDRFMT
, "Invalid symbolic address format"),
117 KDBMSG(BADREG
, "Invalid register name"),
118 KDBMSG(BADCPUNUM
, "Invalid cpu number"),
119 KDBMSG(BADLENGTH
, "Invalid length field"),
120 KDBMSG(NOBP
, "No Breakpoint exists"),
121 KDBMSG(BADADDR
, "Invalid address"),
125 static const int __nkdb_err
= sizeof(kdbmsgs
) / sizeof(kdbmsg_t
);
129 * Initial environment. This is all kept static and local to
130 * this file. We don't want to rely on the memory allocation
131 * mechanisms in the kernel, so we use a very limited allocate-only
132 * heap for new and altered environment variables. The entire
133 * environment is limited to a fixed number of entries (add more
134 * to __env[] if required) and a fixed amount of heap (add more to
135 * KDB_ENVBUFSIZE if required).
138 static char *__env
[] = {
139 #if defined(CONFIG_SMP)
141 "MOREPROMPT=[%d]more> ",
147 "MDCOUNT=8", /* lines of md output */
177 static const int __nenv
= (sizeof(__env
) / sizeof(char *));
179 struct task_struct
*kdb_curr_task(int cpu
)
181 struct task_struct
*p
= curr_task(cpu
);
183 if ((task_thread_info(p
)->flags
& _TIF_MCA_INIT
) && KDB_TSK(cpu
))
190 * kdbgetenv - This function will return the character string value of
191 * an environment variable.
193 * match A character string representing an environment variable.
195 * NULL No environment variable matches 'match'
196 * char* Pointer to string value of environment variable.
198 char *kdbgetenv(const char *match
)
201 int matchlen
= strlen(match
);
204 for (i
= 0; i
< __nenv
; i
++) {
210 if ((strncmp(match
, e
, matchlen
) == 0)
211 && ((e
[matchlen
] == '\0')
212 || (e
[matchlen
] == '='))) {
213 char *cp
= strchr(e
, '=');
214 return cp
? ++cp
: "";
221 * kdballocenv - This function is used to allocate bytes for
222 * environment entries.
224 * match A character string representing a numeric value
226 * *value the unsigned long representation of the env variable 'match'
228 * Zero on success, a kdb diagnostic on failure.
230 * We use a static environment buffer (envbuffer) to hold the values
231 * of dynamically generated environment variables (see kdb_set). Buffer
232 * space once allocated is never free'd, so over time, the amount of space
233 * (currently 512 bytes) will be exhausted if env variables are changed
236 static char *kdballocenv(size_t bytes
)
238 #define KDB_ENVBUFSIZE 512
239 static char envbuffer
[KDB_ENVBUFSIZE
];
240 static int envbufsize
;
243 if ((KDB_ENVBUFSIZE
- envbufsize
) >= bytes
) {
244 ep
= &envbuffer
[envbufsize
];
251 * kdbgetulenv - This function will return the value of an unsigned
252 * long-valued environment variable.
254 * match A character string representing a numeric value
256 * *value the unsigned long represntation of the env variable 'match'
258 * Zero on success, a kdb diagnostic on failure.
260 static int kdbgetulenv(const char *match
, unsigned long *value
)
264 ep
= kdbgetenv(match
);
268 return KDB_NOENVVALUE
;
270 *value
= simple_strtoul(ep
, NULL
, 0);
276 * kdbgetintenv - This function will return the value of an
277 * integer-valued environment variable.
279 * match A character string representing an integer-valued env variable
281 * *value the integer representation of the environment variable 'match'
283 * Zero on success, a kdb diagnostic on failure.
285 int kdbgetintenv(const char *match
, int *value
)
290 diag
= kdbgetulenv(match
, &val
);
297 * kdbgetularg - This function will convert a numeric string into an
298 * unsigned long value.
300 * arg A character string representing a numeric value
302 * *value the unsigned long represntation of arg.
304 * Zero on success, a kdb diagnostic on failure.
306 int kdbgetularg(const char *arg
, unsigned long *value
)
311 val
= simple_strtoul(arg
, &endp
, 0);
315 * Also try base 16, for us folks too lazy to type the
318 val
= simple_strtoul(arg
, &endp
, 16);
328 int kdbgetu64arg(const char *arg
, u64
*value
)
333 val
= simple_strtoull(arg
, &endp
, 0);
337 val
= simple_strtoull(arg
, &endp
, 16);
348 * kdb_set - This function implements the 'set' command. Alter an
349 * existing environment variable or create a new one.
351 int kdb_set(int argc
, const char **argv
)
355 size_t varlen
, vallen
;
358 * we can be invoked two ways:
359 * set var=value argv[1]="var", argv[2]="value"
360 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
361 * - if the latter, shift 'em down.
372 * Check for internal variables
374 if (strcmp(argv
[1], "KDBDEBUG") == 0) {
375 unsigned int debugflags
;
378 debugflags
= simple_strtoul(argv
[2], &cp
, 0);
379 if (cp
== argv
[2] || debugflags
& ~KDB_DEBUG_FLAG_MASK
) {
380 kdb_printf("kdb: illegal debug flags '%s'\n",
384 kdb_flags
= (kdb_flags
&
385 ~(KDB_DEBUG_FLAG_MASK
<< KDB_DEBUG_FLAG_SHIFT
))
386 | (debugflags
<< KDB_DEBUG_FLAG_SHIFT
);
392 * Tokenizer squashed the '=' sign. argv[1] is variable
393 * name, argv[2] = value.
395 varlen
= strlen(argv
[1]);
396 vallen
= strlen(argv
[2]);
397 ep
= kdballocenv(varlen
+ vallen
+ 2);
399 return KDB_ENVBUFFULL
;
401 sprintf(ep
, "%s=%s", argv
[1], argv
[2]);
403 ep
[varlen
+vallen
+1] = '\0';
405 for (i
= 0; i
< __nenv
; i
++) {
407 && ((strncmp(__env
[i
], argv
[1], varlen
) == 0)
408 && ((__env
[i
][varlen
] == '\0')
409 || (__env
[i
][varlen
] == '=')))) {
416 * Wasn't existing variable. Fit into slot.
418 for (i
= 0; i
< __nenv
-1; i
++) {
419 if (__env
[i
] == (char *)0) {
428 static int kdb_check_regs(void)
430 if (!kdb_current_regs
) {
431 kdb_printf("No current kdb registers."
432 " You may need to select another task\n");
439 * kdbgetaddrarg - This function is responsible for parsing an
440 * address-expression and returning the value of the expression,
441 * symbol name, and offset to the caller.
443 * The argument may consist of a numeric value (decimal or
444 * hexidecimal), a symbol name, a register name (preceded by the
445 * percent sign), an environment variable with a numeric value
446 * (preceded by a dollar sign) or a simple arithmetic expression
447 * consisting of a symbol name, +/-, and a numeric constant value
450 * argc - count of arguments in argv
451 * argv - argument vector
452 * *nextarg - index to next unparsed argument in argv[]
453 * regs - Register state at time of KDB entry
455 * *value - receives the value of the address-expression
456 * *offset - receives the offset specified, if any
457 * *name - receives the symbol name, if any
458 * *nextarg - index to next unparsed argument in argv[]
460 * zero is returned on success, a kdb diagnostic code is
463 int kdbgetaddrarg(int argc
, const char **argv
, int *nextarg
,
464 unsigned long *value
, long *offset
,
468 unsigned long off
= 0;
478 * Process arguments which follow the following syntax:
480 * symbol | numeric-address [+/- numeric-offset]
482 * $environment-variable
488 symname
= (char *)argv
[*nextarg
];
491 * If there is no whitespace between the symbol
492 * or address and the '+' or '-' symbols, we
493 * remember the character and replace it with a
494 * null so the symbol/value can be properly parsed
496 cp
= strpbrk(symname
, "+-");
502 if (symname
[0] == '$') {
503 diag
= kdbgetulenv(&symname
[1], &addr
);
506 } else if (symname
[0] == '%') {
507 diag
= kdb_check_regs();
510 /* Implement register values with % at a later time as it is
515 found
= kdbgetsymval(symname
, &symtab
);
517 addr
= symtab
.sym_start
;
519 diag
= kdbgetularg(argv
[*nextarg
], &addr
);
526 found
= kdbnearsym(addr
, &symtab
);
534 if (offset
&& name
&& *name
)
535 *offset
= addr
- symtab
.sym_start
;
537 if ((*nextarg
> argc
)
542 * check for +/- and offset
545 if (symbol
== '\0') {
546 if ((argv
[*nextarg
][0] != '+')
547 && (argv
[*nextarg
][0] != '-')) {
549 * Not our argument. Return.
553 positive
= (argv
[*nextarg
][0] == '+');
557 positive
= (symbol
== '+');
560 * Now there must be an offset!
562 if ((*nextarg
> argc
)
563 && (symbol
== '\0')) {
564 return KDB_INVADDRFMT
;
568 cp
= (char *)argv
[*nextarg
];
572 diag
= kdbgetularg(cp
, &off
);
588 static void kdb_cmderror(int diag
)
593 kdb_printf("no error detected (diagnostic is %d)\n", diag
);
597 for (i
= 0; i
< __nkdb_err
; i
++) {
598 if (kdbmsgs
[i
].km_diag
== diag
) {
599 kdb_printf("diag: %d: %s\n", diag
, kdbmsgs
[i
].km_msg
);
604 kdb_printf("Unknown diag %d\n", -diag
);
608 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
609 * command which defines one command as a set of other commands,
610 * terminated by endefcmd. kdb_defcmd processes the initial
611 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
612 * the following commands until 'endefcmd'.
614 * argc argument count
615 * argv argument vector
617 * zero for success, a kdb diagnostic if error
627 static struct defcmd_set
*defcmd_set
;
628 static int defcmd_set_count
;
629 static int defcmd_in_progress
;
631 /* Forward references */
632 static int kdb_exec_defcmd(int argc
, const char **argv
);
634 static int kdb_defcmd2(const char *cmdstr
, const char *argv0
)
636 struct defcmd_set
*s
= defcmd_set
+ defcmd_set_count
- 1;
637 char **save_command
= s
->command
;
638 if (strcmp(argv0
, "endefcmd") == 0) {
639 defcmd_in_progress
= 0;
643 kdb_register(s
->name
, kdb_exec_defcmd
,
644 s
->usage
, s
->help
, 0);
649 s
->command
= kzalloc((s
->count
+ 1) * sizeof(*(s
->command
)), GFP_KDB
);
651 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
656 memcpy(s
->command
, save_command
, s
->count
* sizeof(*(s
->command
)));
657 s
->command
[s
->count
++] = kdb_strdup(cmdstr
, GFP_KDB
);
662 static int kdb_defcmd(int argc
, const char **argv
)
664 struct defcmd_set
*save_defcmd_set
= defcmd_set
, *s
;
665 if (defcmd_in_progress
) {
666 kdb_printf("kdb: nested defcmd detected, assuming missing "
668 kdb_defcmd2("endefcmd", "endefcmd");
672 for (s
= defcmd_set
; s
< defcmd_set
+ defcmd_set_count
; ++s
) {
673 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s
->name
,
675 for (i
= 0; i
< s
->count
; ++i
)
676 kdb_printf("%s", s
->command
[i
]);
677 kdb_printf("endefcmd\n");
683 defcmd_set
= kmalloc((defcmd_set_count
+ 1) * sizeof(*defcmd_set
),
686 kdb_printf("Could not allocate new defcmd_set entry for %s\n",
688 defcmd_set
= save_defcmd_set
;
691 memcpy(defcmd_set
, save_defcmd_set
,
692 defcmd_set_count
* sizeof(*defcmd_set
));
693 kfree(save_defcmd_set
);
694 s
= defcmd_set
+ defcmd_set_count
;
695 memset(s
, 0, sizeof(*s
));
697 s
->name
= kdb_strdup(argv
[1], GFP_KDB
);
698 s
->usage
= kdb_strdup(argv
[2], GFP_KDB
);
699 s
->help
= kdb_strdup(argv
[3], GFP_KDB
);
700 if (s
->usage
[0] == '"') {
701 strcpy(s
->usage
, s
->usage
+1);
702 s
->usage
[strlen(s
->usage
)-1] = '\0';
704 if (s
->help
[0] == '"') {
705 strcpy(s
->help
, s
->help
+1);
706 s
->help
[strlen(s
->help
)-1] = '\0';
709 defcmd_in_progress
= 1;
714 * kdb_exec_defcmd - Execute the set of commands associated with this
717 * argc argument count
718 * argv argument vector
720 * zero for success, a kdb diagnostic if error
722 static int kdb_exec_defcmd(int argc
, const char **argv
)
725 struct defcmd_set
*s
;
728 for (s
= defcmd_set
, i
= 0; i
< defcmd_set_count
; ++i
, ++s
) {
729 if (strcmp(s
->name
, argv
[0]) == 0)
732 if (i
== defcmd_set_count
) {
733 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
737 for (i
= 0; i
< s
->count
; ++i
) {
738 /* Recursive use of kdb_parse, do not use argv after
741 kdb_printf("[%s]kdb> %s\n", s
->name
, s
->command
[i
]);
742 ret
= kdb_parse(s
->command
[i
]);
749 /* Command history */
750 #define KDB_CMD_HISTORY_COUNT 32
751 #define CMD_BUFLEN 200 /* kdb_printf: max printline
753 static unsigned int cmd_head
, cmd_tail
;
754 static unsigned int cmdptr
;
755 static char cmd_hist
[KDB_CMD_HISTORY_COUNT
][CMD_BUFLEN
];
756 static char cmd_cur
[CMD_BUFLEN
];
759 * The "str" argument may point to something like | grep xyz
761 static void parse_grep(const char *str
)
764 char *cp
= (char *)str
, *cp2
;
766 /* sanity check: we should have been called with the \ first */
772 if (strncmp(cp
, "grep ", 5)) {
773 kdb_printf("invalid 'pipe', see grephelp\n");
779 cp2
= strchr(cp
, '\n');
781 *cp2
= '\0'; /* remove the trailing newline */
784 kdb_printf("invalid 'pipe', see grephelp\n");
787 /* now cp points to a nonzero length search string */
789 /* allow it be "x y z" by removing the "'s - there must
792 cp2
= strchr(cp
, '"');
794 kdb_printf("invalid quoted string, see grephelp\n");
797 *cp2
= '\0'; /* end the string where the 2nd " was */
799 kdb_grep_leading
= 0;
801 kdb_grep_leading
= 1;
805 kdb_grep_trailing
= 0;
806 if (*(cp
+len
-1) == '$') {
807 kdb_grep_trailing
= 1;
813 if (len
>= GREP_LEN
) {
814 kdb_printf("search string too long\n");
817 strcpy(kdb_grep_string
, cp
);
823 * kdb_parse - Parse the command line, search the command table for a
824 * matching command and invoke the command function. This
825 * function may be called recursively, if it is, the second call
826 * will overwrite argv and cbuf. It is the caller's
827 * responsibility to save their argv if they recursively call
830 * cmdstr The input command line to be parsed.
831 * regs The registers at the time kdb was entered.
833 * Zero for success, a kdb diagnostic if failure.
835 * Limited to 20 tokens.
837 * Real rudimentary tokenization. Basically only whitespace
838 * is considered a token delimeter (but special consideration
839 * is taken of the '=' sign as used by the 'set' command).
841 * The algorithm used to tokenize the input string relies on
842 * there being at least one whitespace (or otherwise useless)
843 * character between tokens as the character immediately following
844 * the token is altered in-place to a null-byte to terminate the
850 int kdb_parse(const char *cmdstr
)
852 static char *argv
[MAXARGC
];
854 static char cbuf
[CMD_BUFLEN
+2];
858 int i
, escaped
, ignore_errors
= 0, check_grep
;
861 * First tokenize the command string.
864 kdb_grepping_flag
= check_grep
= 0;
866 if (KDB_FLAG(CMD_INTERRUPT
)) {
867 /* Previous command was interrupted, newline must not
868 * repeat the command */
869 KDB_FLAG_CLEAR(CMD_INTERRUPT
);
870 KDB_STATE_SET(PAGER
);
871 argc
= 0; /* no repeat */
874 if (*cp
!= '\n' && *cp
!= '\0') {
878 /* skip whitespace */
881 if ((*cp
== '\0') || (*cp
== '\n') ||
882 (*cp
== '#' && !defcmd_in_progress
))
884 /* special case: check for | grep pattern */
889 if (cpp
>= cbuf
+ CMD_BUFLEN
) {
890 kdb_printf("kdb_parse: command buffer "
891 "overflow, command ignored\n%s\n",
895 if (argc
>= MAXARGC
- 1) {
896 kdb_printf("kdb_parse: too many arguments, "
897 "command ignored\n%s\n", cmdstr
);
903 /* Copy to next unquoted and unescaped
904 * whitespace or '=' */
905 while (*cp
&& *cp
!= '\n' &&
906 (escaped
|| quoted
|| !isspace(*cp
))) {
907 if (cpp
>= cbuf
+ CMD_BUFLEN
)
921 else if (*cp
== '\'' || *cp
== '"')
924 if (*cpp
== '=' && !quoted
)
928 *cpp
++ = '\0'; /* Squash a ws or '=' character */
935 if (defcmd_in_progress
) {
936 int result
= kdb_defcmd2(cmdstr
, argv
[0]);
937 if (!defcmd_in_progress
) {
938 argc
= 0; /* avoid repeat on endefcmd */
943 if (argv
[0][0] == '-' && argv
[0][1] &&
944 (argv
[0][1] < '0' || argv
[0][1] > '9')) {
949 for_each_kdbcmd(tp
, i
) {
952 * If this command is allowed to be abbreviated,
953 * check to see if this is it.
957 && (strlen(argv
[0]) <= tp
->cmd_minlen
)) {
960 tp
->cmd_minlen
) == 0) {
965 if (strcmp(argv
[0], tp
->cmd_name
) == 0)
971 * If we don't find a command by this name, see if the first
972 * few characters of this match any of the known commands.
973 * e.g., md1c20 should match md.
975 if (i
== kdb_max_commands
) {
976 for_each_kdbcmd(tp
, i
) {
980 strlen(tp
->cmd_name
)) == 0) {
987 if (i
< kdb_max_commands
) {
990 result
= (*tp
->cmd_func
)(argc
-1, (const char **)argv
);
991 if (result
&& ignore_errors
&& result
> KDB_CMD_GO
)
993 KDB_STATE_CLEAR(CMD
);
994 switch (tp
->cmd_repeat
) {
995 case KDB_REPEAT_NONE
:
1000 case KDB_REPEAT_NO_ARGS
:
1005 case KDB_REPEAT_WITH_ARGS
:
1012 * If the input with which we were presented does not
1013 * map to an existing command, attempt to parse it as an
1014 * address argument and display the result. Useful for
1015 * obtaining the address of a variable, or the nearest symbol
1016 * to an address contained in a register.
1019 unsigned long value
;
1024 if (kdbgetaddrarg(0, (const char **)argv
, &nextarg
,
1025 &value
, &offset
, &name
)) {
1026 return KDB_NOTFOUND
;
1029 kdb_printf("%s = ", argv
[0]);
1030 kdb_symbol_print(value
, NULL
, KDB_SP_DEFAULT
);
1037 static int handle_ctrl_cmd(char *cmd
)
1042 /* initial situation */
1043 if (cmd_head
== cmd_tail
)
1047 if (cmdptr
!= cmd_tail
)
1048 cmdptr
= (cmdptr
-1) % KDB_CMD_HISTORY_COUNT
;
1049 strncpy(cmd_cur
, cmd_hist
[cmdptr
], CMD_BUFLEN
);
1052 if (cmdptr
!= cmd_head
)
1053 cmdptr
= (cmdptr
+1) % KDB_CMD_HISTORY_COUNT
;
1054 strncpy(cmd_cur
, cmd_hist
[cmdptr
], CMD_BUFLEN
);
1061 * kdb_reboot - This function implements the 'reboot' command. Reboot
1062 * the system immediately, or loop for ever on failure.
1064 static int kdb_reboot(int argc
, const char **argv
)
1066 emergency_restart();
1067 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1074 static void kdb_dumpregs(struct pt_regs
*regs
)
1076 int old_lvl
= console_loglevel
;
1077 console_loglevel
= 15;
1082 console_loglevel
= old_lvl
;
1085 void kdb_set_current_task(struct task_struct
*p
)
1087 kdb_current_task
= p
;
1089 if (kdb_task_has_cpu(p
)) {
1090 kdb_current_regs
= KDB_TSKREGS(kdb_process_cpu(p
));
1093 kdb_current_regs
= NULL
;
1097 * kdb_local - The main code for kdb. This routine is invoked on a
1098 * specific processor, it is not global. The main kdb() routine
1099 * ensures that only one processor at a time is in this routine.
1100 * This code is called with the real reason code on the first
1101 * entry to a kdb session, thereafter it is called with reason
1102 * SWITCH, even if the user goes back to the original cpu.
1104 * reason The reason KDB was invoked
1105 * error The hardware-defined error code
1106 * regs The exception frame at time of fault/breakpoint.
1107 * db_result Result code from the break or debug point.
1109 * 0 KDB was invoked for an event which it wasn't responsible
1110 * 1 KDB handled the event for which it was invoked.
1111 * KDB_CMD_GO User typed 'go'.
1112 * KDB_CMD_CPU User switched to another cpu.
1113 * KDB_CMD_SS Single step.
1114 * KDB_CMD_SSB Single step until branch.
1116 static int kdb_local(kdb_reason_t reason
, int error
, struct pt_regs
*regs
,
1117 kdb_dbtrap_t db_result
)
1121 struct task_struct
*kdb_current
=
1122 kdb_curr_task(raw_smp_processor_id());
1124 KDB_DEBUG_STATE("kdb_local 1", reason
);
1126 if (reason
== KDB_REASON_DEBUG
) {
1127 /* special case below */
1129 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1130 kdb_current
, kdb_current
? kdb_current
->pid
: 0);
1131 #if defined(CONFIG_SMP)
1132 kdb_printf("on processor %d ", raw_smp_processor_id());
1137 case KDB_REASON_DEBUG
:
1140 * If re-entering kdb after a single step
1141 * command, don't print the message.
1143 switch (db_result
) {
1145 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1146 kdb_current
, kdb_current
->pid
);
1147 #if defined(CONFIG_SMP)
1148 kdb_printf("on processor %d ", raw_smp_processor_id());
1150 kdb_printf("due to Debug @ " kdb_machreg_fmt
"\n",
1151 instruction_pointer(regs
));
1155 * In the midst of ssb command. Just return.
1157 KDB_DEBUG_STATE("kdb_local 3", reason
);
1158 return KDB_CMD_SSB
; /* Continue with SSB command */
1164 KDB_DEBUG_STATE("kdb_local 4", reason
);
1165 return 1; /* kdba_db_trap did the work */
1167 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1174 case KDB_REASON_ENTER
:
1175 if (KDB_STATE(KEYBOARD
))
1176 kdb_printf("due to Keyboard Entry\n");
1178 kdb_printf("due to KDB_ENTER()\n");
1180 case KDB_REASON_KEYBOARD
:
1181 KDB_STATE_SET(KEYBOARD
);
1182 kdb_printf("due to Keyboard Entry\n");
1184 case KDB_REASON_ENTER_SLAVE
:
1185 /* drop through, slaves only get released via cpu switch */
1186 case KDB_REASON_SWITCH
:
1187 kdb_printf("due to cpu switch\n");
1189 case KDB_REASON_OOPS
:
1190 kdb_printf("Oops: %s\n", kdb_diemsg
);
1191 kdb_printf("due to oops @ " kdb_machreg_fmt
"\n",
1192 instruction_pointer(regs
));
1195 case KDB_REASON_NMI
:
1196 kdb_printf("due to NonMaskable Interrupt @ "
1197 kdb_machreg_fmt
"\n",
1198 instruction_pointer(regs
));
1201 case KDB_REASON_SSTEP
:
1202 case KDB_REASON_BREAK
:
1203 kdb_printf("due to %s @ " kdb_machreg_fmt
"\n",
1204 reason
== KDB_REASON_BREAK
?
1205 "Breakpoint" : "SS trap", instruction_pointer(regs
));
1207 * Determine if this breakpoint is one that we
1208 * are interested in.
1210 if (db_result
!= KDB_DB_BPT
) {
1211 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1213 KDB_DEBUG_STATE("kdb_local 6", reason
);
1214 return 0; /* Not for us, dismiss it */
1217 case KDB_REASON_RECURSE
:
1218 kdb_printf("due to Recursion @ " kdb_machreg_fmt
"\n",
1219 instruction_pointer(regs
));
1222 kdb_printf("kdb: unexpected reason code: %d\n", reason
);
1223 KDB_DEBUG_STATE("kdb_local 8", reason
);
1224 return 0; /* Not for us, dismiss it */
1229 * Initialize pager context.
1232 KDB_STATE_CLEAR(SUPPRESS
);
1236 *(cmd_hist
[cmd_head
]) = '\0';
1238 if (KDB_FLAG(ONLY_DO_DUMP
)) {
1239 /* kdb is off but a catastrophic error requires a dump.
1240 * Take the dump and reboot.
1241 * Turn on logging so the kdb output appears in the log
1242 * buffer in the dump.
1244 const char *setargs
[] = { "set", "LOGGING", "1" };
1245 kdb_set(2, setargs
);
1246 kdb_reboot(0, NULL
);
1251 #if defined(CONFIG_SMP)
1252 snprintf(kdb_prompt_str
, CMD_BUFLEN
, kdbgetenv("PROMPT"),
1253 raw_smp_processor_id());
1255 snprintf(kdb_prompt_str
, CMD_BUFLEN
, kdbgetenv("PROMPT"));
1257 if (defcmd_in_progress
)
1258 strncat(kdb_prompt_str
, "[defcmd]", CMD_BUFLEN
);
1261 * Fetch command from keyboard
1263 cmdbuf
= kdb_getstr(cmdbuf
, CMD_BUFLEN
, kdb_prompt_str
);
1264 if (*cmdbuf
!= '\n') {
1266 if (cmdptr
== cmd_head
) {
1267 strncpy(cmd_hist
[cmd_head
], cmd_cur
,
1269 *(cmd_hist
[cmd_head
] +
1270 strlen(cmd_hist
[cmd_head
])-1) = '\0';
1272 if (!handle_ctrl_cmd(cmdbuf
))
1273 *(cmd_cur
+strlen(cmd_cur
)-1) = '\0';
1275 goto do_full_getstr
;
1277 strncpy(cmd_hist
[cmd_head
], cmd_cur
,
1281 cmd_head
= (cmd_head
+1) % KDB_CMD_HISTORY_COUNT
;
1282 if (cmd_head
== cmd_tail
)
1283 cmd_tail
= (cmd_tail
+1) % KDB_CMD_HISTORY_COUNT
;
1287 diag
= kdb_parse(cmdbuf
);
1288 if (diag
== KDB_NOTFOUND
) {
1289 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf
);
1292 if (diag
== KDB_CMD_GO
1293 || diag
== KDB_CMD_CPU
1294 || diag
== KDB_CMD_SS
1295 || diag
== KDB_CMD_SSB
1296 || diag
== KDB_CMD_KGDB
)
1302 KDB_DEBUG_STATE("kdb_local 9", diag
);
1308 * kdb_print_state - Print the state data for the current processor
1311 * text Identifies the debug point
1312 * value Any integer value to be printed, e.g. reason code.
1314 void kdb_print_state(const char *text
, int value
)
1316 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1317 text
, raw_smp_processor_id(), value
, kdb_initial_cpu
,
1322 * kdb_main_loop - After initial setup and assignment of the
1323 * controlling cpu, all cpus are in this loop. One cpu is in
1324 * control and will issue the kdb prompt, the others will spin
1325 * until 'go' or cpu switch.
1327 * To get a consistent view of the kernel stacks for all
1328 * processes, this routine is invoked from the main kdb code via
1329 * an architecture specific routine. kdba_main_loop is
1330 * responsible for making the kernel stacks consistent for all
1331 * processes, there should be no difference between a blocked
1332 * process and a running process as far as kdb is concerned.
1334 * reason The reason KDB was invoked
1335 * error The hardware-defined error code
1336 * reason2 kdb's current reason code.
1337 * Initially error but can change
1338 * according to kdb state.
1339 * db_result Result code from break or debug point.
1340 * regs The exception frame at time of fault/breakpoint.
1341 * should always be valid.
1343 * 0 KDB was invoked for an event which it wasn't responsible
1344 * 1 KDB handled the event for which it was invoked.
1346 int kdb_main_loop(kdb_reason_t reason
, kdb_reason_t reason2
, int error
,
1347 kdb_dbtrap_t db_result
, struct pt_regs
*regs
)
1350 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1353 * All processors except the one that is in control
1356 KDB_DEBUG_STATE("kdb_main_loop 1", reason
);
1357 while (KDB_STATE(HOLD_CPU
)) {
1358 /* state KDB is turned off by kdb_cpu to see if the
1359 * other cpus are still live, each cpu in this loop
1362 if (!KDB_STATE(KDB
))
1366 KDB_STATE_CLEAR(SUPPRESS
);
1367 KDB_DEBUG_STATE("kdb_main_loop 2", reason
);
1368 if (KDB_STATE(LEAVING
))
1369 break; /* Another cpu said 'go' */
1370 /* Still using kdb, this processor is in control */
1371 result
= kdb_local(reason2
, error
, regs
, db_result
);
1372 KDB_DEBUG_STATE("kdb_main_loop 3", result
);
1374 if (result
== KDB_CMD_CPU
)
1377 if (result
== KDB_CMD_SS
) {
1378 KDB_STATE_SET(DOING_SS
);
1382 if (result
== KDB_CMD_SSB
) {
1383 KDB_STATE_SET(DOING_SS
);
1384 KDB_STATE_SET(DOING_SSB
);
1388 if (result
== KDB_CMD_KGDB
) {
1389 if (!KDB_STATE(DOING_KGDB
))
1390 kdb_printf("Entering please attach debugger "
1391 "or use $D#44+ or $3#33\n");
1394 if (result
&& result
!= 1 && result
!= KDB_CMD_GO
)
1395 kdb_printf("\nUnexpected kdb_local return code %d\n",
1397 KDB_DEBUG_STATE("kdb_main_loop 4", reason
);
1400 if (KDB_STATE(DOING_SS
))
1401 KDB_STATE_CLEAR(SSBPT
);
1407 * kdb_mdr - This function implements the guts of the 'mdr', memory
1409 * mdr <addr arg>,<byte count>
1411 * addr Start address
1412 * count Number of bytes
1414 * Always 0. Any errors are detected and printed by kdb_getarea.
1416 static int kdb_mdr(unsigned long addr
, unsigned int count
)
1420 if (kdb_getarea(c
, addr
))
1422 kdb_printf("%02x", c
);
1430 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1431 * 'md8' 'mdr' and 'mds' commands.
1433 * md|mds [<addr arg> [<line count> [<radix>]]]
1434 * mdWcN [<addr arg> [<line count> [<radix>]]]
1435 * where W = is the width (1, 2, 4 or 8) and N is the count.
1436 * for eg., md1c20 reads 20 bytes, 1 at a time.
1437 * mdr <addr arg>,<byte count>
1439 static void kdb_md_line(const char *fmtstr
, unsigned long addr
,
1440 int symbolic
, int nosect
, int bytesperword
,
1441 int num
, int repeat
, int phys
)
1443 /* print just one line of data */
1444 kdb_symtab_t symtab
;
1450 memset(cbuf
, '\0', sizeof(cbuf
));
1452 kdb_printf("phys " kdb_machreg_fmt0
" ", addr
);
1454 kdb_printf(kdb_machreg_fmt0
" ", addr
);
1456 for (i
= 0; i
< num
&& repeat
--; i
++) {
1458 if (kdb_getphysword(&word
, addr
, bytesperword
))
1460 } else if (kdb_getword(&word
, addr
, bytesperword
))
1462 kdb_printf(fmtstr
, word
);
1464 kdbnearsym(word
, &symtab
);
1466 memset(&symtab
, 0, sizeof(symtab
));
1467 if (symtab
.sym_name
) {
1468 kdb_symbol_print(word
, &symtab
, 0);
1471 kdb_printf(" %s %s "
1474 kdb_machreg_fmt
, symtab
.mod_name
,
1475 symtab
.sec_name
, symtab
.sec_start
,
1476 symtab
.sym_start
, symtab
.sym_end
);
1478 addr
+= bytesperword
;
1486 cp
= wc
.c
+ 8 - bytesperword
;
1491 #define printable_char(c) \
1492 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1493 switch (bytesperword
) {
1495 *c
++ = printable_char(*cp
++);
1496 *c
++ = printable_char(*cp
++);
1497 *c
++ = printable_char(*cp
++);
1498 *c
++ = printable_char(*cp
++);
1501 *c
++ = printable_char(*cp
++);
1502 *c
++ = printable_char(*cp
++);
1505 *c
++ = printable_char(*cp
++);
1508 *c
++ = printable_char(*cp
++);
1512 #undef printable_char
1515 kdb_printf("%*s %s\n", (int)((num
-i
)*(2*bytesperword
+ 1)+1),
1519 static int kdb_md(int argc
, const char **argv
)
1521 static unsigned long last_addr
;
1522 static int last_radix
, last_bytesperword
, last_repeat
;
1523 int radix
= 16, mdcount
= 8, bytesperword
= KDB_WORD_SIZE
, repeat
;
1525 char fmtchar
, fmtstr
[64];
1533 kdbgetintenv("MDCOUNT", &mdcount
);
1534 kdbgetintenv("RADIX", &radix
);
1535 kdbgetintenv("BYTESPERWORD", &bytesperword
);
1537 /* Assume 'md <addr>' and start with environment values */
1538 repeat
= mdcount
* 16 / bytesperword
;
1540 if (strcmp(argv
[0], "mdr") == 0) {
1542 return KDB_ARGCOUNT
;
1544 } else if (isdigit(argv
[0][2])) {
1545 bytesperword
= (int)(argv
[0][2] - '0');
1546 if (bytesperword
== 0) {
1547 bytesperword
= last_bytesperword
;
1548 if (bytesperword
== 0)
1551 last_bytesperword
= bytesperword
;
1552 repeat
= mdcount
* 16 / bytesperword
;
1555 else if (argv
[0][3] == 'c' && argv
[0][4]) {
1557 repeat
= simple_strtoul(argv
[0] + 4, &p
, 10);
1558 mdcount
= ((repeat
* bytesperword
) + 15) / 16;
1561 last_repeat
= repeat
;
1562 } else if (strcmp(argv
[0], "md") == 0)
1564 else if (strcmp(argv
[0], "mds") == 0)
1566 else if (strcmp(argv
[0], "mdp") == 0) {
1570 return KDB_NOTFOUND
;
1574 return KDB_ARGCOUNT
;
1577 bytesperword
= last_bytesperword
;
1578 repeat
= last_repeat
;
1579 mdcount
= ((repeat
* bytesperword
) + 15) / 16;
1584 int diag
, nextarg
= 1;
1585 diag
= kdbgetaddrarg(argc
, argv
, &nextarg
, &addr
,
1589 if (argc
> nextarg
+2)
1590 return KDB_ARGCOUNT
;
1592 if (argc
>= nextarg
) {
1593 diag
= kdbgetularg(argv
[nextarg
], &val
);
1595 mdcount
= (int) val
;
1596 repeat
= mdcount
* 16 / bytesperword
;
1599 if (argc
>= nextarg
+1) {
1600 diag
= kdbgetularg(argv
[nextarg
+1], &val
);
1606 if (strcmp(argv
[0], "mdr") == 0)
1607 return kdb_mdr(addr
, mdcount
);
1620 return KDB_BADRADIX
;
1625 if (bytesperword
> KDB_WORD_SIZE
)
1626 return KDB_BADWIDTH
;
1628 switch (bytesperword
) {
1630 sprintf(fmtstr
, "%%16.16l%c ", fmtchar
);
1633 sprintf(fmtstr
, "%%8.8l%c ", fmtchar
);
1636 sprintf(fmtstr
, "%%4.4l%c ", fmtchar
);
1639 sprintf(fmtstr
, "%%2.2l%c ", fmtchar
);
1642 return KDB_BADWIDTH
;
1645 last_repeat
= repeat
;
1646 last_bytesperword
= bytesperword
;
1648 if (strcmp(argv
[0], "mds") == 0) {
1650 /* Do not save these changes as last_*, they are temporary mds
1653 bytesperword
= KDB_WORD_SIZE
;
1655 kdbgetintenv("NOSECT", &nosect
);
1658 /* Round address down modulo BYTESPERWORD */
1660 addr
&= ~(bytesperword
-1);
1662 while (repeat
> 0) {
1664 int n
, z
, num
= (symbolic
? 1 : (16 / bytesperword
));
1666 if (KDB_FLAG(CMD_INTERRUPT
))
1668 for (a
= addr
, z
= 0; z
< repeat
; a
+= bytesperword
, ++z
) {
1670 if (kdb_getphysword(&word
, a
, bytesperword
)
1673 } else if (kdb_getword(&word
, a
, bytesperword
) || word
)
1676 n
= min(num
, repeat
);
1677 kdb_md_line(fmtstr
, addr
, symbolic
, nosect
, bytesperword
,
1679 addr
+= bytesperword
* n
;
1681 z
= (z
+ num
- 1) / num
;
1683 int s
= num
* (z
-2);
1684 kdb_printf(kdb_machreg_fmt0
"-" kdb_machreg_fmt0
1685 " zero suppressed\n",
1686 addr
, addr
+ bytesperword
* s
- 1);
1687 addr
+= bytesperword
* s
;
1697 * kdb_mm - This function implements the 'mm' command.
1698 * mm address-expression new-value
1700 * mm works on machine words, mmW works on bytes.
1702 static int kdb_mm(int argc
, const char **argv
)
1707 unsigned long contents
;
1711 if (argv
[0][2] && !isdigit(argv
[0][2]))
1712 return KDB_NOTFOUND
;
1715 return KDB_ARGCOUNT
;
1718 diag
= kdbgetaddrarg(argc
, argv
, &nextarg
, &addr
, &offset
, NULL
);
1723 return KDB_ARGCOUNT
;
1724 diag
= kdbgetaddrarg(argc
, argv
, &nextarg
, &contents
, NULL
, NULL
);
1728 if (nextarg
!= argc
+ 1)
1729 return KDB_ARGCOUNT
;
1731 width
= argv
[0][2] ? (argv
[0][2] - '0') : (KDB_WORD_SIZE
);
1732 diag
= kdb_putword(addr
, contents
, width
);
1736 kdb_printf(kdb_machreg_fmt
" = " kdb_machreg_fmt
"\n", addr
, contents
);
1742 * kdb_go - This function implements the 'go' command.
1743 * go [address-expression]
1745 static int kdb_go(int argc
, const char **argv
)
1752 if (raw_smp_processor_id() != kdb_initial_cpu
) {
1753 kdb_printf("go must execute on the entry cpu, "
1754 "please use \"cpu %d\" and then execute go\n",
1756 return KDB_BADCPUNUM
;
1760 diag
= kdbgetaddrarg(argc
, argv
, &nextarg
,
1761 &addr
, &offset
, NULL
);
1765 return KDB_ARGCOUNT
;
1769 if (KDB_FLAG(CATASTROPHIC
)) {
1770 kdb_printf("Catastrophic error detected\n");
1771 kdb_printf("kdb_continue_catastrophic=%d, ",
1772 kdb_continue_catastrophic
);
1773 if (kdb_continue_catastrophic
== 0 && kdb_go_count
++ == 0) {
1774 kdb_printf("type go a second time if you really want "
1778 if (kdb_continue_catastrophic
== 2) {
1779 kdb_printf("forcing reboot\n");
1780 kdb_reboot(0, NULL
);
1782 kdb_printf("attempting to continue\n");
1788 * kdb_rd - This function implements the 'rd' command.
1790 static int kdb_rd(int argc
, const char **argv
)
1792 int len
= kdb_check_regs();
1793 #if DBG_MAX_REG_NUM > 0
1805 for (i
= 0; i
< DBG_MAX_REG_NUM
; i
++) {
1806 rsize
= dbg_reg_def
[i
].size
* 2;
1809 if (len
+ strlen(dbg_reg_def
[i
].name
) + 4 + rsize
> 80) {
1814 len
+= kdb_printf(" ");
1815 switch(dbg_reg_def
[i
].size
* 8) {
1817 rname
= dbg_get_reg(i
, ®8
, kdb_current_regs
);
1820 len
+= kdb_printf("%s: %02x", rname
, reg8
);
1823 rname
= dbg_get_reg(i
, ®16
, kdb_current_regs
);
1826 len
+= kdb_printf("%s: %04x", rname
, reg16
);
1829 rname
= dbg_get_reg(i
, ®32
, kdb_current_regs
);
1832 len
+= kdb_printf("%s: %08x", rname
, reg32
);
1835 rname
= dbg_get_reg(i
, ®64
, kdb_current_regs
);
1838 len
+= kdb_printf("%s: %016llx", rname
, reg64
);
1841 len
+= kdb_printf("%s: ??", dbg_reg_def
[i
].name
);
1849 kdb_dumpregs(kdb_current_regs
);
1855 * kdb_rm - This function implements the 'rm' (register modify) command.
1856 * rm register-name new-contents
1858 * Allows register modification with the same restrictions as gdb
1860 static int kdb_rm(int argc
, const char **argv
)
1862 #if DBG_MAX_REG_NUM > 0
1872 return KDB_ARGCOUNT
;
1874 * Allow presence or absence of leading '%' symbol.
1880 diag
= kdbgetu64arg(argv
[2], ®64
);
1884 diag
= kdb_check_regs();
1889 for (i
= 0; i
< DBG_MAX_REG_NUM
; i
++) {
1890 if (strcmp(rname
, dbg_reg_def
[i
].name
) == 0) {
1896 switch(dbg_reg_def
[i
].size
* 8) {
1899 dbg_set_reg(i
, ®8
, kdb_current_regs
);
1903 dbg_set_reg(i
, ®16
, kdb_current_regs
);
1907 dbg_set_reg(i
, ®32
, kdb_current_regs
);
1910 dbg_set_reg(i
, ®64
, kdb_current_regs
);
1916 kdb_printf("ERROR: Register set currently not implemented\n");
1921 #if defined(CONFIG_MAGIC_SYSRQ)
1923 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1924 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1925 * sr <magic-sysrq-code>
1927 static int kdb_sr(int argc
, const char **argv
)
1930 return KDB_ARGCOUNT
;
1932 __handle_sysrq(*argv
[1], false);
1937 #endif /* CONFIG_MAGIC_SYSRQ */
1940 * kdb_ef - This function implements the 'regs' (display exception
1941 * frame) command. This command takes an address and expects to
1942 * find an exception frame at that address, formats and prints
1944 * regs address-expression
1948 static int kdb_ef(int argc
, const char **argv
)
1956 return KDB_ARGCOUNT
;
1959 diag
= kdbgetaddrarg(argc
, argv
, &nextarg
, &addr
, &offset
, NULL
);
1962 show_regs((struct pt_regs
*)addr
);
1966 #if defined(CONFIG_MODULES)
1968 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1969 * currently loaded kernel modules.
1970 * Mostly taken from userland lsmod.
1972 static int kdb_lsmod(int argc
, const char **argv
)
1977 return KDB_ARGCOUNT
;
1979 kdb_printf("Module Size modstruct Used by\n");
1980 list_for_each_entry(mod
, kdb_modules
, list
) {
1982 kdb_printf("%-20s%8u 0x%p ", mod
->name
,
1983 mod
->core_size
, (void *)mod
);
1984 #ifdef CONFIG_MODULE_UNLOAD
1985 kdb_printf("%4d ", module_refcount(mod
));
1987 if (mod
->state
== MODULE_STATE_GOING
)
1988 kdb_printf(" (Unloading)");
1989 else if (mod
->state
== MODULE_STATE_COMING
)
1990 kdb_printf(" (Loading)");
1992 kdb_printf(" (Live)");
1993 kdb_printf(" 0x%p", mod
->module_core
);
1995 #ifdef CONFIG_MODULE_UNLOAD
1997 struct module_use
*use
;
1999 list_for_each_entry(use
, &mod
->source_list
,
2001 kdb_printf("%s ", use
->target
->name
);
2010 #endif /* CONFIG_MODULES */
2013 * kdb_env - This function implements the 'env' command. Display the
2014 * current environment variables.
2017 static int kdb_env(int argc
, const char **argv
)
2021 for (i
= 0; i
< __nenv
; i
++) {
2023 kdb_printf("%s\n", __env
[i
]);
2026 if (KDB_DEBUG(MASK
))
2027 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags
);
2032 #ifdef CONFIG_PRINTK
2034 * kdb_dmesg - This function implements the 'dmesg' command to display
2035 * the contents of the syslog buffer.
2036 * dmesg [lines] [adjust]
2038 static int kdb_dmesg(int argc
, const char **argv
)
2040 char *syslog_data
[4], *start
, *end
, c
= '\0', *p
;
2041 int diag
, logging
, logsize
, lines
= 0, adjust
= 0, n
;
2044 return KDB_ARGCOUNT
;
2047 lines
= simple_strtol(argv
[1], &cp
, 0);
2051 adjust
= simple_strtoul(argv
[2], &cp
, 0);
2052 if (*cp
|| adjust
< 0)
2057 /* disable LOGGING if set */
2058 diag
= kdbgetintenv("LOGGING", &logging
);
2059 if (!diag
&& logging
) {
2060 const char *setargs
[] = { "set", "LOGGING", "0" };
2061 kdb_set(2, setargs
);
2064 /* syslog_data[0,1] physical start, end+1. syslog_data[2,3]
2065 * logical start, end+1. */
2066 kdb_syslog_data(syslog_data
);
2067 if (syslog_data
[2] == syslog_data
[3])
2069 logsize
= syslog_data
[1] - syslog_data
[0];
2070 start
= syslog_data
[2];
2071 end
= syslog_data
[3];
2072 #define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0])
2073 for (n
= 0, p
= start
; p
< end
; ++p
) {
2082 kdb_printf("buffer only contains %d lines, nothing "
2084 else if (adjust
- lines
>= n
)
2085 kdb_printf("buffer only contains %d lines, last %d "
2086 "lines printed\n", n
, n
- adjust
);
2088 for (; start
< end
&& adjust
; ++start
) {
2089 if (*KDB_WRAP(start
) == '\n')
2095 for (p
= start
; p
< end
&& lines
; ++p
) {
2096 if (*KDB_WRAP(p
) == '\n')
2100 } else if (lines
> 0) {
2101 int skip
= n
- (adjust
+ lines
);
2103 kdb_printf("buffer only contains %d lines, "
2104 "nothing printed\n", n
);
2106 } else if (skip
< 0) {
2109 kdb_printf("buffer only contains %d lines, first "
2110 "%d lines printed\n", n
, lines
);
2112 for (; start
< end
&& skip
; ++start
) {
2113 if (*KDB_WRAP(start
) == '\n')
2116 for (p
= start
; p
< end
&& lines
; ++p
) {
2117 if (*KDB_WRAP(p
) == '\n')
2122 /* Do a line at a time (max 200 chars) to reduce protocol overhead */
2124 while (start
!= end
) {
2127 if (KDB_FLAG(CMD_INTERRUPT
))
2129 while (start
< end
&& (c
= *KDB_WRAP(start
)) &&
2130 (p
- buf
) < sizeof(buf
)-1) {
2137 kdb_printf("%s", buf
);
2144 #endif /* CONFIG_PRINTK */
2146 * kdb_cpu - This function implements the 'cpu' command.
2149 * KDB_CMD_CPU for success, a kdb diagnostic if error
2151 static void kdb_cpu_status(void)
2153 int i
, start_cpu
, first_print
= 1;
2154 char state
, prev_state
= '?';
2156 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2157 kdb_printf("Available cpus: ");
2158 for (start_cpu
= -1, i
= 0; i
< NR_CPUS
; i
++) {
2159 if (!cpu_online(i
)) {
2160 state
= 'F'; /* cpu is offline */
2162 state
= ' '; /* cpu is responding to kdb */
2163 if (kdb_task_state_char(KDB_TSK(i
)) == 'I')
2164 state
= 'I'; /* idle task */
2166 if (state
!= prev_state
) {
2167 if (prev_state
!= '?') {
2171 kdb_printf("%d", start_cpu
);
2172 if (start_cpu
< i
-1)
2173 kdb_printf("-%d", i
-1);
2174 if (prev_state
!= ' ')
2175 kdb_printf("(%c)", prev_state
);
2181 /* print the trailing cpus, ignoring them if they are all offline */
2182 if (prev_state
!= 'F') {
2185 kdb_printf("%d", start_cpu
);
2186 if (start_cpu
< i
-1)
2187 kdb_printf("-%d", i
-1);
2188 if (prev_state
!= ' ')
2189 kdb_printf("(%c)", prev_state
);
2194 static int kdb_cpu(int argc
, const char **argv
)
2196 unsigned long cpunum
;
2205 return KDB_ARGCOUNT
;
2207 diag
= kdbgetularg(argv
[1], &cpunum
);
2214 if ((cpunum
> NR_CPUS
) || !cpu_online(cpunum
))
2215 return KDB_BADCPUNUM
;
2217 dbg_switch_cpu
= cpunum
;
2220 * Switch to other cpu
2225 /* The user may not realize that ps/bta with no parameters does not print idle
2226 * or sleeping system daemon processes, so tell them how many were suppressed.
2228 void kdb_ps_suppressed(void)
2230 int idle
= 0, daemon
= 0;
2231 unsigned long mask_I
= kdb_task_state_string("I"),
2232 mask_M
= kdb_task_state_string("M");
2234 const struct task_struct
*p
, *g
;
2235 for_each_online_cpu(cpu
) {
2236 p
= kdb_curr_task(cpu
);
2237 if (kdb_task_state(p
, mask_I
))
2240 kdb_do_each_thread(g
, p
) {
2241 if (kdb_task_state(p
, mask_M
))
2243 } kdb_while_each_thread(g
, p
);
2244 if (idle
|| daemon
) {
2246 kdb_printf("%d idle process%s (state I)%s\n",
2247 idle
, idle
== 1 ? "" : "es",
2248 daemon
? " and " : "");
2250 kdb_printf("%d sleeping system daemon (state M) "
2251 "process%s", daemon
,
2252 daemon
== 1 ? "" : "es");
2253 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2258 * kdb_ps - This function implements the 'ps' command which shows a
2259 * list of the active processes.
2260 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2262 void kdb_ps1(const struct task_struct
*p
)
2267 if (!p
|| probe_kernel_read(&tmp
, (char *)p
, sizeof(unsigned long)))
2270 cpu
= kdb_process_cpu(p
);
2271 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2272 (void *)p
, p
->pid
, p
->parent
->pid
,
2273 kdb_task_has_cpu(p
), kdb_process_cpu(p
),
2274 kdb_task_state_char(p
),
2275 (void *)(&p
->thread
),
2276 p
== kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2278 if (kdb_task_has_cpu(p
)) {
2279 if (!KDB_TSK(cpu
)) {
2280 kdb_printf(" Error: no saved data for this cpu\n");
2282 if (KDB_TSK(cpu
) != p
)
2283 kdb_printf(" Error: does not match running "
2284 "process table (0x%p)\n", KDB_TSK(cpu
));
2289 static int kdb_ps(int argc
, const char **argv
)
2291 struct task_struct
*g
, *p
;
2292 unsigned long mask
, cpu
;
2295 kdb_ps_suppressed();
2296 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2297 (int)(2*sizeof(void *))+2, "Task Addr",
2298 (int)(2*sizeof(void *))+2, "Thread");
2299 mask
= kdb_task_state_string(argc
? argv
[1] : NULL
);
2300 /* Run the active tasks first */
2301 for_each_online_cpu(cpu
) {
2302 if (KDB_FLAG(CMD_INTERRUPT
))
2304 p
= kdb_curr_task(cpu
);
2305 if (kdb_task_state(p
, mask
))
2309 /* Now the real tasks */
2310 kdb_do_each_thread(g
, p
) {
2311 if (KDB_FLAG(CMD_INTERRUPT
))
2313 if (kdb_task_state(p
, mask
))
2315 } kdb_while_each_thread(g
, p
);
2321 * kdb_pid - This function implements the 'pid' command which switches
2322 * the currently active process.
2325 static int kdb_pid(int argc
, const char **argv
)
2327 struct task_struct
*p
;
2332 return KDB_ARGCOUNT
;
2335 if (strcmp(argv
[1], "R") == 0) {
2336 p
= KDB_TSK(kdb_initial_cpu
);
2338 diag
= kdbgetularg(argv
[1], &val
);
2342 p
= find_task_by_pid_ns((pid_t
)val
, &init_pid_ns
);
2344 kdb_printf("No task with pid=%d\n", (pid_t
)val
);
2348 kdb_set_current_task(p
);
2350 kdb_printf("KDB current process is %s(pid=%d)\n",
2351 kdb_current_task
->comm
,
2352 kdb_current_task
->pid
);
2358 * kdb_ll - This function implements the 'll' command which follows a
2359 * linked list and executes an arbitrary command for each
2362 static int kdb_ll(int argc
, const char **argv
)
2368 unsigned long linkoffset
;
2370 const char *command
;
2373 return KDB_ARGCOUNT
;
2376 diag
= kdbgetaddrarg(argc
, argv
, &nextarg
, &addr
, &offset
, NULL
);
2380 diag
= kdbgetularg(argv
[2], &linkoffset
);
2385 * Using the starting address as
2386 * the first element in the list, and assuming that
2387 * the list ends with a null pointer.
2391 command
= kdb_strdup(argv
[3], GFP_KDB
);
2393 kdb_printf("%s: cannot duplicate command\n", __func__
);
2396 /* Recursive use of kdb_parse, do not use argv after this point */
2402 if (KDB_FLAG(CMD_INTERRUPT
))
2405 sprintf(buf
, "%s " kdb_machreg_fmt
"\n", command
, va
);
2406 diag
= kdb_parse(buf
);
2410 addr
= va
+ linkoffset
;
2411 if (kdb_getword(&va
, addr
, sizeof(va
)))
2420 static int kdb_kgdb(int argc
, const char **argv
)
2422 return KDB_CMD_KGDB
;
2426 * kdb_help - This function implements the 'help' and '?' commands.
2428 static int kdb_help(int argc
, const char **argv
)
2433 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2434 kdb_printf("-----------------------------"
2435 "-----------------------------\n");
2436 for_each_kdbcmd(kt
, i
) {
2438 kdb_printf("%-15.15s %-20.20s %s\n", kt
->cmd_name
,
2439 kt
->cmd_usage
, kt
->cmd_help
);
2440 if (KDB_FLAG(CMD_INTERRUPT
))
2447 * kdb_kill - This function implements the 'kill' commands.
2449 static int kdb_kill(int argc
, const char **argv
)
2453 struct task_struct
*p
;
2454 struct siginfo info
;
2457 return KDB_ARGCOUNT
;
2459 sig
= simple_strtol(argv
[1], &endp
, 0);
2463 kdb_printf("Invalid signal parameter.<-signal>\n");
2468 pid
= simple_strtol(argv
[2], &endp
, 0);
2472 kdb_printf("Process ID must be large than 0.\n");
2476 /* Find the process. */
2477 p
= find_task_by_pid_ns(pid
, &init_pid_ns
);
2479 kdb_printf("The specified process isn't found.\n");
2482 p
= p
->group_leader
;
2483 info
.si_signo
= sig
;
2485 info
.si_code
= SI_USER
;
2486 info
.si_pid
= pid
; /* same capabilities as process being signalled */
2487 info
.si_uid
= 0; /* kdb has root authority */
2488 kdb_send_sig_info(p
, &info
);
2493 int tm_sec
; /* seconds */
2494 int tm_min
; /* minutes */
2495 int tm_hour
; /* hours */
2496 int tm_mday
; /* day of the month */
2497 int tm_mon
; /* month */
2498 int tm_year
; /* year */
2501 static void kdb_gmtime(struct timespec
*tv
, struct kdb_tm
*tm
)
2503 /* This will work from 1970-2099, 2100 is not a leap year */
2504 static int mon_day
[] = { 31, 29, 31, 30, 31, 30, 31,
2505 31, 30, 31, 30, 31 };
2506 memset(tm
, 0, sizeof(*tm
));
2507 tm
->tm_sec
= tv
->tv_sec
% (24 * 60 * 60);
2508 tm
->tm_mday
= tv
->tv_sec
/ (24 * 60 * 60) +
2509 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2510 tm
->tm_min
= tm
->tm_sec
/ 60 % 60;
2511 tm
->tm_hour
= tm
->tm_sec
/ 60 / 60;
2512 tm
->tm_sec
= tm
->tm_sec
% 60;
2513 tm
->tm_year
= 68 + 4*(tm
->tm_mday
/ (4*365+1));
2514 tm
->tm_mday
%= (4*365+1);
2516 while (tm
->tm_mday
>= mon_day
[tm
->tm_mon
]) {
2517 tm
->tm_mday
-= mon_day
[tm
->tm_mon
];
2518 if (++tm
->tm_mon
== 12) {
2528 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2529 * I cannot call that code directly from kdb, it has an unconditional
2530 * cli()/sti() and calls routines that take locks which can stop the debugger.
2532 static void kdb_sysinfo(struct sysinfo
*val
)
2534 struct timespec uptime
;
2535 do_posix_clock_monotonic_gettime(&uptime
);
2536 memset(val
, 0, sizeof(*val
));
2537 val
->uptime
= uptime
.tv_sec
;
2538 val
->loads
[0] = avenrun
[0];
2539 val
->loads
[1] = avenrun
[1];
2540 val
->loads
[2] = avenrun
[2];
2541 val
->procs
= nr_threads
-1;
2548 * kdb_summary - This function implements the 'summary' command.
2550 static int kdb_summary(int argc
, const char **argv
)
2552 struct timespec now
;
2557 return KDB_ARGCOUNT
;
2559 kdb_printf("sysname %s\n", init_uts_ns
.name
.sysname
);
2560 kdb_printf("release %s\n", init_uts_ns
.name
.release
);
2561 kdb_printf("version %s\n", init_uts_ns
.name
.version
);
2562 kdb_printf("machine %s\n", init_uts_ns
.name
.machine
);
2563 kdb_printf("nodename %s\n", init_uts_ns
.name
.nodename
);
2564 kdb_printf("domainname %s\n", init_uts_ns
.name
.domainname
);
2565 kdb_printf("ccversion %s\n", __stringify(CCVERSION
));
2567 now
= __current_kernel_time();
2568 kdb_gmtime(&now
, &tm
);
2569 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2570 "tz_minuteswest %d\n",
2571 1900+tm
.tm_year
, tm
.tm_mon
+1, tm
.tm_mday
,
2572 tm
.tm_hour
, tm
.tm_min
, tm
.tm_sec
,
2573 sys_tz
.tz_minuteswest
);
2576 kdb_printf("uptime ");
2577 if (val
.uptime
> (24*60*60)) {
2578 int days
= val
.uptime
/ (24*60*60);
2579 val
.uptime
%= (24*60*60);
2580 kdb_printf("%d day%s ", days
, days
== 1 ? "" : "s");
2582 kdb_printf("%02ld:%02ld\n", val
.uptime
/(60*60), (val
.uptime
/60)%60);
2584 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2586 #define LOAD_INT(x) ((x) >> FSHIFT)
2587 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2588 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2589 LOAD_INT(val
.loads
[0]), LOAD_FRAC(val
.loads
[0]),
2590 LOAD_INT(val
.loads
[1]), LOAD_FRAC(val
.loads
[1]),
2591 LOAD_INT(val
.loads
[2]), LOAD_FRAC(val
.loads
[2]));
2594 /* Display in kilobytes */
2595 #define K(x) ((x) << (PAGE_SHIFT - 10))
2596 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2597 "Buffers: %8lu kB\n",
2598 val
.totalram
, val
.freeram
, val
.bufferram
);
2603 * kdb_per_cpu - This function implements the 'per_cpu' command.
2605 static int kdb_per_cpu(int argc
, const char **argv
)
2608 int cpu
, diag
, nextarg
= 1;
2609 unsigned long addr
, symaddr
, val
, bytesperword
= 0, whichcpu
= ~0UL;
2611 if (argc
< 1 || argc
> 3)
2612 return KDB_ARGCOUNT
;
2614 diag
= kdbgetaddrarg(argc
, argv
, &nextarg
, &symaddr
, NULL
, NULL
);
2619 diag
= kdbgetularg(argv
[2], &bytesperword
);
2624 bytesperword
= KDB_WORD_SIZE
;
2625 else if (bytesperword
> KDB_WORD_SIZE
)
2626 return KDB_BADWIDTH
;
2627 sprintf(fmtstr
, "%%0%dlx ", (int)(2*bytesperword
));
2629 diag
= kdbgetularg(argv
[3], &whichcpu
);
2632 if (!cpu_online(whichcpu
)) {
2633 kdb_printf("cpu %ld is not online\n", whichcpu
);
2634 return KDB_BADCPUNUM
;
2638 /* Most architectures use __per_cpu_offset[cpu], some use
2639 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2641 #ifdef __per_cpu_offset
2642 #define KDB_PCU(cpu) __per_cpu_offset(cpu)
2645 #define KDB_PCU(cpu) __per_cpu_offset[cpu]
2647 #define KDB_PCU(cpu) 0
2650 for_each_online_cpu(cpu
) {
2651 if (KDB_FLAG(CMD_INTERRUPT
))
2654 if (whichcpu
!= ~0UL && whichcpu
!= cpu
)
2656 addr
= symaddr
+ KDB_PCU(cpu
);
2657 diag
= kdb_getword(&val
, addr
, bytesperword
);
2659 kdb_printf("%5d " kdb_bfd_vma_fmt0
" - unable to "
2660 "read, diag=%d\n", cpu
, addr
, diag
);
2663 kdb_printf("%5d ", cpu
);
2664 kdb_md_line(fmtstr
, addr
,
2665 bytesperword
== KDB_WORD_SIZE
,
2666 1, bytesperword
, 1, 1, 0);
2673 * display help for the use of cmd | grep pattern
2675 static int kdb_grep_help(int argc
, const char **argv
)
2677 kdb_printf("Usage of cmd args | grep pattern:\n");
2678 kdb_printf(" Any command's output may be filtered through an ");
2679 kdb_printf("emulated 'pipe'.\n");
2680 kdb_printf(" 'grep' is just a key word.\n");
2681 kdb_printf(" The pattern may include a very limited set of "
2682 "metacharacters:\n");
2683 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2684 kdb_printf(" And if there are spaces in the pattern, you may "
2686 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2687 " or \"^pat tern$\"\n");
2692 * kdb_register_repeat - This function is used to register a kernel
2696 * func Function to execute the command
2697 * usage A simple usage string showing arguments
2698 * help A simple help string describing command
2699 * repeat Does the command auto repeat on enter?
2701 * zero for success, one if a duplicate command.
2703 #define kdb_command_extend 50 /* arbitrary */
2704 int kdb_register_repeat(char *cmd
,
2709 kdb_repeat_t repeat
)
2715 * Brute force method to determine duplicates
2717 for_each_kdbcmd(kp
, i
) {
2718 if (kp
->cmd_name
&& (strcmp(kp
->cmd_name
, cmd
) == 0)) {
2719 kdb_printf("Duplicate kdb command registered: "
2720 "%s, func %p help %s\n", cmd
, func
, help
);
2726 * Insert command into first available location in table
2728 for_each_kdbcmd(kp
, i
) {
2729 if (kp
->cmd_name
== NULL
)
2733 if (i
>= kdb_max_commands
) {
2734 kdbtab_t
*new = kmalloc((kdb_max_commands
- KDB_BASE_CMD_MAX
+
2735 kdb_command_extend
) * sizeof(*new), GFP_KDB
);
2737 kdb_printf("Could not allocate new kdb_command "
2742 memcpy(new, kdb_commands
,
2743 (kdb_max_commands
- KDB_BASE_CMD_MAX
) * sizeof(*new));
2744 kfree(kdb_commands
);
2746 memset(new + kdb_max_commands
, 0,
2747 kdb_command_extend
* sizeof(*new));
2749 kp
= kdb_commands
+ kdb_max_commands
- KDB_BASE_CMD_MAX
;
2750 kdb_max_commands
+= kdb_command_extend
;
2754 kp
->cmd_func
= func
;
2755 kp
->cmd_usage
= usage
;
2756 kp
->cmd_help
= help
;
2758 kp
->cmd_minlen
= minlen
;
2759 kp
->cmd_repeat
= repeat
;
2763 EXPORT_SYMBOL_GPL(kdb_register_repeat
);
2767 * kdb_register - Compatibility register function for commands that do
2768 * not need to specify a repeat state. Equivalent to
2769 * kdb_register_repeat with KDB_REPEAT_NONE.
2772 * func Function to execute the command
2773 * usage A simple usage string showing arguments
2774 * help A simple help string describing command
2776 * zero for success, one if a duplicate command.
2778 int kdb_register(char *cmd
,
2784 return kdb_register_repeat(cmd
, func
, usage
, help
, minlen
,
2787 EXPORT_SYMBOL_GPL(kdb_register
);
2790 * kdb_unregister - This function is used to unregister a kernel
2791 * debugger command. It is generally called when a module which
2792 * implements kdb commands is unloaded.
2796 * zero for success, one command not registered.
2798 int kdb_unregister(char *cmd
)
2806 for_each_kdbcmd(kp
, i
) {
2807 if (kp
->cmd_name
&& (strcmp(kp
->cmd_name
, cmd
) == 0)) {
2808 kp
->cmd_name
= NULL
;
2813 /* Couldn't find it. */
2816 EXPORT_SYMBOL_GPL(kdb_unregister
);
2818 /* Initialize the kdb command table. */
2819 static void __init
kdb_inittab(void)
2824 for_each_kdbcmd(kp
, i
)
2825 kp
->cmd_name
= NULL
;
2827 kdb_register_repeat("md", kdb_md
, "<vaddr>",
2828 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2829 KDB_REPEAT_NO_ARGS
);
2830 kdb_register_repeat("mdr", kdb_md
, "<vaddr> <bytes>",
2831 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS
);
2832 kdb_register_repeat("mdp", kdb_md
, "<paddr> <bytes>",
2833 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS
);
2834 kdb_register_repeat("mds", kdb_md
, "<vaddr>",
2835 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS
);
2836 kdb_register_repeat("mm", kdb_mm
, "<vaddr> <contents>",
2837 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS
);
2838 kdb_register_repeat("go", kdb_go
, "[<vaddr>]",
2839 "Continue Execution", 1, KDB_REPEAT_NONE
);
2840 kdb_register_repeat("rd", kdb_rd
, "",
2841 "Display Registers", 0, KDB_REPEAT_NONE
);
2842 kdb_register_repeat("rm", kdb_rm
, "<reg> <contents>",
2843 "Modify Registers", 0, KDB_REPEAT_NONE
);
2844 kdb_register_repeat("ef", kdb_ef
, "<vaddr>",
2845 "Display exception frame", 0, KDB_REPEAT_NONE
);
2846 kdb_register_repeat("bt", kdb_bt
, "[<vaddr>]",
2847 "Stack traceback", 1, KDB_REPEAT_NONE
);
2848 kdb_register_repeat("btp", kdb_bt
, "<pid>",
2849 "Display stack for process <pid>", 0, KDB_REPEAT_NONE
);
2850 kdb_register_repeat("bta", kdb_bt
, "[DRSTCZEUIMA]",
2851 "Display stack all processes", 0, KDB_REPEAT_NONE
);
2852 kdb_register_repeat("btc", kdb_bt
, "",
2853 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE
);
2854 kdb_register_repeat("btt", kdb_bt
, "<vaddr>",
2855 "Backtrace process given its struct task address", 0,
2857 kdb_register_repeat("ll", kdb_ll
, "<first-element> <linkoffset> <cmd>",
2858 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE
);
2859 kdb_register_repeat("env", kdb_env
, "",
2860 "Show environment variables", 0, KDB_REPEAT_NONE
);
2861 kdb_register_repeat("set", kdb_set
, "",
2862 "Set environment variables", 0, KDB_REPEAT_NONE
);
2863 kdb_register_repeat("help", kdb_help
, "",
2864 "Display Help Message", 1, KDB_REPEAT_NONE
);
2865 kdb_register_repeat("?", kdb_help
, "",
2866 "Display Help Message", 0, KDB_REPEAT_NONE
);
2867 kdb_register_repeat("cpu", kdb_cpu
, "<cpunum>",
2868 "Switch to new cpu", 0, KDB_REPEAT_NONE
);
2869 kdb_register_repeat("kgdb", kdb_kgdb
, "",
2870 "Enter kgdb mode", 0, KDB_REPEAT_NONE
);
2871 kdb_register_repeat("ps", kdb_ps
, "[<flags>|A]",
2872 "Display active task list", 0, KDB_REPEAT_NONE
);
2873 kdb_register_repeat("pid", kdb_pid
, "<pidnum>",
2874 "Switch to another task", 0, KDB_REPEAT_NONE
);
2875 kdb_register_repeat("reboot", kdb_reboot
, "",
2876 "Reboot the machine immediately", 0, KDB_REPEAT_NONE
);
2877 #if defined(CONFIG_MODULES)
2878 kdb_register_repeat("lsmod", kdb_lsmod
, "",
2879 "List loaded kernel modules", 0, KDB_REPEAT_NONE
);
2881 #if defined(CONFIG_MAGIC_SYSRQ)
2882 kdb_register_repeat("sr", kdb_sr
, "<key>",
2883 "Magic SysRq key", 0, KDB_REPEAT_NONE
);
2885 #if defined(CONFIG_PRINTK)
2886 kdb_register_repeat("dmesg", kdb_dmesg
, "[lines]",
2887 "Display syslog buffer", 0, KDB_REPEAT_NONE
);
2889 kdb_register_repeat("defcmd", kdb_defcmd
, "name \"usage\" \"help\"",
2890 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE
);
2891 kdb_register_repeat("kill", kdb_kill
, "<-signal> <pid>",
2892 "Send a signal to a process", 0, KDB_REPEAT_NONE
);
2893 kdb_register_repeat("summary", kdb_summary
, "",
2894 "Summarize the system", 4, KDB_REPEAT_NONE
);
2895 kdb_register_repeat("per_cpu", kdb_per_cpu
, "<sym> [<bytes>] [<cpu>]",
2896 "Display per_cpu variables", 3, KDB_REPEAT_NONE
);
2897 kdb_register_repeat("grephelp", kdb_grep_help
, "",
2898 "Display help on | grep", 0, KDB_REPEAT_NONE
);
2901 /* Execute any commands defined in kdb_cmds. */
2902 static void __init
kdb_cmd_init(void)
2905 for (i
= 0; kdb_cmds
[i
]; ++i
) {
2906 diag
= kdb_parse(kdb_cmds
[i
]);
2908 kdb_printf("kdb command %s failed, kdb diag %d\n",
2911 if (defcmd_in_progress
) {
2912 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2913 kdb_parse("endefcmd");
2917 /* Initialize kdb_printf, breakpoint tables and kdb state */
2918 void __init
kdb_init(int lvl
)
2920 static int kdb_init_lvl
= KDB_NOT_INITIALIZED
;
2923 if (kdb_init_lvl
== KDB_INIT_FULL
|| lvl
<= kdb_init_lvl
)
2925 for (i
= kdb_init_lvl
; i
< lvl
; i
++) {
2927 case KDB_NOT_INITIALIZED
:
2928 kdb_inittab(); /* Initialize Command Table */
2929 kdb_initbptab(); /* Initialize Breakpoints */
2931 case KDB_INIT_EARLY
:
2932 kdb_cmd_init(); /* Build kdb_cmds tables */