Add linux-next specific files for 20110824
[linux-2.6/next.git] / kernel / rcutree.c
blobd9e88406a6f3ee91966fb18ed80bc7a93d2dc8ee
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
54 #include "rcutree.h"
55 #include <trace/events/rcu.h>
57 #include "rcu.h"
59 /* Data structures. */
61 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
63 #define RCU_STATE_INITIALIZER(structname) { \
64 .level = { &structname##_state.node[0] }, \
65 .levelcnt = { \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_1, \
68 NUM_RCU_LVL_2, \
69 NUM_RCU_LVL_3, \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71 }, \
72 .signaled = RCU_GP_IDLE, \
73 .gpnum = -300, \
74 .completed = -300, \
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 .n_force_qs = 0, \
78 .n_force_qs_ngp = 0, \
79 .name = #structname, \
82 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
88 static struct rcu_state *rcu_state;
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
99 int rcu_scheduler_active __read_mostly;
100 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
112 * a time.
114 static int rcu_scheduler_fully_active __read_mostly;
116 #ifdef CONFIG_RCU_BOOST
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
122 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126 DEFINE_PER_CPU(char, rcu_cpu_has_work);
128 #endif /* #ifdef CONFIG_RCU_BOOST */
130 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131 static void invoke_rcu_core(void);
132 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
134 #define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
137 * Track the rcutorture test sequence number and the update version
138 * number within a given test. The rcutorture_testseq is incremented
139 * on every rcutorture module load and unload, so has an odd value
140 * when a test is running. The rcutorture_vernum is set to zero
141 * when rcutorture starts and is incremented on each rcutorture update.
142 * These variables enable correlating rcutorture output with the
143 * RCU tracing information.
145 unsigned long rcutorture_testseq;
146 unsigned long rcutorture_vernum;
149 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
150 * permit this function to be invoked without holding the root rcu_node
151 * structure's ->lock, but of course results can be subject to change.
153 static int rcu_gp_in_progress(struct rcu_state *rsp)
155 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
159 * Note a quiescent state. Because we do not need to know
160 * how many quiescent states passed, just if there was at least
161 * one since the start of the grace period, this just sets a flag.
162 * The caller must have disabled preemption.
164 void rcu_sched_qs(int cpu)
166 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
168 rdp->passed_quiesce_gpnum = rdp->gpnum;
169 barrier();
170 if (rdp->passed_quiesce == 0)
171 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
172 rdp->passed_quiesce = 1;
175 void rcu_bh_qs(int cpu)
177 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
179 rdp->passed_quiesce_gpnum = rdp->gpnum;
180 barrier();
181 if (rdp->passed_quiesce == 0)
182 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
183 rdp->passed_quiesce = 1;
187 * Note a context switch. This is a quiescent state for RCU-sched,
188 * and requires special handling for preemptible RCU.
189 * The caller must have disabled preemption.
191 void rcu_note_context_switch(int cpu)
193 trace_rcu_utilization("Start context switch");
194 rcu_sched_qs(cpu);
195 rcu_preempt_note_context_switch(cpu);
196 trace_rcu_utilization("End context switch");
198 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
200 #ifdef CONFIG_NO_HZ
201 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
202 .dynticks_nesting = 1,
203 .dynticks = ATOMIC_INIT(1),
205 #endif /* #ifdef CONFIG_NO_HZ */
207 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
208 static int qhimark = 10000; /* If this many pending, ignore blimit. */
209 static int qlowmark = 100; /* Once only this many pending, use blimit. */
211 module_param(blimit, int, 0);
212 module_param(qhimark, int, 0);
213 module_param(qlowmark, int, 0);
215 int rcu_cpu_stall_suppress __read_mostly;
216 module_param(rcu_cpu_stall_suppress, int, 0644);
218 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
219 static int rcu_pending(int cpu);
222 * Return the number of RCU-sched batches processed thus far for debug & stats.
224 long rcu_batches_completed_sched(void)
226 return rcu_sched_state.completed;
228 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
231 * Return the number of RCU BH batches processed thus far for debug & stats.
233 long rcu_batches_completed_bh(void)
235 return rcu_bh_state.completed;
237 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
240 * Force a quiescent state for RCU BH.
242 void rcu_bh_force_quiescent_state(void)
244 force_quiescent_state(&rcu_bh_state, 0);
246 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
249 * Record the number of times rcutorture tests have been initiated and
250 * terminated. This information allows the debugfs tracing stats to be
251 * correlated to the rcutorture messages, even when the rcutorture module
252 * is being repeatedly loaded and unloaded. In other words, we cannot
253 * store this state in rcutorture itself.
255 void rcutorture_record_test_transition(void)
257 rcutorture_testseq++;
258 rcutorture_vernum = 0;
260 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
263 * Record the number of writer passes through the current rcutorture test.
264 * This is also used to correlate debugfs tracing stats with the rcutorture
265 * messages.
267 void rcutorture_record_progress(unsigned long vernum)
269 rcutorture_vernum++;
271 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
274 * Force a quiescent state for RCU-sched.
276 void rcu_sched_force_quiescent_state(void)
278 force_quiescent_state(&rcu_sched_state, 0);
280 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
283 * Does the CPU have callbacks ready to be invoked?
285 static int
286 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
288 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
292 * Does the current CPU require a yet-as-unscheduled grace period?
294 static int
295 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
297 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
301 * Return the root node of the specified rcu_state structure.
303 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
305 return &rsp->node[0];
308 #ifdef CONFIG_SMP
311 * If the specified CPU is offline, tell the caller that it is in
312 * a quiescent state. Otherwise, whack it with a reschedule IPI.
313 * Grace periods can end up waiting on an offline CPU when that
314 * CPU is in the process of coming online -- it will be added to the
315 * rcu_node bitmasks before it actually makes it online. The same thing
316 * can happen while a CPU is in the process of coming online. Because this
317 * race is quite rare, we check for it after detecting that the grace
318 * period has been delayed rather than checking each and every CPU
319 * each and every time we start a new grace period.
321 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
324 * If the CPU is offline, it is in a quiescent state. We can
325 * trust its state not to change because interrupts are disabled.
327 if (cpu_is_offline(rdp->cpu)) {
328 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
329 rdp->offline_fqs++;
330 return 1;
333 /* If preemptible RCU, no point in sending reschedule IPI. */
334 if (rdp->preemptible)
335 return 0;
337 /* The CPU is online, so send it a reschedule IPI. */
338 if (rdp->cpu != smp_processor_id())
339 smp_send_reschedule(rdp->cpu);
340 else
341 set_need_resched();
342 rdp->resched_ipi++;
343 return 0;
346 #endif /* #ifdef CONFIG_SMP */
348 #ifdef CONFIG_NO_HZ
351 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
353 * Enter nohz mode, in other words, -leave- the mode in which RCU
354 * read-side critical sections can occur. (Though RCU read-side
355 * critical sections can occur in irq handlers in nohz mode, a possibility
356 * handled by rcu_irq_enter() and rcu_irq_exit()).
358 void rcu_enter_nohz(void)
360 unsigned long flags;
361 struct rcu_dynticks *rdtp;
363 local_irq_save(flags);
364 rdtp = &__get_cpu_var(rcu_dynticks);
365 if (--rdtp->dynticks_nesting) {
366 local_irq_restore(flags);
367 return;
369 trace_rcu_dyntick("Start");
370 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
371 smp_mb__before_atomic_inc(); /* See above. */
372 atomic_inc(&rdtp->dynticks);
373 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
374 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
375 local_irq_restore(flags);
379 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
381 * Exit nohz mode, in other words, -enter- the mode in which RCU
382 * read-side critical sections normally occur.
384 void rcu_exit_nohz(void)
386 unsigned long flags;
387 struct rcu_dynticks *rdtp;
389 local_irq_save(flags);
390 rdtp = &__get_cpu_var(rcu_dynticks);
391 if (rdtp->dynticks_nesting++) {
392 local_irq_restore(flags);
393 return;
395 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
396 atomic_inc(&rdtp->dynticks);
397 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
398 smp_mb__after_atomic_inc(); /* See above. */
399 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
400 trace_rcu_dyntick("End");
401 local_irq_restore(flags);
405 * rcu_nmi_enter - inform RCU of entry to NMI context
407 * If the CPU was idle with dynamic ticks active, and there is no
408 * irq handler running, this updates rdtp->dynticks_nmi to let the
409 * RCU grace-period handling know that the CPU is active.
411 void rcu_nmi_enter(void)
413 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
415 if (rdtp->dynticks_nmi_nesting == 0 &&
416 (atomic_read(&rdtp->dynticks) & 0x1))
417 return;
418 rdtp->dynticks_nmi_nesting++;
419 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
420 atomic_inc(&rdtp->dynticks);
421 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
422 smp_mb__after_atomic_inc(); /* See above. */
423 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
427 * rcu_nmi_exit - inform RCU of exit from NMI context
429 * If the CPU was idle with dynamic ticks active, and there is no
430 * irq handler running, this updates rdtp->dynticks_nmi to let the
431 * RCU grace-period handling know that the CPU is no longer active.
433 void rcu_nmi_exit(void)
435 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
437 if (rdtp->dynticks_nmi_nesting == 0 ||
438 --rdtp->dynticks_nmi_nesting != 0)
439 return;
440 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
441 smp_mb__before_atomic_inc(); /* See above. */
442 atomic_inc(&rdtp->dynticks);
443 smp_mb__after_atomic_inc(); /* Force delay to next write. */
444 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
448 * rcu_irq_enter - inform RCU of entry to hard irq context
450 * If the CPU was idle with dynamic ticks active, this updates the
451 * rdtp->dynticks to let the RCU handling know that the CPU is active.
453 void rcu_irq_enter(void)
455 rcu_exit_nohz();
459 * rcu_irq_exit - inform RCU of exit from hard irq context
461 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
462 * to put let the RCU handling be aware that the CPU is going back to idle
463 * with no ticks.
465 void rcu_irq_exit(void)
467 rcu_enter_nohz();
470 #ifdef CONFIG_SMP
473 * Snapshot the specified CPU's dynticks counter so that we can later
474 * credit them with an implicit quiescent state. Return 1 if this CPU
475 * is in dynticks idle mode, which is an extended quiescent state.
477 static int dyntick_save_progress_counter(struct rcu_data *rdp)
479 smp_mb(); /* Work around some architectures weak impls. */
480 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
481 smp_mb(); /* Work around some architectures weak impls. */
482 return 0;
486 * Return true if the specified CPU has passed through a quiescent
487 * state by virtue of being in or having passed through an dynticks
488 * idle state since the last call to dyntick_save_progress_counter()
489 * for this same CPU.
491 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
493 unsigned int curr;
494 unsigned int snap;
496 smp_mb(); /* Work around some architectures weak impls. */
497 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
498 smp_mb(); /* Work around some architectures weak impls. */
499 snap = (unsigned int)rdp->dynticks_snap;
502 * If the CPU passed through or entered a dynticks idle phase with
503 * no active irq/NMI handlers, then we can safely pretend that the CPU
504 * already acknowledged the request to pass through a quiescent
505 * state. Either way, that CPU cannot possibly be in an RCU
506 * read-side critical section that started before the beginning
507 * of the current RCU grace period.
509 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
510 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
511 rdp->dynticks_fqs++;
512 return 1;
515 /* Go check for the CPU being offline. */
516 return rcu_implicit_offline_qs(rdp);
519 #endif /* #ifdef CONFIG_SMP */
521 #else /* #ifdef CONFIG_NO_HZ */
523 #ifdef CONFIG_SMP
525 static int dyntick_save_progress_counter(struct rcu_data *rdp)
527 return 0;
530 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
532 return rcu_implicit_offline_qs(rdp);
535 #endif /* #ifdef CONFIG_SMP */
537 #endif /* #else #ifdef CONFIG_NO_HZ */
539 int rcu_cpu_stall_suppress __read_mostly;
541 static void record_gp_stall_check_time(struct rcu_state *rsp)
543 rsp->gp_start = jiffies;
544 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
547 static void print_other_cpu_stall(struct rcu_state *rsp)
549 int cpu;
550 long delta;
551 unsigned long flags;
552 int ndetected;
553 struct rcu_node *rnp = rcu_get_root(rsp);
555 /* Only let one CPU complain about others per time interval. */
557 raw_spin_lock_irqsave(&rnp->lock, flags);
558 delta = jiffies - rsp->jiffies_stall;
559 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
560 raw_spin_unlock_irqrestore(&rnp->lock, flags);
561 return;
563 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
566 * Now rat on any tasks that got kicked up to the root rcu_node
567 * due to CPU offlining.
569 ndetected = rcu_print_task_stall(rnp);
570 raw_spin_unlock_irqrestore(&rnp->lock, flags);
573 * OK, time to rat on our buddy...
574 * See Documentation/RCU/stallwarn.txt for info on how to debug
575 * RCU CPU stall warnings.
577 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
578 rsp->name);
579 rcu_for_each_leaf_node(rsp, rnp) {
580 raw_spin_lock_irqsave(&rnp->lock, flags);
581 ndetected += rcu_print_task_stall(rnp);
582 raw_spin_unlock_irqrestore(&rnp->lock, flags);
583 if (rnp->qsmask == 0)
584 continue;
585 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
586 if (rnp->qsmask & (1UL << cpu)) {
587 printk(" %d", rnp->grplo + cpu);
588 ndetected++;
591 printk("} (detected by %d, t=%ld jiffies)\n",
592 smp_processor_id(), (long)(jiffies - rsp->gp_start));
593 if (ndetected == 0)
594 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
595 else if (!trigger_all_cpu_backtrace())
596 dump_stack();
598 /* If so configured, complain about tasks blocking the grace period. */
600 rcu_print_detail_task_stall(rsp);
602 force_quiescent_state(rsp, 0); /* Kick them all. */
605 static void print_cpu_stall(struct rcu_state *rsp)
607 unsigned long flags;
608 struct rcu_node *rnp = rcu_get_root(rsp);
611 * OK, time to rat on ourselves...
612 * See Documentation/RCU/stallwarn.txt for info on how to debug
613 * RCU CPU stall warnings.
615 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
616 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
617 if (!trigger_all_cpu_backtrace())
618 dump_stack();
620 raw_spin_lock_irqsave(&rnp->lock, flags);
621 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
622 rsp->jiffies_stall =
623 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
624 raw_spin_unlock_irqrestore(&rnp->lock, flags);
626 set_need_resched(); /* kick ourselves to get things going. */
629 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
631 unsigned long j;
632 unsigned long js;
633 struct rcu_node *rnp;
635 if (rcu_cpu_stall_suppress)
636 return;
637 j = ACCESS_ONCE(jiffies);
638 js = ACCESS_ONCE(rsp->jiffies_stall);
639 rnp = rdp->mynode;
640 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
642 /* We haven't checked in, so go dump stack. */
643 print_cpu_stall(rsp);
645 } else if (rcu_gp_in_progress(rsp) &&
646 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
648 /* They had a few time units to dump stack, so complain. */
649 print_other_cpu_stall(rsp);
653 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
655 rcu_cpu_stall_suppress = 1;
656 return NOTIFY_DONE;
660 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
662 * Set the stall-warning timeout way off into the future, thus preventing
663 * any RCU CPU stall-warning messages from appearing in the current set of
664 * RCU grace periods.
666 * The caller must disable hard irqs.
668 void rcu_cpu_stall_reset(void)
670 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
671 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
672 rcu_preempt_stall_reset();
675 static struct notifier_block rcu_panic_block = {
676 .notifier_call = rcu_panic,
679 static void __init check_cpu_stall_init(void)
681 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
685 * Update CPU-local rcu_data state to record the newly noticed grace period.
686 * This is used both when we started the grace period and when we notice
687 * that someone else started the grace period. The caller must hold the
688 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
689 * and must have irqs disabled.
691 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
693 if (rdp->gpnum != rnp->gpnum) {
695 * If the current grace period is waiting for this CPU,
696 * set up to detect a quiescent state, otherwise don't
697 * go looking for one.
699 rdp->gpnum = rnp->gpnum;
700 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
701 if (rnp->qsmask & rdp->grpmask) {
702 rdp->qs_pending = 1;
703 rdp->passed_quiesce = 0;
704 } else
705 rdp->qs_pending = 0;
709 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
711 unsigned long flags;
712 struct rcu_node *rnp;
714 local_irq_save(flags);
715 rnp = rdp->mynode;
716 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
717 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
718 local_irq_restore(flags);
719 return;
721 __note_new_gpnum(rsp, rnp, rdp);
722 raw_spin_unlock_irqrestore(&rnp->lock, flags);
726 * Did someone else start a new RCU grace period start since we last
727 * checked? Update local state appropriately if so. Must be called
728 * on the CPU corresponding to rdp.
730 static int
731 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
733 unsigned long flags;
734 int ret = 0;
736 local_irq_save(flags);
737 if (rdp->gpnum != rsp->gpnum) {
738 note_new_gpnum(rsp, rdp);
739 ret = 1;
741 local_irq_restore(flags);
742 return ret;
746 * Advance this CPU's callbacks, but only if the current grace period
747 * has ended. This may be called only from the CPU to whom the rdp
748 * belongs. In addition, the corresponding leaf rcu_node structure's
749 * ->lock must be held by the caller, with irqs disabled.
751 static void
752 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
754 /* Did another grace period end? */
755 if (rdp->completed != rnp->completed) {
757 /* Advance callbacks. No harm if list empty. */
758 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
759 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
760 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
762 /* Remember that we saw this grace-period completion. */
763 rdp->completed = rnp->completed;
764 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
767 * If we were in an extended quiescent state, we may have
768 * missed some grace periods that others CPUs handled on
769 * our behalf. Catch up with this state to avoid noting
770 * spurious new grace periods. If another grace period
771 * has started, then rnp->gpnum will have advanced, so
772 * we will detect this later on.
774 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
775 rdp->gpnum = rdp->completed;
778 * If RCU does not need a quiescent state from this CPU,
779 * then make sure that this CPU doesn't go looking for one.
781 if ((rnp->qsmask & rdp->grpmask) == 0)
782 rdp->qs_pending = 0;
787 * Advance this CPU's callbacks, but only if the current grace period
788 * has ended. This may be called only from the CPU to whom the rdp
789 * belongs.
791 static void
792 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
794 unsigned long flags;
795 struct rcu_node *rnp;
797 local_irq_save(flags);
798 rnp = rdp->mynode;
799 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
800 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
801 local_irq_restore(flags);
802 return;
804 __rcu_process_gp_end(rsp, rnp, rdp);
805 raw_spin_unlock_irqrestore(&rnp->lock, flags);
809 * Do per-CPU grace-period initialization for running CPU. The caller
810 * must hold the lock of the leaf rcu_node structure corresponding to
811 * this CPU.
813 static void
814 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
816 /* Prior grace period ended, so advance callbacks for current CPU. */
817 __rcu_process_gp_end(rsp, rnp, rdp);
820 * Because this CPU just now started the new grace period, we know
821 * that all of its callbacks will be covered by this upcoming grace
822 * period, even the ones that were registered arbitrarily recently.
823 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
825 * Other CPUs cannot be sure exactly when the grace period started.
826 * Therefore, their recently registered callbacks must pass through
827 * an additional RCU_NEXT_READY stage, so that they will be handled
828 * by the next RCU grace period.
830 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
831 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
833 /* Set state so that this CPU will detect the next quiescent state. */
834 __note_new_gpnum(rsp, rnp, rdp);
838 * Start a new RCU grace period if warranted, re-initializing the hierarchy
839 * in preparation for detecting the next grace period. The caller must hold
840 * the root node's ->lock, which is released before return. Hard irqs must
841 * be disabled.
843 static void
844 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
845 __releases(rcu_get_root(rsp)->lock)
847 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
848 struct rcu_node *rnp = rcu_get_root(rsp);
850 if (!rcu_scheduler_fully_active ||
851 !cpu_needs_another_gp(rsp, rdp) ||
852 rsp->fqs_active) {
853 if (rcu_scheduler_fully_active &&
854 cpu_needs_another_gp(rsp, rdp))
855 rsp->fqs_need_gp = 1;
856 if (rnp->completed == rsp->completed) {
857 raw_spin_unlock_irqrestore(&rnp->lock, flags);
858 return;
860 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
863 * Propagate new ->completed value to rcu_node structures
864 * so that other CPUs don't have to wait until the start
865 * of the next grace period to process their callbacks.
867 rcu_for_each_node_breadth_first(rsp, rnp) {
868 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
869 rnp->completed = rsp->completed;
870 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
872 local_irq_restore(flags);
873 return;
876 /* Advance to a new grace period and initialize state. */
877 rsp->gpnum++;
878 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
879 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
880 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
881 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
882 record_gp_stall_check_time(rsp);
884 /* Special-case the common single-level case. */
885 if (NUM_RCU_NODES == 1) {
886 rcu_preempt_check_blocked_tasks(rnp);
887 rnp->qsmask = rnp->qsmaskinit;
888 rnp->gpnum = rsp->gpnum;
889 rnp->completed = rsp->completed;
890 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
891 rcu_start_gp_per_cpu(rsp, rnp, rdp);
892 rcu_preempt_boost_start_gp(rnp);
893 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
894 rnp->level, rnp->grplo,
895 rnp->grphi, rnp->qsmask);
896 raw_spin_unlock_irqrestore(&rnp->lock, flags);
897 return;
900 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
903 /* Exclude any concurrent CPU-hotplug operations. */
904 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
907 * Set the quiescent-state-needed bits in all the rcu_node
908 * structures for all currently online CPUs in breadth-first
909 * order, starting from the root rcu_node structure. This
910 * operation relies on the layout of the hierarchy within the
911 * rsp->node[] array. Note that other CPUs will access only
912 * the leaves of the hierarchy, which still indicate that no
913 * grace period is in progress, at least until the corresponding
914 * leaf node has been initialized. In addition, we have excluded
915 * CPU-hotplug operations.
917 * Note that the grace period cannot complete until we finish
918 * the initialization process, as there will be at least one
919 * qsmask bit set in the root node until that time, namely the
920 * one corresponding to this CPU, due to the fact that we have
921 * irqs disabled.
923 rcu_for_each_node_breadth_first(rsp, rnp) {
924 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
925 rcu_preempt_check_blocked_tasks(rnp);
926 rnp->qsmask = rnp->qsmaskinit;
927 rnp->gpnum = rsp->gpnum;
928 rnp->completed = rsp->completed;
929 if (rnp == rdp->mynode)
930 rcu_start_gp_per_cpu(rsp, rnp, rdp);
931 rcu_preempt_boost_start_gp(rnp);
932 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
933 rnp->level, rnp->grplo,
934 rnp->grphi, rnp->qsmask);
935 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
938 rnp = rcu_get_root(rsp);
939 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
940 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
941 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
942 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
946 * Report a full set of quiescent states to the specified rcu_state
947 * data structure. This involves cleaning up after the prior grace
948 * period and letting rcu_start_gp() start up the next grace period
949 * if one is needed. Note that the caller must hold rnp->lock, as
950 * required by rcu_start_gp(), which will release it.
952 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
953 __releases(rcu_get_root(rsp)->lock)
955 unsigned long gp_duration;
957 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
960 * Ensure that all grace-period and pre-grace-period activity
961 * is seen before the assignment to rsp->completed.
963 smp_mb(); /* See above block comment. */
964 gp_duration = jiffies - rsp->gp_start;
965 if (gp_duration > rsp->gp_max)
966 rsp->gp_max = gp_duration;
967 rsp->completed = rsp->gpnum;
968 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
969 rsp->signaled = RCU_GP_IDLE;
970 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
974 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
975 * Allows quiescent states for a group of CPUs to be reported at one go
976 * to the specified rcu_node structure, though all the CPUs in the group
977 * must be represented by the same rcu_node structure (which need not be
978 * a leaf rcu_node structure, though it often will be). That structure's
979 * lock must be held upon entry, and it is released before return.
981 static void
982 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
983 struct rcu_node *rnp, unsigned long flags)
984 __releases(rnp->lock)
986 struct rcu_node *rnp_c;
988 /* Walk up the rcu_node hierarchy. */
989 for (;;) {
990 if (!(rnp->qsmask & mask)) {
992 /* Our bit has already been cleared, so done. */
993 raw_spin_unlock_irqrestore(&rnp->lock, flags);
994 return;
996 rnp->qsmask &= ~mask;
997 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
998 mask, rnp->qsmask, rnp->level,
999 rnp->grplo, rnp->grphi,
1000 !!rnp->gp_tasks);
1001 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1003 /* Other bits still set at this level, so done. */
1004 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1005 return;
1007 mask = rnp->grpmask;
1008 if (rnp->parent == NULL) {
1010 /* No more levels. Exit loop holding root lock. */
1012 break;
1014 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1015 rnp_c = rnp;
1016 rnp = rnp->parent;
1017 raw_spin_lock_irqsave(&rnp->lock, flags);
1018 WARN_ON_ONCE(rnp_c->qsmask);
1022 * Get here if we are the last CPU to pass through a quiescent
1023 * state for this grace period. Invoke rcu_report_qs_rsp()
1024 * to clean up and start the next grace period if one is needed.
1026 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1030 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1031 * structure. This must be either called from the specified CPU, or
1032 * called when the specified CPU is known to be offline (and when it is
1033 * also known that no other CPU is concurrently trying to help the offline
1034 * CPU). The lastcomp argument is used to make sure we are still in the
1035 * grace period of interest. We don't want to end the current grace period
1036 * based on quiescent states detected in an earlier grace period!
1038 static void
1039 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1041 unsigned long flags;
1042 unsigned long mask;
1043 struct rcu_node *rnp;
1045 rnp = rdp->mynode;
1046 raw_spin_lock_irqsave(&rnp->lock, flags);
1047 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1050 * The grace period in which this quiescent state was
1051 * recorded has ended, so don't report it upwards.
1052 * We will instead need a new quiescent state that lies
1053 * within the current grace period.
1055 rdp->passed_quiesce = 0; /* need qs for new gp. */
1056 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1057 return;
1059 mask = rdp->grpmask;
1060 if ((rnp->qsmask & mask) == 0) {
1061 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1062 } else {
1063 rdp->qs_pending = 0;
1066 * This GP can't end until cpu checks in, so all of our
1067 * callbacks can be processed during the next GP.
1069 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1071 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1076 * Check to see if there is a new grace period of which this CPU
1077 * is not yet aware, and if so, set up local rcu_data state for it.
1078 * Otherwise, see if this CPU has just passed through its first
1079 * quiescent state for this grace period, and record that fact if so.
1081 static void
1082 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1084 /* If there is now a new grace period, record and return. */
1085 if (check_for_new_grace_period(rsp, rdp))
1086 return;
1089 * Does this CPU still need to do its part for current grace period?
1090 * If no, return and let the other CPUs do their part as well.
1092 if (!rdp->qs_pending)
1093 return;
1096 * Was there a quiescent state since the beginning of the grace
1097 * period? If no, then exit and wait for the next call.
1099 if (!rdp->passed_quiesce)
1100 return;
1103 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1104 * judge of that).
1106 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1109 #ifdef CONFIG_HOTPLUG_CPU
1112 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1113 * Synchronization is not required because this function executes
1114 * in stop_machine() context.
1116 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1118 int i;
1119 /* current DYING CPU is cleared in the cpu_online_mask */
1120 int receive_cpu = cpumask_any(cpu_online_mask);
1121 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1122 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1124 if (rdp->nxtlist == NULL)
1125 return; /* irqs disabled, so comparison is stable. */
1127 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1128 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1129 receive_rdp->qlen += rdp->qlen;
1130 receive_rdp->n_cbs_adopted += rdp->qlen;
1131 rdp->n_cbs_orphaned += rdp->qlen;
1133 rdp->nxtlist = NULL;
1134 for (i = 0; i < RCU_NEXT_SIZE; i++)
1135 rdp->nxttail[i] = &rdp->nxtlist;
1136 rdp->qlen = 0;
1140 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1141 * and move all callbacks from the outgoing CPU to the current one.
1142 * There can only be one CPU hotplug operation at a time, so no other
1143 * CPU can be attempting to update rcu_cpu_kthread_task.
1145 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1147 unsigned long flags;
1148 unsigned long mask;
1149 int need_report = 0;
1150 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1151 struct rcu_node *rnp;
1153 rcu_stop_cpu_kthread(cpu);
1155 /* Exclude any attempts to start a new grace period. */
1156 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1158 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1159 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1160 mask = rdp->grpmask; /* rnp->grplo is constant. */
1161 do {
1162 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1163 rnp->qsmaskinit &= ~mask;
1164 if (rnp->qsmaskinit != 0) {
1165 if (rnp != rdp->mynode)
1166 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1167 else
1168 trace_rcu_grace_period(rsp->name,
1169 rnp->gpnum + 1 -
1170 !!(rnp->qsmask & mask),
1171 "cpuofl");
1172 break;
1174 if (rnp == rdp->mynode) {
1175 trace_rcu_grace_period(rsp->name,
1176 rnp->gpnum + 1 -
1177 !!(rnp->qsmask & mask),
1178 "cpuofl");
1179 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1180 } else
1181 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1182 mask = rnp->grpmask;
1183 rnp = rnp->parent;
1184 } while (rnp != NULL);
1187 * We still hold the leaf rcu_node structure lock here, and
1188 * irqs are still disabled. The reason for this subterfuge is
1189 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1190 * held leads to deadlock.
1192 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1193 rnp = rdp->mynode;
1194 if (need_report & RCU_OFL_TASKS_NORM_GP)
1195 rcu_report_unblock_qs_rnp(rnp, flags);
1196 else
1197 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1198 if (need_report & RCU_OFL_TASKS_EXP_GP)
1199 rcu_report_exp_rnp(rsp, rnp);
1200 rcu_node_kthread_setaffinity(rnp, -1);
1204 * Remove the specified CPU from the RCU hierarchy and move any pending
1205 * callbacks that it might have to the current CPU. This code assumes
1206 * that at least one CPU in the system will remain running at all times.
1207 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1209 static void rcu_offline_cpu(int cpu)
1211 __rcu_offline_cpu(cpu, &rcu_sched_state);
1212 __rcu_offline_cpu(cpu, &rcu_bh_state);
1213 rcu_preempt_offline_cpu(cpu);
1216 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1218 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1222 static void rcu_offline_cpu(int cpu)
1226 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1229 * Invoke any RCU callbacks that have made it to the end of their grace
1230 * period. Thottle as specified by rdp->blimit.
1232 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1234 unsigned long flags;
1235 struct rcu_head *next, *list, **tail;
1236 int bl, count;
1238 /* If no callbacks are ready, just return.*/
1239 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1240 trace_rcu_batch_start(rsp->name, 0, 0);
1241 trace_rcu_batch_end(rsp->name, 0);
1242 return;
1246 * Extract the list of ready callbacks, disabling to prevent
1247 * races with call_rcu() from interrupt handlers.
1249 local_irq_save(flags);
1250 bl = rdp->blimit;
1251 trace_rcu_batch_start(rsp->name, rdp->qlen, bl);
1252 list = rdp->nxtlist;
1253 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1254 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1255 tail = rdp->nxttail[RCU_DONE_TAIL];
1256 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1257 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1258 rdp->nxttail[count] = &rdp->nxtlist;
1259 local_irq_restore(flags);
1261 /* Invoke callbacks. */
1262 count = 0;
1263 while (list) {
1264 next = list->next;
1265 prefetch(next);
1266 debug_rcu_head_unqueue(list);
1267 __rcu_reclaim(rsp->name, list);
1268 list = next;
1269 if (++count >= bl)
1270 break;
1273 local_irq_save(flags);
1274 trace_rcu_batch_end(rsp->name, count);
1276 /* Update count, and requeue any remaining callbacks. */
1277 rdp->qlen -= count;
1278 rdp->n_cbs_invoked += count;
1279 if (list != NULL) {
1280 *tail = rdp->nxtlist;
1281 rdp->nxtlist = list;
1282 for (count = 0; count < RCU_NEXT_SIZE; count++)
1283 if (&rdp->nxtlist == rdp->nxttail[count])
1284 rdp->nxttail[count] = tail;
1285 else
1286 break;
1289 /* Reinstate batch limit if we have worked down the excess. */
1290 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1291 rdp->blimit = blimit;
1293 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1294 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1295 rdp->qlen_last_fqs_check = 0;
1296 rdp->n_force_qs_snap = rsp->n_force_qs;
1297 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1298 rdp->qlen_last_fqs_check = rdp->qlen;
1300 local_irq_restore(flags);
1302 /* Re-invoke RCU core processing if there are callbacks remaining. */
1303 if (cpu_has_callbacks_ready_to_invoke(rdp))
1304 invoke_rcu_core();
1308 * Check to see if this CPU is in a non-context-switch quiescent state
1309 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1310 * Also schedule RCU core processing.
1312 * This function must be called with hardirqs disabled. It is normally
1313 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1314 * false, there is no point in invoking rcu_check_callbacks().
1316 void rcu_check_callbacks(int cpu, int user)
1318 trace_rcu_utilization("Start scheduler-tick");
1319 if (user ||
1320 (idle_cpu(cpu) && rcu_scheduler_active &&
1321 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1324 * Get here if this CPU took its interrupt from user
1325 * mode or from the idle loop, and if this is not a
1326 * nested interrupt. In this case, the CPU is in
1327 * a quiescent state, so note it.
1329 * No memory barrier is required here because both
1330 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1331 * variables that other CPUs neither access nor modify,
1332 * at least not while the corresponding CPU is online.
1335 rcu_sched_qs(cpu);
1336 rcu_bh_qs(cpu);
1338 } else if (!in_softirq()) {
1341 * Get here if this CPU did not take its interrupt from
1342 * softirq, in other words, if it is not interrupting
1343 * a rcu_bh read-side critical section. This is an _bh
1344 * critical section, so note it.
1347 rcu_bh_qs(cpu);
1349 rcu_preempt_check_callbacks(cpu);
1350 if (rcu_pending(cpu))
1351 invoke_rcu_core();
1352 trace_rcu_utilization("End scheduler-tick");
1355 #ifdef CONFIG_SMP
1358 * Scan the leaf rcu_node structures, processing dyntick state for any that
1359 * have not yet encountered a quiescent state, using the function specified.
1360 * Also initiate boosting for any threads blocked on the root rcu_node.
1362 * The caller must have suppressed start of new grace periods.
1364 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1366 unsigned long bit;
1367 int cpu;
1368 unsigned long flags;
1369 unsigned long mask;
1370 struct rcu_node *rnp;
1372 rcu_for_each_leaf_node(rsp, rnp) {
1373 mask = 0;
1374 raw_spin_lock_irqsave(&rnp->lock, flags);
1375 if (!rcu_gp_in_progress(rsp)) {
1376 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1377 return;
1379 if (rnp->qsmask == 0) {
1380 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1381 continue;
1383 cpu = rnp->grplo;
1384 bit = 1;
1385 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1386 if ((rnp->qsmask & bit) != 0 &&
1387 f(per_cpu_ptr(rsp->rda, cpu)))
1388 mask |= bit;
1390 if (mask != 0) {
1392 /* rcu_report_qs_rnp() releases rnp->lock. */
1393 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1394 continue;
1396 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1398 rnp = rcu_get_root(rsp);
1399 if (rnp->qsmask == 0) {
1400 raw_spin_lock_irqsave(&rnp->lock, flags);
1401 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1406 * Force quiescent states on reluctant CPUs, and also detect which
1407 * CPUs are in dyntick-idle mode.
1409 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1411 unsigned long flags;
1412 struct rcu_node *rnp = rcu_get_root(rsp);
1414 trace_rcu_utilization("Start fqs");
1415 if (!rcu_gp_in_progress(rsp)) {
1416 trace_rcu_utilization("End fqs");
1417 return; /* No grace period in progress, nothing to force. */
1419 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1420 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1421 trace_rcu_utilization("End fqs");
1422 return; /* Someone else is already on the job. */
1424 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1425 goto unlock_fqs_ret; /* no emergency and done recently. */
1426 rsp->n_force_qs++;
1427 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1428 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1429 if(!rcu_gp_in_progress(rsp)) {
1430 rsp->n_force_qs_ngp++;
1431 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1432 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1434 rsp->fqs_active = 1;
1435 switch (rsp->signaled) {
1436 case RCU_GP_IDLE:
1437 case RCU_GP_INIT:
1439 break; /* grace period idle or initializing, ignore. */
1441 case RCU_SAVE_DYNTICK:
1442 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1443 break; /* So gcc recognizes the dead code. */
1445 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1447 /* Record dyntick-idle state. */
1448 force_qs_rnp(rsp, dyntick_save_progress_counter);
1449 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1450 if (rcu_gp_in_progress(rsp))
1451 rsp->signaled = RCU_FORCE_QS;
1452 break;
1454 case RCU_FORCE_QS:
1456 /* Check dyntick-idle state, send IPI to laggarts. */
1457 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1458 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1460 /* Leave state in case more forcing is required. */
1462 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1463 break;
1465 rsp->fqs_active = 0;
1466 if (rsp->fqs_need_gp) {
1467 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1468 rsp->fqs_need_gp = 0;
1469 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1470 trace_rcu_utilization("End fqs");
1471 return;
1473 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1474 unlock_fqs_ret:
1475 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1476 trace_rcu_utilization("End fqs");
1479 #else /* #ifdef CONFIG_SMP */
1481 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1483 set_need_resched();
1486 #endif /* #else #ifdef CONFIG_SMP */
1489 * This does the RCU core processing work for the specified rcu_state
1490 * and rcu_data structures. This may be called only from the CPU to
1491 * whom the rdp belongs.
1493 static void
1494 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1496 unsigned long flags;
1498 WARN_ON_ONCE(rdp->beenonline == 0);
1501 * If an RCU GP has gone long enough, go check for dyntick
1502 * idle CPUs and, if needed, send resched IPIs.
1504 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1505 force_quiescent_state(rsp, 1);
1508 * Advance callbacks in response to end of earlier grace
1509 * period that some other CPU ended.
1511 rcu_process_gp_end(rsp, rdp);
1513 /* Update RCU state based on any recent quiescent states. */
1514 rcu_check_quiescent_state(rsp, rdp);
1516 /* Does this CPU require a not-yet-started grace period? */
1517 if (cpu_needs_another_gp(rsp, rdp)) {
1518 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1519 rcu_start_gp(rsp, flags); /* releases above lock */
1522 /* If there are callbacks ready, invoke them. */
1523 if (cpu_has_callbacks_ready_to_invoke(rdp))
1524 invoke_rcu_callbacks(rsp, rdp);
1528 * Do RCU core processing for the current CPU.
1530 static void rcu_process_callbacks(struct softirq_action *unused)
1532 trace_rcu_utilization("Start RCU core");
1533 __rcu_process_callbacks(&rcu_sched_state,
1534 &__get_cpu_var(rcu_sched_data));
1535 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1536 rcu_preempt_process_callbacks();
1538 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1539 rcu_needs_cpu_flush();
1540 trace_rcu_utilization("End RCU core");
1544 * Schedule RCU callback invocation. If the specified type of RCU
1545 * does not support RCU priority boosting, just do a direct call,
1546 * otherwise wake up the per-CPU kernel kthread. Note that because we
1547 * are running on the current CPU with interrupts disabled, the
1548 * rcu_cpu_kthread_task cannot disappear out from under us.
1550 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1552 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1553 return;
1554 if (likely(!rsp->boost)) {
1555 rcu_do_batch(rsp, rdp);
1556 return;
1558 invoke_rcu_callbacks_kthread();
1561 static void invoke_rcu_core(void)
1563 raise_softirq(RCU_SOFTIRQ);
1566 static void
1567 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1568 struct rcu_state *rsp)
1570 unsigned long flags;
1571 struct rcu_data *rdp;
1573 debug_rcu_head_queue(head);
1574 head->func = func;
1575 head->next = NULL;
1577 smp_mb(); /* Ensure RCU update seen before callback registry. */
1580 * Opportunistically note grace-period endings and beginnings.
1581 * Note that we might see a beginning right after we see an
1582 * end, but never vice versa, since this CPU has to pass through
1583 * a quiescent state betweentimes.
1585 local_irq_save(flags);
1586 rdp = this_cpu_ptr(rsp->rda);
1588 /* Add the callback to our list. */
1589 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1590 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1591 rdp->qlen++;
1593 if (__is_kfree_rcu_offset((unsigned long)func))
1594 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1595 rdp->qlen);
1596 else
1597 trace_rcu_callback(rsp->name, head, rdp->qlen);
1599 /* If interrupts were disabled, don't dive into RCU core. */
1600 if (irqs_disabled_flags(flags)) {
1601 local_irq_restore(flags);
1602 return;
1606 * Force the grace period if too many callbacks or too long waiting.
1607 * Enforce hysteresis, and don't invoke force_quiescent_state()
1608 * if some other CPU has recently done so. Also, don't bother
1609 * invoking force_quiescent_state() if the newly enqueued callback
1610 * is the only one waiting for a grace period to complete.
1612 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1614 /* Are we ignoring a completed grace period? */
1615 rcu_process_gp_end(rsp, rdp);
1616 check_for_new_grace_period(rsp, rdp);
1618 /* Start a new grace period if one not already started. */
1619 if (!rcu_gp_in_progress(rsp)) {
1620 unsigned long nestflag;
1621 struct rcu_node *rnp_root = rcu_get_root(rsp);
1623 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1624 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1625 } else {
1626 /* Give the grace period a kick. */
1627 rdp->blimit = LONG_MAX;
1628 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1629 *rdp->nxttail[RCU_DONE_TAIL] != head)
1630 force_quiescent_state(rsp, 0);
1631 rdp->n_force_qs_snap = rsp->n_force_qs;
1632 rdp->qlen_last_fqs_check = rdp->qlen;
1634 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1635 force_quiescent_state(rsp, 1);
1636 local_irq_restore(flags);
1640 * Queue an RCU-sched callback for invocation after a grace period.
1642 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1644 __call_rcu(head, func, &rcu_sched_state);
1646 EXPORT_SYMBOL_GPL(call_rcu_sched);
1649 * Queue an RCU for invocation after a quicker grace period.
1651 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1653 __call_rcu(head, func, &rcu_bh_state);
1655 EXPORT_SYMBOL_GPL(call_rcu_bh);
1658 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1660 * Control will return to the caller some time after a full rcu-sched
1661 * grace period has elapsed, in other words after all currently executing
1662 * rcu-sched read-side critical sections have completed. These read-side
1663 * critical sections are delimited by rcu_read_lock_sched() and
1664 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1665 * local_irq_disable(), and so on may be used in place of
1666 * rcu_read_lock_sched().
1668 * This means that all preempt_disable code sequences, including NMI and
1669 * hardware-interrupt handlers, in progress on entry will have completed
1670 * before this primitive returns. However, this does not guarantee that
1671 * softirq handlers will have completed, since in some kernels, these
1672 * handlers can run in process context, and can block.
1674 * This primitive provides the guarantees made by the (now removed)
1675 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1676 * guarantees that rcu_read_lock() sections will have completed.
1677 * In "classic RCU", these two guarantees happen to be one and
1678 * the same, but can differ in realtime RCU implementations.
1680 void synchronize_sched(void)
1682 if (rcu_blocking_is_gp())
1683 return;
1684 wait_rcu_gp(call_rcu_sched);
1686 EXPORT_SYMBOL_GPL(synchronize_sched);
1689 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1691 * Control will return to the caller some time after a full rcu_bh grace
1692 * period has elapsed, in other words after all currently executing rcu_bh
1693 * read-side critical sections have completed. RCU read-side critical
1694 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1695 * and may be nested.
1697 void synchronize_rcu_bh(void)
1699 if (rcu_blocking_is_gp())
1700 return;
1701 wait_rcu_gp(call_rcu_bh);
1703 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1706 * Check to see if there is any immediate RCU-related work to be done
1707 * by the current CPU, for the specified type of RCU, returning 1 if so.
1708 * The checks are in order of increasing expense: checks that can be
1709 * carried out against CPU-local state are performed first. However,
1710 * we must check for CPU stalls first, else we might not get a chance.
1712 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1714 struct rcu_node *rnp = rdp->mynode;
1716 rdp->n_rcu_pending++;
1718 /* Check for CPU stalls, if enabled. */
1719 check_cpu_stall(rsp, rdp);
1721 /* Is the RCU core waiting for a quiescent state from this CPU? */
1722 if (rcu_scheduler_fully_active &&
1723 rdp->qs_pending && !rdp->passed_quiesce) {
1726 * If force_quiescent_state() coming soon and this CPU
1727 * needs a quiescent state, and this is either RCU-sched
1728 * or RCU-bh, force a local reschedule.
1730 rdp->n_rp_qs_pending++;
1731 if (!rdp->preemptible &&
1732 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1733 jiffies))
1734 set_need_resched();
1735 } else if (rdp->qs_pending && rdp->passed_quiesce) {
1736 rdp->n_rp_report_qs++;
1737 return 1;
1740 /* Does this CPU have callbacks ready to invoke? */
1741 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1742 rdp->n_rp_cb_ready++;
1743 return 1;
1746 /* Has RCU gone idle with this CPU needing another grace period? */
1747 if (cpu_needs_another_gp(rsp, rdp)) {
1748 rdp->n_rp_cpu_needs_gp++;
1749 return 1;
1752 /* Has another RCU grace period completed? */
1753 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1754 rdp->n_rp_gp_completed++;
1755 return 1;
1758 /* Has a new RCU grace period started? */
1759 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1760 rdp->n_rp_gp_started++;
1761 return 1;
1764 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1765 if (rcu_gp_in_progress(rsp) &&
1766 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1767 rdp->n_rp_need_fqs++;
1768 return 1;
1771 /* nothing to do */
1772 rdp->n_rp_need_nothing++;
1773 return 0;
1777 * Check to see if there is any immediate RCU-related work to be done
1778 * by the current CPU, returning 1 if so. This function is part of the
1779 * RCU implementation; it is -not- an exported member of the RCU API.
1781 static int rcu_pending(int cpu)
1783 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1784 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1785 rcu_preempt_pending(cpu);
1789 * Check to see if any future RCU-related work will need to be done
1790 * by the current CPU, even if none need be done immediately, returning
1791 * 1 if so.
1793 static int rcu_needs_cpu_quick_check(int cpu)
1795 /* RCU callbacks either ready or pending? */
1796 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1797 per_cpu(rcu_bh_data, cpu).nxtlist ||
1798 rcu_preempt_needs_cpu(cpu);
1801 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1802 static atomic_t rcu_barrier_cpu_count;
1803 static DEFINE_MUTEX(rcu_barrier_mutex);
1804 static struct completion rcu_barrier_completion;
1806 static void rcu_barrier_callback(struct rcu_head *notused)
1808 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1809 complete(&rcu_barrier_completion);
1813 * Called with preemption disabled, and from cross-cpu IRQ context.
1815 static void rcu_barrier_func(void *type)
1817 int cpu = smp_processor_id();
1818 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1819 void (*call_rcu_func)(struct rcu_head *head,
1820 void (*func)(struct rcu_head *head));
1822 atomic_inc(&rcu_barrier_cpu_count);
1823 call_rcu_func = type;
1824 call_rcu_func(head, rcu_barrier_callback);
1828 * Orchestrate the specified type of RCU barrier, waiting for all
1829 * RCU callbacks of the specified type to complete.
1831 static void _rcu_barrier(struct rcu_state *rsp,
1832 void (*call_rcu_func)(struct rcu_head *head,
1833 void (*func)(struct rcu_head *head)))
1835 BUG_ON(in_interrupt());
1836 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1837 mutex_lock(&rcu_barrier_mutex);
1838 init_completion(&rcu_barrier_completion);
1840 * Initialize rcu_barrier_cpu_count to 1, then invoke
1841 * rcu_barrier_func() on each CPU, so that each CPU also has
1842 * incremented rcu_barrier_cpu_count. Only then is it safe to
1843 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1844 * might complete its grace period before all of the other CPUs
1845 * did their increment, causing this function to return too
1846 * early. Note that on_each_cpu() disables irqs, which prevents
1847 * any CPUs from coming online or going offline until each online
1848 * CPU has queued its RCU-barrier callback.
1850 atomic_set(&rcu_barrier_cpu_count, 1);
1851 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1852 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1853 complete(&rcu_barrier_completion);
1854 wait_for_completion(&rcu_barrier_completion);
1855 mutex_unlock(&rcu_barrier_mutex);
1859 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1861 void rcu_barrier_bh(void)
1863 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1865 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1868 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1870 void rcu_barrier_sched(void)
1872 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1874 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1877 * Do boot-time initialization of a CPU's per-CPU RCU data.
1879 static void __init
1880 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1882 unsigned long flags;
1883 int i;
1884 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1885 struct rcu_node *rnp = rcu_get_root(rsp);
1887 /* Set up local state, ensuring consistent view of global state. */
1888 raw_spin_lock_irqsave(&rnp->lock, flags);
1889 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1890 rdp->nxtlist = NULL;
1891 for (i = 0; i < RCU_NEXT_SIZE; i++)
1892 rdp->nxttail[i] = &rdp->nxtlist;
1893 rdp->qlen = 0;
1894 #ifdef CONFIG_NO_HZ
1895 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1896 #endif /* #ifdef CONFIG_NO_HZ */
1897 rdp->cpu = cpu;
1898 rdp->rsp = rsp;
1899 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1903 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1904 * offline event can be happening at a given time. Note also that we
1905 * can accept some slop in the rsp->completed access due to the fact
1906 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1908 static void __cpuinit
1909 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
1911 unsigned long flags;
1912 unsigned long mask;
1913 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1914 struct rcu_node *rnp = rcu_get_root(rsp);
1916 /* Set up local state, ensuring consistent view of global state. */
1917 raw_spin_lock_irqsave(&rnp->lock, flags);
1918 rdp->beenonline = 1; /* We have now been online. */
1919 rdp->preemptible = preemptible;
1920 rdp->qlen_last_fqs_check = 0;
1921 rdp->n_force_qs_snap = rsp->n_force_qs;
1922 rdp->blimit = blimit;
1923 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1926 * A new grace period might start here. If so, we won't be part
1927 * of it, but that is OK, as we are currently in a quiescent state.
1930 /* Exclude any attempts to start a new GP on large systems. */
1931 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1933 /* Add CPU to rcu_node bitmasks. */
1934 rnp = rdp->mynode;
1935 mask = rdp->grpmask;
1936 do {
1937 /* Exclude any attempts to start a new GP on small systems. */
1938 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1939 rnp->qsmaskinit |= mask;
1940 mask = rnp->grpmask;
1941 if (rnp == rdp->mynode) {
1943 * If there is a grace period in progress, we will
1944 * set up to wait for it next time we run the
1945 * RCU core code.
1947 rdp->gpnum = rnp->completed;
1948 rdp->completed = rnp->completed;
1949 rdp->passed_quiesce = 0;
1950 rdp->qs_pending = 0;
1951 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
1952 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
1954 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
1955 rnp = rnp->parent;
1956 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1958 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1961 static void __cpuinit rcu_prepare_cpu(int cpu)
1963 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1964 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1965 rcu_preempt_init_percpu_data(cpu);
1969 * Handle CPU online/offline notification events.
1971 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1972 unsigned long action, void *hcpu)
1974 long cpu = (long)hcpu;
1975 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1976 struct rcu_node *rnp = rdp->mynode;
1978 trace_rcu_utilization("Start CPU hotplug");
1979 switch (action) {
1980 case CPU_UP_PREPARE:
1981 case CPU_UP_PREPARE_FROZEN:
1982 rcu_prepare_cpu(cpu);
1983 rcu_prepare_kthreads(cpu);
1984 break;
1985 case CPU_ONLINE:
1986 case CPU_DOWN_FAILED:
1987 rcu_node_kthread_setaffinity(rnp, -1);
1988 rcu_cpu_kthread_setrt(cpu, 1);
1989 break;
1990 case CPU_DOWN_PREPARE:
1991 rcu_node_kthread_setaffinity(rnp, cpu);
1992 rcu_cpu_kthread_setrt(cpu, 0);
1993 break;
1994 case CPU_DYING:
1995 case CPU_DYING_FROZEN:
1997 * The whole machine is "stopped" except this CPU, so we can
1998 * touch any data without introducing corruption. We send the
1999 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2001 rcu_send_cbs_to_online(&rcu_bh_state);
2002 rcu_send_cbs_to_online(&rcu_sched_state);
2003 rcu_preempt_send_cbs_to_online();
2004 break;
2005 case CPU_DEAD:
2006 case CPU_DEAD_FROZEN:
2007 case CPU_UP_CANCELED:
2008 case CPU_UP_CANCELED_FROZEN:
2009 rcu_offline_cpu(cpu);
2010 break;
2011 default:
2012 break;
2014 trace_rcu_utilization("End CPU hotplug");
2015 return NOTIFY_OK;
2019 * This function is invoked towards the end of the scheduler's initialization
2020 * process. Before this is called, the idle task might contain
2021 * RCU read-side critical sections (during which time, this idle
2022 * task is booting the system). After this function is called, the
2023 * idle tasks are prohibited from containing RCU read-side critical
2024 * sections. This function also enables RCU lockdep checking.
2026 void rcu_scheduler_starting(void)
2028 WARN_ON(num_online_cpus() != 1);
2029 WARN_ON(nr_context_switches() > 0);
2030 rcu_scheduler_active = 1;
2034 * Compute the per-level fanout, either using the exact fanout specified
2035 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2037 #ifdef CONFIG_RCU_FANOUT_EXACT
2038 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2040 int i;
2042 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2043 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2044 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2046 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2047 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2049 int ccur;
2050 int cprv;
2051 int i;
2053 cprv = NR_CPUS;
2054 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2055 ccur = rsp->levelcnt[i];
2056 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2057 cprv = ccur;
2060 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2063 * Helper function for rcu_init() that initializes one rcu_state structure.
2065 static void __init rcu_init_one(struct rcu_state *rsp,
2066 struct rcu_data __percpu *rda)
2068 static char *buf[] = { "rcu_node_level_0",
2069 "rcu_node_level_1",
2070 "rcu_node_level_2",
2071 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2072 int cpustride = 1;
2073 int i;
2074 int j;
2075 struct rcu_node *rnp;
2077 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2079 /* Initialize the level-tracking arrays. */
2081 for (i = 1; i < NUM_RCU_LVLS; i++)
2082 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2083 rcu_init_levelspread(rsp);
2085 /* Initialize the elements themselves, starting from the leaves. */
2087 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2088 cpustride *= rsp->levelspread[i];
2089 rnp = rsp->level[i];
2090 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2091 raw_spin_lock_init(&rnp->lock);
2092 lockdep_set_class_and_name(&rnp->lock,
2093 &rcu_node_class[i], buf[i]);
2094 rnp->gpnum = 0;
2095 rnp->qsmask = 0;
2096 rnp->qsmaskinit = 0;
2097 rnp->grplo = j * cpustride;
2098 rnp->grphi = (j + 1) * cpustride - 1;
2099 if (rnp->grphi >= NR_CPUS)
2100 rnp->grphi = NR_CPUS - 1;
2101 if (i == 0) {
2102 rnp->grpnum = 0;
2103 rnp->grpmask = 0;
2104 rnp->parent = NULL;
2105 } else {
2106 rnp->grpnum = j % rsp->levelspread[i - 1];
2107 rnp->grpmask = 1UL << rnp->grpnum;
2108 rnp->parent = rsp->level[i - 1] +
2109 j / rsp->levelspread[i - 1];
2111 rnp->level = i;
2112 INIT_LIST_HEAD(&rnp->blkd_tasks);
2116 rsp->rda = rda;
2117 rnp = rsp->level[NUM_RCU_LVLS - 1];
2118 for_each_possible_cpu(i) {
2119 while (i > rnp->grphi)
2120 rnp++;
2121 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2122 rcu_boot_init_percpu_data(i, rsp);
2126 void __init rcu_init(void)
2128 int cpu;
2130 rcu_bootup_announce();
2131 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2132 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2133 __rcu_init_preempt();
2134 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2137 * We don't need protection against CPU-hotplug here because
2138 * this is called early in boot, before either interrupts
2139 * or the scheduler are operational.
2141 cpu_notifier(rcu_cpu_notify, 0);
2142 for_each_online_cpu(cpu)
2143 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2144 check_cpu_stall_init();
2147 #include "rcutree_plugin.h"