Add linux-next specific files for 20110824
[linux-2.6/next.git] / mm / compaction.c
bloba0e420207ebff3778fc5c17136dc2d5176391105
1 /*
2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/compaction.h>
23 * compact_control is used to track pages being migrated and the free pages
24 * they are being migrated to during memory compaction. The free_pfn starts
25 * at the end of a zone and migrate_pfn begins at the start. Movable pages
26 * are moved to the end of a zone during a compaction run and the run
27 * completes when free_pfn <= migrate_pfn
29 struct compact_control {
30 struct list_head freepages; /* List of free pages to migrate to */
31 struct list_head migratepages; /* List of pages being migrated */
32 unsigned long nr_freepages; /* Number of isolated free pages */
33 unsigned long nr_migratepages; /* Number of pages to migrate */
34 unsigned long free_pfn; /* isolate_freepages search base */
35 unsigned long migrate_pfn; /* isolate_migratepages search base */
36 bool sync; /* Synchronous migration */
38 unsigned int order; /* order a direct compactor needs */
39 int migratetype; /* MOVABLE, RECLAIMABLE etc */
40 struct zone *zone;
43 static unsigned long release_freepages(struct list_head *freelist)
45 struct page *page, *next;
46 unsigned long count = 0;
48 list_for_each_entry_safe(page, next, freelist, lru) {
49 list_del(&page->lru);
50 __free_page(page);
51 count++;
54 return count;
57 /* Isolate free pages onto a private freelist. Must hold zone->lock */
58 static unsigned long isolate_freepages_block(struct zone *zone,
59 unsigned long blockpfn,
60 struct list_head *freelist)
62 unsigned long zone_end_pfn, end_pfn;
63 int nr_scanned = 0, total_isolated = 0;
64 struct page *cursor;
66 /* Get the last PFN we should scan for free pages at */
67 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
68 end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
70 /* Find the first usable PFN in the block to initialse page cursor */
71 for (; blockpfn < end_pfn; blockpfn++) {
72 if (pfn_valid_within(blockpfn))
73 break;
75 cursor = pfn_to_page(blockpfn);
77 /* Isolate free pages. This assumes the block is valid */
78 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
79 int isolated, i;
80 struct page *page = cursor;
82 if (!pfn_valid_within(blockpfn))
83 continue;
84 nr_scanned++;
86 if (!PageBuddy(page))
87 continue;
89 /* Found a free page, break it into order-0 pages */
90 isolated = split_free_page(page);
91 total_isolated += isolated;
92 for (i = 0; i < isolated; i++) {
93 list_add(&page->lru, freelist);
94 page++;
97 /* If a page was split, advance to the end of it */
98 if (isolated) {
99 blockpfn += isolated - 1;
100 cursor += isolated - 1;
104 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
105 return total_isolated;
108 /* Returns true if the page is within a block suitable for migration to */
109 static bool suitable_migration_target(struct page *page)
112 int migratetype = get_pageblock_migratetype(page);
114 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
115 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
116 return false;
118 /* If the page is a large free page, then allow migration */
119 if (PageBuddy(page) && page_order(page) >= pageblock_order)
120 return true;
122 /* If the block is MIGRATE_MOVABLE, allow migration */
123 if (migratetype == MIGRATE_MOVABLE)
124 return true;
126 /* Otherwise skip the block */
127 return false;
131 * Based on information in the current compact_control, find blocks
132 * suitable for isolating free pages from and then isolate them.
134 static void isolate_freepages(struct zone *zone,
135 struct compact_control *cc)
137 struct page *page;
138 unsigned long high_pfn, low_pfn, pfn;
139 unsigned long flags;
140 int nr_freepages = cc->nr_freepages;
141 struct list_head *freelist = &cc->freepages;
144 * Initialise the free scanner. The starting point is where we last
145 * scanned from (or the end of the zone if starting). The low point
146 * is the end of the pageblock the migration scanner is using.
148 pfn = cc->free_pfn;
149 low_pfn = cc->migrate_pfn + pageblock_nr_pages;
152 * Take care that if the migration scanner is at the end of the zone
153 * that the free scanner does not accidentally move to the next zone
154 * in the next isolation cycle.
156 high_pfn = min(low_pfn, pfn);
159 * Isolate free pages until enough are available to migrate the
160 * pages on cc->migratepages. We stop searching if the migrate
161 * and free page scanners meet or enough free pages are isolated.
163 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
164 pfn -= pageblock_nr_pages) {
165 unsigned long isolated;
167 if (!pfn_valid(pfn))
168 continue;
171 * Check for overlapping nodes/zones. It's possible on some
172 * configurations to have a setup like
173 * node0 node1 node0
174 * i.e. it's possible that all pages within a zones range of
175 * pages do not belong to a single zone.
177 page = pfn_to_page(pfn);
178 if (page_zone(page) != zone)
179 continue;
181 /* Check the block is suitable for migration */
182 if (!suitable_migration_target(page))
183 continue;
186 * Found a block suitable for isolating free pages from. Now
187 * we disabled interrupts, double check things are ok and
188 * isolate the pages. This is to minimise the time IRQs
189 * are disabled
191 isolated = 0;
192 spin_lock_irqsave(&zone->lock, flags);
193 if (suitable_migration_target(page)) {
194 isolated = isolate_freepages_block(zone, pfn, freelist);
195 nr_freepages += isolated;
197 spin_unlock_irqrestore(&zone->lock, flags);
200 * Record the highest PFN we isolated pages from. When next
201 * looking for free pages, the search will restart here as
202 * page migration may have returned some pages to the allocator
204 if (isolated)
205 high_pfn = max(high_pfn, pfn);
208 /* split_free_page does not map the pages */
209 list_for_each_entry(page, freelist, lru) {
210 arch_alloc_page(page, 0);
211 kernel_map_pages(page, 1, 1);
214 cc->free_pfn = high_pfn;
215 cc->nr_freepages = nr_freepages;
218 /* Update the number of anon and file isolated pages in the zone */
219 static void acct_isolated(struct zone *zone, struct compact_control *cc)
221 struct page *page;
222 unsigned int count[2] = { 0, };
224 list_for_each_entry(page, &cc->migratepages, lru)
225 count[!!page_is_file_cache(page)]++;
227 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
228 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
231 /* Similar to reclaim, but different enough that they don't share logic */
232 static bool too_many_isolated(struct zone *zone)
234 unsigned long active, inactive, isolated;
236 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
237 zone_page_state(zone, NR_INACTIVE_ANON);
238 active = zone_page_state(zone, NR_ACTIVE_FILE) +
239 zone_page_state(zone, NR_ACTIVE_ANON);
240 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
241 zone_page_state(zone, NR_ISOLATED_ANON);
243 return isolated > (inactive + active) / 2;
246 /* possible outcome of isolate_migratepages */
247 typedef enum {
248 ISOLATE_ABORT, /* Abort compaction now */
249 ISOLATE_NONE, /* No pages isolated, continue scanning */
250 ISOLATE_SUCCESS, /* Pages isolated, migrate */
251 } isolate_migrate_t;
254 * Isolate all pages that can be migrated from the block pointed to by
255 * the migrate scanner within compact_control.
257 static isolate_migrate_t isolate_migratepages(struct zone *zone,
258 struct compact_control *cc)
260 unsigned long low_pfn, end_pfn;
261 unsigned long last_pageblock_nr = 0, pageblock_nr;
262 unsigned long nr_scanned = 0, nr_isolated = 0;
263 struct list_head *migratelist = &cc->migratepages;
264 isolate_mode_t mode = ISOLATE_ACTIVE|ISOLATE_INACTIVE;
266 /* Do not scan outside zone boundaries */
267 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
269 /* Only scan within a pageblock boundary */
270 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
272 /* Do not cross the free scanner or scan within a memory hole */
273 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
274 cc->migrate_pfn = end_pfn;
275 return ISOLATE_NONE;
279 * Ensure that there are not too many pages isolated from the LRU
280 * list by either parallel reclaimers or compaction. If there are,
281 * delay for some time until fewer pages are isolated
283 while (unlikely(too_many_isolated(zone))) {
284 /* async migration should just abort */
285 if (!cc->sync)
286 return ISOLATE_ABORT;
288 congestion_wait(BLK_RW_ASYNC, HZ/10);
290 if (fatal_signal_pending(current))
291 return ISOLATE_ABORT;
294 /* Time to isolate some pages for migration */
295 cond_resched();
296 spin_lock_irq(&zone->lru_lock);
297 for (; low_pfn < end_pfn; low_pfn++) {
298 struct page *page;
299 bool locked = true;
301 /* give a chance to irqs before checking need_resched() */
302 if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
303 spin_unlock_irq(&zone->lru_lock);
304 locked = false;
306 if (need_resched() || spin_is_contended(&zone->lru_lock)) {
307 if (locked)
308 spin_unlock_irq(&zone->lru_lock);
309 cond_resched();
310 spin_lock_irq(&zone->lru_lock);
311 if (fatal_signal_pending(current))
312 break;
313 } else if (!locked)
314 spin_lock_irq(&zone->lru_lock);
316 if (!pfn_valid_within(low_pfn))
317 continue;
318 nr_scanned++;
320 /* Get the page and skip if free */
321 page = pfn_to_page(low_pfn);
322 if (PageBuddy(page))
323 continue;
326 * For async migration, also only scan in MOVABLE blocks. Async
327 * migration is optimistic to see if the minimum amount of work
328 * satisfies the allocation
330 pageblock_nr = low_pfn >> pageblock_order;
331 if (!cc->sync && last_pageblock_nr != pageblock_nr &&
332 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
333 low_pfn += pageblock_nr_pages;
334 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
335 last_pageblock_nr = pageblock_nr;
336 continue;
339 if (!PageLRU(page))
340 continue;
343 * PageLRU is set, and lru_lock excludes isolation,
344 * splitting and collapsing (collapsing has already
345 * happened if PageLRU is set).
347 if (PageTransHuge(page)) {
348 low_pfn += (1 << compound_order(page)) - 1;
349 continue;
352 if (!cc->sync)
353 mode |= ISOLATE_CLEAN;
355 /* Try isolate the page */
356 if (__isolate_lru_page(page, mode, 0) != 0)
357 continue;
359 VM_BUG_ON(PageTransCompound(page));
361 /* Successfully isolated */
362 del_page_from_lru_list(zone, page, page_lru(page));
363 list_add(&page->lru, migratelist);
364 cc->nr_migratepages++;
365 nr_isolated++;
367 /* Avoid isolating too much */
368 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
369 break;
372 acct_isolated(zone, cc);
374 spin_unlock_irq(&zone->lru_lock);
375 cc->migrate_pfn = low_pfn;
377 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
379 return ISOLATE_SUCCESS;
383 * This is a migrate-callback that "allocates" freepages by taking pages
384 * from the isolated freelists in the block we are migrating to.
386 static struct page *compaction_alloc(struct page *migratepage,
387 unsigned long data,
388 int **result)
390 struct compact_control *cc = (struct compact_control *)data;
391 struct page *freepage;
393 /* Isolate free pages if necessary */
394 if (list_empty(&cc->freepages)) {
395 isolate_freepages(cc->zone, cc);
397 if (list_empty(&cc->freepages))
398 return NULL;
401 freepage = list_entry(cc->freepages.next, struct page, lru);
402 list_del(&freepage->lru);
403 cc->nr_freepages--;
405 return freepage;
409 * We cannot control nr_migratepages and nr_freepages fully when migration is
410 * running as migrate_pages() has no knowledge of compact_control. When
411 * migration is complete, we count the number of pages on the lists by hand.
413 static void update_nr_listpages(struct compact_control *cc)
415 int nr_migratepages = 0;
416 int nr_freepages = 0;
417 struct page *page;
419 list_for_each_entry(page, &cc->migratepages, lru)
420 nr_migratepages++;
421 list_for_each_entry(page, &cc->freepages, lru)
422 nr_freepages++;
424 cc->nr_migratepages = nr_migratepages;
425 cc->nr_freepages = nr_freepages;
428 static int compact_finished(struct zone *zone,
429 struct compact_control *cc)
431 unsigned int order;
432 unsigned long watermark;
434 if (fatal_signal_pending(current))
435 return COMPACT_PARTIAL;
437 /* Compaction run completes if the migrate and free scanner meet */
438 if (cc->free_pfn <= cc->migrate_pfn)
439 return COMPACT_COMPLETE;
442 * order == -1 is expected when compacting via
443 * /proc/sys/vm/compact_memory
445 if (cc->order == -1)
446 return COMPACT_CONTINUE;
448 /* Compaction run is not finished if the watermark is not met */
449 watermark = low_wmark_pages(zone);
450 watermark += (1 << cc->order);
452 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
453 return COMPACT_CONTINUE;
455 /* Direct compactor: Is a suitable page free? */
456 for (order = cc->order; order < MAX_ORDER; order++) {
457 /* Job done if page is free of the right migratetype */
458 if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
459 return COMPACT_PARTIAL;
461 /* Job done if allocation would set block type */
462 if (order >= pageblock_order && zone->free_area[order].nr_free)
463 return COMPACT_PARTIAL;
466 return COMPACT_CONTINUE;
470 * compaction_suitable: Is this suitable to run compaction on this zone now?
471 * Returns
472 * COMPACT_SKIPPED - If there are too few free pages for compaction
473 * COMPACT_PARTIAL - If the allocation would succeed without compaction
474 * COMPACT_CONTINUE - If compaction should run now
476 unsigned long compaction_suitable(struct zone *zone, int order)
478 int fragindex;
479 unsigned long watermark;
482 * order == -1 is expected when compacting via
483 * /proc/sys/vm/compact_memory
485 if (order == -1)
486 return COMPACT_CONTINUE;
489 * Watermarks for order-0 must be met for compaction. Note the 2UL.
490 * This is because during migration, copies of pages need to be
491 * allocated and for a short time, the footprint is higher
493 watermark = low_wmark_pages(zone) + (2UL << order);
494 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
495 return COMPACT_SKIPPED;
498 * fragmentation index determines if allocation failures are due to
499 * low memory or external fragmentation
501 * index of -1000 implies allocations might succeed depending on
502 * watermarks
503 * index towards 0 implies failure is due to lack of memory
504 * index towards 1000 implies failure is due to fragmentation
506 * Only compact if a failure would be due to fragmentation.
508 fragindex = fragmentation_index(zone, order);
509 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
510 return COMPACT_SKIPPED;
512 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
513 0, 0))
514 return COMPACT_PARTIAL;
516 return COMPACT_CONTINUE;
519 static int compact_zone(struct zone *zone, struct compact_control *cc)
521 int ret;
523 ret = compaction_suitable(zone, cc->order);
524 switch (ret) {
525 case COMPACT_PARTIAL:
526 case COMPACT_SKIPPED:
527 /* Compaction is likely to fail */
528 return ret;
529 case COMPACT_CONTINUE:
530 /* Fall through to compaction */
534 /* Setup to move all movable pages to the end of the zone */
535 cc->migrate_pfn = zone->zone_start_pfn;
536 cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
537 cc->free_pfn &= ~(pageblock_nr_pages-1);
539 migrate_prep_local();
541 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
542 unsigned long nr_migrate, nr_remaining;
543 int err;
545 switch (isolate_migratepages(zone, cc)) {
546 case ISOLATE_ABORT:
547 ret = COMPACT_PARTIAL;
548 goto out;
549 case ISOLATE_NONE:
550 continue;
551 case ISOLATE_SUCCESS:
555 nr_migrate = cc->nr_migratepages;
556 err = migrate_pages(&cc->migratepages, compaction_alloc,
557 (unsigned long)cc, false,
558 cc->sync);
559 update_nr_listpages(cc);
560 nr_remaining = cc->nr_migratepages;
562 count_vm_event(COMPACTBLOCKS);
563 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
564 if (nr_remaining)
565 count_vm_events(COMPACTPAGEFAILED, nr_remaining);
566 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
567 nr_remaining);
569 /* Release LRU pages not migrated */
570 if (err) {
571 putback_lru_pages(&cc->migratepages);
572 cc->nr_migratepages = 0;
577 out:
578 /* Release free pages and check accounting */
579 cc->nr_freepages -= release_freepages(&cc->freepages);
580 VM_BUG_ON(cc->nr_freepages != 0);
582 return ret;
585 unsigned long compact_zone_order(struct zone *zone,
586 int order, gfp_t gfp_mask,
587 bool sync)
589 struct compact_control cc = {
590 .nr_freepages = 0,
591 .nr_migratepages = 0,
592 .order = order,
593 .migratetype = allocflags_to_migratetype(gfp_mask),
594 .zone = zone,
595 .sync = sync,
597 INIT_LIST_HEAD(&cc.freepages);
598 INIT_LIST_HEAD(&cc.migratepages);
600 return compact_zone(zone, &cc);
603 int sysctl_extfrag_threshold = 500;
606 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
607 * @zonelist: The zonelist used for the current allocation
608 * @order: The order of the current allocation
609 * @gfp_mask: The GFP mask of the current allocation
610 * @nodemask: The allowed nodes to allocate from
611 * @sync: Whether migration is synchronous or not
613 * This is the main entry point for direct page compaction.
615 unsigned long try_to_compact_pages(struct zonelist *zonelist,
616 int order, gfp_t gfp_mask, nodemask_t *nodemask,
617 bool sync)
619 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
620 int may_enter_fs = gfp_mask & __GFP_FS;
621 int may_perform_io = gfp_mask & __GFP_IO;
622 struct zoneref *z;
623 struct zone *zone;
624 int rc = COMPACT_SKIPPED;
627 * Check whether it is worth even starting compaction. The order check is
628 * made because an assumption is made that the page allocator can satisfy
629 * the "cheaper" orders without taking special steps
631 if (!order || !may_enter_fs || !may_perform_io)
632 return rc;
634 count_vm_event(COMPACTSTALL);
636 /* Compact each zone in the list */
637 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
638 nodemask) {
639 int status;
641 status = compact_zone_order(zone, order, gfp_mask, sync);
642 rc = max(status, rc);
644 /* If a normal allocation would succeed, stop compacting */
645 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
646 break;
649 return rc;
653 /* Compact all zones within a node */
654 static int compact_node(int nid)
656 int zoneid;
657 pg_data_t *pgdat;
658 struct zone *zone;
660 if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
661 return -EINVAL;
662 pgdat = NODE_DATA(nid);
664 /* Flush pending updates to the LRU lists */
665 lru_add_drain_all();
667 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
668 struct compact_control cc = {
669 .nr_freepages = 0,
670 .nr_migratepages = 0,
671 .order = -1,
674 zone = &pgdat->node_zones[zoneid];
675 if (!populated_zone(zone))
676 continue;
678 cc.zone = zone;
679 INIT_LIST_HEAD(&cc.freepages);
680 INIT_LIST_HEAD(&cc.migratepages);
682 compact_zone(zone, &cc);
684 VM_BUG_ON(!list_empty(&cc.freepages));
685 VM_BUG_ON(!list_empty(&cc.migratepages));
688 return 0;
691 /* Compact all nodes in the system */
692 static int compact_nodes(void)
694 int nid;
696 for_each_online_node(nid)
697 compact_node(nid);
699 return COMPACT_COMPLETE;
702 /* The written value is actually unused, all memory is compacted */
703 int sysctl_compact_memory;
705 /* This is the entry point for compacting all nodes via /proc/sys/vm */
706 int sysctl_compaction_handler(struct ctl_table *table, int write,
707 void __user *buffer, size_t *length, loff_t *ppos)
709 if (write)
710 return compact_nodes();
712 return 0;
715 int sysctl_extfrag_handler(struct ctl_table *table, int write,
716 void __user *buffer, size_t *length, loff_t *ppos)
718 proc_dointvec_minmax(table, write, buffer, length, ppos);
720 return 0;
723 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
724 ssize_t sysfs_compact_node(struct sys_device *dev,
725 struct sysdev_attribute *attr,
726 const char *buf, size_t count)
728 compact_node(dev->id);
730 return count;
732 static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
734 int compaction_register_node(struct node *node)
736 return sysdev_create_file(&node->sysdev, &attr_compact);
739 void compaction_unregister_node(struct node *node)
741 return sysdev_remove_file(&node->sysdev, &attr_compact);
743 #endif /* CONFIG_SYSFS && CONFIG_NUMA */