4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
37 #include <asm/pgtable.h>
38 #include <asm/tlbflush.h>
39 #include <linux/swapops.h>
40 #include <linux/page_cgroup.h>
42 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
44 static void free_swap_count_continuations(struct swap_info_struct
*);
45 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
47 DEFINE_SPINLOCK(swap_lock
);
48 static unsigned int nr_swapfiles
;
50 long total_swap_pages
;
51 static int least_priority
;
53 static const char Bad_file
[] = "Bad swap file entry ";
54 static const char Unused_file
[] = "Unused swap file entry ";
55 static const char Bad_offset
[] = "Bad swap offset entry ";
56 static const char Unused_offset
[] = "Unused swap offset entry ";
58 struct swap_list_t swap_list
= {-1, -1};
60 struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
62 static DEFINE_MUTEX(swapon_mutex
);
64 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
65 /* Activity counter to indicate that a swapon or swapoff has occurred */
66 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
68 static inline unsigned char swap_count(unsigned char ent
)
70 return ent
& ~SWAP_HAS_CACHE
; /* may include SWAP_HAS_CONT flag */
73 /* returns 1 if swap entry is freed */
75 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
77 swp_entry_t entry
= swp_entry(si
->type
, offset
);
81 page
= find_get_page(&swapper_space
, entry
.val
);
85 * This function is called from scan_swap_map() and it's called
86 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
87 * We have to use trylock for avoiding deadlock. This is a special
88 * case and you should use try_to_free_swap() with explicit lock_page()
89 * in usual operations.
91 if (trylock_page(page
)) {
92 ret
= try_to_free_swap(page
);
95 page_cache_release(page
);
100 * swapon tell device that all the old swap contents can be discarded,
101 * to allow the swap device to optimize its wear-levelling.
103 static int discard_swap(struct swap_info_struct
*si
)
105 struct swap_extent
*se
;
106 sector_t start_block
;
110 /* Do not discard the swap header page! */
111 se
= &si
->first_swap_extent
;
112 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
113 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
115 err
= blkdev_issue_discard(si
->bdev
, start_block
,
116 nr_blocks
, GFP_KERNEL
, 0);
122 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
123 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
124 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
126 err
= blkdev_issue_discard(si
->bdev
, start_block
,
127 nr_blocks
, GFP_KERNEL
, 0);
133 return err
; /* That will often be -EOPNOTSUPP */
137 * swap allocation tell device that a cluster of swap can now be discarded,
138 * to allow the swap device to optimize its wear-levelling.
140 static void discard_swap_cluster(struct swap_info_struct
*si
,
141 pgoff_t start_page
, pgoff_t nr_pages
)
143 struct swap_extent
*se
= si
->curr_swap_extent
;
144 int found_extent
= 0;
147 struct list_head
*lh
;
149 if (se
->start_page
<= start_page
&&
150 start_page
< se
->start_page
+ se
->nr_pages
) {
151 pgoff_t offset
= start_page
- se
->start_page
;
152 sector_t start_block
= se
->start_block
+ offset
;
153 sector_t nr_blocks
= se
->nr_pages
- offset
;
155 if (nr_blocks
> nr_pages
)
156 nr_blocks
= nr_pages
;
157 start_page
+= nr_blocks
;
158 nr_pages
-= nr_blocks
;
161 si
->curr_swap_extent
= se
;
163 start_block
<<= PAGE_SHIFT
- 9;
164 nr_blocks
<<= PAGE_SHIFT
- 9;
165 if (blkdev_issue_discard(si
->bdev
, start_block
,
166 nr_blocks
, GFP_NOIO
, 0))
171 se
= list_entry(lh
, struct swap_extent
, list
);
175 static int wait_for_discard(void *word
)
181 #define SWAPFILE_CLUSTER 256
182 #define LATENCY_LIMIT 256
184 static unsigned long scan_swap_map(struct swap_info_struct
*si
,
187 unsigned long offset
;
188 unsigned long scan_base
;
189 unsigned long last_in_cluster
= 0;
190 int latency_ration
= LATENCY_LIMIT
;
191 int found_free_cluster
= 0;
194 * We try to cluster swap pages by allocating them sequentially
195 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
196 * way, however, we resort to first-free allocation, starting
197 * a new cluster. This prevents us from scattering swap pages
198 * all over the entire swap partition, so that we reduce
199 * overall disk seek times between swap pages. -- sct
200 * But we do now try to find an empty cluster. -Andrea
201 * And we let swap pages go all over an SSD partition. Hugh
204 si
->flags
+= SWP_SCANNING
;
205 scan_base
= offset
= si
->cluster_next
;
207 if (unlikely(!si
->cluster_nr
--)) {
208 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
209 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
212 if (si
->flags
& SWP_DISCARDABLE
) {
214 * Start range check on racing allocations, in case
215 * they overlap the cluster we eventually decide on
216 * (we scan without swap_lock to allow preemption).
217 * It's hardly conceivable that cluster_nr could be
218 * wrapped during our scan, but don't depend on it.
220 if (si
->lowest_alloc
)
222 si
->lowest_alloc
= si
->max
;
223 si
->highest_alloc
= 0;
225 spin_unlock(&swap_lock
);
228 * If seek is expensive, start searching for new cluster from
229 * start of partition, to minimize the span of allocated swap.
230 * But if seek is cheap, search from our current position, so
231 * that swap is allocated from all over the partition: if the
232 * Flash Translation Layer only remaps within limited zones,
233 * we don't want to wear out the first zone too quickly.
235 if (!(si
->flags
& SWP_SOLIDSTATE
))
236 scan_base
= offset
= si
->lowest_bit
;
237 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
239 /* Locate the first empty (unaligned) cluster */
240 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
241 if (si
->swap_map
[offset
])
242 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
243 else if (offset
== last_in_cluster
) {
244 spin_lock(&swap_lock
);
245 offset
-= SWAPFILE_CLUSTER
- 1;
246 si
->cluster_next
= offset
;
247 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
248 found_free_cluster
= 1;
251 if (unlikely(--latency_ration
< 0)) {
253 latency_ration
= LATENCY_LIMIT
;
257 offset
= si
->lowest_bit
;
258 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
260 /* Locate the first empty (unaligned) cluster */
261 for (; last_in_cluster
< scan_base
; offset
++) {
262 if (si
->swap_map
[offset
])
263 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
264 else if (offset
== last_in_cluster
) {
265 spin_lock(&swap_lock
);
266 offset
-= SWAPFILE_CLUSTER
- 1;
267 si
->cluster_next
= offset
;
268 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
269 found_free_cluster
= 1;
272 if (unlikely(--latency_ration
< 0)) {
274 latency_ration
= LATENCY_LIMIT
;
279 spin_lock(&swap_lock
);
280 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
281 si
->lowest_alloc
= 0;
285 if (!(si
->flags
& SWP_WRITEOK
))
287 if (!si
->highest_bit
)
289 if (offset
> si
->highest_bit
)
290 scan_base
= offset
= si
->lowest_bit
;
292 /* reuse swap entry of cache-only swap if not busy. */
293 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
295 spin_unlock(&swap_lock
);
296 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
297 spin_lock(&swap_lock
);
298 /* entry was freed successfully, try to use this again */
301 goto scan
; /* check next one */
304 if (si
->swap_map
[offset
])
307 if (offset
== si
->lowest_bit
)
309 if (offset
== si
->highest_bit
)
312 if (si
->inuse_pages
== si
->pages
) {
313 si
->lowest_bit
= si
->max
;
316 si
->swap_map
[offset
] = usage
;
317 si
->cluster_next
= offset
+ 1;
318 si
->flags
-= SWP_SCANNING
;
320 if (si
->lowest_alloc
) {
322 * Only set when SWP_DISCARDABLE, and there's a scan
323 * for a free cluster in progress or just completed.
325 if (found_free_cluster
) {
327 * To optimize wear-levelling, discard the
328 * old data of the cluster, taking care not to
329 * discard any of its pages that have already
330 * been allocated by racing tasks (offset has
331 * already stepped over any at the beginning).
333 if (offset
< si
->highest_alloc
&&
334 si
->lowest_alloc
<= last_in_cluster
)
335 last_in_cluster
= si
->lowest_alloc
- 1;
336 si
->flags
|= SWP_DISCARDING
;
337 spin_unlock(&swap_lock
);
339 if (offset
< last_in_cluster
)
340 discard_swap_cluster(si
, offset
,
341 last_in_cluster
- offset
+ 1);
343 spin_lock(&swap_lock
);
344 si
->lowest_alloc
= 0;
345 si
->flags
&= ~SWP_DISCARDING
;
347 smp_mb(); /* wake_up_bit advises this */
348 wake_up_bit(&si
->flags
, ilog2(SWP_DISCARDING
));
350 } else if (si
->flags
& SWP_DISCARDING
) {
352 * Delay using pages allocated by racing tasks
353 * until the whole discard has been issued. We
354 * could defer that delay until swap_writepage,
355 * but it's easier to keep this self-contained.
357 spin_unlock(&swap_lock
);
358 wait_on_bit(&si
->flags
, ilog2(SWP_DISCARDING
),
359 wait_for_discard
, TASK_UNINTERRUPTIBLE
);
360 spin_lock(&swap_lock
);
363 * Note pages allocated by racing tasks while
364 * scan for a free cluster is in progress, so
365 * that its final discard can exclude them.
367 if (offset
< si
->lowest_alloc
)
368 si
->lowest_alloc
= offset
;
369 if (offset
> si
->highest_alloc
)
370 si
->highest_alloc
= offset
;
376 spin_unlock(&swap_lock
);
377 while (++offset
<= si
->highest_bit
) {
378 if (!si
->swap_map
[offset
]) {
379 spin_lock(&swap_lock
);
382 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
383 spin_lock(&swap_lock
);
386 if (unlikely(--latency_ration
< 0)) {
388 latency_ration
= LATENCY_LIMIT
;
391 offset
= si
->lowest_bit
;
392 while (++offset
< scan_base
) {
393 if (!si
->swap_map
[offset
]) {
394 spin_lock(&swap_lock
);
397 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
398 spin_lock(&swap_lock
);
401 if (unlikely(--latency_ration
< 0)) {
403 latency_ration
= LATENCY_LIMIT
;
406 spin_lock(&swap_lock
);
409 si
->flags
-= SWP_SCANNING
;
413 swp_entry_t
get_swap_page(void)
415 struct swap_info_struct
*si
;
420 spin_lock(&swap_lock
);
421 if (nr_swap_pages
<= 0)
425 for (type
= swap_list
.next
; type
>= 0 && wrapped
< 2; type
= next
) {
426 si
= swap_info
[type
];
429 (!wrapped
&& si
->prio
!= swap_info
[next
]->prio
)) {
430 next
= swap_list
.head
;
434 if (!si
->highest_bit
)
436 if (!(si
->flags
& SWP_WRITEOK
))
439 swap_list
.next
= next
;
440 /* This is called for allocating swap entry for cache */
441 offset
= scan_swap_map(si
, SWAP_HAS_CACHE
);
443 spin_unlock(&swap_lock
);
444 return swp_entry(type
, offset
);
446 next
= swap_list
.next
;
451 spin_unlock(&swap_lock
);
452 return (swp_entry_t
) {0};
455 /* The only caller of this function is now susupend routine */
456 swp_entry_t
get_swap_page_of_type(int type
)
458 struct swap_info_struct
*si
;
461 spin_lock(&swap_lock
);
462 si
= swap_info
[type
];
463 if (si
&& (si
->flags
& SWP_WRITEOK
)) {
465 /* This is called for allocating swap entry, not cache */
466 offset
= scan_swap_map(si
, 1);
468 spin_unlock(&swap_lock
);
469 return swp_entry(type
, offset
);
473 spin_unlock(&swap_lock
);
474 return (swp_entry_t
) {0};
477 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
479 struct swap_info_struct
*p
;
480 unsigned long offset
, type
;
484 type
= swp_type(entry
);
485 if (type
>= nr_swapfiles
)
488 if (!(p
->flags
& SWP_USED
))
490 offset
= swp_offset(entry
);
491 if (offset
>= p
->max
)
493 if (!p
->swap_map
[offset
])
495 spin_lock(&swap_lock
);
499 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
502 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
505 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_file
, entry
.val
);
508 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_file
, entry
.val
);
513 static unsigned char swap_entry_free(struct swap_info_struct
*p
,
514 swp_entry_t entry
, unsigned char usage
)
516 unsigned long offset
= swp_offset(entry
);
518 unsigned char has_cache
;
520 count
= p
->swap_map
[offset
];
521 has_cache
= count
& SWAP_HAS_CACHE
;
522 count
&= ~SWAP_HAS_CACHE
;
524 if (usage
== SWAP_HAS_CACHE
) {
525 VM_BUG_ON(!has_cache
);
527 } else if (count
== SWAP_MAP_SHMEM
) {
529 * Or we could insist on shmem.c using a special
530 * swap_shmem_free() and free_shmem_swap_and_cache()...
533 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
534 if (count
== COUNT_CONTINUED
) {
535 if (swap_count_continued(p
, offset
, count
))
536 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
538 count
= SWAP_MAP_MAX
;
544 mem_cgroup_uncharge_swap(entry
);
546 usage
= count
| has_cache
;
547 p
->swap_map
[offset
] = usage
;
549 /* free if no reference */
551 struct gendisk
*disk
= p
->bdev
->bd_disk
;
552 if (offset
< p
->lowest_bit
)
553 p
->lowest_bit
= offset
;
554 if (offset
> p
->highest_bit
)
555 p
->highest_bit
= offset
;
556 if (swap_list
.next
>= 0 &&
557 p
->prio
> swap_info
[swap_list
.next
]->prio
)
558 swap_list
.next
= p
->type
;
561 frontswap_flush_page(p
->type
, offset
);
562 if ((p
->flags
& SWP_BLKDEV
) &&
563 disk
->fops
->swap_slot_free_notify
)
564 disk
->fops
->swap_slot_free_notify(p
->bdev
, offset
);
571 * Caller has made sure that the swapdevice corresponding to entry
572 * is still around or has not been recycled.
574 void swap_free(swp_entry_t entry
)
576 struct swap_info_struct
*p
;
578 p
= swap_info_get(entry
);
580 swap_entry_free(p
, entry
, 1);
581 spin_unlock(&swap_lock
);
586 * Called after dropping swapcache to decrease refcnt to swap entries.
588 void swapcache_free(swp_entry_t entry
, struct page
*page
)
590 struct swap_info_struct
*p
;
593 p
= swap_info_get(entry
);
595 count
= swap_entry_free(p
, entry
, SWAP_HAS_CACHE
);
597 mem_cgroup_uncharge_swapcache(page
, entry
, count
!= 0);
598 spin_unlock(&swap_lock
);
603 * How many references to page are currently swapped out?
604 * This does not give an exact answer when swap count is continued,
605 * but does include the high COUNT_CONTINUED flag to allow for that.
607 static inline int page_swapcount(struct page
*page
)
610 struct swap_info_struct
*p
;
613 entry
.val
= page_private(page
);
614 p
= swap_info_get(entry
);
616 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
617 spin_unlock(&swap_lock
);
623 * We can write to an anon page without COW if there are no other references
624 * to it. And as a side-effect, free up its swap: because the old content
625 * on disk will never be read, and seeking back there to write new content
626 * later would only waste time away from clustering.
628 int reuse_swap_page(struct page
*page
)
632 VM_BUG_ON(!PageLocked(page
));
633 if (unlikely(PageKsm(page
)))
635 count
= page_mapcount(page
);
636 if (count
<= 1 && PageSwapCache(page
)) {
637 count
+= page_swapcount(page
);
638 if (count
== 1 && !PageWriteback(page
)) {
639 delete_from_swap_cache(page
);
647 * If swap is getting full, or if there are no more mappings of this page,
648 * then try_to_free_swap is called to free its swap space.
650 int try_to_free_swap(struct page
*page
)
652 VM_BUG_ON(!PageLocked(page
));
654 if (!PageSwapCache(page
))
656 if (PageWriteback(page
))
658 if (page_swapcount(page
))
662 * Once hibernation has begun to create its image of memory,
663 * there's a danger that one of the calls to try_to_free_swap()
664 * - most probably a call from __try_to_reclaim_swap() while
665 * hibernation is allocating its own swap pages for the image,
666 * but conceivably even a call from memory reclaim - will free
667 * the swap from a page which has already been recorded in the
668 * image as a clean swapcache page, and then reuse its swap for
669 * another page of the image. On waking from hibernation, the
670 * original page might be freed under memory pressure, then
671 * later read back in from swap, now with the wrong data.
673 * Hibernation clears bits from gfp_allowed_mask to prevent
674 * memory reclaim from writing to disk, so check that here.
676 if (!(gfp_allowed_mask
& __GFP_IO
))
679 delete_from_swap_cache(page
);
685 * Free the swap entry like above, but also try to
686 * free the page cache entry if it is the last user.
688 int free_swap_and_cache(swp_entry_t entry
)
690 struct swap_info_struct
*p
;
691 struct page
*page
= NULL
;
693 if (non_swap_entry(entry
))
696 p
= swap_info_get(entry
);
698 if (swap_entry_free(p
, entry
, 1) == SWAP_HAS_CACHE
) {
699 page
= find_get_page(&swapper_space
, entry
.val
);
700 if (page
&& !trylock_page(page
)) {
701 page_cache_release(page
);
705 spin_unlock(&swap_lock
);
709 * Not mapped elsewhere, or swap space full? Free it!
710 * Also recheck PageSwapCache now page is locked (above).
712 if (PageSwapCache(page
) && !PageWriteback(page
) &&
713 (!page_mapped(page
) || vm_swap_full())) {
714 delete_from_swap_cache(page
);
718 page_cache_release(page
);
723 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
725 * mem_cgroup_count_swap_user - count the user of a swap entry
726 * @ent: the swap entry to be checked
727 * @pagep: the pointer for the swap cache page of the entry to be stored
729 * Returns the number of the user of the swap entry. The number is valid only
730 * for swaps of anonymous pages.
731 * If the entry is found on swap cache, the page is stored to pagep with
732 * refcount of it being incremented.
734 int mem_cgroup_count_swap_user(swp_entry_t ent
, struct page
**pagep
)
737 struct swap_info_struct
*p
;
740 page
= find_get_page(&swapper_space
, ent
.val
);
742 count
+= page_mapcount(page
);
743 p
= swap_info_get(ent
);
745 count
+= swap_count(p
->swap_map
[swp_offset(ent
)]);
746 spin_unlock(&swap_lock
);
754 #ifdef CONFIG_HIBERNATION
756 * Find the swap type that corresponds to given device (if any).
758 * @offset - number of the PAGE_SIZE-sized block of the device, starting
759 * from 0, in which the swap header is expected to be located.
761 * This is needed for the suspend to disk (aka swsusp).
763 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
765 struct block_device
*bdev
= NULL
;
769 bdev
= bdget(device
);
771 spin_lock(&swap_lock
);
772 for (type
= 0; type
< nr_swapfiles
; type
++) {
773 struct swap_info_struct
*sis
= swap_info
[type
];
775 if (!(sis
->flags
& SWP_WRITEOK
))
780 *bdev_p
= bdgrab(sis
->bdev
);
782 spin_unlock(&swap_lock
);
785 if (bdev
== sis
->bdev
) {
786 struct swap_extent
*se
= &sis
->first_swap_extent
;
788 if (se
->start_block
== offset
) {
790 *bdev_p
= bdgrab(sis
->bdev
);
792 spin_unlock(&swap_lock
);
798 spin_unlock(&swap_lock
);
806 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
807 * corresponding to given index in swap_info (swap type).
809 sector_t
swapdev_block(int type
, pgoff_t offset
)
811 struct block_device
*bdev
;
813 if ((unsigned int)type
>= nr_swapfiles
)
815 if (!(swap_info
[type
]->flags
& SWP_WRITEOK
))
817 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
821 * Return either the total number of swap pages of given type, or the number
822 * of free pages of that type (depending on @free)
824 * This is needed for software suspend
826 unsigned int count_swap_pages(int type
, int free
)
830 spin_lock(&swap_lock
);
831 if ((unsigned int)type
< nr_swapfiles
) {
832 struct swap_info_struct
*sis
= swap_info
[type
];
834 if (sis
->flags
& SWP_WRITEOK
) {
837 n
-= sis
->inuse_pages
;
840 spin_unlock(&swap_lock
);
843 #endif /* CONFIG_HIBERNATION */
846 * No need to decide whether this PTE shares the swap entry with others,
847 * just let do_wp_page work it out if a write is requested later - to
848 * force COW, vm_page_prot omits write permission from any private vma.
850 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
851 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
853 struct mem_cgroup
*ptr
;
858 if (mem_cgroup_try_charge_swapin(vma
->vm_mm
, page
, GFP_KERNEL
, &ptr
)) {
863 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
864 if (unlikely(!pte_same(*pte
, swp_entry_to_pte(entry
)))) {
866 mem_cgroup_cancel_charge_swapin(ptr
);
871 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
872 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
874 set_pte_at(vma
->vm_mm
, addr
, pte
,
875 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
876 page_add_anon_rmap(page
, vma
, addr
);
877 mem_cgroup_commit_charge_swapin(page
, ptr
);
880 * Move the page to the active list so it is not
881 * immediately swapped out again after swapon.
885 pte_unmap_unlock(pte
, ptl
);
890 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
891 unsigned long addr
, unsigned long end
,
892 swp_entry_t entry
, struct page
*page
)
894 pte_t swp_pte
= swp_entry_to_pte(entry
);
899 * We don't actually need pte lock while scanning for swp_pte: since
900 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
901 * page table while we're scanning; though it could get zapped, and on
902 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
903 * of unmatched parts which look like swp_pte, so unuse_pte must
904 * recheck under pte lock. Scanning without pte lock lets it be
905 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
907 pte
= pte_offset_map(pmd
, addr
);
910 * swapoff spends a _lot_ of time in this loop!
911 * Test inline before going to call unuse_pte.
913 if (unlikely(pte_same(*pte
, swp_pte
))) {
915 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
918 pte
= pte_offset_map(pmd
, addr
);
920 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
926 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
927 unsigned long addr
, unsigned long end
,
928 swp_entry_t entry
, struct page
*page
)
934 pmd
= pmd_offset(pud
, addr
);
936 next
= pmd_addr_end(addr
, end
);
937 if (unlikely(pmd_trans_huge(*pmd
)))
939 if (pmd_none_or_clear_bad(pmd
))
941 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
944 } while (pmd
++, addr
= next
, addr
!= end
);
948 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
949 unsigned long addr
, unsigned long end
,
950 swp_entry_t entry
, struct page
*page
)
956 pud
= pud_offset(pgd
, addr
);
958 next
= pud_addr_end(addr
, end
);
959 if (pud_none_or_clear_bad(pud
))
961 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
964 } while (pud
++, addr
= next
, addr
!= end
);
968 static int unuse_vma(struct vm_area_struct
*vma
,
969 swp_entry_t entry
, struct page
*page
)
972 unsigned long addr
, end
, next
;
975 if (page_anon_vma(page
)) {
976 addr
= page_address_in_vma(page
, vma
);
980 end
= addr
+ PAGE_SIZE
;
982 addr
= vma
->vm_start
;
986 pgd
= pgd_offset(vma
->vm_mm
, addr
);
988 next
= pgd_addr_end(addr
, end
);
989 if (pgd_none_or_clear_bad(pgd
))
991 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
994 } while (pgd
++, addr
= next
, addr
!= end
);
998 static int unuse_mm(struct mm_struct
*mm
,
999 swp_entry_t entry
, struct page
*page
)
1001 struct vm_area_struct
*vma
;
1004 if (!down_read_trylock(&mm
->mmap_sem
)) {
1006 * Activate page so shrink_inactive_list is unlikely to unmap
1007 * its ptes while lock is dropped, so swapoff can make progress.
1009 activate_page(page
);
1011 down_read(&mm
->mmap_sem
);
1014 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1015 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
1018 up_read(&mm
->mmap_sem
);
1019 return (ret
< 0)? ret
: 0;
1023 * Scan swap_map from current position to next entry still in use.
1024 * Recycle to start on reaching the end, returning 0 when empty.
1026 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1027 unsigned int prev
, bool frontswap
)
1029 unsigned int max
= si
->max
;
1030 unsigned int i
= prev
;
1031 unsigned char count
;
1034 * No need for swap_lock here: we're just looking
1035 * for whether an entry is in use, not modifying it; false
1036 * hits are okay, and sys_swapoff() has already prevented new
1037 * allocations from this area (while holding swap_lock).
1046 * No entries in use at top of swap_map,
1047 * loop back to start and recheck there.
1054 if (frontswap_test(si
, i
))
1059 count
= si
->swap_map
[i
];
1060 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1067 * We completely avoid races by reading each swap page in advance,
1068 * and then search for the process using it. All the necessary
1069 * page table adjustments can then be made atomically.
1071 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1072 * pages_to_unuse==0 means all pages
1074 int try_to_unuse(unsigned int type
, bool frontswap
,
1075 unsigned long pages_to_unuse
)
1077 struct swap_info_struct
*si
= swap_info
[type
];
1078 struct mm_struct
*start_mm
;
1079 unsigned char *swap_map
;
1080 unsigned char swcount
;
1087 * When searching mms for an entry, a good strategy is to
1088 * start at the first mm we freed the previous entry from
1089 * (though actually we don't notice whether we or coincidence
1090 * freed the entry). Initialize this start_mm with a hold.
1092 * A simpler strategy would be to start at the last mm we
1093 * freed the previous entry from; but that would take less
1094 * advantage of mmlist ordering, which clusters forked mms
1095 * together, child after parent. If we race with dup_mmap(), we
1096 * prefer to resolve parent before child, lest we miss entries
1097 * duplicated after we scanned child: using last mm would invert
1100 start_mm
= &init_mm
;
1101 atomic_inc(&init_mm
.mm_users
);
1104 * Keep on scanning until all entries have gone. Usually,
1105 * one pass through swap_map is enough, but not necessarily:
1106 * there are races when an instance of an entry might be missed.
1108 while ((i
= find_next_to_unuse(si
, i
, frontswap
)) != 0) {
1109 if (signal_pending(current
)) {
1115 * Get a page for the entry, using the existing swap
1116 * cache page if there is one. Otherwise, get a clean
1117 * page and read the swap into it.
1119 swap_map
= &si
->swap_map
[i
];
1120 entry
= swp_entry(type
, i
);
1121 page
= read_swap_cache_async(entry
,
1122 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
1125 * Either swap_duplicate() failed because entry
1126 * has been freed independently, and will not be
1127 * reused since sys_swapoff() already disabled
1128 * allocation from here, or alloc_page() failed.
1137 * Don't hold on to start_mm if it looks like exiting.
1139 if (atomic_read(&start_mm
->mm_users
) == 1) {
1141 start_mm
= &init_mm
;
1142 atomic_inc(&init_mm
.mm_users
);
1146 * Wait for and lock page. When do_swap_page races with
1147 * try_to_unuse, do_swap_page can handle the fault much
1148 * faster than try_to_unuse can locate the entry. This
1149 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1150 * defer to do_swap_page in such a case - in some tests,
1151 * do_swap_page and try_to_unuse repeatedly compete.
1153 wait_on_page_locked(page
);
1154 wait_on_page_writeback(page
);
1156 wait_on_page_writeback(page
);
1159 * Remove all references to entry.
1161 swcount
= *swap_map
;
1162 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
1163 retval
= shmem_unuse(entry
, page
);
1164 /* page has already been unlocked and released */
1169 if (swap_count(swcount
) && start_mm
!= &init_mm
)
1170 retval
= unuse_mm(start_mm
, entry
, page
);
1172 if (swap_count(*swap_map
)) {
1173 int set_start_mm
= (*swap_map
>= swcount
);
1174 struct list_head
*p
= &start_mm
->mmlist
;
1175 struct mm_struct
*new_start_mm
= start_mm
;
1176 struct mm_struct
*prev_mm
= start_mm
;
1177 struct mm_struct
*mm
;
1179 atomic_inc(&new_start_mm
->mm_users
);
1180 atomic_inc(&prev_mm
->mm_users
);
1181 spin_lock(&mmlist_lock
);
1182 while (swap_count(*swap_map
) && !retval
&&
1183 (p
= p
->next
) != &start_mm
->mmlist
) {
1184 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1185 if (!atomic_inc_not_zero(&mm
->mm_users
))
1187 spin_unlock(&mmlist_lock
);
1193 swcount
= *swap_map
;
1194 if (!swap_count(swcount
)) /* any usage ? */
1196 else if (mm
== &init_mm
)
1199 retval
= unuse_mm(mm
, entry
, page
);
1201 if (set_start_mm
&& *swap_map
< swcount
) {
1202 mmput(new_start_mm
);
1203 atomic_inc(&mm
->mm_users
);
1207 spin_lock(&mmlist_lock
);
1209 spin_unlock(&mmlist_lock
);
1212 start_mm
= new_start_mm
;
1216 page_cache_release(page
);
1221 * If a reference remains (rare), we would like to leave
1222 * the page in the swap cache; but try_to_unmap could
1223 * then re-duplicate the entry once we drop page lock,
1224 * so we might loop indefinitely; also, that page could
1225 * not be swapped out to other storage meanwhile. So:
1226 * delete from cache even if there's another reference,
1227 * after ensuring that the data has been saved to disk -
1228 * since if the reference remains (rarer), it will be
1229 * read from disk into another page. Splitting into two
1230 * pages would be incorrect if swap supported "shared
1231 * private" pages, but they are handled by tmpfs files.
1233 * Given how unuse_vma() targets one particular offset
1234 * in an anon_vma, once the anon_vma has been determined,
1235 * this splitting happens to be just what is needed to
1236 * handle where KSM pages have been swapped out: re-reading
1237 * is unnecessarily slow, but we can fix that later on.
1239 if (swap_count(*swap_map
) &&
1240 PageDirty(page
) && PageSwapCache(page
)) {
1241 struct writeback_control wbc
= {
1242 .sync_mode
= WB_SYNC_NONE
,
1245 swap_writepage(page
, &wbc
);
1247 wait_on_page_writeback(page
);
1251 * It is conceivable that a racing task removed this page from
1252 * swap cache just before we acquired the page lock at the top,
1253 * or while we dropped it in unuse_mm(). The page might even
1254 * be back in swap cache on another swap area: that we must not
1255 * delete, since it may not have been written out to swap yet.
1257 if (PageSwapCache(page
) &&
1258 likely(page_private(page
) == entry
.val
))
1259 delete_from_swap_cache(page
);
1262 * So we could skip searching mms once swap count went
1263 * to 1, we did not mark any present ptes as dirty: must
1264 * mark page dirty so shrink_page_list will preserve it.
1268 page_cache_release(page
);
1271 * Make sure that we aren't completely killing
1272 * interactive performance.
1275 if (frontswap
&& pages_to_unuse
> 0) {
1276 if (!--pages_to_unuse
)
1286 * After a successful try_to_unuse, if no swap is now in use, we know
1287 * we can empty the mmlist. swap_lock must be held on entry and exit.
1288 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1289 * added to the mmlist just after page_duplicate - before would be racy.
1291 static void drain_mmlist(void)
1293 struct list_head
*p
, *next
;
1296 for (type
= 0; type
< nr_swapfiles
; type
++)
1297 if (swap_info
[type
]->inuse_pages
)
1299 spin_lock(&mmlist_lock
);
1300 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1302 spin_unlock(&mmlist_lock
);
1306 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1307 * corresponds to page offset for the specified swap entry.
1308 * Note that the type of this function is sector_t, but it returns page offset
1309 * into the bdev, not sector offset.
1311 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
1313 struct swap_info_struct
*sis
;
1314 struct swap_extent
*start_se
;
1315 struct swap_extent
*se
;
1318 sis
= swap_info
[swp_type(entry
)];
1321 offset
= swp_offset(entry
);
1322 start_se
= sis
->curr_swap_extent
;
1326 struct list_head
*lh
;
1328 if (se
->start_page
<= offset
&&
1329 offset
< (se
->start_page
+ se
->nr_pages
)) {
1330 return se
->start_block
+ (offset
- se
->start_page
);
1333 se
= list_entry(lh
, struct swap_extent
, list
);
1334 sis
->curr_swap_extent
= se
;
1335 BUG_ON(se
== start_se
); /* It *must* be present */
1340 * Returns the page offset into bdev for the specified page's swap entry.
1342 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
1345 entry
.val
= page_private(page
);
1346 return map_swap_entry(entry
, bdev
);
1350 * Free all of a swapdev's extent information
1352 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1354 while (!list_empty(&sis
->first_swap_extent
.list
)) {
1355 struct swap_extent
*se
;
1357 se
= list_entry(sis
->first_swap_extent
.list
.next
,
1358 struct swap_extent
, list
);
1359 list_del(&se
->list
);
1365 * Add a block range (and the corresponding page range) into this swapdev's
1366 * extent list. The extent list is kept sorted in page order.
1368 * This function rather assumes that it is called in ascending page order.
1371 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1372 unsigned long nr_pages
, sector_t start_block
)
1374 struct swap_extent
*se
;
1375 struct swap_extent
*new_se
;
1376 struct list_head
*lh
;
1378 if (start_page
== 0) {
1379 se
= &sis
->first_swap_extent
;
1380 sis
->curr_swap_extent
= se
;
1382 se
->nr_pages
= nr_pages
;
1383 se
->start_block
= start_block
;
1386 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
1387 se
= list_entry(lh
, struct swap_extent
, list
);
1388 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1389 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1391 se
->nr_pages
+= nr_pages
;
1397 * No merge. Insert a new extent, preserving ordering.
1399 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1402 new_se
->start_page
= start_page
;
1403 new_se
->nr_pages
= nr_pages
;
1404 new_se
->start_block
= start_block
;
1406 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
1411 * A `swap extent' is a simple thing which maps a contiguous range of pages
1412 * onto a contiguous range of disk blocks. An ordered list of swap extents
1413 * is built at swapon time and is then used at swap_writepage/swap_readpage
1414 * time for locating where on disk a page belongs.
1416 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1417 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1418 * swap files identically.
1420 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1421 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1422 * swapfiles are handled *identically* after swapon time.
1424 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1425 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1426 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1427 * requirements, they are simply tossed out - we will never use those blocks
1430 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1431 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1432 * which will scribble on the fs.
1434 * The amount of disk space which a single swap extent represents varies.
1435 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1436 * extents in the list. To avoid much list walking, we cache the previous
1437 * search location in `curr_swap_extent', and start new searches from there.
1438 * This is extremely effective. The average number of iterations in
1439 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1441 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1443 struct inode
*inode
;
1444 unsigned blocks_per_page
;
1445 unsigned long page_no
;
1447 sector_t probe_block
;
1448 sector_t last_block
;
1449 sector_t lowest_block
= -1;
1450 sector_t highest_block
= 0;
1454 inode
= sis
->swap_file
->f_mapping
->host
;
1455 if (S_ISBLK(inode
->i_mode
)) {
1456 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1461 blkbits
= inode
->i_blkbits
;
1462 blocks_per_page
= PAGE_SIZE
>> blkbits
;
1465 * Map all the blocks into the extent list. This code doesn't try
1470 last_block
= i_size_read(inode
) >> blkbits
;
1471 while ((probe_block
+ blocks_per_page
) <= last_block
&&
1472 page_no
< sis
->max
) {
1473 unsigned block_in_page
;
1474 sector_t first_block
;
1476 first_block
= bmap(inode
, probe_block
);
1477 if (first_block
== 0)
1481 * It must be PAGE_SIZE aligned on-disk
1483 if (first_block
& (blocks_per_page
- 1)) {
1488 for (block_in_page
= 1; block_in_page
< blocks_per_page
;
1492 block
= bmap(inode
, probe_block
+ block_in_page
);
1495 if (block
!= first_block
+ block_in_page
) {
1502 first_block
>>= (PAGE_SHIFT
- blkbits
);
1503 if (page_no
) { /* exclude the header page */
1504 if (first_block
< lowest_block
)
1505 lowest_block
= first_block
;
1506 if (first_block
> highest_block
)
1507 highest_block
= first_block
;
1511 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1513 ret
= add_swap_extent(sis
, page_no
, 1, first_block
);
1518 probe_block
+= blocks_per_page
;
1523 *span
= 1 + highest_block
- lowest_block
;
1525 page_no
= 1; /* force Empty message */
1527 sis
->pages
= page_no
- 1;
1528 sis
->highest_bit
= page_no
- 1;
1532 printk(KERN_ERR
"swapon: swapfile has holes\n");
1537 static void enable_swap_info(struct swap_info_struct
*p
, int prio
,
1538 unsigned char *swap_map
,
1539 unsigned long *frontswap_map
)
1543 spin_lock(&swap_lock
);
1547 p
->prio
= --least_priority
;
1548 p
->swap_map
= swap_map
;
1549 p
->frontswap_map
= frontswap_map
;
1550 p
->flags
|= SWP_WRITEOK
;
1551 nr_swap_pages
+= p
->pages
;
1552 total_swap_pages
+= p
->pages
;
1554 /* insert swap space into swap_list: */
1556 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
]->next
) {
1557 if (p
->prio
>= swap_info
[i
]->prio
)
1563 swap_list
.head
= swap_list
.next
= p
->type
;
1565 swap_info
[prev
]->next
= p
->type
;
1566 frontswap_init(p
->type
);
1567 spin_unlock(&swap_lock
);
1570 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
1572 struct swap_info_struct
*p
= NULL
;
1573 unsigned char *swap_map
;
1574 struct file
*swap_file
, *victim
;
1575 struct address_space
*mapping
;
1576 struct inode
*inode
;
1582 if (!capable(CAP_SYS_ADMIN
))
1585 pathname
= getname(specialfile
);
1586 err
= PTR_ERR(pathname
);
1587 if (IS_ERR(pathname
))
1590 victim
= filp_open(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1592 err
= PTR_ERR(victim
);
1596 mapping
= victim
->f_mapping
;
1598 spin_lock(&swap_lock
);
1599 for (type
= swap_list
.head
; type
>= 0; type
= swap_info
[type
]->next
) {
1600 p
= swap_info
[type
];
1601 if (p
->flags
& SWP_WRITEOK
) {
1602 if (p
->swap_file
->f_mapping
== mapping
)
1609 spin_unlock(&swap_lock
);
1612 if (!security_vm_enough_memory(p
->pages
))
1613 vm_unacct_memory(p
->pages
);
1616 spin_unlock(&swap_lock
);
1620 swap_list
.head
= p
->next
;
1622 swap_info
[prev
]->next
= p
->next
;
1623 if (type
== swap_list
.next
) {
1624 /* just pick something that's safe... */
1625 swap_list
.next
= swap_list
.head
;
1628 for (i
= p
->next
; i
>= 0; i
= swap_info
[i
]->next
)
1629 swap_info
[i
]->prio
= p
->prio
--;
1632 nr_swap_pages
-= p
->pages
;
1633 total_swap_pages
-= p
->pages
;
1634 p
->flags
&= ~SWP_WRITEOK
;
1635 spin_unlock(&swap_lock
);
1637 oom_score_adj
= test_set_oom_score_adj(OOM_SCORE_ADJ_MAX
);
1638 err
= try_to_unuse(type
, false, 0);
1639 test_set_oom_score_adj(oom_score_adj
);
1643 * reading p->prio and p->swap_map outside the lock is
1644 * safe here because only sys_swapon and sys_swapoff
1645 * change them, and there can be no other sys_swapon or
1646 * sys_swapoff for this swap_info_struct at this point.
1648 /* re-insert swap space back into swap_list */
1649 enable_swap_info(p
, p
->prio
, p
->swap_map
, p
->frontswap_map
);
1653 destroy_swap_extents(p
);
1654 if (p
->flags
& SWP_CONTINUED
)
1655 free_swap_count_continuations(p
);
1657 mutex_lock(&swapon_mutex
);
1658 spin_lock(&swap_lock
);
1661 /* wait for anyone still in scan_swap_map */
1662 p
->highest_bit
= 0; /* cuts scans short */
1663 while (p
->flags
>= SWP_SCANNING
) {
1664 spin_unlock(&swap_lock
);
1665 schedule_timeout_uninterruptible(1);
1666 spin_lock(&swap_lock
);
1669 swap_file
= p
->swap_file
;
1670 p
->swap_file
= NULL
;
1672 swap_map
= p
->swap_map
;
1675 frontswap_flush_area(type
);
1676 spin_unlock(&swap_lock
);
1677 mutex_unlock(&swapon_mutex
);
1679 if (p
->frontswap_map
)
1680 vfree(p
->frontswap_map
);
1681 /* Destroy swap account informatin */
1682 swap_cgroup_swapoff(type
);
1684 inode
= mapping
->host
;
1685 if (S_ISBLK(inode
->i_mode
)) {
1686 struct block_device
*bdev
= I_BDEV(inode
);
1687 set_blocksize(bdev
, p
->old_block_size
);
1688 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
1690 mutex_lock(&inode
->i_mutex
);
1691 inode
->i_flags
&= ~S_SWAPFILE
;
1692 mutex_unlock(&inode
->i_mutex
);
1694 filp_close(swap_file
, NULL
);
1696 atomic_inc(&proc_poll_event
);
1697 wake_up_interruptible(&proc_poll_wait
);
1700 filp_close(victim
, NULL
);
1705 #ifdef CONFIG_PROC_FS
1706 static unsigned swaps_poll(struct file
*file
, poll_table
*wait
)
1708 struct seq_file
*seq
= file
->private_data
;
1710 poll_wait(file
, &proc_poll_wait
, wait
);
1712 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
1713 seq
->poll_event
= atomic_read(&proc_poll_event
);
1714 return POLLIN
| POLLRDNORM
| POLLERR
| POLLPRI
;
1717 return POLLIN
| POLLRDNORM
;
1721 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1723 struct swap_info_struct
*si
;
1727 mutex_lock(&swapon_mutex
);
1730 return SEQ_START_TOKEN
;
1732 for (type
= 0; type
< nr_swapfiles
; type
++) {
1733 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1734 si
= swap_info
[type
];
1735 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
1744 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
1746 struct swap_info_struct
*si
= v
;
1749 if (v
== SEQ_START_TOKEN
)
1752 type
= si
->type
+ 1;
1754 for (; type
< nr_swapfiles
; type
++) {
1755 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1756 si
= swap_info
[type
];
1757 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
1766 static void swap_stop(struct seq_file
*swap
, void *v
)
1768 mutex_unlock(&swapon_mutex
);
1771 static int swap_show(struct seq_file
*swap
, void *v
)
1773 struct swap_info_struct
*si
= v
;
1777 if (si
== SEQ_START_TOKEN
) {
1778 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1782 file
= si
->swap_file
;
1783 len
= seq_path(swap
, &file
->f_path
, " \t\n\\");
1784 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
1785 len
< 40 ? 40 - len
: 1, " ",
1786 S_ISBLK(file
->f_path
.dentry
->d_inode
->i_mode
) ?
1787 "partition" : "file\t",
1788 si
->pages
<< (PAGE_SHIFT
- 10),
1789 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
1794 static const struct seq_operations swaps_op
= {
1795 .start
= swap_start
,
1801 static int swaps_open(struct inode
*inode
, struct file
*file
)
1803 struct seq_file
*seq
;
1806 ret
= seq_open(file
, &swaps_op
);
1810 seq
= file
->private_data
;
1811 seq
->poll_event
= atomic_read(&proc_poll_event
);
1815 static const struct file_operations proc_swaps_operations
= {
1818 .llseek
= seq_lseek
,
1819 .release
= seq_release
,
1823 static int __init
procswaps_init(void)
1825 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
1828 __initcall(procswaps_init
);
1829 #endif /* CONFIG_PROC_FS */
1831 #ifdef MAX_SWAPFILES_CHECK
1832 static int __init
max_swapfiles_check(void)
1834 MAX_SWAPFILES_CHECK();
1837 late_initcall(max_swapfiles_check
);
1840 static struct swap_info_struct
*alloc_swap_info(void)
1842 struct swap_info_struct
*p
;
1845 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1847 return ERR_PTR(-ENOMEM
);
1849 spin_lock(&swap_lock
);
1850 for (type
= 0; type
< nr_swapfiles
; type
++) {
1851 if (!(swap_info
[type
]->flags
& SWP_USED
))
1854 if (type
>= MAX_SWAPFILES
) {
1855 spin_unlock(&swap_lock
);
1857 return ERR_PTR(-EPERM
);
1859 if (type
>= nr_swapfiles
) {
1861 swap_info
[type
] = p
;
1863 * Write swap_info[type] before nr_swapfiles, in case a
1864 * racing procfs swap_start() or swap_next() is reading them.
1865 * (We never shrink nr_swapfiles, we never free this entry.)
1871 p
= swap_info
[type
];
1873 * Do not memset this entry: a racing procfs swap_next()
1874 * would be relying on p->type to remain valid.
1877 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
1878 p
->flags
= SWP_USED
;
1880 spin_unlock(&swap_lock
);
1885 static int claim_swapfile(struct swap_info_struct
*p
, struct inode
*inode
)
1889 if (S_ISBLK(inode
->i_mode
)) {
1890 p
->bdev
= bdgrab(I_BDEV(inode
));
1891 error
= blkdev_get(p
->bdev
,
1892 FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
,
1898 p
->old_block_size
= block_size(p
->bdev
);
1899 error
= set_blocksize(p
->bdev
, PAGE_SIZE
);
1902 p
->flags
|= SWP_BLKDEV
;
1903 } else if (S_ISREG(inode
->i_mode
)) {
1904 p
->bdev
= inode
->i_sb
->s_bdev
;
1905 mutex_lock(&inode
->i_mutex
);
1906 if (IS_SWAPFILE(inode
))
1914 static unsigned long read_swap_header(struct swap_info_struct
*p
,
1915 union swap_header
*swap_header
,
1916 struct inode
*inode
)
1919 unsigned long maxpages
;
1920 unsigned long swapfilepages
;
1922 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
1923 printk(KERN_ERR
"Unable to find swap-space signature\n");
1927 /* swap partition endianess hack... */
1928 if (swab32(swap_header
->info
.version
) == 1) {
1929 swab32s(&swap_header
->info
.version
);
1930 swab32s(&swap_header
->info
.last_page
);
1931 swab32s(&swap_header
->info
.nr_badpages
);
1932 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
1933 swab32s(&swap_header
->info
.badpages
[i
]);
1935 /* Check the swap header's sub-version */
1936 if (swap_header
->info
.version
!= 1) {
1938 "Unable to handle swap header version %d\n",
1939 swap_header
->info
.version
);
1944 p
->cluster_next
= 1;
1948 * Find out how many pages are allowed for a single swap
1949 * device. There are three limiting factors: 1) the number
1950 * of bits for the swap offset in the swp_entry_t type, and
1951 * 2) the number of bits in the swap pte as defined by the
1952 * the different architectures, and 3) the number of free bits
1953 * in an exceptional radix_tree entry. In order to find the
1954 * largest possible bit mask, a swap entry with swap type 0
1955 * and swap offset ~0UL is created, encoded to a swap pte,
1956 * decoded to a swp_entry_t again, and finally the swap
1957 * offset is extracted. This will mask all the bits from
1958 * the initial ~0UL mask that can't be encoded in either
1959 * the swp_entry_t or the architecture definition of a
1960 * swap pte. Then the same is done for a radix_tree entry.
1962 maxpages
= swp_offset(pte_to_swp_entry(
1963 swp_entry_to_pte(swp_entry(0, ~0UL))));
1964 maxpages
= swp_offset(radix_to_swp_entry(
1965 swp_to_radix_entry(swp_entry(0, maxpages
)))) + 1;
1967 if (maxpages
> swap_header
->info
.last_page
) {
1968 maxpages
= swap_header
->info
.last_page
+ 1;
1969 /* p->max is an unsigned int: don't overflow it */
1970 if ((unsigned int)maxpages
== 0)
1971 maxpages
= UINT_MAX
;
1973 p
->highest_bit
= maxpages
- 1;
1977 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
1978 if (swapfilepages
&& maxpages
> swapfilepages
) {
1980 "Swap area shorter than signature indicates\n");
1983 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
1985 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
1991 static int setup_swap_map_and_extents(struct swap_info_struct
*p
,
1992 union swap_header
*swap_header
,
1993 unsigned char *swap_map
,
1994 unsigned long maxpages
,
1998 unsigned int nr_good_pages
;
2001 nr_good_pages
= maxpages
- 1; /* omit header page */
2003 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
2004 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
2005 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
2007 if (page_nr
< maxpages
) {
2008 swap_map
[page_nr
] = SWAP_MAP_BAD
;
2013 if (nr_good_pages
) {
2014 swap_map
[0] = SWAP_MAP_BAD
;
2016 p
->pages
= nr_good_pages
;
2017 nr_extents
= setup_swap_extents(p
, span
);
2020 nr_good_pages
= p
->pages
;
2022 if (!nr_good_pages
) {
2023 printk(KERN_WARNING
"Empty swap-file\n");
2030 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
2032 struct swap_info_struct
*p
;
2034 struct file
*swap_file
= NULL
;
2035 struct address_space
*mapping
;
2039 union swap_header
*swap_header
;
2042 unsigned long maxpages
;
2043 unsigned char *swap_map
= NULL
;
2044 unsigned long *frontswap_map
= NULL
;
2045 struct page
*page
= NULL
;
2046 struct inode
*inode
= NULL
;
2048 if (!capable(CAP_SYS_ADMIN
))
2051 p
= alloc_swap_info();
2055 name
= getname(specialfile
);
2057 error
= PTR_ERR(name
);
2061 swap_file
= filp_open(name
, O_RDWR
|O_LARGEFILE
, 0);
2062 if (IS_ERR(swap_file
)) {
2063 error
= PTR_ERR(swap_file
);
2068 p
->swap_file
= swap_file
;
2069 mapping
= swap_file
->f_mapping
;
2071 for (i
= 0; i
< nr_swapfiles
; i
++) {
2072 struct swap_info_struct
*q
= swap_info
[i
];
2074 if (q
== p
|| !q
->swap_file
)
2076 if (mapping
== q
->swap_file
->f_mapping
) {
2082 inode
= mapping
->host
;
2083 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2084 error
= claim_swapfile(p
, inode
);
2085 if (unlikely(error
))
2089 * Read the swap header.
2091 if (!mapping
->a_ops
->readpage
) {
2095 page
= read_mapping_page(mapping
, 0, swap_file
);
2097 error
= PTR_ERR(page
);
2100 swap_header
= kmap(page
);
2102 maxpages
= read_swap_header(p
, swap_header
, inode
);
2103 if (unlikely(!maxpages
)) {
2108 /* OK, set up the swap map and apply the bad block list */
2109 swap_map
= vzalloc(maxpages
);
2115 error
= swap_cgroup_swapon(p
->type
, maxpages
);
2119 nr_extents
= setup_swap_map_and_extents(p
, swap_header
, swap_map
,
2121 if (unlikely(nr_extents
< 0)) {
2125 /* frontswap enabled? set up bit-per-page map for frontswap */
2126 if (frontswap_enabled
) {
2127 frontswap_map
= vmalloc(maxpages
/ sizeof(long));
2129 memset(frontswap_map
, 0, maxpages
/ sizeof(long));
2133 if (blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
2134 p
->flags
|= SWP_SOLIDSTATE
;
2135 p
->cluster_next
= 1 + (random32() % p
->highest_bit
);
2137 if (discard_swap(p
) == 0 && (swap_flags
& SWAP_FLAG_DISCARD
))
2138 p
->flags
|= SWP_DISCARDABLE
;
2141 mutex_lock(&swapon_mutex
);
2143 if (swap_flags
& SWAP_FLAG_PREFER
)
2145 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
2146 enable_swap_info(p
, prio
, swap_map
, frontswap_map
);
2148 printk(KERN_INFO
"Adding %uk swap on %s. "
2149 "Priority:%d extents:%d across:%lluk %s%s%s\n",
2150 p
->pages
<<(PAGE_SHIFT
-10), name
, p
->prio
,
2151 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
2152 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
2153 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "",
2154 (p
->frontswap_map
) ? "FS" : "");
2156 mutex_unlock(&swapon_mutex
);
2157 atomic_inc(&proc_poll_event
);
2158 wake_up_interruptible(&proc_poll_wait
);
2160 if (S_ISREG(inode
->i_mode
))
2161 inode
->i_flags
|= S_SWAPFILE
;
2165 if (inode
&& S_ISBLK(inode
->i_mode
) && p
->bdev
) {
2166 set_blocksize(p
->bdev
, p
->old_block_size
);
2167 blkdev_put(p
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2169 destroy_swap_extents(p
);
2170 swap_cgroup_swapoff(p
->type
);
2171 spin_lock(&swap_lock
);
2172 p
->swap_file
= NULL
;
2174 spin_unlock(&swap_lock
);
2177 if (inode
&& S_ISREG(inode
->i_mode
)) {
2178 mutex_unlock(&inode
->i_mutex
);
2181 filp_close(swap_file
, NULL
);
2184 if (page
&& !IS_ERR(page
)) {
2186 page_cache_release(page
);
2190 if (inode
&& S_ISREG(inode
->i_mode
))
2191 mutex_unlock(&inode
->i_mutex
);
2195 void si_swapinfo(struct sysinfo
*val
)
2198 unsigned long nr_to_be_unused
= 0;
2200 spin_lock(&swap_lock
);
2201 for (type
= 0; type
< nr_swapfiles
; type
++) {
2202 struct swap_info_struct
*si
= swap_info
[type
];
2204 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
2205 nr_to_be_unused
+= si
->inuse_pages
;
2207 val
->freeswap
= nr_swap_pages
+ nr_to_be_unused
;
2208 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
2209 spin_unlock(&swap_lock
);
2213 * Verify that a swap entry is valid and increment its swap map count.
2215 * Returns error code in following case.
2217 * - swp_entry is invalid -> EINVAL
2218 * - swp_entry is migration entry -> EINVAL
2219 * - swap-cache reference is requested but there is already one. -> EEXIST
2220 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2221 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2223 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
2225 struct swap_info_struct
*p
;
2226 unsigned long offset
, type
;
2227 unsigned char count
;
2228 unsigned char has_cache
;
2231 if (non_swap_entry(entry
))
2234 type
= swp_type(entry
);
2235 if (type
>= nr_swapfiles
)
2237 p
= swap_info
[type
];
2238 offset
= swp_offset(entry
);
2240 spin_lock(&swap_lock
);
2241 if (unlikely(offset
>= p
->max
))
2244 count
= p
->swap_map
[offset
];
2245 has_cache
= count
& SWAP_HAS_CACHE
;
2246 count
&= ~SWAP_HAS_CACHE
;
2249 if (usage
== SWAP_HAS_CACHE
) {
2251 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2252 if (!has_cache
&& count
)
2253 has_cache
= SWAP_HAS_CACHE
;
2254 else if (has_cache
) /* someone else added cache */
2256 else /* no users remaining */
2259 } else if (count
|| has_cache
) {
2261 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
2263 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
2265 else if (swap_count_continued(p
, offset
, count
))
2266 count
= COUNT_CONTINUED
;
2270 err
= -ENOENT
; /* unused swap entry */
2272 p
->swap_map
[offset
] = count
| has_cache
;
2275 spin_unlock(&swap_lock
);
2280 printk(KERN_ERR
"swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
2285 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2286 * (in which case its reference count is never incremented).
2288 void swap_shmem_alloc(swp_entry_t entry
)
2290 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
2294 * Increase reference count of swap entry by 1.
2295 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2296 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2297 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2298 * might occur if a page table entry has got corrupted.
2300 int swap_duplicate(swp_entry_t entry
)
2304 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
2305 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
2310 * @entry: swap entry for which we allocate swap cache.
2312 * Called when allocating swap cache for existing swap entry,
2313 * This can return error codes. Returns 0 at success.
2314 * -EBUSY means there is a swap cache.
2315 * Note: return code is different from swap_duplicate().
2317 int swapcache_prepare(swp_entry_t entry
)
2319 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
2323 * swap_lock prevents swap_map being freed. Don't grab an extra
2324 * reference on the swaphandle, it doesn't matter if it becomes unused.
2326 int valid_swaphandles(swp_entry_t entry
, unsigned long *offset
)
2328 struct swap_info_struct
*si
;
2329 int our_page_cluster
= page_cluster
;
2330 pgoff_t target
, toff
;
2334 if (!our_page_cluster
) /* no readahead */
2337 si
= swap_info
[swp_type(entry
)];
2338 target
= swp_offset(entry
);
2339 base
= (target
>> our_page_cluster
) << our_page_cluster
;
2340 end
= base
+ (1 << our_page_cluster
);
2341 if (!base
) /* first page is swap header */
2344 spin_lock(&swap_lock
);
2345 if (frontswap_test(si
, target
)) {
2346 spin_unlock(&swap_lock
);
2349 if (end
> si
->max
) /* don't go beyond end of map */
2352 /* Count contiguous allocated slots above our target */
2353 for (toff
= target
; ++toff
< end
; nr_pages
++) {
2354 /* Don't read in free or bad pages */
2355 if (!si
->swap_map
[toff
])
2357 if (swap_count(si
->swap_map
[toff
]) == SWAP_MAP_BAD
)
2359 /* Don't read in frontswap pages */
2360 if (frontswap_test(si
, toff
))
2363 /* Count contiguous allocated slots below our target */
2364 for (toff
= target
; --toff
>= base
; nr_pages
++) {
2365 /* Don't read in free or bad pages */
2366 if (!si
->swap_map
[toff
])
2368 if (swap_count(si
->swap_map
[toff
]) == SWAP_MAP_BAD
)
2370 /* Don't read in frontswap pages */
2371 if (frontswap_test(si
, toff
))
2374 spin_unlock(&swap_lock
);
2377 * Indicate starting offset, and return number of pages to get:
2378 * if only 1, say 0, since there's then no readahead to be done.
2381 return nr_pages
? ++nr_pages
: 0;
2385 * add_swap_count_continuation - called when a swap count is duplicated
2386 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2387 * page of the original vmalloc'ed swap_map, to hold the continuation count
2388 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2389 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2391 * These continuation pages are seldom referenced: the common paths all work
2392 * on the original swap_map, only referring to a continuation page when the
2393 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2395 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2396 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2397 * can be called after dropping locks.
2399 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
2401 struct swap_info_struct
*si
;
2404 struct page
*list_page
;
2406 unsigned char count
;
2409 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2410 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2412 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
2414 si
= swap_info_get(entry
);
2417 * An acceptable race has occurred since the failing
2418 * __swap_duplicate(): the swap entry has been freed,
2419 * perhaps even the whole swap_map cleared for swapoff.
2424 offset
= swp_offset(entry
);
2425 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
2427 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
2429 * The higher the swap count, the more likely it is that tasks
2430 * will race to add swap count continuation: we need to avoid
2431 * over-provisioning.
2437 spin_unlock(&swap_lock
);
2442 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2443 * no architecture is using highmem pages for kernel pagetables: so it
2444 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2446 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2447 offset
&= ~PAGE_MASK
;
2450 * Page allocation does not initialize the page's lru field,
2451 * but it does always reset its private field.
2453 if (!page_private(head
)) {
2454 BUG_ON(count
& COUNT_CONTINUED
);
2455 INIT_LIST_HEAD(&head
->lru
);
2456 set_page_private(head
, SWP_CONTINUED
);
2457 si
->flags
|= SWP_CONTINUED
;
2460 list_for_each_entry(list_page
, &head
->lru
, lru
) {
2464 * If the previous map said no continuation, but we've found
2465 * a continuation page, free our allocation and use this one.
2467 if (!(count
& COUNT_CONTINUED
))
2470 map
= kmap_atomic(list_page
, KM_USER0
) + offset
;
2472 kunmap_atomic(map
, KM_USER0
);
2475 * If this continuation count now has some space in it,
2476 * free our allocation and use this one.
2478 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
2482 list_add_tail(&page
->lru
, &head
->lru
);
2483 page
= NULL
; /* now it's attached, don't free it */
2485 spin_unlock(&swap_lock
);
2493 * swap_count_continued - when the original swap_map count is incremented
2494 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2495 * into, carry if so, or else fail until a new continuation page is allocated;
2496 * when the original swap_map count is decremented from 0 with continuation,
2497 * borrow from the continuation and report whether it still holds more.
2498 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2500 static bool swap_count_continued(struct swap_info_struct
*si
,
2501 pgoff_t offset
, unsigned char count
)
2507 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2508 if (page_private(head
) != SWP_CONTINUED
) {
2509 BUG_ON(count
& COUNT_CONTINUED
);
2510 return false; /* need to add count continuation */
2513 offset
&= ~PAGE_MASK
;
2514 page
= list_entry(head
->lru
.next
, struct page
, lru
);
2515 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2517 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
2518 goto init_map
; /* jump over SWAP_CONT_MAX checks */
2520 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
2522 * Think of how you add 1 to 999
2524 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
2525 kunmap_atomic(map
, KM_USER0
);
2526 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2527 BUG_ON(page
== head
);
2528 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2530 if (*map
== SWAP_CONT_MAX
) {
2531 kunmap_atomic(map
, KM_USER0
);
2532 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2534 return false; /* add count continuation */
2535 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2536 init_map
: *map
= 0; /* we didn't zero the page */
2539 kunmap_atomic(map
, KM_USER0
);
2540 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2541 while (page
!= head
) {
2542 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2543 *map
= COUNT_CONTINUED
;
2544 kunmap_atomic(map
, KM_USER0
);
2545 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2547 return true; /* incremented */
2549 } else { /* decrementing */
2551 * Think of how you subtract 1 from 1000
2553 BUG_ON(count
!= COUNT_CONTINUED
);
2554 while (*map
== COUNT_CONTINUED
) {
2555 kunmap_atomic(map
, KM_USER0
);
2556 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2557 BUG_ON(page
== head
);
2558 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2564 kunmap_atomic(map
, KM_USER0
);
2565 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2566 while (page
!= head
) {
2567 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2568 *map
= SWAP_CONT_MAX
| count
;
2569 count
= COUNT_CONTINUED
;
2570 kunmap_atomic(map
, KM_USER0
);
2571 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2573 return count
== COUNT_CONTINUED
;
2578 * free_swap_count_continuations - swapoff free all the continuation pages
2579 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2581 static void free_swap_count_continuations(struct swap_info_struct
*si
)
2585 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
2587 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2588 if (page_private(head
)) {
2589 struct list_head
*this, *next
;
2590 list_for_each_safe(this, next
, &head
->lru
) {
2592 page
= list_entry(this, struct page
, lru
);