Add linux-next specific files for 20110824
[linux-2.6/next.git] / mm / vmscan.c
blob3153729fa6a56f181c9154e9e457199c7ddfea78
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
50 #include <linux/swapops.h>
52 #include "internal.h"
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 * order-0 pages and then compact the zone
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
75 struct scan_control {
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
85 unsigned long hibernation_mode;
87 /* This context's GFP mask */
88 gfp_t gfp_mask;
90 int may_writepage;
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
98 int order;
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
104 reclaim_mode_t reclaim_mode;
106 /* Which cgroup do we reclaim from */
107 struct mem_cgroup *mem_cgroup;
108 struct memcg_scanrecord *memcg_record;
111 * Nodemask of nodes allowed by the caller. If NULL, all nodes
112 * are scanned.
114 nodemask_t *nodemask;
117 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119 #ifdef ARCH_HAS_PREFETCH
120 #define prefetch_prev_lru_page(_page, _base, _field) \
121 do { \
122 if ((_page)->lru.prev != _base) { \
123 struct page *prev; \
125 prev = lru_to_page(&(_page->lru)); \
126 prefetch(&prev->_field); \
128 } while (0)
129 #else
130 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
131 #endif
133 #ifdef ARCH_HAS_PREFETCHW
134 #define prefetchw_prev_lru_page(_page, _base, _field) \
135 do { \
136 if ((_page)->lru.prev != _base) { \
137 struct page *prev; \
139 prev = lru_to_page(&(_page->lru)); \
140 prefetchw(&prev->_field); \
142 } while (0)
143 #else
144 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
145 #endif
148 * From 0 .. 100. Higher means more swappy.
150 int vm_swappiness = 60;
151 long vm_total_pages; /* The total number of pages which the VM controls */
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
157 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
158 #else
159 #define scanning_global_lru(sc) (1)
160 #endif
162 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
163 struct scan_control *sc)
165 if (!scanning_global_lru(sc))
166 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168 return &zone->reclaim_stat;
171 static unsigned long zone_nr_lru_pages(struct zone *zone,
172 struct scan_control *sc, enum lru_list lru)
174 if (!scanning_global_lru(sc))
175 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
176 zone_to_nid(zone), zone_idx(zone), BIT(lru));
178 return zone_page_state(zone, NR_LRU_BASE + lru);
183 * Add a shrinker callback to be called from the vm
185 void register_shrinker(struct shrinker *shrinker)
187 shrinker->nr = 0;
188 down_write(&shrinker_rwsem);
189 list_add_tail(&shrinker->list, &shrinker_list);
190 up_write(&shrinker_rwsem);
192 EXPORT_SYMBOL(register_shrinker);
195 * Remove one
197 void unregister_shrinker(struct shrinker *shrinker)
199 down_write(&shrinker_rwsem);
200 list_del(&shrinker->list);
201 up_write(&shrinker_rwsem);
203 EXPORT_SYMBOL(unregister_shrinker);
205 static inline int do_shrinker_shrink(struct shrinker *shrinker,
206 struct shrink_control *sc,
207 unsigned long nr_to_scan)
209 sc->nr_to_scan = nr_to_scan;
210 return (*shrinker->shrink)(shrinker, sc);
213 #define SHRINK_BATCH 128
215 * Call the shrink functions to age shrinkable caches
217 * Here we assume it costs one seek to replace a lru page and that it also
218 * takes a seek to recreate a cache object. With this in mind we age equal
219 * percentages of the lru and ageable caches. This should balance the seeks
220 * generated by these structures.
222 * If the vm encountered mapped pages on the LRU it increase the pressure on
223 * slab to avoid swapping.
225 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
227 * `lru_pages' represents the number of on-LRU pages in all the zones which
228 * are eligible for the caller's allocation attempt. It is used for balancing
229 * slab reclaim versus page reclaim.
231 * Returns the number of slab objects which we shrunk.
233 unsigned long shrink_slab(struct shrink_control *shrink,
234 unsigned long nr_pages_scanned,
235 unsigned long lru_pages)
237 struct shrinker *shrinker;
238 unsigned long ret = 0;
240 if (nr_pages_scanned == 0)
241 nr_pages_scanned = SWAP_CLUSTER_MAX;
243 if (!down_read_trylock(&shrinker_rwsem)) {
244 /* Assume we'll be able to shrink next time */
245 ret = 1;
246 goto out;
249 list_for_each_entry(shrinker, &shrinker_list, list) {
250 unsigned long long delta;
251 unsigned long total_scan;
252 unsigned long max_pass;
253 int shrink_ret = 0;
254 long nr;
255 long new_nr;
256 long batch_size = shrinker->batch ? shrinker->batch
257 : SHRINK_BATCH;
260 * copy the current shrinker scan count into a local variable
261 * and zero it so that other concurrent shrinker invocations
262 * don't also do this scanning work.
264 do {
265 nr = shrinker->nr;
266 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
268 total_scan = nr;
269 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
270 delta = (4 * nr_pages_scanned) / shrinker->seeks;
271 delta *= max_pass;
272 do_div(delta, lru_pages + 1);
273 total_scan += delta;
274 if (total_scan < 0) {
275 printk(KERN_ERR "shrink_slab: %pF negative objects to "
276 "delete nr=%ld\n",
277 shrinker->shrink, total_scan);
278 total_scan = max_pass;
282 * We need to avoid excessive windup on filesystem shrinkers
283 * due to large numbers of GFP_NOFS allocations causing the
284 * shrinkers to return -1 all the time. This results in a large
285 * nr being built up so when a shrink that can do some work
286 * comes along it empties the entire cache due to nr >>>
287 * max_pass. This is bad for sustaining a working set in
288 * memory.
290 * Hence only allow the shrinker to scan the entire cache when
291 * a large delta change is calculated directly.
293 if (delta < max_pass / 4)
294 total_scan = min(total_scan, max_pass / 2);
297 * Avoid risking looping forever due to too large nr value:
298 * never try to free more than twice the estimate number of
299 * freeable entries.
301 if (total_scan > max_pass * 2)
302 total_scan = max_pass * 2;
304 trace_mm_shrink_slab_start(shrinker, shrink, nr,
305 nr_pages_scanned, lru_pages,
306 max_pass, delta, total_scan);
308 while (total_scan >= batch_size) {
309 int nr_before;
311 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312 shrink_ret = do_shrinker_shrink(shrinker, shrink,
313 batch_size);
314 if (shrink_ret == -1)
315 break;
316 if (shrink_ret < nr_before)
317 ret += nr_before - shrink_ret;
318 count_vm_events(SLABS_SCANNED, batch_size);
319 total_scan -= batch_size;
321 cond_resched();
325 * move the unused scan count back into the shrinker in a
326 * manner that handles concurrent updates. If we exhausted the
327 * scan, there is no need to do an update.
329 do {
330 nr = shrinker->nr;
331 new_nr = total_scan + nr;
332 if (total_scan <= 0)
333 break;
334 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
336 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
338 up_read(&shrinker_rwsem);
339 out:
340 cond_resched();
341 return ret;
344 static void set_reclaim_mode(int priority, struct scan_control *sc,
345 bool sync)
347 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
350 * Initially assume we are entering either lumpy reclaim or
351 * reclaim/compaction.Depending on the order, we will either set the
352 * sync mode or just reclaim order-0 pages later.
354 if (COMPACTION_BUILD)
355 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
356 else
357 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
360 * Avoid using lumpy reclaim or reclaim/compaction if possible by
361 * restricting when its set to either costly allocations or when
362 * under memory pressure
364 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
365 sc->reclaim_mode |= syncmode;
366 else if (sc->order && priority < DEF_PRIORITY - 2)
367 sc->reclaim_mode |= syncmode;
368 else
369 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
372 static void reset_reclaim_mode(struct scan_control *sc)
374 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
377 static inline int is_page_cache_freeable(struct page *page)
380 * A freeable page cache page is referenced only by the caller
381 * that isolated the page, the page cache radix tree and
382 * optional buffer heads at page->private.
384 return page_count(page) - page_has_private(page) == 2;
387 static int may_write_to_queue(struct backing_dev_info *bdi,
388 struct scan_control *sc)
390 if (current->flags & PF_SWAPWRITE)
391 return 1;
392 if (!bdi_write_congested(bdi))
393 return 1;
394 if (bdi == current->backing_dev_info)
395 return 1;
397 /* lumpy reclaim for hugepage often need a lot of write */
398 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
399 return 1;
400 return 0;
404 * We detected a synchronous write error writing a page out. Probably
405 * -ENOSPC. We need to propagate that into the address_space for a subsequent
406 * fsync(), msync() or close().
408 * The tricky part is that after writepage we cannot touch the mapping: nothing
409 * prevents it from being freed up. But we have a ref on the page and once
410 * that page is locked, the mapping is pinned.
412 * We're allowed to run sleeping lock_page() here because we know the caller has
413 * __GFP_FS.
415 static void handle_write_error(struct address_space *mapping,
416 struct page *page, int error)
418 lock_page(page);
419 if (page_mapping(page) == mapping)
420 mapping_set_error(mapping, error);
421 unlock_page(page);
424 /* possible outcome of pageout() */
425 typedef enum {
426 /* failed to write page out, page is locked */
427 PAGE_KEEP,
428 /* move page to the active list, page is locked */
429 PAGE_ACTIVATE,
430 /* page has been sent to the disk successfully, page is unlocked */
431 PAGE_SUCCESS,
432 /* page is clean and locked */
433 PAGE_CLEAN,
434 } pageout_t;
437 * pageout is called by shrink_page_list() for each dirty page.
438 * Calls ->writepage().
440 static pageout_t pageout(struct page *page, struct address_space *mapping,
441 struct scan_control *sc)
444 * If the page is dirty, only perform writeback if that write
445 * will be non-blocking. To prevent this allocation from being
446 * stalled by pagecache activity. But note that there may be
447 * stalls if we need to run get_block(). We could test
448 * PagePrivate for that.
450 * If this process is currently in __generic_file_aio_write() against
451 * this page's queue, we can perform writeback even if that
452 * will block.
454 * If the page is swapcache, write it back even if that would
455 * block, for some throttling. This happens by accident, because
456 * swap_backing_dev_info is bust: it doesn't reflect the
457 * congestion state of the swapdevs. Easy to fix, if needed.
459 if (!is_page_cache_freeable(page))
460 return PAGE_KEEP;
461 if (!mapping) {
463 * Some data journaling orphaned pages can have
464 * page->mapping == NULL while being dirty with clean buffers.
466 if (page_has_private(page)) {
467 if (try_to_free_buffers(page)) {
468 ClearPageDirty(page);
469 printk("%s: orphaned page\n", __func__);
470 return PAGE_CLEAN;
473 return PAGE_KEEP;
475 if (mapping->a_ops->writepage == NULL)
476 return PAGE_ACTIVATE;
477 if (!may_write_to_queue(mapping->backing_dev_info, sc))
478 return PAGE_KEEP;
480 if (clear_page_dirty_for_io(page)) {
481 int res;
482 struct writeback_control wbc = {
483 .sync_mode = WB_SYNC_NONE,
484 .nr_to_write = SWAP_CLUSTER_MAX,
485 .range_start = 0,
486 .range_end = LLONG_MAX,
487 .for_reclaim = 1,
490 SetPageReclaim(page);
491 res = mapping->a_ops->writepage(page, &wbc);
492 if (res < 0)
493 handle_write_error(mapping, page, res);
494 if (res == AOP_WRITEPAGE_ACTIVATE) {
495 ClearPageReclaim(page);
496 return PAGE_ACTIVATE;
500 * Wait on writeback if requested to. This happens when
501 * direct reclaiming a large contiguous area and the
502 * first attempt to free a range of pages fails.
504 if (PageWriteback(page) &&
505 (sc->reclaim_mode & RECLAIM_MODE_SYNC))
506 wait_on_page_writeback(page);
508 if (!PageWriteback(page)) {
509 /* synchronous write or broken a_ops? */
510 ClearPageReclaim(page);
512 trace_mm_vmscan_writepage(page,
513 trace_reclaim_flags(page, sc->reclaim_mode));
514 inc_zone_page_state(page, NR_VMSCAN_WRITE);
515 return PAGE_SUCCESS;
518 return PAGE_CLEAN;
522 * Same as remove_mapping, but if the page is removed from the mapping, it
523 * gets returned with a refcount of 0.
525 static int __remove_mapping(struct address_space *mapping, struct page *page)
527 BUG_ON(!PageLocked(page));
528 BUG_ON(mapping != page_mapping(page));
530 spin_lock_irq(&mapping->tree_lock);
532 * The non racy check for a busy page.
534 * Must be careful with the order of the tests. When someone has
535 * a ref to the page, it may be possible that they dirty it then
536 * drop the reference. So if PageDirty is tested before page_count
537 * here, then the following race may occur:
539 * get_user_pages(&page);
540 * [user mapping goes away]
541 * write_to(page);
542 * !PageDirty(page) [good]
543 * SetPageDirty(page);
544 * put_page(page);
545 * !page_count(page) [good, discard it]
547 * [oops, our write_to data is lost]
549 * Reversing the order of the tests ensures such a situation cannot
550 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
551 * load is not satisfied before that of page->_count.
553 * Note that if SetPageDirty is always performed via set_page_dirty,
554 * and thus under tree_lock, then this ordering is not required.
556 if (!page_freeze_refs(page, 2))
557 goto cannot_free;
558 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
559 if (unlikely(PageDirty(page))) {
560 page_unfreeze_refs(page, 2);
561 goto cannot_free;
564 if (PageSwapCache(page)) {
565 swp_entry_t swap = { .val = page_private(page) };
566 __delete_from_swap_cache(page);
567 spin_unlock_irq(&mapping->tree_lock);
568 swapcache_free(swap, page);
569 } else {
570 void (*freepage)(struct page *);
572 freepage = mapping->a_ops->freepage;
574 __delete_from_page_cache(page);
575 spin_unlock_irq(&mapping->tree_lock);
576 mem_cgroup_uncharge_cache_page(page);
578 if (freepage != NULL)
579 freepage(page);
582 return 1;
584 cannot_free:
585 spin_unlock_irq(&mapping->tree_lock);
586 return 0;
590 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
591 * someone else has a ref on the page, abort and return 0. If it was
592 * successfully detached, return 1. Assumes the caller has a single ref on
593 * this page.
595 int remove_mapping(struct address_space *mapping, struct page *page)
597 if (__remove_mapping(mapping, page)) {
599 * Unfreezing the refcount with 1 rather than 2 effectively
600 * drops the pagecache ref for us without requiring another
601 * atomic operation.
603 page_unfreeze_refs(page, 1);
604 return 1;
606 return 0;
610 * putback_lru_page - put previously isolated page onto appropriate LRU list
611 * @page: page to be put back to appropriate lru list
613 * Add previously isolated @page to appropriate LRU list.
614 * Page may still be unevictable for other reasons.
616 * lru_lock must not be held, interrupts must be enabled.
618 void putback_lru_page(struct page *page)
620 int lru;
621 int active = !!TestClearPageActive(page);
622 int was_unevictable = PageUnevictable(page);
624 VM_BUG_ON(PageLRU(page));
626 redo:
627 ClearPageUnevictable(page);
629 if (page_evictable(page, NULL)) {
631 * For evictable pages, we can use the cache.
632 * In event of a race, worst case is we end up with an
633 * unevictable page on [in]active list.
634 * We know how to handle that.
636 lru = active + page_lru_base_type(page);
637 lru_cache_add_lru(page, lru);
638 } else {
640 * Put unevictable pages directly on zone's unevictable
641 * list.
643 lru = LRU_UNEVICTABLE;
644 add_page_to_unevictable_list(page);
646 * When racing with an mlock clearing (page is
647 * unlocked), make sure that if the other thread does
648 * not observe our setting of PG_lru and fails
649 * isolation, we see PG_mlocked cleared below and move
650 * the page back to the evictable list.
652 * The other side is TestClearPageMlocked().
654 smp_mb();
658 * page's status can change while we move it among lru. If an evictable
659 * page is on unevictable list, it never be freed. To avoid that,
660 * check after we added it to the list, again.
662 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
663 if (!isolate_lru_page(page)) {
664 put_page(page);
665 goto redo;
667 /* This means someone else dropped this page from LRU
668 * So, it will be freed or putback to LRU again. There is
669 * nothing to do here.
673 if (was_unevictable && lru != LRU_UNEVICTABLE)
674 count_vm_event(UNEVICTABLE_PGRESCUED);
675 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
676 count_vm_event(UNEVICTABLE_PGCULLED);
678 put_page(page); /* drop ref from isolate */
681 enum page_references {
682 PAGEREF_RECLAIM,
683 PAGEREF_RECLAIM_CLEAN,
684 PAGEREF_KEEP,
685 PAGEREF_ACTIVATE,
688 static enum page_references page_check_references(struct page *page,
689 struct scan_control *sc)
691 int referenced_ptes, referenced_page;
692 unsigned long vm_flags;
694 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
695 referenced_page = TestClearPageReferenced(page);
697 /* Lumpy reclaim - ignore references */
698 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
699 return PAGEREF_RECLAIM;
702 * Mlock lost the isolation race with us. Let try_to_unmap()
703 * move the page to the unevictable list.
705 if (vm_flags & VM_LOCKED)
706 return PAGEREF_RECLAIM;
708 if (referenced_ptes) {
709 if (PageAnon(page))
710 return PAGEREF_ACTIVATE;
712 * All mapped pages start out with page table
713 * references from the instantiating fault, so we need
714 * to look twice if a mapped file page is used more
715 * than once.
717 * Mark it and spare it for another trip around the
718 * inactive list. Another page table reference will
719 * lead to its activation.
721 * Note: the mark is set for activated pages as well
722 * so that recently deactivated but used pages are
723 * quickly recovered.
725 SetPageReferenced(page);
727 if (referenced_page)
728 return PAGEREF_ACTIVATE;
730 return PAGEREF_KEEP;
733 /* Reclaim if clean, defer dirty pages to writeback */
734 if (referenced_page && !PageSwapBacked(page))
735 return PAGEREF_RECLAIM_CLEAN;
737 return PAGEREF_RECLAIM;
740 static noinline_for_stack void free_page_list(struct list_head *free_pages)
742 struct pagevec freed_pvec;
743 struct page *page, *tmp;
745 pagevec_init(&freed_pvec, 1);
747 list_for_each_entry_safe(page, tmp, free_pages, lru) {
748 list_del(&page->lru);
749 if (!pagevec_add(&freed_pvec, page)) {
750 __pagevec_free(&freed_pvec);
751 pagevec_reinit(&freed_pvec);
755 pagevec_free(&freed_pvec);
759 * shrink_page_list() returns the number of reclaimed pages
761 static unsigned long shrink_page_list(struct list_head *page_list,
762 struct zone *zone,
763 struct scan_control *sc)
765 LIST_HEAD(ret_pages);
766 LIST_HEAD(free_pages);
767 int pgactivate = 0;
768 unsigned long nr_dirty = 0;
769 unsigned long nr_congested = 0;
770 unsigned long nr_reclaimed = 0;
772 cond_resched();
774 while (!list_empty(page_list)) {
775 enum page_references references;
776 struct address_space *mapping;
777 struct page *page;
778 int may_enter_fs;
780 cond_resched();
782 page = lru_to_page(page_list);
783 list_del(&page->lru);
785 if (!trylock_page(page))
786 goto keep;
788 VM_BUG_ON(PageActive(page));
789 VM_BUG_ON(page_zone(page) != zone);
791 sc->nr_scanned++;
793 if (unlikely(!page_evictable(page, NULL)))
794 goto cull_mlocked;
796 if (!sc->may_unmap && page_mapped(page))
797 goto keep_locked;
799 /* Double the slab pressure for mapped and swapcache pages */
800 if (page_mapped(page) || PageSwapCache(page))
801 sc->nr_scanned++;
803 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
804 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
806 if (PageWriteback(page)) {
808 * Synchronous reclaim is performed in two passes,
809 * first an asynchronous pass over the list to
810 * start parallel writeback, and a second synchronous
811 * pass to wait for the IO to complete. Wait here
812 * for any page for which writeback has already
813 * started.
815 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
816 may_enter_fs)
817 wait_on_page_writeback(page);
818 else {
819 unlock_page(page);
820 goto keep_lumpy;
824 references = page_check_references(page, sc);
825 switch (references) {
826 case PAGEREF_ACTIVATE:
827 goto activate_locked;
828 case PAGEREF_KEEP:
829 goto keep_locked;
830 case PAGEREF_RECLAIM:
831 case PAGEREF_RECLAIM_CLEAN:
832 ; /* try to reclaim the page below */
836 * Anonymous process memory has backing store?
837 * Try to allocate it some swap space here.
839 if (PageAnon(page) && !PageSwapCache(page)) {
840 if (!(sc->gfp_mask & __GFP_IO))
841 goto keep_locked;
842 if (!add_to_swap(page))
843 goto activate_locked;
844 may_enter_fs = 1;
847 mapping = page_mapping(page);
850 * The page is mapped into the page tables of one or more
851 * processes. Try to unmap it here.
853 if (page_mapped(page) && mapping) {
854 switch (try_to_unmap(page, TTU_UNMAP)) {
855 case SWAP_FAIL:
856 goto activate_locked;
857 case SWAP_AGAIN:
858 goto keep_locked;
859 case SWAP_MLOCK:
860 goto cull_mlocked;
861 case SWAP_SUCCESS:
862 ; /* try to free the page below */
866 if (PageDirty(page)) {
867 nr_dirty++;
869 if (references == PAGEREF_RECLAIM_CLEAN)
870 goto keep_locked;
871 if (!may_enter_fs)
872 goto keep_locked;
873 if (!sc->may_writepage)
874 goto keep_locked;
876 /* Page is dirty, try to write it out here */
877 switch (pageout(page, mapping, sc)) {
878 case PAGE_KEEP:
879 nr_congested++;
880 goto keep_locked;
881 case PAGE_ACTIVATE:
882 goto activate_locked;
883 case PAGE_SUCCESS:
884 if (PageWriteback(page))
885 goto keep_lumpy;
886 if (PageDirty(page))
887 goto keep;
890 * A synchronous write - probably a ramdisk. Go
891 * ahead and try to reclaim the page.
893 if (!trylock_page(page))
894 goto keep;
895 if (PageDirty(page) || PageWriteback(page))
896 goto keep_locked;
897 mapping = page_mapping(page);
898 case PAGE_CLEAN:
899 ; /* try to free the page below */
904 * If the page has buffers, try to free the buffer mappings
905 * associated with this page. If we succeed we try to free
906 * the page as well.
908 * We do this even if the page is PageDirty().
909 * try_to_release_page() does not perform I/O, but it is
910 * possible for a page to have PageDirty set, but it is actually
911 * clean (all its buffers are clean). This happens if the
912 * buffers were written out directly, with submit_bh(). ext3
913 * will do this, as well as the blockdev mapping.
914 * try_to_release_page() will discover that cleanness and will
915 * drop the buffers and mark the page clean - it can be freed.
917 * Rarely, pages can have buffers and no ->mapping. These are
918 * the pages which were not successfully invalidated in
919 * truncate_complete_page(). We try to drop those buffers here
920 * and if that worked, and the page is no longer mapped into
921 * process address space (page_count == 1) it can be freed.
922 * Otherwise, leave the page on the LRU so it is swappable.
924 if (page_has_private(page)) {
925 if (!try_to_release_page(page, sc->gfp_mask))
926 goto activate_locked;
927 if (!mapping && page_count(page) == 1) {
928 unlock_page(page);
929 if (put_page_testzero(page))
930 goto free_it;
931 else {
933 * rare race with speculative reference.
934 * the speculative reference will free
935 * this page shortly, so we may
936 * increment nr_reclaimed here (and
937 * leave it off the LRU).
939 nr_reclaimed++;
940 continue;
945 if (!mapping || !__remove_mapping(mapping, page))
946 goto keep_locked;
949 * At this point, we have no other references and there is
950 * no way to pick any more up (removed from LRU, removed
951 * from pagecache). Can use non-atomic bitops now (and
952 * we obviously don't have to worry about waking up a process
953 * waiting on the page lock, because there are no references.
955 __clear_page_locked(page);
956 free_it:
957 nr_reclaimed++;
960 * Is there need to periodically free_page_list? It would
961 * appear not as the counts should be low
963 list_add(&page->lru, &free_pages);
964 continue;
966 cull_mlocked:
967 if (PageSwapCache(page))
968 try_to_free_swap(page);
969 unlock_page(page);
970 putback_lru_page(page);
971 reset_reclaim_mode(sc);
972 continue;
974 activate_locked:
975 /* Not a candidate for swapping, so reclaim swap space. */
976 if (PageSwapCache(page) && vm_swap_full())
977 try_to_free_swap(page);
978 VM_BUG_ON(PageActive(page));
979 SetPageActive(page);
980 pgactivate++;
981 keep_locked:
982 unlock_page(page);
983 keep:
984 reset_reclaim_mode(sc);
985 keep_lumpy:
986 list_add(&page->lru, &ret_pages);
987 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
991 * Tag a zone as congested if all the dirty pages encountered were
992 * backed by a congested BDI. In this case, reclaimers should just
993 * back off and wait for congestion to clear because further reclaim
994 * will encounter the same problem
996 if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
997 zone_set_flag(zone, ZONE_CONGESTED);
999 free_page_list(&free_pages);
1001 list_splice(&ret_pages, page_list);
1002 count_vm_events(PGACTIVATE, pgactivate);
1003 return nr_reclaimed;
1007 * Attempt to remove the specified page from its LRU. Only take this page
1008 * if it is of the appropriate PageActive status. Pages which are being
1009 * freed elsewhere are also ignored.
1011 * page: page to consider
1012 * mode: one of the LRU isolation modes defined above
1014 * returns 0 on success, -ve errno on failure.
1016 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1018 bool all_lru_mode;
1019 int ret = -EINVAL;
1021 /* Only take pages on the LRU. */
1022 if (!PageLRU(page))
1023 return ret;
1025 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1026 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1029 * When checking the active state, we need to be sure we are
1030 * dealing with comparible boolean values. Take the logical not
1031 * of each.
1033 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1034 return ret;
1036 if (!all_lru_mode && !!page_is_file_cache(page) != file)
1037 return ret;
1040 * When this function is being called for lumpy reclaim, we
1041 * initially look into all LRU pages, active, inactive and
1042 * unevictable; only give shrink_page_list evictable pages.
1044 if (PageUnevictable(page))
1045 return ret;
1047 ret = -EBUSY;
1049 if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1050 return ret;
1052 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1053 return ret;
1055 if (likely(get_page_unless_zero(page))) {
1057 * Be careful not to clear PageLRU until after we're
1058 * sure the page is not being freed elsewhere -- the
1059 * page release code relies on it.
1061 ClearPageLRU(page);
1062 ret = 0;
1065 return ret;
1069 * zone->lru_lock is heavily contended. Some of the functions that
1070 * shrink the lists perform better by taking out a batch of pages
1071 * and working on them outside the LRU lock.
1073 * For pagecache intensive workloads, this function is the hottest
1074 * spot in the kernel (apart from copy_*_user functions).
1076 * Appropriate locks must be held before calling this function.
1078 * @nr_to_scan: The number of pages to look through on the list.
1079 * @src: The LRU list to pull pages off.
1080 * @dst: The temp list to put pages on to.
1081 * @scanned: The number of pages that were scanned.
1082 * @order: The caller's attempted allocation order
1083 * @mode: One of the LRU isolation modes
1084 * @file: True [1] if isolating file [!anon] pages
1086 * returns how many pages were moved onto *@dst.
1088 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1089 struct list_head *src, struct list_head *dst,
1090 unsigned long *scanned, int order, isolate_mode_t mode,
1091 int file)
1093 unsigned long nr_taken = 0;
1094 unsigned long nr_lumpy_taken = 0;
1095 unsigned long nr_lumpy_dirty = 0;
1096 unsigned long nr_lumpy_failed = 0;
1097 unsigned long scan;
1099 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1100 struct page *page;
1101 unsigned long pfn;
1102 unsigned long end_pfn;
1103 unsigned long page_pfn;
1104 int zone_id;
1106 page = lru_to_page(src);
1107 prefetchw_prev_lru_page(page, src, flags);
1109 VM_BUG_ON(!PageLRU(page));
1111 switch (__isolate_lru_page(page, mode, file)) {
1112 case 0:
1113 list_move(&page->lru, dst);
1114 mem_cgroup_del_lru(page);
1115 nr_taken += hpage_nr_pages(page);
1116 break;
1118 case -EBUSY:
1119 /* else it is being freed elsewhere */
1120 list_move(&page->lru, src);
1121 mem_cgroup_rotate_lru_list(page, page_lru(page));
1122 continue;
1124 default:
1125 BUG();
1128 if (!order)
1129 continue;
1132 * Attempt to take all pages in the order aligned region
1133 * surrounding the tag page. Only take those pages of
1134 * the same active state as that tag page. We may safely
1135 * round the target page pfn down to the requested order
1136 * as the mem_map is guaranteed valid out to MAX_ORDER,
1137 * where that page is in a different zone we will detect
1138 * it from its zone id and abort this block scan.
1140 zone_id = page_zone_id(page);
1141 page_pfn = page_to_pfn(page);
1142 pfn = page_pfn & ~((1 << order) - 1);
1143 end_pfn = pfn + (1 << order);
1144 for (; pfn < end_pfn; pfn++) {
1145 struct page *cursor_page;
1147 /* The target page is in the block, ignore it. */
1148 if (unlikely(pfn == page_pfn))
1149 continue;
1151 /* Avoid holes within the zone. */
1152 if (unlikely(!pfn_valid_within(pfn)))
1153 break;
1155 cursor_page = pfn_to_page(pfn);
1157 /* Check that we have not crossed a zone boundary. */
1158 if (unlikely(page_zone_id(cursor_page) != zone_id))
1159 break;
1162 * If we don't have enough swap space, reclaiming of
1163 * anon page which don't already have a swap slot is
1164 * pointless.
1166 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1167 !PageSwapCache(cursor_page))
1168 break;
1170 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1171 list_move(&cursor_page->lru, dst);
1172 mem_cgroup_del_lru(cursor_page);
1173 nr_taken += hpage_nr_pages(page);
1174 nr_lumpy_taken++;
1175 if (PageDirty(cursor_page))
1176 nr_lumpy_dirty++;
1177 scan++;
1178 } else {
1180 * Check if the page is freed already.
1182 * We can't use page_count() as that
1183 * requires compound_head and we don't
1184 * have a pin on the page here. If a
1185 * page is tail, we may or may not
1186 * have isolated the head, so assume
1187 * it's not free, it'd be tricky to
1188 * track the head status without a
1189 * page pin.
1191 if (!PageTail(cursor_page) &&
1192 !atomic_read(&cursor_page->_count))
1193 continue;
1194 break;
1198 /* If we break out of the loop above, lumpy reclaim failed */
1199 if (pfn < end_pfn)
1200 nr_lumpy_failed++;
1203 *scanned = scan;
1205 trace_mm_vmscan_lru_isolate(order,
1206 nr_to_scan, scan,
1207 nr_taken,
1208 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1209 mode);
1210 return nr_taken;
1213 static unsigned long isolate_pages_global(unsigned long nr,
1214 struct list_head *dst,
1215 unsigned long *scanned, int order,
1216 isolate_mode_t mode,
1217 struct zone *z, int active, int file)
1219 int lru = LRU_BASE;
1220 if (active)
1221 lru += LRU_ACTIVE;
1222 if (file)
1223 lru += LRU_FILE;
1224 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1225 mode, file);
1229 * clear_active_flags() is a helper for shrink_active_list(), clearing
1230 * any active bits from the pages in the list.
1232 static unsigned long clear_active_flags(struct list_head *page_list,
1233 unsigned int *count)
1235 int nr_active = 0;
1236 int lru;
1237 struct page *page;
1239 list_for_each_entry(page, page_list, lru) {
1240 int numpages = hpage_nr_pages(page);
1241 lru = page_lru_base_type(page);
1242 if (PageActive(page)) {
1243 lru += LRU_ACTIVE;
1244 ClearPageActive(page);
1245 nr_active += numpages;
1247 if (count)
1248 count[lru] += numpages;
1251 return nr_active;
1255 * isolate_lru_page - tries to isolate a page from its LRU list
1256 * @page: page to isolate from its LRU list
1258 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1259 * vmstat statistic corresponding to whatever LRU list the page was on.
1261 * Returns 0 if the page was removed from an LRU list.
1262 * Returns -EBUSY if the page was not on an LRU list.
1264 * The returned page will have PageLRU() cleared. If it was found on
1265 * the active list, it will have PageActive set. If it was found on
1266 * the unevictable list, it will have the PageUnevictable bit set. That flag
1267 * may need to be cleared by the caller before letting the page go.
1269 * The vmstat statistic corresponding to the list on which the page was
1270 * found will be decremented.
1272 * Restrictions:
1273 * (1) Must be called with an elevated refcount on the page. This is a
1274 * fundamentnal difference from isolate_lru_pages (which is called
1275 * without a stable reference).
1276 * (2) the lru_lock must not be held.
1277 * (3) interrupts must be enabled.
1279 int isolate_lru_page(struct page *page)
1281 int ret = -EBUSY;
1283 VM_BUG_ON(!page_count(page));
1285 if (PageLRU(page)) {
1286 struct zone *zone = page_zone(page);
1288 spin_lock_irq(&zone->lru_lock);
1289 if (PageLRU(page)) {
1290 int lru = page_lru(page);
1291 ret = 0;
1292 get_page(page);
1293 ClearPageLRU(page);
1295 del_page_from_lru_list(zone, page, lru);
1297 spin_unlock_irq(&zone->lru_lock);
1299 return ret;
1303 * Are there way too many processes in the direct reclaim path already?
1305 static int too_many_isolated(struct zone *zone, int file,
1306 struct scan_control *sc)
1308 unsigned long inactive, isolated;
1310 if (current_is_kswapd())
1311 return 0;
1313 if (!scanning_global_lru(sc))
1314 return 0;
1316 if (file) {
1317 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1318 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1319 } else {
1320 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1321 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1324 return isolated > inactive;
1328 * TODO: Try merging with migrations version of putback_lru_pages
1330 static noinline_for_stack void
1331 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1332 unsigned long nr_anon, unsigned long nr_file,
1333 struct list_head *page_list)
1335 struct page *page;
1336 struct pagevec pvec;
1337 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1339 pagevec_init(&pvec, 1);
1342 * Put back any unfreeable pages.
1344 spin_lock(&zone->lru_lock);
1345 while (!list_empty(page_list)) {
1346 int lru;
1347 page = lru_to_page(page_list);
1348 VM_BUG_ON(PageLRU(page));
1349 list_del(&page->lru);
1350 if (unlikely(!page_evictable(page, NULL))) {
1351 spin_unlock_irq(&zone->lru_lock);
1352 putback_lru_page(page);
1353 spin_lock_irq(&zone->lru_lock);
1354 continue;
1356 SetPageLRU(page);
1357 lru = page_lru(page);
1358 add_page_to_lru_list(zone, page, lru);
1359 if (is_active_lru(lru)) {
1360 int file = is_file_lru(lru);
1361 int numpages = hpage_nr_pages(page);
1362 reclaim_stat->recent_rotated[file] += numpages;
1363 if (!scanning_global_lru(sc))
1364 sc->memcg_record->nr_rotated[file] += numpages;
1366 if (!pagevec_add(&pvec, page)) {
1367 spin_unlock_irq(&zone->lru_lock);
1368 __pagevec_release(&pvec);
1369 spin_lock_irq(&zone->lru_lock);
1372 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1373 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1375 spin_unlock_irq(&zone->lru_lock);
1376 pagevec_release(&pvec);
1379 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1380 struct scan_control *sc,
1381 unsigned long *nr_anon,
1382 unsigned long *nr_file,
1383 struct list_head *isolated_list)
1385 unsigned long nr_active;
1386 unsigned int count[NR_LRU_LISTS] = { 0, };
1387 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1389 nr_active = clear_active_flags(isolated_list, count);
1390 __count_vm_events(PGDEACTIVATE, nr_active);
1392 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1393 -count[LRU_ACTIVE_FILE]);
1394 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1395 -count[LRU_INACTIVE_FILE]);
1396 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1397 -count[LRU_ACTIVE_ANON]);
1398 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1399 -count[LRU_INACTIVE_ANON]);
1401 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1402 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1403 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1404 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1406 reclaim_stat->recent_scanned[0] += *nr_anon;
1407 reclaim_stat->recent_scanned[1] += *nr_file;
1408 if (!scanning_global_lru(sc)) {
1409 sc->memcg_record->nr_scanned[0] += *nr_anon;
1410 sc->memcg_record->nr_scanned[1] += *nr_file;
1415 * Returns true if the caller should wait to clean dirty/writeback pages.
1417 * If we are direct reclaiming for contiguous pages and we do not reclaim
1418 * everything in the list, try again and wait for writeback IO to complete.
1419 * This will stall high-order allocations noticeably. Only do that when really
1420 * need to free the pages under high memory pressure.
1422 static inline bool should_reclaim_stall(unsigned long nr_taken,
1423 unsigned long nr_freed,
1424 int priority,
1425 struct scan_control *sc)
1427 int lumpy_stall_priority;
1429 /* kswapd should not stall on sync IO */
1430 if (current_is_kswapd())
1431 return false;
1433 /* Only stall on lumpy reclaim */
1434 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1435 return false;
1437 /* If we have relaimed everything on the isolated list, no stall */
1438 if (nr_freed == nr_taken)
1439 return false;
1442 * For high-order allocations, there are two stall thresholds.
1443 * High-cost allocations stall immediately where as lower
1444 * order allocations such as stacks require the scanning
1445 * priority to be much higher before stalling.
1447 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1448 lumpy_stall_priority = DEF_PRIORITY;
1449 else
1450 lumpy_stall_priority = DEF_PRIORITY / 3;
1452 return priority <= lumpy_stall_priority;
1456 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1457 * of reclaimed pages
1459 static noinline_for_stack unsigned long
1460 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1461 struct scan_control *sc, int priority, int file)
1463 LIST_HEAD(page_list);
1464 unsigned long nr_scanned;
1465 unsigned long nr_reclaimed = 0;
1466 unsigned long nr_taken;
1467 unsigned long nr_anon;
1468 unsigned long nr_file;
1469 isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1471 while (unlikely(too_many_isolated(zone, file, sc))) {
1472 congestion_wait(BLK_RW_ASYNC, HZ/10);
1474 /* We are about to die and free our memory. Return now. */
1475 if (fatal_signal_pending(current))
1476 return SWAP_CLUSTER_MAX;
1479 set_reclaim_mode(priority, sc, false);
1480 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1481 reclaim_mode |= ISOLATE_ACTIVE;
1483 lru_add_drain();
1485 if (!sc->may_unmap)
1486 reclaim_mode |= ISOLATE_UNMAPPED;
1487 if (!sc->may_writepage)
1488 reclaim_mode |= ISOLATE_CLEAN;
1490 spin_lock_irq(&zone->lru_lock);
1492 if (scanning_global_lru(sc)) {
1493 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1494 &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1495 zone->pages_scanned += nr_scanned;
1496 if (current_is_kswapd())
1497 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1498 nr_scanned);
1499 else
1500 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1501 nr_scanned);
1502 } else {
1503 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1504 &nr_scanned, sc->order, reclaim_mode, zone,
1505 sc->mem_cgroup, 0, file);
1507 * mem_cgroup_isolate_pages() keeps track of
1508 * scanned pages on its own.
1512 if (nr_taken == 0) {
1513 spin_unlock_irq(&zone->lru_lock);
1514 return 0;
1517 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1519 spin_unlock_irq(&zone->lru_lock);
1521 nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1523 /* Check if we should syncronously wait for writeback */
1524 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1525 set_reclaim_mode(priority, sc, true);
1526 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1529 if (!scanning_global_lru(sc))
1530 sc->memcg_record->nr_freed[file] += nr_reclaimed;
1532 local_irq_disable();
1533 if (current_is_kswapd())
1534 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1535 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1537 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1539 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1540 zone_idx(zone),
1541 nr_scanned, nr_reclaimed,
1542 priority,
1543 trace_shrink_flags(file, sc->reclaim_mode));
1544 return nr_reclaimed;
1548 * This moves pages from the active list to the inactive list.
1550 * We move them the other way if the page is referenced by one or more
1551 * processes, from rmap.
1553 * If the pages are mostly unmapped, the processing is fast and it is
1554 * appropriate to hold zone->lru_lock across the whole operation. But if
1555 * the pages are mapped, the processing is slow (page_referenced()) so we
1556 * should drop zone->lru_lock around each page. It's impossible to balance
1557 * this, so instead we remove the pages from the LRU while processing them.
1558 * It is safe to rely on PG_active against the non-LRU pages in here because
1559 * nobody will play with that bit on a non-LRU page.
1561 * The downside is that we have to touch page->_count against each page.
1562 * But we had to alter page->flags anyway.
1565 static void move_active_pages_to_lru(struct zone *zone,
1566 struct list_head *list,
1567 enum lru_list lru)
1569 unsigned long pgmoved = 0;
1570 struct pagevec pvec;
1571 struct page *page;
1573 pagevec_init(&pvec, 1);
1575 while (!list_empty(list)) {
1576 page = lru_to_page(list);
1578 VM_BUG_ON(PageLRU(page));
1579 SetPageLRU(page);
1581 list_move(&page->lru, &zone->lru[lru].list);
1582 mem_cgroup_add_lru_list(page, lru);
1583 pgmoved += hpage_nr_pages(page);
1585 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1586 spin_unlock_irq(&zone->lru_lock);
1587 if (buffer_heads_over_limit)
1588 pagevec_strip(&pvec);
1589 __pagevec_release(&pvec);
1590 spin_lock_irq(&zone->lru_lock);
1593 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1594 if (!is_active_lru(lru))
1595 __count_vm_events(PGDEACTIVATE, pgmoved);
1598 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1599 struct scan_control *sc, int priority, int file)
1601 unsigned long nr_taken;
1602 unsigned long pgscanned;
1603 unsigned long vm_flags;
1604 LIST_HEAD(l_hold); /* The pages which were snipped off */
1605 LIST_HEAD(l_active);
1606 LIST_HEAD(l_inactive);
1607 struct page *page;
1608 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1609 unsigned long nr_rotated = 0;
1610 isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1612 lru_add_drain();
1614 if (!sc->may_unmap)
1615 reclaim_mode |= ISOLATE_UNMAPPED;
1616 if (!sc->may_writepage)
1617 reclaim_mode |= ISOLATE_CLEAN;
1619 spin_lock_irq(&zone->lru_lock);
1620 if (scanning_global_lru(sc)) {
1621 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1622 &pgscanned, sc->order,
1623 reclaim_mode, zone,
1624 1, file);
1625 zone->pages_scanned += pgscanned;
1626 } else {
1627 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1628 &pgscanned, sc->order,
1629 reclaim_mode, zone,
1630 sc->mem_cgroup, 1, file);
1632 * mem_cgroup_isolate_pages() keeps track of
1633 * scanned pages on its own.
1637 reclaim_stat->recent_scanned[file] += nr_taken;
1638 if (!scanning_global_lru(sc))
1639 sc->memcg_record->nr_scanned[file] += nr_taken;
1641 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1642 if (file)
1643 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1644 else
1645 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1646 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1647 spin_unlock_irq(&zone->lru_lock);
1649 while (!list_empty(&l_hold)) {
1650 cond_resched();
1651 page = lru_to_page(&l_hold);
1652 list_del(&page->lru);
1654 if (unlikely(!page_evictable(page, NULL))) {
1655 putback_lru_page(page);
1656 continue;
1659 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1660 nr_rotated += hpage_nr_pages(page);
1662 * Identify referenced, file-backed active pages and
1663 * give them one more trip around the active list. So
1664 * that executable code get better chances to stay in
1665 * memory under moderate memory pressure. Anon pages
1666 * are not likely to be evicted by use-once streaming
1667 * IO, plus JVM can create lots of anon VM_EXEC pages,
1668 * so we ignore them here.
1670 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1671 list_add(&page->lru, &l_active);
1672 continue;
1676 ClearPageActive(page); /* we are de-activating */
1677 list_add(&page->lru, &l_inactive);
1681 * Move pages back to the lru list.
1683 spin_lock_irq(&zone->lru_lock);
1685 * Count referenced pages from currently used mappings as rotated,
1686 * even though only some of them are actually re-activated. This
1687 * helps balance scan pressure between file and anonymous pages in
1688 * get_scan_ratio.
1690 reclaim_stat->recent_rotated[file] += nr_rotated;
1691 if (!scanning_global_lru(sc))
1692 sc->memcg_record->nr_rotated[file] += nr_rotated;
1694 move_active_pages_to_lru(zone, &l_active,
1695 LRU_ACTIVE + file * LRU_FILE);
1696 move_active_pages_to_lru(zone, &l_inactive,
1697 LRU_BASE + file * LRU_FILE);
1698 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1699 spin_unlock_irq(&zone->lru_lock);
1702 #ifdef CONFIG_SWAP
1703 static int inactive_anon_is_low_global(struct zone *zone)
1705 unsigned long active, inactive;
1707 active = zone_page_state(zone, NR_ACTIVE_ANON);
1708 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1710 if (inactive * zone->inactive_ratio < active)
1711 return 1;
1713 return 0;
1717 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1718 * @zone: zone to check
1719 * @sc: scan control of this context
1721 * Returns true if the zone does not have enough inactive anon pages,
1722 * meaning some active anon pages need to be deactivated.
1724 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1726 int low;
1729 * If we don't have swap space, anonymous page deactivation
1730 * is pointless.
1732 if (!total_swap_pages)
1733 return 0;
1735 if (scanning_global_lru(sc))
1736 low = inactive_anon_is_low_global(zone);
1737 else
1738 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1739 return low;
1741 #else
1742 static inline int inactive_anon_is_low(struct zone *zone,
1743 struct scan_control *sc)
1745 return 0;
1747 #endif
1749 static int inactive_file_is_low_global(struct zone *zone)
1751 unsigned long active, inactive;
1753 active = zone_page_state(zone, NR_ACTIVE_FILE);
1754 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1756 return (active > inactive);
1760 * inactive_file_is_low - check if file pages need to be deactivated
1761 * @zone: zone to check
1762 * @sc: scan control of this context
1764 * When the system is doing streaming IO, memory pressure here
1765 * ensures that active file pages get deactivated, until more
1766 * than half of the file pages are on the inactive list.
1768 * Once we get to that situation, protect the system's working
1769 * set from being evicted by disabling active file page aging.
1771 * This uses a different ratio than the anonymous pages, because
1772 * the page cache uses a use-once replacement algorithm.
1774 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1776 int low;
1778 if (scanning_global_lru(sc))
1779 low = inactive_file_is_low_global(zone);
1780 else
1781 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1782 return low;
1785 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1786 int file)
1788 if (file)
1789 return inactive_file_is_low(zone, sc);
1790 else
1791 return inactive_anon_is_low(zone, sc);
1794 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1795 struct zone *zone, struct scan_control *sc, int priority)
1797 int file = is_file_lru(lru);
1799 if (is_active_lru(lru)) {
1800 if (inactive_list_is_low(zone, sc, file))
1801 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1802 return 0;
1805 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1808 static int vmscan_swappiness(struct scan_control *sc)
1810 if (scanning_global_lru(sc))
1811 return vm_swappiness;
1812 return mem_cgroup_swappiness(sc->mem_cgroup);
1816 * Determine how aggressively the anon and file LRU lists should be
1817 * scanned. The relative value of each set of LRU lists is determined
1818 * by looking at the fraction of the pages scanned we did rotate back
1819 * onto the active list instead of evict.
1821 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1823 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1824 unsigned long *nr, int priority)
1826 unsigned long anon, file, free;
1827 unsigned long anon_prio, file_prio;
1828 unsigned long ap, fp;
1829 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1830 u64 fraction[2], denominator;
1831 enum lru_list l;
1832 int noswap = 0;
1833 int force_scan = 0;
1834 unsigned long nr_force_scan[2];
1837 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1838 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1839 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1840 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1842 if (((anon + file) >> priority) < SWAP_CLUSTER_MAX) {
1843 /* kswapd does zone balancing and need to scan this zone */
1844 if (scanning_global_lru(sc) && current_is_kswapd())
1845 force_scan = 1;
1846 /* memcg may have small limit and need to avoid priority drop */
1847 if (!scanning_global_lru(sc))
1848 force_scan = 1;
1851 /* If we have no swap space, do not bother scanning anon pages. */
1852 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1853 noswap = 1;
1854 fraction[0] = 0;
1855 fraction[1] = 1;
1856 denominator = 1;
1857 nr_force_scan[0] = 0;
1858 nr_force_scan[1] = SWAP_CLUSTER_MAX;
1859 goto out;
1862 if (scanning_global_lru(sc)) {
1863 free = zone_page_state(zone, NR_FREE_PAGES);
1864 /* If we have very few page cache pages,
1865 force-scan anon pages. */
1866 if (unlikely(file + free <= high_wmark_pages(zone))) {
1867 fraction[0] = 1;
1868 fraction[1] = 0;
1869 denominator = 1;
1870 nr_force_scan[0] = SWAP_CLUSTER_MAX;
1871 nr_force_scan[1] = 0;
1872 goto out;
1877 * With swappiness at 100, anonymous and file have the same priority.
1878 * This scanning priority is essentially the inverse of IO cost.
1880 anon_prio = vmscan_swappiness(sc);
1881 file_prio = 200 - vmscan_swappiness(sc);
1884 * OK, so we have swap space and a fair amount of page cache
1885 * pages. We use the recently rotated / recently scanned
1886 * ratios to determine how valuable each cache is.
1888 * Because workloads change over time (and to avoid overflow)
1889 * we keep these statistics as a floating average, which ends
1890 * up weighing recent references more than old ones.
1892 * anon in [0], file in [1]
1894 spin_lock_irq(&zone->lru_lock);
1895 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1896 reclaim_stat->recent_scanned[0] /= 2;
1897 reclaim_stat->recent_rotated[0] /= 2;
1900 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1901 reclaim_stat->recent_scanned[1] /= 2;
1902 reclaim_stat->recent_rotated[1] /= 2;
1906 * The amount of pressure on anon vs file pages is inversely
1907 * proportional to the fraction of recently scanned pages on
1908 * each list that were recently referenced and in active use.
1910 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1911 ap /= reclaim_stat->recent_rotated[0] + 1;
1913 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1914 fp /= reclaim_stat->recent_rotated[1] + 1;
1915 spin_unlock_irq(&zone->lru_lock);
1917 fraction[0] = ap;
1918 fraction[1] = fp;
1919 denominator = ap + fp + 1;
1920 if (force_scan) {
1921 unsigned long scan = SWAP_CLUSTER_MAX;
1922 nr_force_scan[0] = div64_u64(scan * ap, denominator);
1923 nr_force_scan[1] = div64_u64(scan * fp, denominator);
1925 out:
1926 for_each_evictable_lru(l) {
1927 int file = is_file_lru(l);
1928 unsigned long scan;
1930 scan = zone_nr_lru_pages(zone, sc, l);
1931 if (priority || noswap) {
1932 scan >>= priority;
1933 scan = div64_u64(scan * fraction[file], denominator);
1937 * If zone is small or memcg is small, nr[l] can be 0.
1938 * This results no-scan on this priority and priority drop down.
1939 * For global direct reclaim, it can visit next zone and tend
1940 * not to have problems. For global kswapd, it's for zone
1941 * balancing and it need to scan a small amounts. When using
1942 * memcg, priority drop can cause big latency. So, it's better
1943 * to scan small amount. See may_noscan above.
1945 if (!scan && force_scan)
1946 scan = nr_force_scan[file];
1947 nr[l] = scan;
1952 * Reclaim/compaction depends on a number of pages being freed. To avoid
1953 * disruption to the system, a small number of order-0 pages continue to be
1954 * rotated and reclaimed in the normal fashion. However, by the time we get
1955 * back to the allocator and call try_to_compact_zone(), we ensure that
1956 * there are enough free pages for it to be likely successful
1958 static inline bool should_continue_reclaim(struct zone *zone,
1959 unsigned long nr_reclaimed,
1960 unsigned long nr_scanned,
1961 struct scan_control *sc)
1963 unsigned long pages_for_compaction;
1964 unsigned long inactive_lru_pages;
1966 /* If not in reclaim/compaction mode, stop */
1967 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1968 return false;
1970 /* Consider stopping depending on scan and reclaim activity */
1971 if (sc->gfp_mask & __GFP_REPEAT) {
1973 * For __GFP_REPEAT allocations, stop reclaiming if the
1974 * full LRU list has been scanned and we are still failing
1975 * to reclaim pages. This full LRU scan is potentially
1976 * expensive but a __GFP_REPEAT caller really wants to succeed
1978 if (!nr_reclaimed && !nr_scanned)
1979 return false;
1980 } else {
1982 * For non-__GFP_REPEAT allocations which can presumably
1983 * fail without consequence, stop if we failed to reclaim
1984 * any pages from the last SWAP_CLUSTER_MAX number of
1985 * pages that were scanned. This will return to the
1986 * caller faster at the risk reclaim/compaction and
1987 * the resulting allocation attempt fails
1989 if (!nr_reclaimed)
1990 return false;
1994 * If we have not reclaimed enough pages for compaction and the
1995 * inactive lists are large enough, continue reclaiming
1997 pages_for_compaction = (2UL << sc->order);
1998 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1999 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2000 if (sc->nr_reclaimed < pages_for_compaction &&
2001 inactive_lru_pages > pages_for_compaction)
2002 return true;
2004 /* If compaction would go ahead or the allocation would succeed, stop */
2005 switch (compaction_suitable(zone, sc->order)) {
2006 case COMPACT_PARTIAL:
2007 case COMPACT_CONTINUE:
2008 return false;
2009 default:
2010 return true;
2015 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2017 static void shrink_zone(int priority, struct zone *zone,
2018 struct scan_control *sc)
2020 unsigned long nr[NR_LRU_LISTS];
2021 unsigned long nr_to_scan;
2022 enum lru_list l;
2023 unsigned long nr_reclaimed, nr_scanned;
2024 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2025 struct blk_plug plug;
2027 restart:
2028 nr_reclaimed = 0;
2029 nr_scanned = sc->nr_scanned;
2030 get_scan_count(zone, sc, nr, priority);
2032 blk_start_plug(&plug);
2033 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2034 nr[LRU_INACTIVE_FILE]) {
2035 for_each_evictable_lru(l) {
2036 if (nr[l]) {
2037 nr_to_scan = min_t(unsigned long,
2038 nr[l], SWAP_CLUSTER_MAX);
2039 nr[l] -= nr_to_scan;
2041 nr_reclaimed += shrink_list(l, nr_to_scan,
2042 zone, sc, priority);
2046 * On large memory systems, scan >> priority can become
2047 * really large. This is fine for the starting priority;
2048 * we want to put equal scanning pressure on each zone.
2049 * However, if the VM has a harder time of freeing pages,
2050 * with multiple processes reclaiming pages, the total
2051 * freeing target can get unreasonably large.
2053 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2054 break;
2056 blk_finish_plug(&plug);
2057 sc->nr_reclaimed += nr_reclaimed;
2060 * Even if we did not try to evict anon pages at all, we want to
2061 * rebalance the anon lru active/inactive ratio.
2063 if (inactive_anon_is_low(zone, sc))
2064 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2066 /* reclaim/compaction might need reclaim to continue */
2067 if (should_continue_reclaim(zone, nr_reclaimed,
2068 sc->nr_scanned - nr_scanned, sc))
2069 goto restart;
2071 throttle_vm_writeout(sc->gfp_mask);
2075 * This is the direct reclaim path, for page-allocating processes. We only
2076 * try to reclaim pages from zones which will satisfy the caller's allocation
2077 * request.
2079 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2080 * Because:
2081 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2082 * allocation or
2083 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2084 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2085 * zone defense algorithm.
2087 * If a zone is deemed to be full of pinned pages then just give it a light
2088 * scan then give up on it.
2090 static void shrink_zones(int priority, struct zonelist *zonelist,
2091 struct scan_control *sc)
2093 struct zoneref *z;
2094 struct zone *zone;
2095 unsigned long nr_soft_reclaimed;
2096 unsigned long nr_soft_scanned;
2098 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2099 gfp_zone(sc->gfp_mask), sc->nodemask) {
2100 if (!populated_zone(zone))
2101 continue;
2103 * Take care memory controller reclaiming has small influence
2104 * to global LRU.
2106 if (scanning_global_lru(sc)) {
2107 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2108 continue;
2109 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2110 continue; /* Let kswapd poll it */
2112 * This steals pages from memory cgroups over softlimit
2113 * and returns the number of reclaimed pages and
2114 * scanned pages. This works for global memory pressure
2115 * and balancing, not for a memcg's limit.
2117 nr_soft_scanned = 0;
2118 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2119 sc->order, sc->gfp_mask,
2120 &nr_soft_scanned);
2121 sc->nr_reclaimed += nr_soft_reclaimed;
2122 sc->nr_scanned += nr_soft_scanned;
2123 /* need some check for avoid more shrink_zone() */
2126 shrink_zone(priority, zone, sc);
2130 static bool zone_reclaimable(struct zone *zone)
2132 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2135 /* All zones in zonelist are unreclaimable? */
2136 static bool all_unreclaimable(struct zonelist *zonelist,
2137 struct scan_control *sc)
2139 struct zoneref *z;
2140 struct zone *zone;
2142 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2143 gfp_zone(sc->gfp_mask), sc->nodemask) {
2144 if (!populated_zone(zone))
2145 continue;
2146 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2147 continue;
2148 if (!zone->all_unreclaimable)
2149 return false;
2152 return true;
2156 * This is the main entry point to direct page reclaim.
2158 * If a full scan of the inactive list fails to free enough memory then we
2159 * are "out of memory" and something needs to be killed.
2161 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2162 * high - the zone may be full of dirty or under-writeback pages, which this
2163 * caller can't do much about. We kick the writeback threads and take explicit
2164 * naps in the hope that some of these pages can be written. But if the
2165 * allocating task holds filesystem locks which prevent writeout this might not
2166 * work, and the allocation attempt will fail.
2168 * returns: 0, if no pages reclaimed
2169 * else, the number of pages reclaimed
2171 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2172 struct scan_control *sc,
2173 struct shrink_control *shrink)
2175 int priority;
2176 unsigned long total_scanned = 0;
2177 struct reclaim_state *reclaim_state = current->reclaim_state;
2178 struct zoneref *z;
2179 struct zone *zone;
2180 unsigned long writeback_threshold;
2182 get_mems_allowed();
2183 delayacct_freepages_start();
2185 if (scanning_global_lru(sc))
2186 count_vm_event(ALLOCSTALL);
2188 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2189 sc->nr_scanned = 0;
2190 if (!priority)
2191 disable_swap_token(sc->mem_cgroup);
2192 shrink_zones(priority, zonelist, sc);
2194 * Don't shrink slabs when reclaiming memory from
2195 * over limit cgroups
2197 if (scanning_global_lru(sc)) {
2198 unsigned long lru_pages = 0;
2199 for_each_zone_zonelist(zone, z, zonelist,
2200 gfp_zone(sc->gfp_mask)) {
2201 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2202 continue;
2204 lru_pages += zone_reclaimable_pages(zone);
2207 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2208 if (reclaim_state) {
2209 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2210 reclaim_state->reclaimed_slab = 0;
2213 total_scanned += sc->nr_scanned;
2214 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2215 goto out;
2218 * Try to write back as many pages as we just scanned. This
2219 * tends to cause slow streaming writers to write data to the
2220 * disk smoothly, at the dirtying rate, which is nice. But
2221 * that's undesirable in laptop mode, where we *want* lumpy
2222 * writeout. So in laptop mode, write out the whole world.
2224 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2225 if (total_scanned > writeback_threshold) {
2226 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2227 sc->may_writepage = 1;
2230 /* Take a nap, wait for some writeback to complete */
2231 if (!sc->hibernation_mode && sc->nr_scanned &&
2232 priority < DEF_PRIORITY - 2) {
2233 struct zone *preferred_zone;
2235 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2236 &cpuset_current_mems_allowed,
2237 &preferred_zone);
2238 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2242 out:
2243 delayacct_freepages_end();
2244 put_mems_allowed();
2246 if (sc->nr_reclaimed)
2247 return sc->nr_reclaimed;
2250 * As hibernation is going on, kswapd is freezed so that it can't mark
2251 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2252 * check.
2254 if (oom_killer_disabled)
2255 return 0;
2257 /* top priority shrink_zones still had more to do? don't OOM, then */
2258 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2259 return 1;
2261 return 0;
2264 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2265 gfp_t gfp_mask, nodemask_t *nodemask)
2267 unsigned long nr_reclaimed;
2268 struct scan_control sc = {
2269 .gfp_mask = gfp_mask,
2270 .may_writepage = !laptop_mode,
2271 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2272 .may_unmap = 1,
2273 .may_swap = 1,
2274 .order = order,
2275 .mem_cgroup = NULL,
2276 .nodemask = nodemask,
2278 struct shrink_control shrink = {
2279 .gfp_mask = sc.gfp_mask,
2282 trace_mm_vmscan_direct_reclaim_begin(order,
2283 sc.may_writepage,
2284 gfp_mask);
2286 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2288 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2290 return nr_reclaimed;
2293 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2295 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2296 gfp_t gfp_mask, bool noswap,
2297 struct zone *zone,
2298 struct memcg_scanrecord *rec,
2299 unsigned long *scanned)
2301 struct scan_control sc = {
2302 .nr_scanned = 0,
2303 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2304 .may_writepage = !laptop_mode,
2305 .may_unmap = 1,
2306 .may_swap = !noswap,
2307 .order = 0,
2308 .mem_cgroup = mem,
2309 .memcg_record = rec,
2311 unsigned long start, end;
2313 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2314 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2316 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2317 sc.may_writepage,
2318 sc.gfp_mask);
2320 start = sched_clock();
2322 * NOTE: Although we can get the priority field, using it
2323 * here is not a good idea, since it limits the pages we can scan.
2324 * if we don't reclaim here, the shrink_zone from balance_pgdat
2325 * will pick up pages from other mem cgroup's as well. We hack
2326 * the priority and make it zero.
2328 shrink_zone(0, zone, &sc);
2329 end = sched_clock();
2331 if (rec)
2332 rec->elapsed += end - start;
2333 *scanned = sc.nr_scanned;
2335 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2337 return sc.nr_reclaimed;
2340 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2341 gfp_t gfp_mask,
2342 bool noswap,
2343 struct memcg_scanrecord *rec)
2345 struct zonelist *zonelist;
2346 unsigned long nr_reclaimed;
2347 unsigned long start, end;
2348 int nid;
2349 struct scan_control sc = {
2350 .may_writepage = !laptop_mode,
2351 .may_unmap = 1,
2352 .may_swap = !noswap,
2353 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2354 .order = 0,
2355 .mem_cgroup = mem_cont,
2356 .memcg_record = rec,
2357 .nodemask = NULL, /* we don't care the placement */
2358 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2359 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2361 struct shrink_control shrink = {
2362 .gfp_mask = sc.gfp_mask,
2365 start = sched_clock();
2367 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2368 * take care of from where we get pages. So the node where we start the
2369 * scan does not need to be the current node.
2371 nid = mem_cgroup_select_victim_node(mem_cont);
2373 zonelist = NODE_DATA(nid)->node_zonelists;
2375 trace_mm_vmscan_memcg_reclaim_begin(0,
2376 sc.may_writepage,
2377 sc.gfp_mask);
2379 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2380 end = sched_clock();
2381 if (rec)
2382 rec->elapsed += end - start;
2384 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2386 return nr_reclaimed;
2388 #endif
2391 * pgdat_balanced is used when checking if a node is balanced for high-order
2392 * allocations. Only zones that meet watermarks and are in a zone allowed
2393 * by the callers classzone_idx are added to balanced_pages. The total of
2394 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2395 * for the node to be considered balanced. Forcing all zones to be balanced
2396 * for high orders can cause excessive reclaim when there are imbalanced zones.
2397 * The choice of 25% is due to
2398 * o a 16M DMA zone that is balanced will not balance a zone on any
2399 * reasonable sized machine
2400 * o On all other machines, the top zone must be at least a reasonable
2401 * percentage of the middle zones. For example, on 32-bit x86, highmem
2402 * would need to be at least 256M for it to be balance a whole node.
2403 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2404 * to balance a node on its own. These seemed like reasonable ratios.
2406 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2407 int classzone_idx)
2409 unsigned long present_pages = 0;
2410 int i;
2412 for (i = 0; i <= classzone_idx; i++)
2413 present_pages += pgdat->node_zones[i].present_pages;
2415 /* A special case here: if zone has no page, we think it's balanced */
2416 return balanced_pages >= (present_pages >> 2);
2419 /* is kswapd sleeping prematurely? */
2420 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2421 int classzone_idx)
2423 int i;
2424 unsigned long balanced = 0;
2425 bool all_zones_ok = true;
2427 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2428 if (remaining)
2429 return true;
2431 /* Check the watermark levels */
2432 for (i = 0; i <= classzone_idx; i++) {
2433 struct zone *zone = pgdat->node_zones + i;
2435 if (!populated_zone(zone))
2436 continue;
2439 * balance_pgdat() skips over all_unreclaimable after
2440 * DEF_PRIORITY. Effectively, it considers them balanced so
2441 * they must be considered balanced here as well if kswapd
2442 * is to sleep
2444 if (zone->all_unreclaimable) {
2445 balanced += zone->present_pages;
2446 continue;
2449 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2450 i, 0))
2451 all_zones_ok = false;
2452 else
2453 balanced += zone->present_pages;
2457 * For high-order requests, the balanced zones must contain at least
2458 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2459 * must be balanced
2461 if (order)
2462 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2463 else
2464 return !all_zones_ok;
2468 * For kswapd, balance_pgdat() will work across all this node's zones until
2469 * they are all at high_wmark_pages(zone).
2471 * Returns the final order kswapd was reclaiming at
2473 * There is special handling here for zones which are full of pinned pages.
2474 * This can happen if the pages are all mlocked, or if they are all used by
2475 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2476 * What we do is to detect the case where all pages in the zone have been
2477 * scanned twice and there has been zero successful reclaim. Mark the zone as
2478 * dead and from now on, only perform a short scan. Basically we're polling
2479 * the zone for when the problem goes away.
2481 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2482 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2483 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2484 * lower zones regardless of the number of free pages in the lower zones. This
2485 * interoperates with the page allocator fallback scheme to ensure that aging
2486 * of pages is balanced across the zones.
2488 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2489 int *classzone_idx)
2491 int all_zones_ok;
2492 unsigned long balanced;
2493 int priority;
2494 int i;
2495 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2496 unsigned long total_scanned;
2497 struct reclaim_state *reclaim_state = current->reclaim_state;
2498 unsigned long nr_soft_reclaimed;
2499 unsigned long nr_soft_scanned;
2500 struct scan_control sc = {
2501 .gfp_mask = GFP_KERNEL,
2502 .may_unmap = 1,
2503 .may_swap = 1,
2505 * kswapd doesn't want to be bailed out while reclaim. because
2506 * we want to put equal scanning pressure on each zone.
2508 .nr_to_reclaim = ULONG_MAX,
2509 .order = order,
2510 .mem_cgroup = NULL,
2512 struct shrink_control shrink = {
2513 .gfp_mask = sc.gfp_mask,
2515 loop_again:
2516 total_scanned = 0;
2517 sc.nr_reclaimed = 0;
2518 sc.may_writepage = !laptop_mode;
2519 count_vm_event(PAGEOUTRUN);
2521 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2522 unsigned long lru_pages = 0;
2523 int has_under_min_watermark_zone = 0;
2525 /* The swap token gets in the way of swapout... */
2526 if (!priority)
2527 disable_swap_token(NULL);
2529 all_zones_ok = 1;
2530 balanced = 0;
2533 * Scan in the highmem->dma direction for the highest
2534 * zone which needs scanning
2536 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2537 struct zone *zone = pgdat->node_zones + i;
2539 if (!populated_zone(zone))
2540 continue;
2542 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2543 continue;
2546 * Do some background aging of the anon list, to give
2547 * pages a chance to be referenced before reclaiming.
2549 if (inactive_anon_is_low(zone, &sc))
2550 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2551 &sc, priority, 0);
2553 if (!zone_watermark_ok_safe(zone, order,
2554 high_wmark_pages(zone), 0, 0)) {
2555 end_zone = i;
2556 break;
2559 if (i < 0)
2560 goto out;
2562 for (i = 0; i <= end_zone; i++) {
2563 struct zone *zone = pgdat->node_zones + i;
2565 lru_pages += zone_reclaimable_pages(zone);
2569 * Now scan the zone in the dma->highmem direction, stopping
2570 * at the last zone which needs scanning.
2572 * We do this because the page allocator works in the opposite
2573 * direction. This prevents the page allocator from allocating
2574 * pages behind kswapd's direction of progress, which would
2575 * cause too much scanning of the lower zones.
2577 for (i = 0; i <= end_zone; i++) {
2578 struct zone *zone = pgdat->node_zones + i;
2579 int nr_slab;
2580 unsigned long balance_gap;
2582 if (!populated_zone(zone))
2583 continue;
2585 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2586 continue;
2588 sc.nr_scanned = 0;
2590 nr_soft_scanned = 0;
2592 * Call soft limit reclaim before calling shrink_zone.
2594 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2595 order, sc.gfp_mask,
2596 &nr_soft_scanned);
2597 sc.nr_reclaimed += nr_soft_reclaimed;
2598 total_scanned += nr_soft_scanned;
2601 * We put equal pressure on every zone, unless
2602 * one zone has way too many pages free
2603 * already. The "too many pages" is defined
2604 * as the high wmark plus a "gap" where the
2605 * gap is either the low watermark or 1%
2606 * of the zone, whichever is smaller.
2608 balance_gap = min(low_wmark_pages(zone),
2609 (zone->present_pages +
2610 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2611 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2612 if (!zone_watermark_ok_safe(zone, order,
2613 high_wmark_pages(zone) + balance_gap,
2614 end_zone, 0)) {
2615 shrink_zone(priority, zone, &sc);
2617 reclaim_state->reclaimed_slab = 0;
2618 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2619 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2620 total_scanned += sc.nr_scanned;
2622 if (nr_slab == 0 && !zone_reclaimable(zone))
2623 zone->all_unreclaimable = 1;
2627 * If we've done a decent amount of scanning and
2628 * the reclaim ratio is low, start doing writepage
2629 * even in laptop mode
2631 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2632 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2633 sc.may_writepage = 1;
2635 if (zone->all_unreclaimable) {
2636 if (end_zone && end_zone == i)
2637 end_zone--;
2638 continue;
2641 if (!zone_watermark_ok_safe(zone, order,
2642 high_wmark_pages(zone), end_zone, 0)) {
2643 all_zones_ok = 0;
2645 * We are still under min water mark. This
2646 * means that we have a GFP_ATOMIC allocation
2647 * failure risk. Hurry up!
2649 if (!zone_watermark_ok_safe(zone, order,
2650 min_wmark_pages(zone), end_zone, 0))
2651 has_under_min_watermark_zone = 1;
2652 } else {
2654 * If a zone reaches its high watermark,
2655 * consider it to be no longer congested. It's
2656 * possible there are dirty pages backed by
2657 * congested BDIs but as pressure is relieved,
2658 * spectulatively avoid congestion waits
2660 zone_clear_flag(zone, ZONE_CONGESTED);
2661 if (i <= *classzone_idx)
2662 balanced += zone->present_pages;
2666 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2667 break; /* kswapd: all done */
2669 * OK, kswapd is getting into trouble. Take a nap, then take
2670 * another pass across the zones.
2672 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2673 if (has_under_min_watermark_zone)
2674 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2675 else
2676 congestion_wait(BLK_RW_ASYNC, HZ/10);
2680 * We do this so kswapd doesn't build up large priorities for
2681 * example when it is freeing in parallel with allocators. It
2682 * matches the direct reclaim path behaviour in terms of impact
2683 * on zone->*_priority.
2685 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2686 break;
2688 out:
2691 * order-0: All zones must meet high watermark for a balanced node
2692 * high-order: Balanced zones must make up at least 25% of the node
2693 * for the node to be balanced
2695 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2696 cond_resched();
2698 try_to_freeze();
2701 * Fragmentation may mean that the system cannot be
2702 * rebalanced for high-order allocations in all zones.
2703 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2704 * it means the zones have been fully scanned and are still
2705 * not balanced. For high-order allocations, there is
2706 * little point trying all over again as kswapd may
2707 * infinite loop.
2709 * Instead, recheck all watermarks at order-0 as they
2710 * are the most important. If watermarks are ok, kswapd will go
2711 * back to sleep. High-order users can still perform direct
2712 * reclaim if they wish.
2714 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2715 order = sc.order = 0;
2717 goto loop_again;
2721 * If kswapd was reclaiming at a higher order, it has the option of
2722 * sleeping without all zones being balanced. Before it does, it must
2723 * ensure that the watermarks for order-0 on *all* zones are met and
2724 * that the congestion flags are cleared. The congestion flag must
2725 * be cleared as kswapd is the only mechanism that clears the flag
2726 * and it is potentially going to sleep here.
2728 if (order) {
2729 for (i = 0; i <= end_zone; i++) {
2730 struct zone *zone = pgdat->node_zones + i;
2732 if (!populated_zone(zone))
2733 continue;
2735 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2736 continue;
2738 /* Confirm the zone is balanced for order-0 */
2739 if (!zone_watermark_ok(zone, 0,
2740 high_wmark_pages(zone), 0, 0)) {
2741 order = sc.order = 0;
2742 goto loop_again;
2745 /* If balanced, clear the congested flag */
2746 zone_clear_flag(zone, ZONE_CONGESTED);
2751 * Return the order we were reclaiming at so sleeping_prematurely()
2752 * makes a decision on the order we were last reclaiming at. However,
2753 * if another caller entered the allocator slow path while kswapd
2754 * was awake, order will remain at the higher level
2756 *classzone_idx = end_zone;
2757 return order;
2760 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2762 long remaining = 0;
2763 DEFINE_WAIT(wait);
2765 if (freezing(current) || kthread_should_stop())
2766 return;
2768 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2770 /* Try to sleep for a short interval */
2771 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2772 remaining = schedule_timeout(HZ/10);
2773 finish_wait(&pgdat->kswapd_wait, &wait);
2774 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2778 * After a short sleep, check if it was a premature sleep. If not, then
2779 * go fully to sleep until explicitly woken up.
2781 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2782 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2785 * vmstat counters are not perfectly accurate and the estimated
2786 * value for counters such as NR_FREE_PAGES can deviate from the
2787 * true value by nr_online_cpus * threshold. To avoid the zone
2788 * watermarks being breached while under pressure, we reduce the
2789 * per-cpu vmstat threshold while kswapd is awake and restore
2790 * them before going back to sleep.
2792 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2793 schedule();
2794 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2795 } else {
2796 if (remaining)
2797 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2798 else
2799 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2801 finish_wait(&pgdat->kswapd_wait, &wait);
2805 * The background pageout daemon, started as a kernel thread
2806 * from the init process.
2808 * This basically trickles out pages so that we have _some_
2809 * free memory available even if there is no other activity
2810 * that frees anything up. This is needed for things like routing
2811 * etc, where we otherwise might have all activity going on in
2812 * asynchronous contexts that cannot page things out.
2814 * If there are applications that are active memory-allocators
2815 * (most normal use), this basically shouldn't matter.
2817 static int kswapd(void *p)
2819 unsigned long order, new_order;
2820 int classzone_idx, new_classzone_idx;
2821 pg_data_t *pgdat = (pg_data_t*)p;
2822 struct task_struct *tsk = current;
2824 struct reclaim_state reclaim_state = {
2825 .reclaimed_slab = 0,
2827 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2829 lockdep_set_current_reclaim_state(GFP_KERNEL);
2831 if (!cpumask_empty(cpumask))
2832 set_cpus_allowed_ptr(tsk, cpumask);
2833 current->reclaim_state = &reclaim_state;
2836 * Tell the memory management that we're a "memory allocator",
2837 * and that if we need more memory we should get access to it
2838 * regardless (see "__alloc_pages()"). "kswapd" should
2839 * never get caught in the normal page freeing logic.
2841 * (Kswapd normally doesn't need memory anyway, but sometimes
2842 * you need a small amount of memory in order to be able to
2843 * page out something else, and this flag essentially protects
2844 * us from recursively trying to free more memory as we're
2845 * trying to free the first piece of memory in the first place).
2847 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2848 set_freezable();
2850 order = new_order = 0;
2851 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2852 for ( ; ; ) {
2853 int ret;
2856 * If the last balance_pgdat was unsuccessful it's unlikely a
2857 * new request of a similar or harder type will succeed soon
2858 * so consider going to sleep on the basis we reclaimed at
2860 if (classzone_idx >= new_classzone_idx && order == new_order) {
2861 new_order = pgdat->kswapd_max_order;
2862 new_classzone_idx = pgdat->classzone_idx;
2863 pgdat->kswapd_max_order = 0;
2864 pgdat->classzone_idx = pgdat->nr_zones - 1;
2867 if (order < new_order || classzone_idx > new_classzone_idx) {
2869 * Don't sleep if someone wants a larger 'order'
2870 * allocation or has tigher zone constraints
2872 order = new_order;
2873 classzone_idx = new_classzone_idx;
2874 } else {
2875 kswapd_try_to_sleep(pgdat, order, classzone_idx);
2876 order = pgdat->kswapd_max_order;
2877 classzone_idx = pgdat->classzone_idx;
2878 pgdat->kswapd_max_order = 0;
2879 pgdat->classzone_idx = pgdat->nr_zones - 1;
2882 ret = try_to_freeze();
2883 if (kthread_should_stop())
2884 break;
2887 * We can speed up thawing tasks if we don't call balance_pgdat
2888 * after returning from the refrigerator
2890 if (!ret) {
2891 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2892 order = balance_pgdat(pgdat, order, &classzone_idx);
2895 return 0;
2899 * A zone is low on free memory, so wake its kswapd task to service it.
2901 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2903 pg_data_t *pgdat;
2905 if (!populated_zone(zone))
2906 return;
2908 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2909 return;
2910 pgdat = zone->zone_pgdat;
2911 if (pgdat->kswapd_max_order < order) {
2912 pgdat->kswapd_max_order = order;
2913 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2915 if (!waitqueue_active(&pgdat->kswapd_wait))
2916 return;
2917 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2918 return;
2920 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2921 wake_up_interruptible(&pgdat->kswapd_wait);
2925 * The reclaimable count would be mostly accurate.
2926 * The less reclaimable pages may be
2927 * - mlocked pages, which will be moved to unevictable list when encountered
2928 * - mapped pages, which may require several travels to be reclaimed
2929 * - dirty pages, which is not "instantly" reclaimable
2931 unsigned long global_reclaimable_pages(void)
2933 int nr;
2935 nr = global_page_state(NR_ACTIVE_FILE) +
2936 global_page_state(NR_INACTIVE_FILE);
2938 if (nr_swap_pages > 0)
2939 nr += global_page_state(NR_ACTIVE_ANON) +
2940 global_page_state(NR_INACTIVE_ANON);
2942 return nr;
2945 unsigned long zone_reclaimable_pages(struct zone *zone)
2947 int nr;
2949 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2950 zone_page_state(zone, NR_INACTIVE_FILE);
2952 if (nr_swap_pages > 0)
2953 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2954 zone_page_state(zone, NR_INACTIVE_ANON);
2956 return nr;
2959 #ifdef CONFIG_HIBERNATION
2961 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2962 * freed pages.
2964 * Rather than trying to age LRUs the aim is to preserve the overall
2965 * LRU order by reclaiming preferentially
2966 * inactive > active > active referenced > active mapped
2968 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2970 struct reclaim_state reclaim_state;
2971 struct scan_control sc = {
2972 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2973 .may_swap = 1,
2974 .may_unmap = 1,
2975 .may_writepage = 1,
2976 .nr_to_reclaim = nr_to_reclaim,
2977 .hibernation_mode = 1,
2978 .order = 0,
2980 struct shrink_control shrink = {
2981 .gfp_mask = sc.gfp_mask,
2983 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2984 struct task_struct *p = current;
2985 unsigned long nr_reclaimed;
2987 p->flags |= PF_MEMALLOC;
2988 lockdep_set_current_reclaim_state(sc.gfp_mask);
2989 reclaim_state.reclaimed_slab = 0;
2990 p->reclaim_state = &reclaim_state;
2992 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2994 p->reclaim_state = NULL;
2995 lockdep_clear_current_reclaim_state();
2996 p->flags &= ~PF_MEMALLOC;
2998 return nr_reclaimed;
3000 #endif /* CONFIG_HIBERNATION */
3002 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3003 not required for correctness. So if the last cpu in a node goes
3004 away, we get changed to run anywhere: as the first one comes back,
3005 restore their cpu bindings. */
3006 static int __devinit cpu_callback(struct notifier_block *nfb,
3007 unsigned long action, void *hcpu)
3009 int nid;
3011 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3012 for_each_node_state(nid, N_HIGH_MEMORY) {
3013 pg_data_t *pgdat = NODE_DATA(nid);
3014 const struct cpumask *mask;
3016 mask = cpumask_of_node(pgdat->node_id);
3018 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3019 /* One of our CPUs online: restore mask */
3020 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3023 return NOTIFY_OK;
3027 * This kswapd start function will be called by init and node-hot-add.
3028 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3030 int kswapd_run(int nid)
3032 pg_data_t *pgdat = NODE_DATA(nid);
3033 int ret = 0;
3035 if (pgdat->kswapd)
3036 return 0;
3038 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3039 if (IS_ERR(pgdat->kswapd)) {
3040 /* failure at boot is fatal */
3041 BUG_ON(system_state == SYSTEM_BOOTING);
3042 printk("Failed to start kswapd on node %d\n",nid);
3043 ret = -1;
3045 return ret;
3049 * Called by memory hotplug when all memory in a node is offlined.
3051 void kswapd_stop(int nid)
3053 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3055 if (kswapd)
3056 kthread_stop(kswapd);
3059 static int __init kswapd_init(void)
3061 int nid;
3063 swap_setup();
3064 for_each_node_state(nid, N_HIGH_MEMORY)
3065 kswapd_run(nid);
3066 hotcpu_notifier(cpu_callback, 0);
3067 return 0;
3070 module_init(kswapd_init)
3072 #ifdef CONFIG_NUMA
3074 * Zone reclaim mode
3076 * If non-zero call zone_reclaim when the number of free pages falls below
3077 * the watermarks.
3079 int zone_reclaim_mode __read_mostly;
3081 #define RECLAIM_OFF 0
3082 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3083 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3084 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3087 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3088 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3089 * a zone.
3091 #define ZONE_RECLAIM_PRIORITY 4
3094 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3095 * occur.
3097 int sysctl_min_unmapped_ratio = 1;
3100 * If the number of slab pages in a zone grows beyond this percentage then
3101 * slab reclaim needs to occur.
3103 int sysctl_min_slab_ratio = 5;
3105 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3107 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3108 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3109 zone_page_state(zone, NR_ACTIVE_FILE);
3112 * It's possible for there to be more file mapped pages than
3113 * accounted for by the pages on the file LRU lists because
3114 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3116 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3119 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3120 static long zone_pagecache_reclaimable(struct zone *zone)
3122 long nr_pagecache_reclaimable;
3123 long delta = 0;
3126 * If RECLAIM_SWAP is set, then all file pages are considered
3127 * potentially reclaimable. Otherwise, we have to worry about
3128 * pages like swapcache and zone_unmapped_file_pages() provides
3129 * a better estimate
3131 if (zone_reclaim_mode & RECLAIM_SWAP)
3132 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3133 else
3134 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3136 /* If we can't clean pages, remove dirty pages from consideration */
3137 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3138 delta += zone_page_state(zone, NR_FILE_DIRTY);
3140 /* Watch for any possible underflows due to delta */
3141 if (unlikely(delta > nr_pagecache_reclaimable))
3142 delta = nr_pagecache_reclaimable;
3144 return nr_pagecache_reclaimable - delta;
3148 * Try to free up some pages from this zone through reclaim.
3150 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3152 /* Minimum pages needed in order to stay on node */
3153 const unsigned long nr_pages = 1 << order;
3154 struct task_struct *p = current;
3155 struct reclaim_state reclaim_state;
3156 int priority;
3157 struct scan_control sc = {
3158 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3159 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3160 .may_swap = 1,
3161 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3162 SWAP_CLUSTER_MAX),
3163 .gfp_mask = gfp_mask,
3164 .order = order,
3166 struct shrink_control shrink = {
3167 .gfp_mask = sc.gfp_mask,
3169 unsigned long nr_slab_pages0, nr_slab_pages1;
3171 cond_resched();
3173 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3174 * and we also need to be able to write out pages for RECLAIM_WRITE
3175 * and RECLAIM_SWAP.
3177 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3178 lockdep_set_current_reclaim_state(gfp_mask);
3179 reclaim_state.reclaimed_slab = 0;
3180 p->reclaim_state = &reclaim_state;
3182 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3184 * Free memory by calling shrink zone with increasing
3185 * priorities until we have enough memory freed.
3187 priority = ZONE_RECLAIM_PRIORITY;
3188 do {
3189 shrink_zone(priority, zone, &sc);
3190 priority--;
3191 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3194 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3195 if (nr_slab_pages0 > zone->min_slab_pages) {
3197 * shrink_slab() does not currently allow us to determine how
3198 * many pages were freed in this zone. So we take the current
3199 * number of slab pages and shake the slab until it is reduced
3200 * by the same nr_pages that we used for reclaiming unmapped
3201 * pages.
3203 * Note that shrink_slab will free memory on all zones and may
3204 * take a long time.
3206 for (;;) {
3207 unsigned long lru_pages = zone_reclaimable_pages(zone);
3209 /* No reclaimable slab or very low memory pressure */
3210 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3211 break;
3213 /* Freed enough memory */
3214 nr_slab_pages1 = zone_page_state(zone,
3215 NR_SLAB_RECLAIMABLE);
3216 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3217 break;
3221 * Update nr_reclaimed by the number of slab pages we
3222 * reclaimed from this zone.
3224 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3225 if (nr_slab_pages1 < nr_slab_pages0)
3226 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3229 p->reclaim_state = NULL;
3230 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3231 lockdep_clear_current_reclaim_state();
3232 return sc.nr_reclaimed >= nr_pages;
3235 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3237 int node_id;
3238 int ret;
3241 * Zone reclaim reclaims unmapped file backed pages and
3242 * slab pages if we are over the defined limits.
3244 * A small portion of unmapped file backed pages is needed for
3245 * file I/O otherwise pages read by file I/O will be immediately
3246 * thrown out if the zone is overallocated. So we do not reclaim
3247 * if less than a specified percentage of the zone is used by
3248 * unmapped file backed pages.
3250 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3251 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3252 return ZONE_RECLAIM_FULL;
3254 if (zone->all_unreclaimable)
3255 return ZONE_RECLAIM_FULL;
3258 * Do not scan if the allocation should not be delayed.
3260 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3261 return ZONE_RECLAIM_NOSCAN;
3264 * Only run zone reclaim on the local zone or on zones that do not
3265 * have associated processors. This will favor the local processor
3266 * over remote processors and spread off node memory allocations
3267 * as wide as possible.
3269 node_id = zone_to_nid(zone);
3270 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3271 return ZONE_RECLAIM_NOSCAN;
3273 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3274 return ZONE_RECLAIM_NOSCAN;
3276 ret = __zone_reclaim(zone, gfp_mask, order);
3277 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3279 if (!ret)
3280 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3282 return ret;
3284 #endif
3287 * page_evictable - test whether a page is evictable
3288 * @page: the page to test
3289 * @vma: the VMA in which the page is or will be mapped, may be NULL
3291 * Test whether page is evictable--i.e., should be placed on active/inactive
3292 * lists vs unevictable list. The vma argument is !NULL when called from the
3293 * fault path to determine how to instantate a new page.
3295 * Reasons page might not be evictable:
3296 * (1) page's mapping marked unevictable
3297 * (2) page is part of an mlocked VMA
3300 int page_evictable(struct page *page, struct vm_area_struct *vma)
3303 if (mapping_unevictable(page_mapping(page)))
3304 return 0;
3306 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3307 return 0;
3309 return 1;
3313 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3314 * @page: page to check evictability and move to appropriate lru list
3315 * @zone: zone page is in
3317 * Checks a page for evictability and moves the page to the appropriate
3318 * zone lru list.
3320 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3321 * have PageUnevictable set.
3323 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3325 VM_BUG_ON(PageActive(page));
3327 retry:
3328 ClearPageUnevictable(page);
3329 if (page_evictable(page, NULL)) {
3330 enum lru_list l = page_lru_base_type(page);
3332 __dec_zone_state(zone, NR_UNEVICTABLE);
3333 list_move(&page->lru, &zone->lru[l].list);
3334 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3335 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3336 __count_vm_event(UNEVICTABLE_PGRESCUED);
3337 } else {
3339 * rotate unevictable list
3341 SetPageUnevictable(page);
3342 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3343 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3344 if (page_evictable(page, NULL))
3345 goto retry;
3350 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3351 * @mapping: struct address_space to scan for evictable pages
3353 * Scan all pages in mapping. Check unevictable pages for
3354 * evictability and move them to the appropriate zone lru list.
3356 void scan_mapping_unevictable_pages(struct address_space *mapping)
3358 pgoff_t next = 0;
3359 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3360 PAGE_CACHE_SHIFT;
3361 struct zone *zone;
3362 struct pagevec pvec;
3364 if (mapping->nrpages == 0)
3365 return;
3367 pagevec_init(&pvec, 0);
3368 while (next < end &&
3369 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3370 int i;
3371 int pg_scanned = 0;
3373 zone = NULL;
3375 for (i = 0; i < pagevec_count(&pvec); i++) {
3376 struct page *page = pvec.pages[i];
3377 pgoff_t page_index = page->index;
3378 struct zone *pagezone = page_zone(page);
3380 pg_scanned++;
3381 if (page_index > next)
3382 next = page_index;
3383 next++;
3385 if (pagezone != zone) {
3386 if (zone)
3387 spin_unlock_irq(&zone->lru_lock);
3388 zone = pagezone;
3389 spin_lock_irq(&zone->lru_lock);
3392 if (PageLRU(page) && PageUnevictable(page))
3393 check_move_unevictable_page(page, zone);
3395 if (zone)
3396 spin_unlock_irq(&zone->lru_lock);
3397 pagevec_release(&pvec);
3399 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3405 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3406 * @zone - zone of which to scan the unevictable list
3408 * Scan @zone's unevictable LRU lists to check for pages that have become
3409 * evictable. Move those that have to @zone's inactive list where they
3410 * become candidates for reclaim, unless shrink_inactive_zone() decides
3411 * to reactivate them. Pages that are still unevictable are rotated
3412 * back onto @zone's unevictable list.
3414 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3415 static void scan_zone_unevictable_pages(struct zone *zone)
3417 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3418 unsigned long scan;
3419 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3421 while (nr_to_scan > 0) {
3422 unsigned long batch_size = min(nr_to_scan,
3423 SCAN_UNEVICTABLE_BATCH_SIZE);
3425 spin_lock_irq(&zone->lru_lock);
3426 for (scan = 0; scan < batch_size; scan++) {
3427 struct page *page = lru_to_page(l_unevictable);
3429 if (!trylock_page(page))
3430 continue;
3432 prefetchw_prev_lru_page(page, l_unevictable, flags);
3434 if (likely(PageLRU(page) && PageUnevictable(page)))
3435 check_move_unevictable_page(page, zone);
3437 unlock_page(page);
3439 spin_unlock_irq(&zone->lru_lock);
3441 nr_to_scan -= batch_size;
3447 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3449 * A really big hammer: scan all zones' unevictable LRU lists to check for
3450 * pages that have become evictable. Move those back to the zones'
3451 * inactive list where they become candidates for reclaim.
3452 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3453 * and we add swap to the system. As such, it runs in the context of a task
3454 * that has possibly/probably made some previously unevictable pages
3455 * evictable.
3457 static void scan_all_zones_unevictable_pages(void)
3459 struct zone *zone;
3461 for_each_zone(zone) {
3462 scan_zone_unevictable_pages(zone);
3467 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3468 * all nodes' unevictable lists for evictable pages
3470 unsigned long scan_unevictable_pages;
3472 int scan_unevictable_handler(struct ctl_table *table, int write,
3473 void __user *buffer,
3474 size_t *length, loff_t *ppos)
3476 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3478 if (write && *(unsigned long *)table->data)
3479 scan_all_zones_unevictable_pages();
3481 scan_unevictable_pages = 0;
3482 return 0;
3485 #ifdef CONFIG_NUMA
3487 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3488 * a specified node's per zone unevictable lists for evictable pages.
3491 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3492 struct sysdev_attribute *attr,
3493 char *buf)
3495 return sprintf(buf, "0\n"); /* always zero; should fit... */
3498 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3499 struct sysdev_attribute *attr,
3500 const char *buf, size_t count)
3502 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3503 struct zone *zone;
3504 unsigned long res;
3505 unsigned long req = strict_strtoul(buf, 10, &res);
3507 if (!req)
3508 return 1; /* zero is no-op */
3510 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3511 if (!populated_zone(zone))
3512 continue;
3513 scan_zone_unevictable_pages(zone);
3515 return 1;
3519 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3520 read_scan_unevictable_node,
3521 write_scan_unevictable_node);
3523 int scan_unevictable_register_node(struct node *node)
3525 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3528 void scan_unevictable_unregister_node(struct node *node)
3530 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3532 #endif