2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_btree_trace.h"
41 #include "xfs_alloc.h"
42 #include "xfs_ialloc.h"
44 #include "xfs_error.h"
45 #include "xfs_utils.h"
46 #include "xfs_quota.h"
47 #include "xfs_filestream.h"
48 #include "xfs_vnodeops.h"
49 #include "xfs_trace.h"
51 kmem_zone_t
*xfs_ifork_zone
;
52 kmem_zone_t
*xfs_inode_zone
;
55 * Used in xfs_itruncate(). This is the maximum number of extents
56 * freed from a file in a single transaction.
58 #define XFS_ITRUNC_MAX_EXTENTS 2
60 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
61 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
62 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
63 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
67 * Make sure that the extents in the given memory buffer
77 xfs_bmbt_rec_host_t rec
;
80 for (i
= 0; i
< nrecs
; i
++) {
81 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
82 rec
.l0
= get_unaligned(&ep
->l0
);
83 rec
.l1
= get_unaligned(&ep
->l1
);
84 xfs_bmbt_get_all(&rec
, &irec
);
85 if (fmt
== XFS_EXTFMT_NOSTATE
)
86 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
90 #define xfs_validate_extents(ifp, nrecs, fmt)
94 * Check that none of the inode's in the buffer have a next
95 * unlinked field of 0.
107 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
109 for (i
= 0; i
< j
; i
++) {
110 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
111 i
* mp
->m_sb
.sb_inodesize
);
112 if (!dip
->di_next_unlinked
) {
114 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
116 ASSERT(dip
->di_next_unlinked
);
123 * Find the buffer associated with the given inode map
124 * We do basic validation checks on the buffer once it has been
125 * retrieved from disk.
131 struct xfs_imap
*imap
,
141 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
->im_blkno
,
142 (int)imap
->im_len
, buf_flags
, &bp
);
144 if (error
!= EAGAIN
) {
146 "%s: xfs_trans_read_buf() returned error %d.",
149 ASSERT(buf_flags
& XBF_TRYLOCK
);
155 * Validate the magic number and version of every inode in the buffer
156 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
159 ni
= BBTOB(imap
->im_len
) >> mp
->m_sb
.sb_inodelog
;
160 #else /* usual case */
164 for (i
= 0; i
< ni
; i
++) {
168 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
169 (i
<< mp
->m_sb
.sb_inodelog
));
170 di_ok
= be16_to_cpu(dip
->di_magic
) == XFS_DINODE_MAGIC
&&
171 XFS_DINODE_GOOD_VERSION(dip
->di_version
);
172 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
173 XFS_ERRTAG_ITOBP_INOTOBP
,
174 XFS_RANDOM_ITOBP_INOTOBP
))) {
175 if (iget_flags
& XFS_IGET_UNTRUSTED
) {
176 xfs_trans_brelse(tp
, bp
);
177 return XFS_ERROR(EINVAL
);
179 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
180 XFS_ERRLEVEL_HIGH
, mp
, dip
);
183 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
184 (unsigned long long)imap
->im_blkno
, i
,
185 be16_to_cpu(dip
->di_magic
));
188 xfs_trans_brelse(tp
, bp
);
189 return XFS_ERROR(EFSCORRUPTED
);
193 xfs_inobp_check(mp
, bp
);
196 * Mark the buffer as an inode buffer now that it looks good
198 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
205 * This routine is called to map an inode number within a file
206 * system to the buffer containing the on-disk version of the
207 * inode. It returns a pointer to the buffer containing the
208 * on-disk inode in the bpp parameter, and in the dip parameter
209 * it returns a pointer to the on-disk inode within that buffer.
211 * If a non-zero error is returned, then the contents of bpp and
212 * dipp are undefined.
214 * Use xfs_imap() to determine the size and location of the
215 * buffer to read from disk.
227 struct xfs_imap imap
;
232 error
= xfs_imap(mp
, tp
, ino
, &imap
, imap_flags
);
236 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &bp
, XBF_LOCK
, imap_flags
);
240 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
242 *offset
= imap
.im_boffset
;
248 * This routine is called to map an inode to the buffer containing
249 * the on-disk version of the inode. It returns a pointer to the
250 * buffer containing the on-disk inode in the bpp parameter, and in
251 * the dip parameter it returns a pointer to the on-disk inode within
254 * If a non-zero error is returned, then the contents of bpp and
255 * dipp are undefined.
257 * The inode is expected to already been mapped to its buffer and read
258 * in once, thus we can use the mapping information stored in the inode
259 * rather than calling xfs_imap(). This allows us to avoid the overhead
260 * of looking at the inode btree for small block file systems
275 ASSERT(ip
->i_imap
.im_blkno
!= 0);
277 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
, buf_flags
, 0);
282 ASSERT(buf_flags
& XBF_TRYLOCK
);
288 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
294 * Move inode type and inode format specific information from the
295 * on-disk inode to the in-core inode. For fifos, devs, and sockets
296 * this means set if_rdev to the proper value. For files, directories,
297 * and symlinks this means to bring in the in-line data or extent
298 * pointers. For a file in B-tree format, only the root is immediately
299 * brought in-core. The rest will be in-lined in if_extents when it
300 * is first referenced (see xfs_iread_extents()).
307 xfs_attr_shortform_t
*atp
;
311 ip
->i_df
.if_ext_max
=
312 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
315 if (unlikely(be32_to_cpu(dip
->di_nextents
) +
316 be16_to_cpu(dip
->di_anextents
) >
317 be64_to_cpu(dip
->di_nblocks
))) {
318 xfs_warn(ip
->i_mount
,
319 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
320 (unsigned long long)ip
->i_ino
,
321 (int)(be32_to_cpu(dip
->di_nextents
) +
322 be16_to_cpu(dip
->di_anextents
)),
324 be64_to_cpu(dip
->di_nblocks
));
325 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
327 return XFS_ERROR(EFSCORRUPTED
);
330 if (unlikely(dip
->di_forkoff
> ip
->i_mount
->m_sb
.sb_inodesize
)) {
331 xfs_warn(ip
->i_mount
, "corrupt dinode %Lu, forkoff = 0x%x.",
332 (unsigned long long)ip
->i_ino
,
334 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
336 return XFS_ERROR(EFSCORRUPTED
);
339 if (unlikely((ip
->i_d
.di_flags
& XFS_DIFLAG_REALTIME
) &&
340 !ip
->i_mount
->m_rtdev_targp
)) {
341 xfs_warn(ip
->i_mount
,
342 "corrupt dinode %Lu, has realtime flag set.",
344 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
345 XFS_ERRLEVEL_LOW
, ip
->i_mount
, dip
);
346 return XFS_ERROR(EFSCORRUPTED
);
349 switch (ip
->i_d
.di_mode
& S_IFMT
) {
354 if (unlikely(dip
->di_format
!= XFS_DINODE_FMT_DEV
)) {
355 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
357 return XFS_ERROR(EFSCORRUPTED
);
361 ip
->i_df
.if_u2
.if_rdev
= xfs_dinode_get_rdev(dip
);
367 switch (dip
->di_format
) {
368 case XFS_DINODE_FMT_LOCAL
:
370 * no local regular files yet
372 if (unlikely((be16_to_cpu(dip
->di_mode
) & S_IFMT
) == S_IFREG
)) {
373 xfs_warn(ip
->i_mount
,
374 "corrupt inode %Lu (local format for regular file).",
375 (unsigned long long) ip
->i_ino
);
376 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
379 return XFS_ERROR(EFSCORRUPTED
);
382 di_size
= be64_to_cpu(dip
->di_size
);
383 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
384 xfs_warn(ip
->i_mount
,
385 "corrupt inode %Lu (bad size %Ld for local inode).",
386 (unsigned long long) ip
->i_ino
,
387 (long long) di_size
);
388 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
391 return XFS_ERROR(EFSCORRUPTED
);
395 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
397 case XFS_DINODE_FMT_EXTENTS
:
398 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
400 case XFS_DINODE_FMT_BTREE
:
401 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
404 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
406 return XFS_ERROR(EFSCORRUPTED
);
411 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
412 return XFS_ERROR(EFSCORRUPTED
);
417 if (!XFS_DFORK_Q(dip
))
419 ASSERT(ip
->i_afp
== NULL
);
420 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
| KM_NOFS
);
421 ip
->i_afp
->if_ext_max
=
422 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
423 switch (dip
->di_aformat
) {
424 case XFS_DINODE_FMT_LOCAL
:
425 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
426 size
= be16_to_cpu(atp
->hdr
.totsize
);
428 if (unlikely(size
< sizeof(struct xfs_attr_sf_hdr
))) {
429 xfs_warn(ip
->i_mount
,
430 "corrupt inode %Lu (bad attr fork size %Ld).",
431 (unsigned long long) ip
->i_ino
,
433 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
436 return XFS_ERROR(EFSCORRUPTED
);
439 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
441 case XFS_DINODE_FMT_EXTENTS
:
442 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
444 case XFS_DINODE_FMT_BTREE
:
445 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
448 error
= XFS_ERROR(EFSCORRUPTED
);
452 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
454 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
460 * The file is in-lined in the on-disk inode.
461 * If it fits into if_inline_data, then copy
462 * it there, otherwise allocate a buffer for it
463 * and copy the data there. Either way, set
464 * if_data to point at the data.
465 * If we allocate a buffer for the data, make
466 * sure that its size is a multiple of 4 and
467 * record the real size in i_real_bytes.
480 * If the size is unreasonable, then something
481 * is wrong and we just bail out rather than crash in
482 * kmem_alloc() or memcpy() below.
484 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
485 xfs_warn(ip
->i_mount
,
486 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
487 (unsigned long long) ip
->i_ino
, size
,
488 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
489 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
491 return XFS_ERROR(EFSCORRUPTED
);
493 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
496 ifp
->if_u1
.if_data
= NULL
;
497 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
498 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
500 real_size
= roundup(size
, 4);
501 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
| KM_NOFS
);
503 ifp
->if_bytes
= size
;
504 ifp
->if_real_bytes
= real_size
;
506 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
507 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
508 ifp
->if_flags
|= XFS_IFINLINE
;
513 * The file consists of a set of extents all
514 * of which fit into the on-disk inode.
515 * If there are few enough extents to fit into
516 * the if_inline_ext, then copy them there.
517 * Otherwise allocate a buffer for them and copy
518 * them into it. Either way, set if_extents
519 * to point at the extents.
533 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
534 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
535 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
538 * If the number of extents is unreasonable, then something
539 * is wrong and we just bail out rather than crash in
540 * kmem_alloc() or memcpy() below.
542 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
543 xfs_warn(ip
->i_mount
, "corrupt inode %Lu ((a)extents = %d).",
544 (unsigned long long) ip
->i_ino
, nex
);
545 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
547 return XFS_ERROR(EFSCORRUPTED
);
550 ifp
->if_real_bytes
= 0;
552 ifp
->if_u1
.if_extents
= NULL
;
553 else if (nex
<= XFS_INLINE_EXTS
)
554 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
556 xfs_iext_add(ifp
, 0, nex
);
558 ifp
->if_bytes
= size
;
560 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
561 xfs_validate_extents(ifp
, nex
, XFS_EXTFMT_INODE(ip
));
562 for (i
= 0; i
< nex
; i
++, dp
++) {
563 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
564 ep
->l0
= get_unaligned_be64(&dp
->l0
);
565 ep
->l1
= get_unaligned_be64(&dp
->l1
);
567 XFS_BMAP_TRACE_EXLIST(ip
, nex
, whichfork
);
568 if (whichfork
!= XFS_DATA_FORK
||
569 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
570 if (unlikely(xfs_check_nostate_extents(
572 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
575 return XFS_ERROR(EFSCORRUPTED
);
578 ifp
->if_flags
|= XFS_IFEXTENTS
;
583 * The file has too many extents to fit into
584 * the inode, so they are in B-tree format.
585 * Allocate a buffer for the root of the B-tree
586 * and copy the root into it. The i_extents
587 * field will remain NULL until all of the
588 * extents are read in (when they are needed).
596 xfs_bmdr_block_t
*dfp
;
602 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
603 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
604 size
= XFS_BMAP_BROOT_SPACE(dfp
);
605 nrecs
= be16_to_cpu(dfp
->bb_numrecs
);
608 * blow out if -- fork has less extents than can fit in
609 * fork (fork shouldn't be a btree format), root btree
610 * block has more records than can fit into the fork,
611 * or the number of extents is greater than the number of
614 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
615 || XFS_BMDR_SPACE_CALC(nrecs
) >
616 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
617 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
618 xfs_warn(ip
->i_mount
, "corrupt inode %Lu (btree).",
619 (unsigned long long) ip
->i_ino
);
620 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
622 return XFS_ERROR(EFSCORRUPTED
);
625 ifp
->if_broot_bytes
= size
;
626 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
| KM_NOFS
);
627 ASSERT(ifp
->if_broot
!= NULL
);
629 * Copy and convert from the on-disk structure
630 * to the in-memory structure.
632 xfs_bmdr_to_bmbt(ip
->i_mount
, dfp
,
633 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
634 ifp
->if_broot
, size
);
635 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
636 ifp
->if_flags
|= XFS_IFBROOT
;
642 xfs_dinode_from_disk(
646 to
->di_magic
= be16_to_cpu(from
->di_magic
);
647 to
->di_mode
= be16_to_cpu(from
->di_mode
);
648 to
->di_version
= from
->di_version
;
649 to
->di_format
= from
->di_format
;
650 to
->di_onlink
= be16_to_cpu(from
->di_onlink
);
651 to
->di_uid
= be32_to_cpu(from
->di_uid
);
652 to
->di_gid
= be32_to_cpu(from
->di_gid
);
653 to
->di_nlink
= be32_to_cpu(from
->di_nlink
);
654 to
->di_projid_lo
= be16_to_cpu(from
->di_projid_lo
);
655 to
->di_projid_hi
= be16_to_cpu(from
->di_projid_hi
);
656 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
657 to
->di_flushiter
= be16_to_cpu(from
->di_flushiter
);
658 to
->di_atime
.t_sec
= be32_to_cpu(from
->di_atime
.t_sec
);
659 to
->di_atime
.t_nsec
= be32_to_cpu(from
->di_atime
.t_nsec
);
660 to
->di_mtime
.t_sec
= be32_to_cpu(from
->di_mtime
.t_sec
);
661 to
->di_mtime
.t_nsec
= be32_to_cpu(from
->di_mtime
.t_nsec
);
662 to
->di_ctime
.t_sec
= be32_to_cpu(from
->di_ctime
.t_sec
);
663 to
->di_ctime
.t_nsec
= be32_to_cpu(from
->di_ctime
.t_nsec
);
664 to
->di_size
= be64_to_cpu(from
->di_size
);
665 to
->di_nblocks
= be64_to_cpu(from
->di_nblocks
);
666 to
->di_extsize
= be32_to_cpu(from
->di_extsize
);
667 to
->di_nextents
= be32_to_cpu(from
->di_nextents
);
668 to
->di_anextents
= be16_to_cpu(from
->di_anextents
);
669 to
->di_forkoff
= from
->di_forkoff
;
670 to
->di_aformat
= from
->di_aformat
;
671 to
->di_dmevmask
= be32_to_cpu(from
->di_dmevmask
);
672 to
->di_dmstate
= be16_to_cpu(from
->di_dmstate
);
673 to
->di_flags
= be16_to_cpu(from
->di_flags
);
674 to
->di_gen
= be32_to_cpu(from
->di_gen
);
680 xfs_icdinode_t
*from
)
682 to
->di_magic
= cpu_to_be16(from
->di_magic
);
683 to
->di_mode
= cpu_to_be16(from
->di_mode
);
684 to
->di_version
= from
->di_version
;
685 to
->di_format
= from
->di_format
;
686 to
->di_onlink
= cpu_to_be16(from
->di_onlink
);
687 to
->di_uid
= cpu_to_be32(from
->di_uid
);
688 to
->di_gid
= cpu_to_be32(from
->di_gid
);
689 to
->di_nlink
= cpu_to_be32(from
->di_nlink
);
690 to
->di_projid_lo
= cpu_to_be16(from
->di_projid_lo
);
691 to
->di_projid_hi
= cpu_to_be16(from
->di_projid_hi
);
692 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
693 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
694 to
->di_atime
.t_sec
= cpu_to_be32(from
->di_atime
.t_sec
);
695 to
->di_atime
.t_nsec
= cpu_to_be32(from
->di_atime
.t_nsec
);
696 to
->di_mtime
.t_sec
= cpu_to_be32(from
->di_mtime
.t_sec
);
697 to
->di_mtime
.t_nsec
= cpu_to_be32(from
->di_mtime
.t_nsec
);
698 to
->di_ctime
.t_sec
= cpu_to_be32(from
->di_ctime
.t_sec
);
699 to
->di_ctime
.t_nsec
= cpu_to_be32(from
->di_ctime
.t_nsec
);
700 to
->di_size
= cpu_to_be64(from
->di_size
);
701 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
702 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
703 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
704 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
705 to
->di_forkoff
= from
->di_forkoff
;
706 to
->di_aformat
= from
->di_aformat
;
707 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
708 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
709 to
->di_flags
= cpu_to_be16(from
->di_flags
);
710 to
->di_gen
= cpu_to_be32(from
->di_gen
);
719 if (di_flags
& XFS_DIFLAG_ANY
) {
720 if (di_flags
& XFS_DIFLAG_REALTIME
)
721 flags
|= XFS_XFLAG_REALTIME
;
722 if (di_flags
& XFS_DIFLAG_PREALLOC
)
723 flags
|= XFS_XFLAG_PREALLOC
;
724 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
725 flags
|= XFS_XFLAG_IMMUTABLE
;
726 if (di_flags
& XFS_DIFLAG_APPEND
)
727 flags
|= XFS_XFLAG_APPEND
;
728 if (di_flags
& XFS_DIFLAG_SYNC
)
729 flags
|= XFS_XFLAG_SYNC
;
730 if (di_flags
& XFS_DIFLAG_NOATIME
)
731 flags
|= XFS_XFLAG_NOATIME
;
732 if (di_flags
& XFS_DIFLAG_NODUMP
)
733 flags
|= XFS_XFLAG_NODUMP
;
734 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
735 flags
|= XFS_XFLAG_RTINHERIT
;
736 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
737 flags
|= XFS_XFLAG_PROJINHERIT
;
738 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
739 flags
|= XFS_XFLAG_NOSYMLINKS
;
740 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
741 flags
|= XFS_XFLAG_EXTSIZE
;
742 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
743 flags
|= XFS_XFLAG_EXTSZINHERIT
;
744 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
745 flags
|= XFS_XFLAG_NODEFRAG
;
746 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
747 flags
|= XFS_XFLAG_FILESTREAM
;
757 xfs_icdinode_t
*dic
= &ip
->i_d
;
759 return _xfs_dic2xflags(dic
->di_flags
) |
760 (XFS_IFORK_Q(ip
) ? XFS_XFLAG_HASATTR
: 0);
767 return _xfs_dic2xflags(be16_to_cpu(dip
->di_flags
)) |
768 (XFS_DFORK_Q(dip
) ? XFS_XFLAG_HASATTR
: 0);
772 * Read the disk inode attributes into the in-core inode structure.
786 * Fill in the location information in the in-core inode.
788 error
= xfs_imap(mp
, tp
, ip
->i_ino
, &ip
->i_imap
, iget_flags
);
793 * Get pointers to the on-disk inode and the buffer containing it.
795 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
,
796 XBF_LOCK
, iget_flags
);
799 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
802 * If we got something that isn't an inode it means someone
803 * (nfs or dmi) has a stale handle.
805 if (be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
) {
808 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
809 __func__
, be16_to_cpu(dip
->di_magic
), XFS_DINODE_MAGIC
);
811 error
= XFS_ERROR(EINVAL
);
816 * If the on-disk inode is already linked to a directory
817 * entry, copy all of the inode into the in-core inode.
818 * xfs_iformat() handles copying in the inode format
819 * specific information.
820 * Otherwise, just get the truly permanent information.
823 xfs_dinode_from_disk(&ip
->i_d
, dip
);
824 error
= xfs_iformat(ip
, dip
);
827 xfs_alert(mp
, "%s: xfs_iformat() returned error %d",
833 ip
->i_d
.di_magic
= be16_to_cpu(dip
->di_magic
);
834 ip
->i_d
.di_version
= dip
->di_version
;
835 ip
->i_d
.di_gen
= be32_to_cpu(dip
->di_gen
);
836 ip
->i_d
.di_flushiter
= be16_to_cpu(dip
->di_flushiter
);
838 * Make sure to pull in the mode here as well in
839 * case the inode is released without being used.
840 * This ensures that xfs_inactive() will see that
841 * the inode is already free and not try to mess
842 * with the uninitialized part of it.
846 * Initialize the per-fork minima and maxima for a new
847 * inode here. xfs_iformat will do it for old inodes.
849 ip
->i_df
.if_ext_max
=
850 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
854 * The inode format changed when we moved the link count and
855 * made it 32 bits long. If this is an old format inode,
856 * convert it in memory to look like a new one. If it gets
857 * flushed to disk we will convert back before flushing or
858 * logging it. We zero out the new projid field and the old link
859 * count field. We'll handle clearing the pad field (the remains
860 * of the old uuid field) when we actually convert the inode to
861 * the new format. We don't change the version number so that we
862 * can distinguish this from a real new format inode.
864 if (ip
->i_d
.di_version
== 1) {
865 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
866 ip
->i_d
.di_onlink
= 0;
867 xfs_set_projid(ip
, 0);
870 ip
->i_delayed_blks
= 0;
871 ip
->i_size
= ip
->i_d
.di_size
;
874 * Mark the buffer containing the inode as something to keep
875 * around for a while. This helps to keep recently accessed
876 * meta-data in-core longer.
878 xfs_buf_set_ref(bp
, XFS_INO_REF
);
881 * Use xfs_trans_brelse() to release the buffer containing the
882 * on-disk inode, because it was acquired with xfs_trans_read_buf()
883 * in xfs_itobp() above. If tp is NULL, this is just a normal
884 * brelse(). If we're within a transaction, then xfs_trans_brelse()
885 * will only release the buffer if it is not dirty within the
886 * transaction. It will be OK to release the buffer in this case,
887 * because inodes on disk are never destroyed and we will be
888 * locking the new in-core inode before putting it in the hash
889 * table where other processes can find it. Thus we don't have
890 * to worry about the inode being changed just because we released
894 xfs_trans_brelse(tp
, bp
);
899 * Read in extents from a btree-format inode.
900 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
910 xfs_extnum_t nextents
;
912 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
913 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
915 return XFS_ERROR(EFSCORRUPTED
);
917 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
918 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
921 * We know that the size is valid (it's checked in iformat_btree)
923 ifp
->if_lastex
= NULLEXTNUM
;
924 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
925 ifp
->if_flags
|= XFS_IFEXTENTS
;
926 xfs_iext_add(ifp
, 0, nextents
);
927 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
929 xfs_iext_destroy(ifp
);
930 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
933 xfs_validate_extents(ifp
, nextents
, XFS_EXTFMT_INODE(ip
));
938 * Allocate an inode on disk and return a copy of its in-core version.
939 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
940 * appropriately within the inode. The uid and gid for the inode are
941 * set according to the contents of the given cred structure.
943 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
944 * has a free inode available, call xfs_iget()
945 * to obtain the in-core version of the allocated inode. Finally,
946 * fill in the inode and log its initial contents. In this case,
947 * ialloc_context would be set to NULL and call_again set to false.
949 * If xfs_dialloc() does not have an available inode,
950 * it will replenish its supply by doing an allocation. Since we can
951 * only do one allocation within a transaction without deadlocks, we
952 * must commit the current transaction before returning the inode itself.
953 * In this case, therefore, we will set call_again to true and return.
954 * The caller should then commit the current transaction, start a new
955 * transaction, and call xfs_ialloc() again to actually get the inode.
957 * To ensure that some other process does not grab the inode that
958 * was allocated during the first call to xfs_ialloc(), this routine
959 * also returns the [locked] bp pointing to the head of the freelist
960 * as ialloc_context. The caller should hold this buffer across
961 * the commit and pass it back into this routine on the second call.
963 * If we are allocating quota inodes, we do not have a parent inode
964 * to attach to or associate with (i.e. pip == NULL) because they
965 * are not linked into the directory structure - they are attached
966 * directly to the superblock - and so have no parent.
977 xfs_buf_t
**ialloc_context
,
978 boolean_t
*call_again
,
989 * Call the space management code to pick
990 * the on-disk inode to be allocated.
992 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
993 ialloc_context
, call_again
, &ino
);
996 if (*call_again
|| ino
== NULLFSINO
) {
1000 ASSERT(*ialloc_context
== NULL
);
1003 * Get the in-core inode with the lock held exclusively.
1004 * This is because we're setting fields here we need
1005 * to prevent others from looking at until we're done.
1007 error
= xfs_iget(tp
->t_mountp
, tp
, ino
, XFS_IGET_CREATE
,
1008 XFS_ILOCK_EXCL
, &ip
);
1013 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1014 ip
->i_d
.di_onlink
= 0;
1015 ip
->i_d
.di_nlink
= nlink
;
1016 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1017 ip
->i_d
.di_uid
= current_fsuid();
1018 ip
->i_d
.di_gid
= current_fsgid();
1019 xfs_set_projid(ip
, prid
);
1020 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1023 * If the superblock version is up to where we support new format
1024 * inodes and this is currently an old format inode, then change
1025 * the inode version number now. This way we only do the conversion
1026 * here rather than here and in the flush/logging code.
1028 if (xfs_sb_version_hasnlink(&tp
->t_mountp
->m_sb
) &&
1029 ip
->i_d
.di_version
== 1) {
1030 ip
->i_d
.di_version
= 2;
1032 * We've already zeroed the old link count, the projid field,
1033 * and the pad field.
1038 * Project ids won't be stored on disk if we are using a version 1 inode.
1040 if ((prid
!= 0) && (ip
->i_d
.di_version
== 1))
1041 xfs_bump_ino_vers2(tp
, ip
);
1043 if (pip
&& XFS_INHERIT_GID(pip
)) {
1044 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1045 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1046 ip
->i_d
.di_mode
|= S_ISGID
;
1051 * If the group ID of the new file does not match the effective group
1052 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1053 * (and only if the irix_sgid_inherit compatibility variable is set).
1055 if ((irix_sgid_inherit
) &&
1056 (ip
->i_d
.di_mode
& S_ISGID
) &&
1057 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1058 ip
->i_d
.di_mode
&= ~S_ISGID
;
1061 ip
->i_d
.di_size
= 0;
1063 ip
->i_d
.di_nextents
= 0;
1064 ASSERT(ip
->i_d
.di_nblocks
== 0);
1067 ip
->i_d
.di_mtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
1068 ip
->i_d
.di_mtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
1069 ip
->i_d
.di_atime
= ip
->i_d
.di_mtime
;
1070 ip
->i_d
.di_ctime
= ip
->i_d
.di_mtime
;
1073 * di_gen will have been taken care of in xfs_iread.
1075 ip
->i_d
.di_extsize
= 0;
1076 ip
->i_d
.di_dmevmask
= 0;
1077 ip
->i_d
.di_dmstate
= 0;
1078 ip
->i_d
.di_flags
= 0;
1079 flags
= XFS_ILOG_CORE
;
1080 switch (mode
& S_IFMT
) {
1085 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1086 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1087 ip
->i_df
.if_flags
= 0;
1088 flags
|= XFS_ILOG_DEV
;
1092 * we can't set up filestreams until after the VFS inode
1093 * is set up properly.
1095 if (pip
&& xfs_inode_is_filestream(pip
))
1099 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1102 if ((mode
& S_IFMT
) == S_IFDIR
) {
1103 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1104 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1105 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1106 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1107 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1109 } else if ((mode
& S_IFMT
) == S_IFREG
) {
1110 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1111 di_flags
|= XFS_DIFLAG_REALTIME
;
1112 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1113 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1114 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1117 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1118 xfs_inherit_noatime
)
1119 di_flags
|= XFS_DIFLAG_NOATIME
;
1120 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1122 di_flags
|= XFS_DIFLAG_NODUMP
;
1123 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1125 di_flags
|= XFS_DIFLAG_SYNC
;
1126 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1127 xfs_inherit_nosymlinks
)
1128 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1129 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1130 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1131 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1132 xfs_inherit_nodefrag
)
1133 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1134 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
1135 di_flags
|= XFS_DIFLAG_FILESTREAM
;
1136 ip
->i_d
.di_flags
|= di_flags
;
1140 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1141 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1142 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1143 ip
->i_df
.if_u1
.if_extents
= NULL
;
1149 * Attribute fork settings for new inode.
1151 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1152 ip
->i_d
.di_anextents
= 0;
1155 * Log the new values stuffed into the inode.
1157 xfs_trans_ijoin_ref(tp
, ip
, XFS_ILOCK_EXCL
);
1158 xfs_trans_log_inode(tp
, ip
, flags
);
1160 /* now that we have an i_mode we can setup inode ops and unlock */
1161 xfs_setup_inode(ip
);
1163 /* now we have set up the vfs inode we can associate the filestream */
1165 error
= xfs_filestream_associate(pip
, ip
);
1169 xfs_iflags_set(ip
, XFS_IFILESTREAM
);
1177 * Check to make sure that there are no blocks allocated to the
1178 * file beyond the size of the file. We don't check this for
1179 * files with fixed size extents or real time extents, but we
1180 * at least do it for regular files.
1189 xfs_fileoff_t map_first
;
1191 xfs_bmbt_irec_t imaps
[2];
1193 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1196 if (XFS_IS_REALTIME_INODE(ip
))
1199 if (ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
)
1203 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1205 * The filesystem could be shutting down, so bmapi may return
1208 if (xfs_bmapi(NULL
, ip
, map_first
,
1210 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1212 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1215 ASSERT(nimaps
== 1);
1216 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1221 * Calculate the last possible buffered byte in a file. This must
1222 * include data that was buffered beyond the EOF by the write code.
1223 * This also needs to deal with overflowing the xfs_fsize_t type
1224 * which can happen for sizes near the limit.
1226 * We also need to take into account any blocks beyond the EOF. It
1227 * may be the case that they were buffered by a write which failed.
1228 * In that case the pages will still be in memory, but the inode size
1229 * will never have been updated.
1236 xfs_fsize_t last_byte
;
1237 xfs_fileoff_t last_block
;
1238 xfs_fileoff_t size_last_block
;
1241 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
));
1245 * Only check for blocks beyond the EOF if the extents have
1246 * been read in. This eliminates the need for the inode lock,
1247 * and it also saves us from looking when it really isn't
1250 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1251 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
1252 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1254 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
1261 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_size
);
1262 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1264 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1265 if (last_byte
< 0) {
1266 return XFS_MAXIOFFSET(mp
);
1268 last_byte
+= (1 << mp
->m_writeio_log
);
1269 if (last_byte
< 0) {
1270 return XFS_MAXIOFFSET(mp
);
1276 * Start the truncation of the file to new_size. The new size
1277 * must be smaller than the current size. This routine will
1278 * clear the buffer and page caches of file data in the removed
1279 * range, and xfs_itruncate_finish() will remove the underlying
1282 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1283 * must NOT have the inode lock held at all. This is because we're
1284 * calling into the buffer/page cache code and we can't hold the
1285 * inode lock when we do so.
1287 * We need to wait for any direct I/Os in flight to complete before we
1288 * proceed with the truncate. This is needed to prevent the extents
1289 * being read or written by the direct I/Os from being removed while the
1290 * I/O is in flight as there is no other method of synchronising
1291 * direct I/O with the truncate operation. Also, because we hold
1292 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1293 * started until the truncate completes and drops the lock. Essentially,
1294 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1295 * ordering between direct I/Os and the truncate operation.
1297 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1298 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1299 * in the case that the caller is locking things out of order and
1300 * may not be able to call xfs_itruncate_finish() with the inode lock
1301 * held without dropping the I/O lock. If the caller must drop the
1302 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1303 * must be called again with all the same restrictions as the initial
1307 xfs_itruncate_start(
1310 xfs_fsize_t new_size
)
1312 xfs_fsize_t last_byte
;
1313 xfs_off_t toss_start
;
1317 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1318 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1319 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1320 (flags
== XFS_ITRUNC_MAYBE
));
1324 /* wait for the completion of any pending DIOs */
1325 if (new_size
== 0 || new_size
< ip
->i_size
)
1329 * Call toss_pages or flushinval_pages to get rid of pages
1330 * overlapping the region being removed. We have to use
1331 * the less efficient flushinval_pages in the case that the
1332 * caller may not be able to finish the truncate without
1333 * dropping the inode's I/O lock. Make sure
1334 * to catch any pages brought in by buffers overlapping
1335 * the EOF by searching out beyond the isize by our
1336 * block size. We round new_size up to a block boundary
1337 * so that we don't toss things on the same block as
1338 * new_size but before it.
1340 * Before calling toss_page or flushinval_pages, make sure to
1341 * call remapf() over the same region if the file is mapped.
1342 * This frees up mapped file references to the pages in the
1343 * given range and for the flushinval_pages case it ensures
1344 * that we get the latest mapped changes flushed out.
1346 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1347 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1348 if (toss_start
< 0) {
1350 * The place to start tossing is beyond our maximum
1351 * file size, so there is no way that the data extended
1356 last_byte
= xfs_file_last_byte(ip
);
1357 trace_xfs_itruncate_start(ip
, flags
, new_size
, toss_start
, last_byte
);
1358 if (last_byte
> toss_start
) {
1359 if (flags
& XFS_ITRUNC_DEFINITE
) {
1360 xfs_tosspages(ip
, toss_start
,
1361 -1, FI_REMAPF_LOCKED
);
1363 error
= xfs_flushinval_pages(ip
, toss_start
,
1364 -1, FI_REMAPF_LOCKED
);
1369 if (new_size
== 0) {
1370 ASSERT(VN_CACHED(VFS_I(ip
)) == 0);
1377 * Shrink the file to the given new_size. The new size must be smaller than
1378 * the current size. This will free up the underlying blocks in the removed
1379 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1381 * The transaction passed to this routine must have made a permanent log
1382 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1383 * given transaction and start new ones, so make sure everything involved in
1384 * the transaction is tidy before calling here. Some transaction will be
1385 * returned to the caller to be committed. The incoming transaction must
1386 * already include the inode, and both inode locks must be held exclusively.
1387 * The inode must also be "held" within the transaction. On return the inode
1388 * will be "held" within the returned transaction. This routine does NOT
1389 * require any disk space to be reserved for it within the transaction.
1391 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1392 * indicates the fork which is to be truncated. For the attribute fork we only
1393 * support truncation to size 0.
1395 * We use the sync parameter to indicate whether or not the first transaction
1396 * we perform might have to be synchronous. For the attr fork, it needs to be
1397 * so if the unlink of the inode is not yet known to be permanent in the log.
1398 * This keeps us from freeing and reusing the blocks of the attribute fork
1399 * before the unlink of the inode becomes permanent.
1401 * For the data fork, we normally have to run synchronously if we're being
1402 * called out of the inactive path or we're being called out of the create path
1403 * where we're truncating an existing file. Either way, the truncate needs to
1404 * be sync so blocks don't reappear in the file with altered data in case of a
1405 * crash. wsync filesystems can run the first case async because anything that
1406 * shrinks the inode has to run sync so by the time we're called here from
1407 * inactive, the inode size is permanently set to 0.
1409 * Calls from the truncate path always need to be sync unless we're in a wsync
1410 * filesystem and the file has already been unlinked.
1412 * The caller is responsible for correctly setting the sync parameter. It gets
1413 * too hard for us to guess here which path we're being called out of just
1414 * based on inode state.
1416 * If we get an error, we must return with the inode locked and linked into the
1417 * current transaction. This keeps things simple for the higher level code,
1418 * because it always knows that the inode is locked and held in the transaction
1419 * that returns to it whether errors occur or not. We don't mark the inode
1420 * dirty on error so that transactions can be easily aborted if possible.
1423 xfs_itruncate_finish(
1426 xfs_fsize_t new_size
,
1430 xfs_fsblock_t first_block
;
1431 xfs_fileoff_t first_unmap_block
;
1432 xfs_fileoff_t last_block
;
1433 xfs_filblks_t unmap_len
=0;
1438 xfs_bmap_free_t free_list
;
1441 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
1442 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1443 ASSERT(*tp
!= NULL
);
1444 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1445 ASSERT(ip
->i_transp
== *tp
);
1446 ASSERT(ip
->i_itemp
!= NULL
);
1447 ASSERT(ip
->i_itemp
->ili_lock_flags
== 0);
1451 mp
= (ntp
)->t_mountp
;
1452 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1455 * We only support truncating the entire attribute fork.
1457 if (fork
== XFS_ATTR_FORK
) {
1460 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1461 trace_xfs_itruncate_finish_start(ip
, new_size
);
1464 * The first thing we do is set the size to new_size permanently
1465 * on disk. This way we don't have to worry about anyone ever
1466 * being able to look at the data being freed even in the face
1467 * of a crash. What we're getting around here is the case where
1468 * we free a block, it is allocated to another file, it is written
1469 * to, and then we crash. If the new data gets written to the
1470 * file but the log buffers containing the free and reallocation
1471 * don't, then we'd end up with garbage in the blocks being freed.
1472 * As long as we make the new_size permanent before actually
1473 * freeing any blocks it doesn't matter if they get writtten to.
1475 * The callers must signal into us whether or not the size
1476 * setting here must be synchronous. There are a few cases
1477 * where it doesn't have to be synchronous. Those cases
1478 * occur if the file is unlinked and we know the unlink is
1479 * permanent or if the blocks being truncated are guaranteed
1480 * to be beyond the inode eof (regardless of the link count)
1481 * and the eof value is permanent. Both of these cases occur
1482 * only on wsync-mounted filesystems. In those cases, we're
1483 * guaranteed that no user will ever see the data in the blocks
1484 * that are being truncated so the truncate can run async.
1485 * In the free beyond eof case, the file may wind up with
1486 * more blocks allocated to it than it needs if we crash
1487 * and that won't get fixed until the next time the file
1488 * is re-opened and closed but that's ok as that shouldn't
1489 * be too many blocks.
1491 * However, we can't just make all wsync xactions run async
1492 * because there's one call out of the create path that needs
1493 * to run sync where it's truncating an existing file to size
1494 * 0 whose size is > 0.
1496 * It's probably possible to come up with a test in this
1497 * routine that would correctly distinguish all the above
1498 * cases from the values of the function parameters and the
1499 * inode state but for sanity's sake, I've decided to let the
1500 * layers above just tell us. It's simpler to correctly figure
1501 * out in the layer above exactly under what conditions we
1502 * can run async and I think it's easier for others read and
1503 * follow the logic in case something has to be changed.
1504 * cscope is your friend -- rcc.
1506 * The attribute fork is much simpler.
1508 * For the attribute fork we allow the caller to tell us whether
1509 * the unlink of the inode that led to this call is yet permanent
1510 * in the on disk log. If it is not and we will be freeing extents
1511 * in this inode then we make the first transaction synchronous
1512 * to make sure that the unlink is permanent by the time we free
1515 if (fork
== XFS_DATA_FORK
) {
1516 if (ip
->i_d
.di_nextents
> 0) {
1518 * If we are not changing the file size then do
1519 * not update the on-disk file size - we may be
1520 * called from xfs_inactive_free_eofblocks(). If we
1521 * update the on-disk file size and then the system
1522 * crashes before the contents of the file are
1523 * flushed to disk then the files may be full of
1524 * holes (ie NULL files bug).
1526 if (ip
->i_size
!= new_size
) {
1527 ip
->i_d
.di_size
= new_size
;
1528 ip
->i_size
= new_size
;
1529 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1533 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1534 if (ip
->i_d
.di_anextents
> 0)
1535 xfs_trans_set_sync(ntp
);
1537 ASSERT(fork
== XFS_DATA_FORK
||
1538 (fork
== XFS_ATTR_FORK
&&
1539 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1540 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1543 * Since it is possible for space to become allocated beyond
1544 * the end of the file (in a crash where the space is allocated
1545 * but the inode size is not yet updated), simply remove any
1546 * blocks which show up between the new EOF and the maximum
1547 * possible file size. If the first block to be removed is
1548 * beyond the maximum file size (ie it is the same as last_block),
1549 * then there is nothing to do.
1551 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1552 ASSERT(first_unmap_block
<= last_block
);
1554 if (last_block
== first_unmap_block
) {
1557 unmap_len
= last_block
- first_unmap_block
+ 1;
1561 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1562 * will tell us whether it freed the entire range or
1563 * not. If this is a synchronous mount (wsync),
1564 * then we can tell bunmapi to keep all the
1565 * transactions asynchronous since the unlink
1566 * transaction that made this inode inactive has
1567 * already hit the disk. There's no danger of
1568 * the freed blocks being reused, there being a
1569 * crash, and the reused blocks suddenly reappearing
1570 * in this file with garbage in them once recovery
1573 xfs_bmap_init(&free_list
, &first_block
);
1574 error
= xfs_bunmapi(ntp
, ip
,
1575 first_unmap_block
, unmap_len
,
1576 xfs_bmapi_aflag(fork
),
1577 XFS_ITRUNC_MAX_EXTENTS
,
1578 &first_block
, &free_list
,
1582 * If the bunmapi call encounters an error,
1583 * return to the caller where the transaction
1584 * can be properly aborted. We just need to
1585 * make sure we're not holding any resources
1586 * that we were not when we came in.
1588 xfs_bmap_cancel(&free_list
);
1593 * Duplicate the transaction that has the permanent
1594 * reservation and commit the old transaction.
1596 error
= xfs_bmap_finish(tp
, &free_list
, &committed
);
1599 xfs_trans_ijoin(ntp
, ip
);
1603 * If the bmap finish call encounters an error, return
1604 * to the caller where the transaction can be properly
1605 * aborted. We just need to make sure we're not
1606 * holding any resources that we were not when we came
1609 * Aborting from this point might lose some blocks in
1610 * the file system, but oh well.
1612 xfs_bmap_cancel(&free_list
);
1618 * Mark the inode dirty so it will be logged and
1619 * moved forward in the log as part of every commit.
1621 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1624 ntp
= xfs_trans_dup(ntp
);
1625 error
= xfs_trans_commit(*tp
, 0);
1628 xfs_trans_ijoin(ntp
, ip
);
1633 * transaction commit worked ok so we can drop the extra ticket
1634 * reference that we gained in xfs_trans_dup()
1636 xfs_log_ticket_put(ntp
->t_ticket
);
1637 error
= xfs_trans_reserve(ntp
, 0,
1638 XFS_ITRUNCATE_LOG_RES(mp
), 0,
1639 XFS_TRANS_PERM_LOG_RES
,
1640 XFS_ITRUNCATE_LOG_COUNT
);
1645 * Only update the size in the case of the data fork, but
1646 * always re-log the inode so that our permanent transaction
1647 * can keep on rolling it forward in the log.
1649 if (fork
== XFS_DATA_FORK
) {
1650 xfs_isize_check(mp
, ip
, new_size
);
1652 * If we are not changing the file size then do
1653 * not update the on-disk file size - we may be
1654 * called from xfs_inactive_free_eofblocks(). If we
1655 * update the on-disk file size and then the system
1656 * crashes before the contents of the file are
1657 * flushed to disk then the files may be full of
1658 * holes (ie NULL files bug).
1660 if (ip
->i_size
!= new_size
) {
1661 ip
->i_d
.di_size
= new_size
;
1662 ip
->i_size
= new_size
;
1665 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1666 ASSERT((new_size
!= 0) ||
1667 (fork
== XFS_ATTR_FORK
) ||
1668 (ip
->i_delayed_blks
== 0));
1669 ASSERT((new_size
!= 0) ||
1670 (fork
== XFS_ATTR_FORK
) ||
1671 (ip
->i_d
.di_nextents
== 0));
1672 trace_xfs_itruncate_finish_end(ip
, new_size
);
1677 * This is called when the inode's link count goes to 0.
1678 * We place the on-disk inode on a list in the AGI. It
1679 * will be pulled from this list when the inode is freed.
1696 ASSERT(ip
->i_d
.di_nlink
== 0);
1697 ASSERT(ip
->i_d
.di_mode
!= 0);
1698 ASSERT(ip
->i_transp
== tp
);
1703 * Get the agi buffer first. It ensures lock ordering
1706 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1709 agi
= XFS_BUF_TO_AGI(agibp
);
1712 * Get the index into the agi hash table for the
1713 * list this inode will go on.
1715 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1717 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1718 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1719 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1721 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
) {
1723 * There is already another inode in the bucket we need
1724 * to add ourselves to. Add us at the front of the list.
1725 * Here we put the head pointer into our next pointer,
1726 * and then we fall through to point the head at us.
1728 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1732 ASSERT(be32_to_cpu(dip
->di_next_unlinked
) == NULLAGINO
);
1733 /* both on-disk, don't endian flip twice */
1734 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1735 offset
= ip
->i_imap
.im_boffset
+
1736 offsetof(xfs_dinode_t
, di_next_unlinked
);
1737 xfs_trans_inode_buf(tp
, ibp
);
1738 xfs_trans_log_buf(tp
, ibp
, offset
,
1739 (offset
+ sizeof(xfs_agino_t
) - 1));
1740 xfs_inobp_check(mp
, ibp
);
1744 * Point the bucket head pointer at the inode being inserted.
1747 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1748 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1749 (sizeof(xfs_agino_t
) * bucket_index
);
1750 xfs_trans_log_buf(tp
, agibp
, offset
,
1751 (offset
+ sizeof(xfs_agino_t
) - 1));
1756 * Pull the on-disk inode from the AGI unlinked list.
1769 xfs_agnumber_t agno
;
1771 xfs_agino_t next_agino
;
1772 xfs_buf_t
*last_ibp
;
1773 xfs_dinode_t
*last_dip
= NULL
;
1775 int offset
, last_offset
= 0;
1779 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1782 * Get the agi buffer first. It ensures lock ordering
1785 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
1789 agi
= XFS_BUF_TO_AGI(agibp
);
1792 * Get the index into the agi hash table for the
1793 * list this inode will go on.
1795 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1797 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1798 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
);
1799 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1801 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
1803 * We're at the head of the list. Get the inode's
1804 * on-disk buffer to see if there is anyone after us
1805 * on the list. Only modify our next pointer if it
1806 * is not already NULLAGINO. This saves us the overhead
1807 * of dealing with the buffer when there is no need to
1810 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1812 xfs_warn(mp
, "%s: xfs_itobp() returned error %d.",
1816 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1817 ASSERT(next_agino
!= 0);
1818 if (next_agino
!= NULLAGINO
) {
1819 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1820 offset
= ip
->i_imap
.im_boffset
+
1821 offsetof(xfs_dinode_t
, di_next_unlinked
);
1822 xfs_trans_inode_buf(tp
, ibp
);
1823 xfs_trans_log_buf(tp
, ibp
, offset
,
1824 (offset
+ sizeof(xfs_agino_t
) - 1));
1825 xfs_inobp_check(mp
, ibp
);
1827 xfs_trans_brelse(tp
, ibp
);
1830 * Point the bucket head pointer at the next inode.
1832 ASSERT(next_agino
!= 0);
1833 ASSERT(next_agino
!= agino
);
1834 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
1835 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1836 (sizeof(xfs_agino_t
) * bucket_index
);
1837 xfs_trans_log_buf(tp
, agibp
, offset
,
1838 (offset
+ sizeof(xfs_agino_t
) - 1));
1841 * We need to search the list for the inode being freed.
1843 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
1845 while (next_agino
!= agino
) {
1847 * If the last inode wasn't the one pointing to
1848 * us, then release its buffer since we're not
1849 * going to do anything with it.
1851 if (last_ibp
!= NULL
) {
1852 xfs_trans_brelse(tp
, last_ibp
);
1854 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
1855 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
1856 &last_ibp
, &last_offset
, 0);
1859 "%s: xfs_inotobp() returned error %d.",
1863 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
1864 ASSERT(next_agino
!= NULLAGINO
);
1865 ASSERT(next_agino
!= 0);
1868 * Now last_ibp points to the buffer previous to us on
1869 * the unlinked list. Pull us from the list.
1871 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1873 xfs_warn(mp
, "%s: xfs_itobp(2) returned error %d.",
1877 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1878 ASSERT(next_agino
!= 0);
1879 ASSERT(next_agino
!= agino
);
1880 if (next_agino
!= NULLAGINO
) {
1881 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1882 offset
= ip
->i_imap
.im_boffset
+
1883 offsetof(xfs_dinode_t
, di_next_unlinked
);
1884 xfs_trans_inode_buf(tp
, ibp
);
1885 xfs_trans_log_buf(tp
, ibp
, offset
,
1886 (offset
+ sizeof(xfs_agino_t
) - 1));
1887 xfs_inobp_check(mp
, ibp
);
1889 xfs_trans_brelse(tp
, ibp
);
1892 * Point the previous inode on the list to the next inode.
1894 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
1895 ASSERT(next_agino
!= 0);
1896 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
1897 xfs_trans_inode_buf(tp
, last_ibp
);
1898 xfs_trans_log_buf(tp
, last_ibp
, offset
,
1899 (offset
+ sizeof(xfs_agino_t
) - 1));
1900 xfs_inobp_check(mp
, last_ibp
);
1906 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1907 * inodes that are in memory - they all must be marked stale and attached to
1908 * the cluster buffer.
1912 xfs_inode_t
*free_ip
,
1916 xfs_mount_t
*mp
= free_ip
->i_mount
;
1917 int blks_per_cluster
;
1924 xfs_inode_log_item_t
*iip
;
1925 xfs_log_item_t
*lip
;
1926 struct xfs_perag
*pag
;
1928 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, inum
));
1929 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
1930 blks_per_cluster
= 1;
1931 ninodes
= mp
->m_sb
.sb_inopblock
;
1932 nbufs
= XFS_IALLOC_BLOCKS(mp
);
1934 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
1935 mp
->m_sb
.sb_blocksize
;
1936 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
1937 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
1940 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
1941 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
1942 XFS_INO_TO_AGBNO(mp
, inum
));
1945 * We obtain and lock the backing buffer first in the process
1946 * here, as we have to ensure that any dirty inode that we
1947 * can't get the flush lock on is attached to the buffer.
1948 * If we scan the in-memory inodes first, then buffer IO can
1949 * complete before we get a lock on it, and hence we may fail
1950 * to mark all the active inodes on the buffer stale.
1952 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
1953 mp
->m_bsize
* blks_per_cluster
,
1957 * Walk the inodes already attached to the buffer and mark them
1958 * stale. These will all have the flush locks held, so an
1959 * in-memory inode walk can't lock them. By marking them all
1960 * stale first, we will not attempt to lock them in the loop
1961 * below as the XFS_ISTALE flag will be set.
1963 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
1965 if (lip
->li_type
== XFS_LI_INODE
) {
1966 iip
= (xfs_inode_log_item_t
*)lip
;
1967 ASSERT(iip
->ili_logged
== 1);
1968 lip
->li_cb
= xfs_istale_done
;
1969 xfs_trans_ail_copy_lsn(mp
->m_ail
,
1970 &iip
->ili_flush_lsn
,
1971 &iip
->ili_item
.li_lsn
);
1972 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
1974 lip
= lip
->li_bio_list
;
1979 * For each inode in memory attempt to add it to the inode
1980 * buffer and set it up for being staled on buffer IO
1981 * completion. This is safe as we've locked out tail pushing
1982 * and flushing by locking the buffer.
1984 * We have already marked every inode that was part of a
1985 * transaction stale above, which means there is no point in
1986 * even trying to lock them.
1988 for (i
= 0; i
< ninodes
; i
++) {
1991 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
1992 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
1994 /* Inode not in memory, nothing to do */
2001 * because this is an RCU protected lookup, we could
2002 * find a recently freed or even reallocated inode
2003 * during the lookup. We need to check under the
2004 * i_flags_lock for a valid inode here. Skip it if it
2005 * is not valid, the wrong inode or stale.
2007 spin_lock(&ip
->i_flags_lock
);
2008 if (ip
->i_ino
!= inum
+ i
||
2009 __xfs_iflags_test(ip
, XFS_ISTALE
)) {
2010 spin_unlock(&ip
->i_flags_lock
);
2014 spin_unlock(&ip
->i_flags_lock
);
2017 * Don't try to lock/unlock the current inode, but we
2018 * _cannot_ skip the other inodes that we did not find
2019 * in the list attached to the buffer and are not
2020 * already marked stale. If we can't lock it, back off
2023 if (ip
!= free_ip
&&
2024 !xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2032 xfs_iflags_set(ip
, XFS_ISTALE
);
2035 * we don't need to attach clean inodes or those only
2036 * with unlogged changes (which we throw away, anyway).
2039 if (!iip
|| xfs_inode_clean(ip
)) {
2040 ASSERT(ip
!= free_ip
);
2041 ip
->i_update_core
= 0;
2043 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2047 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2048 iip
->ili_format
.ilf_fields
= 0;
2049 iip
->ili_logged
= 1;
2050 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2051 &iip
->ili_item
.li_lsn
);
2053 xfs_buf_attach_iodone(bp
, xfs_istale_done
,
2057 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2060 xfs_trans_stale_inode_buf(tp
, bp
);
2061 xfs_trans_binval(tp
, bp
);
2068 * This is called to return an inode to the inode free list.
2069 * The inode should already be truncated to 0 length and have
2070 * no pages associated with it. This routine also assumes that
2071 * the inode is already a part of the transaction.
2073 * The on-disk copy of the inode will have been added to the list
2074 * of unlinked inodes in the AGI. We need to remove the inode from
2075 * that list atomically with respect to freeing it here.
2081 xfs_bmap_free_t
*flist
)
2085 xfs_ino_t first_ino
;
2089 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2090 ASSERT(ip
->i_transp
== tp
);
2091 ASSERT(ip
->i_d
.di_nlink
== 0);
2092 ASSERT(ip
->i_d
.di_nextents
== 0);
2093 ASSERT(ip
->i_d
.di_anextents
== 0);
2094 ASSERT((ip
->i_d
.di_size
== 0 && ip
->i_size
== 0) ||
2095 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2096 ASSERT(ip
->i_d
.di_nblocks
== 0);
2099 * Pull the on-disk inode from the AGI unlinked list.
2101 error
= xfs_iunlink_remove(tp
, ip
);
2106 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2110 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2111 ip
->i_d
.di_flags
= 0;
2112 ip
->i_d
.di_dmevmask
= 0;
2113 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2114 ip
->i_df
.if_ext_max
=
2115 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2116 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2117 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2119 * Bump the generation count so no one will be confused
2120 * by reincarnations of this inode.
2124 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2126 error
= xfs_itobp(ip
->i_mount
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
2131 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2132 * from picking up this inode when it is reclaimed (its incore state
2133 * initialzed but not flushed to disk yet). The in-core di_mode is
2134 * already cleared and a corresponding transaction logged.
2135 * The hack here just synchronizes the in-core to on-disk
2136 * di_mode value in advance before the actual inode sync to disk.
2137 * This is OK because the inode is already unlinked and would never
2138 * change its di_mode again for this inode generation.
2139 * This is a temporary hack that would require a proper fix
2145 xfs_ifree_cluster(ip
, tp
, first_ino
);
2152 * Reallocate the space for if_broot based on the number of records
2153 * being added or deleted as indicated in rec_diff. Move the records
2154 * and pointers in if_broot to fit the new size. When shrinking this
2155 * will eliminate holes between the records and pointers created by
2156 * the caller. When growing this will create holes to be filled in
2159 * The caller must not request to add more records than would fit in
2160 * the on-disk inode root. If the if_broot is currently NULL, then
2161 * if we adding records one will be allocated. The caller must also
2162 * not request that the number of records go below zero, although
2163 * it can go to zero.
2165 * ip -- the inode whose if_broot area is changing
2166 * ext_diff -- the change in the number of records, positive or negative,
2167 * requested for the if_broot array.
2175 struct xfs_mount
*mp
= ip
->i_mount
;
2178 struct xfs_btree_block
*new_broot
;
2185 * Handle the degenerate case quietly.
2187 if (rec_diff
== 0) {
2191 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2194 * If there wasn't any memory allocated before, just
2195 * allocate it now and get out.
2197 if (ifp
->if_broot_bytes
== 0) {
2198 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2199 ifp
->if_broot
= kmem_alloc(new_size
, KM_SLEEP
| KM_NOFS
);
2200 ifp
->if_broot_bytes
= (int)new_size
;
2205 * If there is already an existing if_broot, then we need
2206 * to realloc() it and shift the pointers to their new
2207 * location. The records don't change location because
2208 * they are kept butted up against the btree block header.
2210 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2211 new_max
= cur_max
+ rec_diff
;
2212 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2213 ifp
->if_broot
= kmem_realloc(ifp
->if_broot
, new_size
,
2214 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2215 KM_SLEEP
| KM_NOFS
);
2216 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2217 ifp
->if_broot_bytes
);
2218 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2220 ifp
->if_broot_bytes
= (int)new_size
;
2221 ASSERT(ifp
->if_broot_bytes
<=
2222 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2223 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2228 * rec_diff is less than 0. In this case, we are shrinking the
2229 * if_broot buffer. It must already exist. If we go to zero
2230 * records, just get rid of the root and clear the status bit.
2232 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2233 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2234 new_max
= cur_max
+ rec_diff
;
2235 ASSERT(new_max
>= 0);
2237 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2241 new_broot
= kmem_alloc(new_size
, KM_SLEEP
| KM_NOFS
);
2243 * First copy over the btree block header.
2245 memcpy(new_broot
, ifp
->if_broot
, XFS_BTREE_LBLOCK_LEN
);
2248 ifp
->if_flags
&= ~XFS_IFBROOT
;
2252 * Only copy the records and pointers if there are any.
2256 * First copy the records.
2258 op
= (char *)XFS_BMBT_REC_ADDR(mp
, ifp
->if_broot
, 1);
2259 np
= (char *)XFS_BMBT_REC_ADDR(mp
, new_broot
, 1);
2260 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2263 * Then copy the pointers.
2265 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2266 ifp
->if_broot_bytes
);
2267 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, new_broot
, 1,
2269 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2271 kmem_free(ifp
->if_broot
);
2272 ifp
->if_broot
= new_broot
;
2273 ifp
->if_broot_bytes
= (int)new_size
;
2274 ASSERT(ifp
->if_broot_bytes
<=
2275 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2281 * This is called when the amount of space needed for if_data
2282 * is increased or decreased. The change in size is indicated by
2283 * the number of bytes that need to be added or deleted in the
2284 * byte_diff parameter.
2286 * If the amount of space needed has decreased below the size of the
2287 * inline buffer, then switch to using the inline buffer. Otherwise,
2288 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2289 * to what is needed.
2291 * ip -- the inode whose if_data area is changing
2292 * byte_diff -- the change in the number of bytes, positive or negative,
2293 * requested for the if_data array.
2305 if (byte_diff
== 0) {
2309 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2310 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2311 ASSERT(new_size
>= 0);
2313 if (new_size
== 0) {
2314 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2315 kmem_free(ifp
->if_u1
.if_data
);
2317 ifp
->if_u1
.if_data
= NULL
;
2319 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2321 * If the valid extents/data can fit in if_inline_ext/data,
2322 * copy them from the malloc'd vector and free it.
2324 if (ifp
->if_u1
.if_data
== NULL
) {
2325 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2326 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2327 ASSERT(ifp
->if_real_bytes
!= 0);
2328 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2330 kmem_free(ifp
->if_u1
.if_data
);
2331 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2336 * Stuck with malloc/realloc.
2337 * For inline data, the underlying buffer must be
2338 * a multiple of 4 bytes in size so that it can be
2339 * logged and stay on word boundaries. We enforce
2342 real_size
= roundup(new_size
, 4);
2343 if (ifp
->if_u1
.if_data
== NULL
) {
2344 ASSERT(ifp
->if_real_bytes
== 0);
2345 ifp
->if_u1
.if_data
= kmem_alloc(real_size
,
2346 KM_SLEEP
| KM_NOFS
);
2347 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2349 * Only do the realloc if the underlying size
2350 * is really changing.
2352 if (ifp
->if_real_bytes
!= real_size
) {
2353 ifp
->if_u1
.if_data
=
2354 kmem_realloc(ifp
->if_u1
.if_data
,
2357 KM_SLEEP
| KM_NOFS
);
2360 ASSERT(ifp
->if_real_bytes
== 0);
2361 ifp
->if_u1
.if_data
= kmem_alloc(real_size
,
2362 KM_SLEEP
| KM_NOFS
);
2363 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2367 ifp
->if_real_bytes
= real_size
;
2368 ifp
->if_bytes
= new_size
;
2369 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2379 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2380 if (ifp
->if_broot
!= NULL
) {
2381 kmem_free(ifp
->if_broot
);
2382 ifp
->if_broot
= NULL
;
2386 * If the format is local, then we can't have an extents
2387 * array so just look for an inline data array. If we're
2388 * not local then we may or may not have an extents list,
2389 * so check and free it up if we do.
2391 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2392 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2393 (ifp
->if_u1
.if_data
!= NULL
)) {
2394 ASSERT(ifp
->if_real_bytes
!= 0);
2395 kmem_free(ifp
->if_u1
.if_data
);
2396 ifp
->if_u1
.if_data
= NULL
;
2397 ifp
->if_real_bytes
= 0;
2399 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2400 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2401 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2402 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2403 ASSERT(ifp
->if_real_bytes
!= 0);
2404 xfs_iext_destroy(ifp
);
2406 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2407 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2408 ASSERT(ifp
->if_real_bytes
== 0);
2409 if (whichfork
== XFS_ATTR_FORK
) {
2410 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2416 * This is called to unpin an inode. The caller must have the inode locked
2417 * in at least shared mode so that the buffer cannot be subsequently pinned
2418 * once someone is waiting for it to be unpinned.
2422 struct xfs_inode
*ip
)
2424 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2426 trace_xfs_inode_unpin_nowait(ip
, _RET_IP_
);
2428 /* Give the log a push to start the unpinning I/O */
2429 xfs_log_force_lsn(ip
->i_mount
, ip
->i_itemp
->ili_last_lsn
, 0);
2435 struct xfs_inode
*ip
)
2437 if (xfs_ipincount(ip
)) {
2438 xfs_iunpin_nowait(ip
);
2439 wait_event(ip
->i_ipin_wait
, (xfs_ipincount(ip
) == 0));
2444 * xfs_iextents_copy()
2446 * This is called to copy the REAL extents (as opposed to the delayed
2447 * allocation extents) from the inode into the given buffer. It
2448 * returns the number of bytes copied into the buffer.
2450 * If there are no delayed allocation extents, then we can just
2451 * memcpy() the extents into the buffer. Otherwise, we need to
2452 * examine each extent in turn and skip those which are delayed.
2464 xfs_fsblock_t start_block
;
2466 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2467 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2468 ASSERT(ifp
->if_bytes
> 0);
2470 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2471 XFS_BMAP_TRACE_EXLIST(ip
, nrecs
, whichfork
);
2475 * There are some delayed allocation extents in the
2476 * inode, so copy the extents one at a time and skip
2477 * the delayed ones. There must be at least one
2478 * non-delayed extent.
2481 for (i
= 0; i
< nrecs
; i
++) {
2482 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
2483 start_block
= xfs_bmbt_get_startblock(ep
);
2484 if (isnullstartblock(start_block
)) {
2486 * It's a delayed allocation extent, so skip it.
2491 /* Translate to on disk format */
2492 put_unaligned(cpu_to_be64(ep
->l0
), &dp
->l0
);
2493 put_unaligned(cpu_to_be64(ep
->l1
), &dp
->l1
);
2497 ASSERT(copied
!= 0);
2498 xfs_validate_extents(ifp
, copied
, XFS_EXTFMT_INODE(ip
));
2500 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2504 * Each of the following cases stores data into the same region
2505 * of the on-disk inode, so only one of them can be valid at
2506 * any given time. While it is possible to have conflicting formats
2507 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2508 * in EXTENTS format, this can only happen when the fork has
2509 * changed formats after being modified but before being flushed.
2510 * In these cases, the format always takes precedence, because the
2511 * format indicates the current state of the fork.
2518 xfs_inode_log_item_t
*iip
,
2525 #ifdef XFS_TRANS_DEBUG
2528 static const short brootflag
[2] =
2529 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2530 static const short dataflag
[2] =
2531 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2532 static const short extflag
[2] =
2533 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2537 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2539 * This can happen if we gave up in iformat in an error path,
2540 * for the attribute fork.
2543 ASSERT(whichfork
== XFS_ATTR_FORK
);
2546 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2548 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2549 case XFS_DINODE_FMT_LOCAL
:
2550 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2551 (ifp
->if_bytes
> 0)) {
2552 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2553 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2554 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2558 case XFS_DINODE_FMT_EXTENTS
:
2559 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2560 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
2561 ASSERT((xfs_iext_get_ext(ifp
, 0) != NULL
) ||
2562 (ifp
->if_bytes
== 0));
2563 ASSERT((xfs_iext_get_ext(ifp
, 0) == NULL
) ||
2564 (ifp
->if_bytes
> 0));
2565 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
2566 (ifp
->if_bytes
> 0)) {
2567 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2568 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2573 case XFS_DINODE_FMT_BTREE
:
2574 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
2575 (ifp
->if_broot_bytes
> 0)) {
2576 ASSERT(ifp
->if_broot
!= NULL
);
2577 ASSERT(ifp
->if_broot_bytes
<=
2578 (XFS_IFORK_SIZE(ip
, whichfork
) +
2579 XFS_BROOT_SIZE_ADJ
));
2580 xfs_bmbt_to_bmdr(mp
, ifp
->if_broot
, ifp
->if_broot_bytes
,
2581 (xfs_bmdr_block_t
*)cp
,
2582 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
2586 case XFS_DINODE_FMT_DEV
:
2587 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
2588 ASSERT(whichfork
== XFS_DATA_FORK
);
2589 xfs_dinode_put_rdev(dip
, ip
->i_df
.if_u2
.if_rdev
);
2593 case XFS_DINODE_FMT_UUID
:
2594 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
2595 ASSERT(whichfork
== XFS_DATA_FORK
);
2596 memcpy(XFS_DFORK_DPTR(dip
),
2597 &ip
->i_df
.if_u2
.if_uuid
,
2613 xfs_mount_t
*mp
= ip
->i_mount
;
2614 struct xfs_perag
*pag
;
2615 unsigned long first_index
, mask
;
2616 unsigned long inodes_per_cluster
;
2618 xfs_inode_t
**ilist
;
2625 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
2627 inodes_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
;
2628 ilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
2629 ilist
= kmem_alloc(ilist_size
, KM_MAYFAIL
|KM_NOFS
);
2633 mask
= ~(((XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
)) - 1);
2634 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
2636 /* really need a gang lookup range call here */
2637 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)ilist
,
2638 first_index
, inodes_per_cluster
);
2642 for (i
= 0; i
< nr_found
; i
++) {
2648 * because this is an RCU protected lookup, we could find a
2649 * recently freed or even reallocated inode during the lookup.
2650 * We need to check under the i_flags_lock for a valid inode
2651 * here. Skip it if it is not valid or the wrong inode.
2653 spin_lock(&ip
->i_flags_lock
);
2655 (XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) != first_index
) {
2656 spin_unlock(&ip
->i_flags_lock
);
2659 spin_unlock(&ip
->i_flags_lock
);
2662 * Do an un-protected check to see if the inode is dirty and
2663 * is a candidate for flushing. These checks will be repeated
2664 * later after the appropriate locks are acquired.
2666 if (xfs_inode_clean(iq
) && xfs_ipincount(iq
) == 0)
2670 * Try to get locks. If any are unavailable or it is pinned,
2671 * then this inode cannot be flushed and is skipped.
2674 if (!xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
))
2676 if (!xfs_iflock_nowait(iq
)) {
2677 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2680 if (xfs_ipincount(iq
)) {
2682 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2687 * arriving here means that this inode can be flushed. First
2688 * re-check that it's dirty before flushing.
2690 if (!xfs_inode_clean(iq
)) {
2692 error
= xfs_iflush_int(iq
, bp
);
2694 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2695 goto cluster_corrupt_out
;
2701 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2705 XFS_STATS_INC(xs_icluster_flushcnt
);
2706 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
2717 cluster_corrupt_out
:
2719 * Corruption detected in the clustering loop. Invalidate the
2720 * inode buffer and shut down the filesystem.
2724 * Clean up the buffer. If it was B_DELWRI, just release it --
2725 * brelse can handle it with no problems. If not, shut down the
2726 * filesystem before releasing the buffer.
2728 bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
);
2732 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2734 if (!bufwasdelwri
) {
2736 * Just like incore_relse: if we have b_iodone functions,
2737 * mark the buffer as an error and call them. Otherwise
2738 * mark it as stale and brelse.
2740 if (XFS_BUF_IODONE_FUNC(bp
)) {
2743 XFS_BUF_ERROR(bp
,EIO
);
2744 xfs_buf_ioend(bp
, 0);
2752 * Unlocks the flush lock
2754 xfs_iflush_abort(iq
);
2757 return XFS_ERROR(EFSCORRUPTED
);
2761 * xfs_iflush() will write a modified inode's changes out to the
2762 * inode's on disk home. The caller must have the inode lock held
2763 * in at least shared mode and the inode flush completion must be
2764 * active as well. The inode lock will still be held upon return from
2765 * the call and the caller is free to unlock it.
2766 * The inode flush will be completed when the inode reaches the disk.
2767 * The flags indicate how the inode's buffer should be written out.
2774 xfs_inode_log_item_t
*iip
;
2780 XFS_STATS_INC(xs_iflush_count
);
2782 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2783 ASSERT(!completion_done(&ip
->i_flush
));
2784 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2785 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
2791 * We can't flush the inode until it is unpinned, so wait for it if we
2792 * are allowed to block. We know noone new can pin it, because we are
2793 * holding the inode lock shared and you need to hold it exclusively to
2796 * If we are not allowed to block, force the log out asynchronously so
2797 * that when we come back the inode will be unpinned. If other inodes
2798 * in the same cluster are dirty, they will probably write the inode
2799 * out for us if they occur after the log force completes.
2801 if (!(flags
& SYNC_WAIT
) && xfs_ipincount(ip
)) {
2802 xfs_iunpin_nowait(ip
);
2806 xfs_iunpin_wait(ip
);
2809 * For stale inodes we cannot rely on the backing buffer remaining
2810 * stale in cache for the remaining life of the stale inode and so
2811 * xfs_itobp() below may give us a buffer that no longer contains
2812 * inodes below. We have to check this after ensuring the inode is
2813 * unpinned so that it is safe to reclaim the stale inode after the
2816 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
2822 * This may have been unpinned because the filesystem is shutting
2823 * down forcibly. If that's the case we must not write this inode
2824 * to disk, because the log record didn't make it to disk!
2826 if (XFS_FORCED_SHUTDOWN(mp
)) {
2827 ip
->i_update_core
= 0;
2829 iip
->ili_format
.ilf_fields
= 0;
2831 return XFS_ERROR(EIO
);
2835 * Get the buffer containing the on-disk inode.
2837 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
,
2838 (flags
& SYNC_TRYLOCK
) ? XBF_TRYLOCK
: XBF_LOCK
);
2845 * First flush out the inode that xfs_iflush was called with.
2847 error
= xfs_iflush_int(ip
, bp
);
2852 * If the buffer is pinned then push on the log now so we won't
2853 * get stuck waiting in the write for too long.
2855 if (XFS_BUF_ISPINNED(bp
))
2856 xfs_log_force(mp
, 0);
2860 * see if other inodes can be gathered into this write
2862 error
= xfs_iflush_cluster(ip
, bp
);
2864 goto cluster_corrupt_out
;
2866 if (flags
& SYNC_WAIT
)
2867 error
= xfs_bwrite(mp
, bp
);
2869 xfs_bdwrite(mp
, bp
);
2874 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2875 cluster_corrupt_out
:
2877 * Unlocks the flush lock
2879 xfs_iflush_abort(ip
);
2880 return XFS_ERROR(EFSCORRUPTED
);
2889 xfs_inode_log_item_t
*iip
;
2892 #ifdef XFS_TRANS_DEBUG
2896 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2897 ASSERT(!completion_done(&ip
->i_flush
));
2898 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2899 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
2904 /* set *dip = inode's place in the buffer */
2905 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
2908 * Clear i_update_core before copying out the data.
2909 * This is for coordination with our timestamp updates
2910 * that don't hold the inode lock. They will always
2911 * update the timestamps BEFORE setting i_update_core,
2912 * so if we clear i_update_core after they set it we
2913 * are guaranteed to see their updates to the timestamps.
2914 * I believe that this depends on strongly ordered memory
2915 * semantics, but we have that. We use the SYNCHRONIZE
2916 * macro to make sure that the compiler does not reorder
2917 * the i_update_core access below the data copy below.
2919 ip
->i_update_core
= 0;
2923 * Make sure to get the latest timestamps from the Linux inode.
2925 xfs_synchronize_times(ip
);
2927 if (XFS_TEST_ERROR(be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
,
2928 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
2929 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2930 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2931 __func__
, ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
2934 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
2935 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
2936 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2937 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2938 __func__
, ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
2941 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
2943 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2944 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
2945 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
2946 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2947 "%s: Bad regular inode %Lu, ptr 0x%p",
2948 __func__
, ip
->i_ino
, ip
);
2951 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
2953 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2954 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
2955 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
2956 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
2957 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2958 "%s: Bad directory inode %Lu, ptr 0x%p",
2959 __func__
, ip
->i_ino
, ip
);
2963 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
2964 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
2965 XFS_RANDOM_IFLUSH_5
)) {
2966 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2967 "%s: detected corrupt incore inode %Lu, "
2968 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2969 __func__
, ip
->i_ino
,
2970 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
2971 ip
->i_d
.di_nblocks
, ip
);
2974 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
2975 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
2976 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2977 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2978 __func__
, ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
2982 * bump the flush iteration count, used to detect flushes which
2983 * postdate a log record during recovery.
2986 ip
->i_d
.di_flushiter
++;
2989 * Copy the dirty parts of the inode into the on-disk
2990 * inode. We always copy out the core of the inode,
2991 * because if the inode is dirty at all the core must
2994 xfs_dinode_to_disk(dip
, &ip
->i_d
);
2996 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2997 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
2998 ip
->i_d
.di_flushiter
= 0;
3001 * If this is really an old format inode and the superblock version
3002 * has not been updated to support only new format inodes, then
3003 * convert back to the old inode format. If the superblock version
3004 * has been updated, then make the conversion permanent.
3006 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
3007 if (ip
->i_d
.di_version
== 1) {
3008 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
3012 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
3013 dip
->di_onlink
= cpu_to_be16(ip
->i_d
.di_nlink
);
3016 * The superblock version has already been bumped,
3017 * so just make the conversion to the new inode
3020 ip
->i_d
.di_version
= 2;
3021 dip
->di_version
= 2;
3022 ip
->i_d
.di_onlink
= 0;
3024 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3025 memset(&(dip
->di_pad
[0]), 0,
3026 sizeof(dip
->di_pad
));
3027 ASSERT(xfs_get_projid(ip
) == 0);
3031 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
);
3032 if (XFS_IFORK_Q(ip
))
3033 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3034 xfs_inobp_check(mp
, bp
);
3037 * We've recorded everything logged in the inode, so we'd
3038 * like to clear the ilf_fields bits so we don't log and
3039 * flush things unnecessarily. However, we can't stop
3040 * logging all this information until the data we've copied
3041 * into the disk buffer is written to disk. If we did we might
3042 * overwrite the copy of the inode in the log with all the
3043 * data after re-logging only part of it, and in the face of
3044 * a crash we wouldn't have all the data we need to recover.
3046 * What we do is move the bits to the ili_last_fields field.
3047 * When logging the inode, these bits are moved back to the
3048 * ilf_fields field. In the xfs_iflush_done() routine we
3049 * clear ili_last_fields, since we know that the information
3050 * those bits represent is permanently on disk. As long as
3051 * the flush completes before the inode is logged again, then
3052 * both ilf_fields and ili_last_fields will be cleared.
3054 * We can play with the ilf_fields bits here, because the inode
3055 * lock must be held exclusively in order to set bits there
3056 * and the flush lock protects the ili_last_fields bits.
3057 * Set ili_logged so the flush done
3058 * routine can tell whether or not to look in the AIL.
3059 * Also, store the current LSN of the inode so that we can tell
3060 * whether the item has moved in the AIL from xfs_iflush_done().
3061 * In order to read the lsn we need the AIL lock, because
3062 * it is a 64 bit value that cannot be read atomically.
3064 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3065 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3066 iip
->ili_format
.ilf_fields
= 0;
3067 iip
->ili_logged
= 1;
3069 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
3070 &iip
->ili_item
.li_lsn
);
3073 * Attach the function xfs_iflush_done to the inode's
3074 * buffer. This will remove the inode from the AIL
3075 * and unlock the inode's flush lock when the inode is
3076 * completely written to disk.
3078 xfs_buf_attach_iodone(bp
, xfs_iflush_done
, &iip
->ili_item
);
3080 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3081 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3084 * We're flushing an inode which is not in the AIL and has
3085 * not been logged but has i_update_core set. For this
3086 * case we can use a B_DELWRI flush and immediately drop
3087 * the inode flush lock because we can avoid the whole
3088 * AIL state thing. It's OK to drop the flush lock now,
3089 * because we've already locked the buffer and to do anything
3090 * you really need both.
3093 ASSERT(iip
->ili_logged
== 0);
3094 ASSERT(iip
->ili_last_fields
== 0);
3095 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3103 return XFS_ERROR(EFSCORRUPTED
);
3107 * Return a pointer to the extent record at file index idx.
3109 xfs_bmbt_rec_host_t
*
3111 xfs_ifork_t
*ifp
, /* inode fork pointer */
3112 xfs_extnum_t idx
) /* index of target extent */
3115 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
3116 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3117 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3118 xfs_ext_irec_t
*erp
; /* irec pointer */
3119 int erp_idx
= 0; /* irec index */
3120 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
3122 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3123 return &erp
->er_extbuf
[page_idx
];
3124 } else if (ifp
->if_bytes
) {
3125 return &ifp
->if_u1
.if_extents
[idx
];
3132 * Insert new item(s) into the extent records for incore inode
3133 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3137 xfs_inode_t
*ip
, /* incore inode pointer */
3138 xfs_extnum_t idx
, /* starting index of new items */
3139 xfs_extnum_t count
, /* number of inserted items */
3140 xfs_bmbt_irec_t
*new, /* items to insert */
3141 int state
) /* type of extent conversion */
3143 xfs_ifork_t
*ifp
= (state
& BMAP_ATTRFORK
) ? ip
->i_afp
: &ip
->i_df
;
3144 xfs_extnum_t i
; /* extent record index */
3146 trace_xfs_iext_insert(ip
, idx
, new, state
, _RET_IP_
);
3148 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3149 xfs_iext_add(ifp
, idx
, count
);
3150 for (i
= idx
; i
< idx
+ count
; i
++, new++)
3151 xfs_bmbt_set_all(xfs_iext_get_ext(ifp
, i
), new);
3155 * This is called when the amount of space required for incore file
3156 * extents needs to be increased. The ext_diff parameter stores the
3157 * number of new extents being added and the idx parameter contains
3158 * the extent index where the new extents will be added. If the new
3159 * extents are being appended, then we just need to (re)allocate and
3160 * initialize the space. Otherwise, if the new extents are being
3161 * inserted into the middle of the existing entries, a bit more work
3162 * is required to make room for the new extents to be inserted. The
3163 * caller is responsible for filling in the new extent entries upon
3168 xfs_ifork_t
*ifp
, /* inode fork pointer */
3169 xfs_extnum_t idx
, /* index to begin adding exts */
3170 int ext_diff
) /* number of extents to add */
3172 int byte_diff
; /* new bytes being added */
3173 int new_size
; /* size of extents after adding */
3174 xfs_extnum_t nextents
; /* number of extents in file */
3176 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3177 ASSERT((idx
>= 0) && (idx
<= nextents
));
3178 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
3179 new_size
= ifp
->if_bytes
+ byte_diff
;
3181 * If the new number of extents (nextents + ext_diff)
3182 * fits inside the inode, then continue to use the inline
3185 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
3186 if (idx
< nextents
) {
3187 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3188 &ifp
->if_u2
.if_inline_ext
[idx
],
3189 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3190 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
3192 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3193 ifp
->if_real_bytes
= 0;
3194 ifp
->if_lastex
= nextents
+ ext_diff
;
3197 * Otherwise use a linear (direct) extent list.
3198 * If the extents are currently inside the inode,
3199 * xfs_iext_realloc_direct will switch us from
3200 * inline to direct extent allocation mode.
3202 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3203 xfs_iext_realloc_direct(ifp
, new_size
);
3204 if (idx
< nextents
) {
3205 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3206 &ifp
->if_u1
.if_extents
[idx
],
3207 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3208 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
3211 /* Indirection array */
3213 xfs_ext_irec_t
*erp
;
3217 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
3218 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3219 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
3221 xfs_iext_irec_init(ifp
);
3222 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3223 erp
= ifp
->if_u1
.if_ext_irec
;
3225 /* Extents fit in target extent page */
3226 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3227 if (page_idx
< erp
->er_extcount
) {
3228 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
3229 &erp
->er_extbuf
[page_idx
],
3230 (erp
->er_extcount
- page_idx
) *
3231 sizeof(xfs_bmbt_rec_t
));
3232 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
3234 erp
->er_extcount
+= ext_diff
;
3235 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3237 /* Insert a new extent page */
3239 xfs_iext_add_indirect_multi(ifp
,
3240 erp_idx
, page_idx
, ext_diff
);
3243 * If extent(s) are being appended to the last page in
3244 * the indirection array and the new extent(s) don't fit
3245 * in the page, then erp is NULL and erp_idx is set to
3246 * the next index needed in the indirection array.
3249 int count
= ext_diff
;
3252 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3253 erp
->er_extcount
= count
;
3254 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
3261 ifp
->if_bytes
= new_size
;
3265 * This is called when incore extents are being added to the indirection
3266 * array and the new extents do not fit in the target extent list. The
3267 * erp_idx parameter contains the irec index for the target extent list
3268 * in the indirection array, and the idx parameter contains the extent
3269 * index within the list. The number of extents being added is stored
3270 * in the count parameter.
3272 * |-------| |-------|
3273 * | | | | idx - number of extents before idx
3275 * | | | | count - number of extents being inserted at idx
3276 * |-------| |-------|
3277 * | count | | nex2 | nex2 - number of extents after idx + count
3278 * |-------| |-------|
3281 xfs_iext_add_indirect_multi(
3282 xfs_ifork_t
*ifp
, /* inode fork pointer */
3283 int erp_idx
, /* target extent irec index */
3284 xfs_extnum_t idx
, /* index within target list */
3285 int count
) /* new extents being added */
3287 int byte_diff
; /* new bytes being added */
3288 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3289 xfs_extnum_t ext_diff
; /* number of extents to add */
3290 xfs_extnum_t ext_cnt
; /* new extents still needed */
3291 xfs_extnum_t nex2
; /* extents after idx + count */
3292 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3293 int nlists
; /* number of irec's (lists) */
3295 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3296 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3297 nex2
= erp
->er_extcount
- idx
;
3298 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3301 * Save second part of target extent list
3302 * (all extents past */
3304 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3305 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_NOFS
);
3306 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3307 erp
->er_extcount
-= nex2
;
3308 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3309 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3313 * Add the new extents to the end of the target
3314 * list, then allocate new irec record(s) and
3315 * extent buffer(s) as needed to store the rest
3316 * of the new extents.
3319 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3321 erp
->er_extcount
+= ext_diff
;
3322 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3323 ext_cnt
-= ext_diff
;
3327 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3328 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3329 erp
->er_extcount
= ext_diff
;
3330 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3331 ext_cnt
-= ext_diff
;
3334 /* Add nex2 extents back to indirection array */
3336 xfs_extnum_t ext_avail
;
3339 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3340 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3343 * If nex2 extents fit in the current page, append
3344 * nex2_ep after the new extents.
3346 if (nex2
<= ext_avail
) {
3347 i
= erp
->er_extcount
;
3350 * Otherwise, check if space is available in the
3353 else if ((erp_idx
< nlists
- 1) &&
3354 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3355 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3358 /* Create a hole for nex2 extents */
3359 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3360 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3363 * Final choice, create a new extent page for
3368 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3370 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3372 erp
->er_extcount
+= nex2
;
3373 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3378 * This is called when the amount of space required for incore file
3379 * extents needs to be decreased. The ext_diff parameter stores the
3380 * number of extents to be removed and the idx parameter contains
3381 * the extent index where the extents will be removed from.
3383 * If the amount of space needed has decreased below the linear
3384 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3385 * extent array. Otherwise, use kmem_realloc() to adjust the
3386 * size to what is needed.
3390 xfs_inode_t
*ip
, /* incore inode pointer */
3391 xfs_extnum_t idx
, /* index to begin removing exts */
3392 int ext_diff
, /* number of extents to remove */
3393 int state
) /* type of extent conversion */
3395 xfs_ifork_t
*ifp
= (state
& BMAP_ATTRFORK
) ? ip
->i_afp
: &ip
->i_df
;
3396 xfs_extnum_t nextents
; /* number of extents in file */
3397 int new_size
; /* size of extents after removal */
3399 trace_xfs_iext_remove(ip
, idx
, state
, _RET_IP_
);
3401 ASSERT(ext_diff
> 0);
3402 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3403 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
3405 if (new_size
== 0) {
3406 xfs_iext_destroy(ifp
);
3407 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3408 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
3409 } else if (ifp
->if_real_bytes
) {
3410 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
3412 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
3414 ifp
->if_bytes
= new_size
;
3418 * This removes ext_diff extents from the inline buffer, beginning
3419 * at extent index idx.
3422 xfs_iext_remove_inline(
3423 xfs_ifork_t
*ifp
, /* inode fork pointer */
3424 xfs_extnum_t idx
, /* index to begin removing exts */
3425 int ext_diff
) /* number of extents to remove */
3427 int nextents
; /* number of extents in file */
3429 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3430 ASSERT(idx
< XFS_INLINE_EXTS
);
3431 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3432 ASSERT(((nextents
- ext_diff
) > 0) &&
3433 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
3435 if (idx
+ ext_diff
< nextents
) {
3436 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
3437 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3438 (nextents
- (idx
+ ext_diff
)) *
3439 sizeof(xfs_bmbt_rec_t
));
3440 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
3441 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3443 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
3444 ext_diff
* sizeof(xfs_bmbt_rec_t
));
3449 * This removes ext_diff extents from a linear (direct) extent list,
3450 * beginning at extent index idx. If the extents are being removed
3451 * from the end of the list (ie. truncate) then we just need to re-
3452 * allocate the list to remove the extra space. Otherwise, if the
3453 * extents are being removed from the middle of the existing extent
3454 * entries, then we first need to move the extent records beginning
3455 * at idx + ext_diff up in the list to overwrite the records being
3456 * removed, then remove the extra space via kmem_realloc.
3459 xfs_iext_remove_direct(
3460 xfs_ifork_t
*ifp
, /* inode fork pointer */
3461 xfs_extnum_t idx
, /* index to begin removing exts */
3462 int ext_diff
) /* number of extents to remove */
3464 xfs_extnum_t nextents
; /* number of extents in file */
3465 int new_size
; /* size of extents after removal */
3467 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3468 new_size
= ifp
->if_bytes
-
3469 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
3470 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3472 if (new_size
== 0) {
3473 xfs_iext_destroy(ifp
);
3476 /* Move extents up in the list (if needed) */
3477 if (idx
+ ext_diff
< nextents
) {
3478 memmove(&ifp
->if_u1
.if_extents
[idx
],
3479 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3480 (nextents
- (idx
+ ext_diff
)) *
3481 sizeof(xfs_bmbt_rec_t
));
3483 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
3484 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3486 * Reallocate the direct extent list. If the extents
3487 * will fit inside the inode then xfs_iext_realloc_direct
3488 * will switch from direct to inline extent allocation
3491 xfs_iext_realloc_direct(ifp
, new_size
);
3492 ifp
->if_bytes
= new_size
;
3496 * This is called when incore extents are being removed from the
3497 * indirection array and the extents being removed span multiple extent
3498 * buffers. The idx parameter contains the file extent index where we
3499 * want to begin removing extents, and the count parameter contains
3500 * how many extents need to be removed.
3502 * |-------| |-------|
3503 * | nex1 | | | nex1 - number of extents before idx
3504 * |-------| | count |
3505 * | | | | count - number of extents being removed at idx
3506 * | count | |-------|
3507 * | | | nex2 | nex2 - number of extents after idx + count
3508 * |-------| |-------|
3511 xfs_iext_remove_indirect(
3512 xfs_ifork_t
*ifp
, /* inode fork pointer */
3513 xfs_extnum_t idx
, /* index to begin removing extents */
3514 int count
) /* number of extents to remove */
3516 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3517 int erp_idx
= 0; /* indirection array index */
3518 xfs_extnum_t ext_cnt
; /* extents left to remove */
3519 xfs_extnum_t ext_diff
; /* extents to remove in current list */
3520 xfs_extnum_t nex1
; /* number of extents before idx */
3521 xfs_extnum_t nex2
; /* extents after idx + count */
3522 int page_idx
= idx
; /* index in target extent list */
3524 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3525 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3526 ASSERT(erp
!= NULL
);
3530 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
3531 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
3533 * Check for deletion of entire list;
3534 * xfs_iext_irec_remove() updates extent offsets.
3536 if (ext_diff
== erp
->er_extcount
) {
3537 xfs_iext_irec_remove(ifp
, erp_idx
);
3538 ext_cnt
-= ext_diff
;
3541 ASSERT(erp_idx
< ifp
->if_real_bytes
/
3543 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3550 /* Move extents up (if needed) */
3552 memmove(&erp
->er_extbuf
[nex1
],
3553 &erp
->er_extbuf
[nex1
+ ext_diff
],
3554 nex2
* sizeof(xfs_bmbt_rec_t
));
3556 /* Zero out rest of page */
3557 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
3558 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
3559 /* Update remaining counters */
3560 erp
->er_extcount
-= ext_diff
;
3561 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
3562 ext_cnt
-= ext_diff
;
3567 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
3568 xfs_iext_irec_compact(ifp
);
3572 * Create, destroy, or resize a linear (direct) block of extents.
3575 xfs_iext_realloc_direct(
3576 xfs_ifork_t
*ifp
, /* inode fork pointer */
3577 int new_size
) /* new size of extents */
3579 int rnew_size
; /* real new size of extents */
3581 rnew_size
= new_size
;
3583 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
3584 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
3585 (new_size
!= ifp
->if_real_bytes
)));
3587 /* Free extent records */
3588 if (new_size
== 0) {
3589 xfs_iext_destroy(ifp
);
3591 /* Resize direct extent list and zero any new bytes */
3592 else if (ifp
->if_real_bytes
) {
3593 /* Check if extents will fit inside the inode */
3594 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
3595 xfs_iext_direct_to_inline(ifp
, new_size
/
3596 (uint
)sizeof(xfs_bmbt_rec_t
));
3597 ifp
->if_bytes
= new_size
;
3600 if (!is_power_of_2(new_size
)){
3601 rnew_size
= roundup_pow_of_two(new_size
);
3603 if (rnew_size
!= ifp
->if_real_bytes
) {
3604 ifp
->if_u1
.if_extents
=
3605 kmem_realloc(ifp
->if_u1
.if_extents
,
3607 ifp
->if_real_bytes
, KM_NOFS
);
3609 if (rnew_size
> ifp
->if_real_bytes
) {
3610 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
3611 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
3612 rnew_size
- ifp
->if_real_bytes
);
3616 * Switch from the inline extent buffer to a direct
3617 * extent list. Be sure to include the inline extent
3618 * bytes in new_size.
3621 new_size
+= ifp
->if_bytes
;
3622 if (!is_power_of_2(new_size
)) {
3623 rnew_size
= roundup_pow_of_two(new_size
);
3625 xfs_iext_inline_to_direct(ifp
, rnew_size
);
3627 ifp
->if_real_bytes
= rnew_size
;
3628 ifp
->if_bytes
= new_size
;
3632 * Switch from linear (direct) extent records to inline buffer.
3635 xfs_iext_direct_to_inline(
3636 xfs_ifork_t
*ifp
, /* inode fork pointer */
3637 xfs_extnum_t nextents
) /* number of extents in file */
3639 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3640 ASSERT(nextents
<= XFS_INLINE_EXTS
);
3642 * The inline buffer was zeroed when we switched
3643 * from inline to direct extent allocation mode,
3644 * so we don't need to clear it here.
3646 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
3647 nextents
* sizeof(xfs_bmbt_rec_t
));
3648 kmem_free(ifp
->if_u1
.if_extents
);
3649 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3650 ifp
->if_real_bytes
= 0;
3654 * Switch from inline buffer to linear (direct) extent records.
3655 * new_size should already be rounded up to the next power of 2
3656 * by the caller (when appropriate), so use new_size as it is.
3657 * However, since new_size may be rounded up, we can't update
3658 * if_bytes here. It is the caller's responsibility to update
3659 * if_bytes upon return.
3662 xfs_iext_inline_to_direct(
3663 xfs_ifork_t
*ifp
, /* inode fork pointer */
3664 int new_size
) /* number of extents in file */
3666 ifp
->if_u1
.if_extents
= kmem_alloc(new_size
, KM_NOFS
);
3667 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
3668 if (ifp
->if_bytes
) {
3669 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
3671 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3672 sizeof(xfs_bmbt_rec_t
));
3674 ifp
->if_real_bytes
= new_size
;
3678 * Resize an extent indirection array to new_size bytes.
3681 xfs_iext_realloc_indirect(
3682 xfs_ifork_t
*ifp
, /* inode fork pointer */
3683 int new_size
) /* new indirection array size */
3685 int nlists
; /* number of irec's (ex lists) */
3686 int size
; /* current indirection array size */
3688 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3689 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3690 size
= nlists
* sizeof(xfs_ext_irec_t
);
3691 ASSERT(ifp
->if_real_bytes
);
3692 ASSERT((new_size
>= 0) && (new_size
!= size
));
3693 if (new_size
== 0) {
3694 xfs_iext_destroy(ifp
);
3696 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
3697 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
3698 new_size
, size
, KM_NOFS
);
3703 * Switch from indirection array to linear (direct) extent allocations.
3706 xfs_iext_indirect_to_direct(
3707 xfs_ifork_t
*ifp
) /* inode fork pointer */
3709 xfs_bmbt_rec_host_t
*ep
; /* extent record pointer */
3710 xfs_extnum_t nextents
; /* number of extents in file */
3711 int size
; /* size of file extents */
3713 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3714 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3715 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3716 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
3718 xfs_iext_irec_compact_pages(ifp
);
3719 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
3721 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3722 kmem_free(ifp
->if_u1
.if_ext_irec
);
3723 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3724 ifp
->if_u1
.if_extents
= ep
;
3725 ifp
->if_bytes
= size
;
3726 if (nextents
< XFS_LINEAR_EXTS
) {
3727 xfs_iext_realloc_direct(ifp
, size
);
3732 * Free incore file extents.
3736 xfs_ifork_t
*ifp
) /* inode fork pointer */
3738 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3742 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3743 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
3744 xfs_iext_irec_remove(ifp
, erp_idx
);
3746 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3747 } else if (ifp
->if_real_bytes
) {
3748 kmem_free(ifp
->if_u1
.if_extents
);
3749 } else if (ifp
->if_bytes
) {
3750 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3751 sizeof(xfs_bmbt_rec_t
));
3753 ifp
->if_u1
.if_extents
= NULL
;
3754 ifp
->if_real_bytes
= 0;
3759 * Return a pointer to the extent record for file system block bno.
3761 xfs_bmbt_rec_host_t
* /* pointer to found extent record */
3762 xfs_iext_bno_to_ext(
3763 xfs_ifork_t
*ifp
, /* inode fork pointer */
3764 xfs_fileoff_t bno
, /* block number to search for */
3765 xfs_extnum_t
*idxp
) /* index of target extent */
3767 xfs_bmbt_rec_host_t
*base
; /* pointer to first extent */
3768 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
3769 xfs_bmbt_rec_host_t
*ep
= NULL
; /* pointer to target extent */
3770 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3771 int high
; /* upper boundary in search */
3772 xfs_extnum_t idx
= 0; /* index of target extent */
3773 int low
; /* lower boundary in search */
3774 xfs_extnum_t nextents
; /* number of file extents */
3775 xfs_fileoff_t startoff
= 0; /* start offset of extent */
3777 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3778 if (nextents
== 0) {
3783 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3784 /* Find target extent list */
3786 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
3787 base
= erp
->er_extbuf
;
3788 high
= erp
->er_extcount
- 1;
3790 base
= ifp
->if_u1
.if_extents
;
3791 high
= nextents
- 1;
3793 /* Binary search extent records */
3794 while (low
<= high
) {
3795 idx
= (low
+ high
) >> 1;
3797 startoff
= xfs_bmbt_get_startoff(ep
);
3798 blockcount
= xfs_bmbt_get_blockcount(ep
);
3799 if (bno
< startoff
) {
3801 } else if (bno
>= startoff
+ blockcount
) {
3804 /* Convert back to file-based extent index */
3805 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3806 idx
+= erp
->er_extoff
;
3812 /* Convert back to file-based extent index */
3813 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3814 idx
+= erp
->er_extoff
;
3816 if (bno
>= startoff
+ blockcount
) {
3817 if (++idx
== nextents
) {
3820 ep
= xfs_iext_get_ext(ifp
, idx
);
3828 * Return a pointer to the indirection array entry containing the
3829 * extent record for filesystem block bno. Store the index of the
3830 * target irec in *erp_idxp.
3832 xfs_ext_irec_t
* /* pointer to found extent record */
3833 xfs_iext_bno_to_irec(
3834 xfs_ifork_t
*ifp
, /* inode fork pointer */
3835 xfs_fileoff_t bno
, /* block number to search for */
3836 int *erp_idxp
) /* irec index of target ext list */
3838 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3839 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
3840 int erp_idx
; /* indirection array index */
3841 int nlists
; /* number of extent irec's (lists) */
3842 int high
; /* binary search upper limit */
3843 int low
; /* binary search lower limit */
3845 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3846 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3850 while (low
<= high
) {
3851 erp_idx
= (low
+ high
) >> 1;
3852 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3853 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
3854 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
3856 } else if (erp_next
&& bno
>=
3857 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
3863 *erp_idxp
= erp_idx
;
3868 * Return a pointer to the indirection array entry containing the
3869 * extent record at file extent index *idxp. Store the index of the
3870 * target irec in *erp_idxp and store the page index of the target
3871 * extent record in *idxp.
3874 xfs_iext_idx_to_irec(
3875 xfs_ifork_t
*ifp
, /* inode fork pointer */
3876 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
3877 int *erp_idxp
, /* pointer to target irec */
3878 int realloc
) /* new bytes were just added */
3880 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
3881 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
3882 int erp_idx
; /* indirection array index */
3883 int nlists
; /* number of irec's (ex lists) */
3884 int high
; /* binary search upper limit */
3885 int low
; /* binary search lower limit */
3886 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
3888 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3889 ASSERT(page_idx
>= 0 && page_idx
<=
3890 ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
));
3891 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3896 /* Binary search extent irec's */
3897 while (low
<= high
) {
3898 erp_idx
= (low
+ high
) >> 1;
3899 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3900 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
3901 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
3902 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
3904 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
3905 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
3908 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
3909 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
3913 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
3916 page_idx
-= erp
->er_extoff
;
3921 *erp_idxp
= erp_idx
;
3926 * Allocate and initialize an indirection array once the space needed
3927 * for incore extents increases above XFS_IEXT_BUFSZ.
3931 xfs_ifork_t
*ifp
) /* inode fork pointer */
3933 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3934 xfs_extnum_t nextents
; /* number of extents in file */
3936 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3937 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3938 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3940 erp
= kmem_alloc(sizeof(xfs_ext_irec_t
), KM_NOFS
);
3942 if (nextents
== 0) {
3943 ifp
->if_u1
.if_extents
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
3944 } else if (!ifp
->if_real_bytes
) {
3945 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
3946 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
3947 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
3949 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
3950 erp
->er_extcount
= nextents
;
3953 ifp
->if_flags
|= XFS_IFEXTIREC
;
3954 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
3955 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
3956 ifp
->if_u1
.if_ext_irec
= erp
;
3962 * Allocate and initialize a new entry in the indirection array.
3966 xfs_ifork_t
*ifp
, /* inode fork pointer */
3967 int erp_idx
) /* index for new irec */
3969 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3970 int i
; /* loop counter */
3971 int nlists
; /* number of irec's (ex lists) */
3973 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3974 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3976 /* Resize indirection array */
3977 xfs_iext_realloc_indirect(ifp
, ++nlists
*
3978 sizeof(xfs_ext_irec_t
));
3980 * Move records down in the array so the
3981 * new page can use erp_idx.
3983 erp
= ifp
->if_u1
.if_ext_irec
;
3984 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
3985 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
3987 ASSERT(i
== erp_idx
);
3989 /* Initialize new extent record */
3990 erp
= ifp
->if_u1
.if_ext_irec
;
3991 erp
[erp_idx
].er_extbuf
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
3992 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
3993 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
3994 erp
[erp_idx
].er_extcount
= 0;
3995 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
3996 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
3997 return (&erp
[erp_idx
]);
4001 * Remove a record from the indirection array.
4004 xfs_iext_irec_remove(
4005 xfs_ifork_t
*ifp
, /* inode fork pointer */
4006 int erp_idx
) /* irec index to remove */
4008 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4009 int i
; /* loop counter */
4010 int nlists
; /* number of irec's (ex lists) */
4012 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4013 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4014 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4015 if (erp
->er_extbuf
) {
4016 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
4018 kmem_free(erp
->er_extbuf
);
4020 /* Compact extent records */
4021 erp
= ifp
->if_u1
.if_ext_irec
;
4022 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
4023 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
4026 * Manually free the last extent record from the indirection
4027 * array. A call to xfs_iext_realloc_indirect() with a size
4028 * of zero would result in a call to xfs_iext_destroy() which
4029 * would in turn call this function again, creating a nasty
4033 xfs_iext_realloc_indirect(ifp
,
4034 nlists
* sizeof(xfs_ext_irec_t
));
4036 kmem_free(ifp
->if_u1
.if_ext_irec
);
4038 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4042 * This is called to clean up large amounts of unused memory allocated
4043 * by the indirection array. Before compacting anything though, verify
4044 * that the indirection array is still needed and switch back to the
4045 * linear extent list (or even the inline buffer) if possible. The
4046 * compaction policy is as follows:
4048 * Full Compaction: Extents fit into a single page (or inline buffer)
4049 * Partial Compaction: Extents occupy less than 50% of allocated space
4050 * No Compaction: Extents occupy at least 50% of allocated space
4053 xfs_iext_irec_compact(
4054 xfs_ifork_t
*ifp
) /* inode fork pointer */
4056 xfs_extnum_t nextents
; /* number of extents in file */
4057 int nlists
; /* number of irec's (ex lists) */
4059 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4060 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4061 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4063 if (nextents
== 0) {
4064 xfs_iext_destroy(ifp
);
4065 } else if (nextents
<= XFS_INLINE_EXTS
) {
4066 xfs_iext_indirect_to_direct(ifp
);
4067 xfs_iext_direct_to_inline(ifp
, nextents
);
4068 } else if (nextents
<= XFS_LINEAR_EXTS
) {
4069 xfs_iext_indirect_to_direct(ifp
);
4070 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
4071 xfs_iext_irec_compact_pages(ifp
);
4076 * Combine extents from neighboring extent pages.
4079 xfs_iext_irec_compact_pages(
4080 xfs_ifork_t
*ifp
) /* inode fork pointer */
4082 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
4083 int erp_idx
= 0; /* indirection array index */
4084 int nlists
; /* number of irec's (ex lists) */
4086 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4087 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4088 while (erp_idx
< nlists
- 1) {
4089 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4091 if (erp_next
->er_extcount
<=
4092 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
4093 memcpy(&erp
->er_extbuf
[erp
->er_extcount
],
4094 erp_next
->er_extbuf
, erp_next
->er_extcount
*
4095 sizeof(xfs_bmbt_rec_t
));
4096 erp
->er_extcount
+= erp_next
->er_extcount
;
4098 * Free page before removing extent record
4099 * so er_extoffs don't get modified in
4100 * xfs_iext_irec_remove.
4102 kmem_free(erp_next
->er_extbuf
);
4103 erp_next
->er_extbuf
= NULL
;
4104 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4105 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4113 * This is called to update the er_extoff field in the indirection
4114 * array when extents have been added or removed from one of the
4115 * extent lists. erp_idx contains the irec index to begin updating
4116 * at and ext_diff contains the number of extents that were added
4120 xfs_iext_irec_update_extoffs(
4121 xfs_ifork_t
*ifp
, /* inode fork pointer */
4122 int erp_idx
, /* irec index to update */
4123 int ext_diff
) /* number of new extents */
4125 int i
; /* loop counter */
4126 int nlists
; /* number of irec's (ex lists */
4128 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4129 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4130 for (i
= erp_idx
; i
< nlists
; i
++) {
4131 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;