2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_event.h>
31 #include <asm/irq_regs.h>
34 * Each CPU has a list of per CPU events:
36 DEFINE_PER_CPU(struct perf_cpu_context
, perf_cpu_context
);
38 int perf_max_events __read_mostly
= 1;
39 static int perf_reserved_percpu __read_mostly
;
40 static int perf_overcommit __read_mostly
= 1;
42 static atomic_t nr_events __read_mostly
;
43 static atomic_t nr_mmap_events __read_mostly
;
44 static atomic_t nr_comm_events __read_mostly
;
45 static atomic_t nr_task_events __read_mostly
;
48 * perf event paranoia level:
49 * -1 - not paranoid at all
50 * 0 - disallow raw tracepoint access for unpriv
51 * 1 - disallow cpu events for unpriv
52 * 2 - disallow kernel profiling for unpriv
54 int sysctl_perf_event_paranoid __read_mostly
= 1;
56 static inline bool perf_paranoid_tracepoint_raw(void)
58 return sysctl_perf_event_paranoid
> -1;
61 static inline bool perf_paranoid_cpu(void)
63 return sysctl_perf_event_paranoid
> 0;
66 static inline bool perf_paranoid_kernel(void)
68 return sysctl_perf_event_paranoid
> 1;
71 int sysctl_perf_event_mlock __read_mostly
= 512; /* 'free' kb per user */
74 * max perf event sample rate
76 int sysctl_perf_event_sample_rate __read_mostly
= 100000;
78 static atomic64_t perf_event_id
;
81 * Lock for (sysadmin-configurable) event reservations:
83 static DEFINE_SPINLOCK(perf_resource_lock
);
86 * Architecture provided APIs - weak aliases:
88 extern __weak
const struct pmu
*hw_perf_event_init(struct perf_event
*event
)
93 void __weak
hw_perf_disable(void) { barrier(); }
94 void __weak
hw_perf_enable(void) { barrier(); }
96 void __weak
hw_perf_event_setup(int cpu
) { barrier(); }
97 void __weak
hw_perf_event_setup_online(int cpu
) { barrier(); }
100 hw_perf_group_sched_in(struct perf_event
*group_leader
,
101 struct perf_cpu_context
*cpuctx
,
102 struct perf_event_context
*ctx
, int cpu
)
107 void __weak
perf_event_print_debug(void) { }
109 static DEFINE_PER_CPU(int, perf_disable_count
);
111 void __perf_disable(void)
113 __get_cpu_var(perf_disable_count
)++;
116 bool __perf_enable(void)
118 return !--__get_cpu_var(perf_disable_count
);
121 void perf_disable(void)
127 void perf_enable(void)
133 static void get_ctx(struct perf_event_context
*ctx
)
135 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
138 static void free_ctx(struct rcu_head
*head
)
140 struct perf_event_context
*ctx
;
142 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
146 static void put_ctx(struct perf_event_context
*ctx
)
148 if (atomic_dec_and_test(&ctx
->refcount
)) {
150 put_ctx(ctx
->parent_ctx
);
152 put_task_struct(ctx
->task
);
153 call_rcu(&ctx
->rcu_head
, free_ctx
);
157 static void unclone_ctx(struct perf_event_context
*ctx
)
159 if (ctx
->parent_ctx
) {
160 put_ctx(ctx
->parent_ctx
);
161 ctx
->parent_ctx
= NULL
;
166 * If we inherit events we want to return the parent event id
169 static u64
primary_event_id(struct perf_event
*event
)
174 id
= event
->parent
->id
;
180 * Get the perf_event_context for a task and lock it.
181 * This has to cope with with the fact that until it is locked,
182 * the context could get moved to another task.
184 static struct perf_event_context
*
185 perf_lock_task_context(struct task_struct
*task
, unsigned long *flags
)
187 struct perf_event_context
*ctx
;
191 ctx
= rcu_dereference(task
->perf_event_ctxp
);
194 * If this context is a clone of another, it might
195 * get swapped for another underneath us by
196 * perf_event_task_sched_out, though the
197 * rcu_read_lock() protects us from any context
198 * getting freed. Lock the context and check if it
199 * got swapped before we could get the lock, and retry
200 * if so. If we locked the right context, then it
201 * can't get swapped on us any more.
203 spin_lock_irqsave(&ctx
->lock
, *flags
);
204 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
)) {
205 spin_unlock_irqrestore(&ctx
->lock
, *flags
);
209 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
210 spin_unlock_irqrestore(&ctx
->lock
, *flags
);
219 * Get the context for a task and increment its pin_count so it
220 * can't get swapped to another task. This also increments its
221 * reference count so that the context can't get freed.
223 static struct perf_event_context
*perf_pin_task_context(struct task_struct
*task
)
225 struct perf_event_context
*ctx
;
228 ctx
= perf_lock_task_context(task
, &flags
);
231 spin_unlock_irqrestore(&ctx
->lock
, flags
);
236 static void perf_unpin_context(struct perf_event_context
*ctx
)
240 spin_lock_irqsave(&ctx
->lock
, flags
);
242 spin_unlock_irqrestore(&ctx
->lock
, flags
);
247 * Add a event from the lists for its context.
248 * Must be called with ctx->mutex and ctx->lock held.
251 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
253 struct perf_event
*group_leader
= event
->group_leader
;
256 * Depending on whether it is a standalone or sibling event,
257 * add it straight to the context's event list, or to the group
258 * leader's sibling list:
260 if (group_leader
== event
)
261 list_add_tail(&event
->group_entry
, &ctx
->group_list
);
263 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
264 group_leader
->nr_siblings
++;
267 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
269 if (event
->attr
.inherit_stat
)
274 * Remove a event from the lists for its context.
275 * Must be called with ctx->mutex and ctx->lock held.
278 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
280 struct perf_event
*sibling
, *tmp
;
282 if (list_empty(&event
->group_entry
))
285 if (event
->attr
.inherit_stat
)
288 list_del_init(&event
->group_entry
);
289 list_del_rcu(&event
->event_entry
);
291 if (event
->group_leader
!= event
)
292 event
->group_leader
->nr_siblings
--;
295 * If this was a group event with sibling events then
296 * upgrade the siblings to singleton events by adding them
297 * to the context list directly:
299 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
301 list_move_tail(&sibling
->group_entry
, &ctx
->group_list
);
302 sibling
->group_leader
= sibling
;
307 event_sched_out(struct perf_event
*event
,
308 struct perf_cpu_context
*cpuctx
,
309 struct perf_event_context
*ctx
)
311 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
314 event
->state
= PERF_EVENT_STATE_INACTIVE
;
315 if (event
->pending_disable
) {
316 event
->pending_disable
= 0;
317 event
->state
= PERF_EVENT_STATE_OFF
;
319 event
->tstamp_stopped
= ctx
->time
;
320 event
->pmu
->disable(event
);
323 if (!is_software_event(event
))
324 cpuctx
->active_oncpu
--;
326 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
327 cpuctx
->exclusive
= 0;
331 group_sched_out(struct perf_event
*group_event
,
332 struct perf_cpu_context
*cpuctx
,
333 struct perf_event_context
*ctx
)
335 struct perf_event
*event
;
337 if (group_event
->state
!= PERF_EVENT_STATE_ACTIVE
)
340 event_sched_out(group_event
, cpuctx
, ctx
);
343 * Schedule out siblings (if any):
345 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
346 event_sched_out(event
, cpuctx
, ctx
);
348 if (group_event
->attr
.exclusive
)
349 cpuctx
->exclusive
= 0;
353 * Cross CPU call to remove a performance event
355 * We disable the event on the hardware level first. After that we
356 * remove it from the context list.
358 static void __perf_event_remove_from_context(void *info
)
360 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
361 struct perf_event
*event
= info
;
362 struct perf_event_context
*ctx
= event
->ctx
;
365 * If this is a task context, we need to check whether it is
366 * the current task context of this cpu. If not it has been
367 * scheduled out before the smp call arrived.
369 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
372 spin_lock(&ctx
->lock
);
374 * Protect the list operation against NMI by disabling the
375 * events on a global level.
379 event_sched_out(event
, cpuctx
, ctx
);
381 list_del_event(event
, ctx
);
385 * Allow more per task events with respect to the
388 cpuctx
->max_pertask
=
389 min(perf_max_events
- ctx
->nr_events
,
390 perf_max_events
- perf_reserved_percpu
);
394 spin_unlock(&ctx
->lock
);
399 * Remove the event from a task's (or a CPU's) list of events.
401 * Must be called with ctx->mutex held.
403 * CPU events are removed with a smp call. For task events we only
404 * call when the task is on a CPU.
406 * If event->ctx is a cloned context, callers must make sure that
407 * every task struct that event->ctx->task could possibly point to
408 * remains valid. This is OK when called from perf_release since
409 * that only calls us on the top-level context, which can't be a clone.
410 * When called from perf_event_exit_task, it's OK because the
411 * context has been detached from its task.
413 static void perf_event_remove_from_context(struct perf_event
*event
)
415 struct perf_event_context
*ctx
= event
->ctx
;
416 struct task_struct
*task
= ctx
->task
;
420 * Per cpu events are removed via an smp call and
421 * the removal is always sucessful.
423 smp_call_function_single(event
->cpu
,
424 __perf_event_remove_from_context
,
430 task_oncpu_function_call(task
, __perf_event_remove_from_context
,
433 spin_lock_irq(&ctx
->lock
);
435 * If the context is active we need to retry the smp call.
437 if (ctx
->nr_active
&& !list_empty(&event
->group_entry
)) {
438 spin_unlock_irq(&ctx
->lock
);
443 * The lock prevents that this context is scheduled in so we
444 * can remove the event safely, if the call above did not
447 if (!list_empty(&event
->group_entry
)) {
448 list_del_event(event
, ctx
);
450 spin_unlock_irq(&ctx
->lock
);
453 static inline u64
perf_clock(void)
455 return cpu_clock(smp_processor_id());
459 * Update the record of the current time in a context.
461 static void update_context_time(struct perf_event_context
*ctx
)
463 u64 now
= perf_clock();
465 ctx
->time
+= now
- ctx
->timestamp
;
466 ctx
->timestamp
= now
;
470 * Update the total_time_enabled and total_time_running fields for a event.
472 static void update_event_times(struct perf_event
*event
)
474 struct perf_event_context
*ctx
= event
->ctx
;
477 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
478 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
481 event
->total_time_enabled
= ctx
->time
- event
->tstamp_enabled
;
483 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
484 run_end
= event
->tstamp_stopped
;
488 event
->total_time_running
= run_end
- event
->tstamp_running
;
492 * Update total_time_enabled and total_time_running for all events in a group.
494 static void update_group_times(struct perf_event
*leader
)
496 struct perf_event
*event
;
498 update_event_times(leader
);
499 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
500 update_event_times(event
);
504 * Cross CPU call to disable a performance event
506 static void __perf_event_disable(void *info
)
508 struct perf_event
*event
= info
;
509 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
510 struct perf_event_context
*ctx
= event
->ctx
;
513 * If this is a per-task event, need to check whether this
514 * event's task is the current task on this cpu.
516 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
519 spin_lock(&ctx
->lock
);
522 * If the event is on, turn it off.
523 * If it is in error state, leave it in error state.
525 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
526 update_context_time(ctx
);
527 update_group_times(event
);
528 if (event
== event
->group_leader
)
529 group_sched_out(event
, cpuctx
, ctx
);
531 event_sched_out(event
, cpuctx
, ctx
);
532 event
->state
= PERF_EVENT_STATE_OFF
;
535 spin_unlock(&ctx
->lock
);
541 * If event->ctx is a cloned context, callers must make sure that
542 * every task struct that event->ctx->task could possibly point to
543 * remains valid. This condition is satisifed when called through
544 * perf_event_for_each_child or perf_event_for_each because they
545 * hold the top-level event's child_mutex, so any descendant that
546 * goes to exit will block in sync_child_event.
547 * When called from perf_pending_event it's OK because event->ctx
548 * is the current context on this CPU and preemption is disabled,
549 * hence we can't get into perf_event_task_sched_out for this context.
551 static void perf_event_disable(struct perf_event
*event
)
553 struct perf_event_context
*ctx
= event
->ctx
;
554 struct task_struct
*task
= ctx
->task
;
558 * Disable the event on the cpu that it's on
560 smp_call_function_single(event
->cpu
, __perf_event_disable
,
566 task_oncpu_function_call(task
, __perf_event_disable
, event
);
568 spin_lock_irq(&ctx
->lock
);
570 * If the event is still active, we need to retry the cross-call.
572 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
573 spin_unlock_irq(&ctx
->lock
);
578 * Since we have the lock this context can't be scheduled
579 * in, so we can change the state safely.
581 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
582 update_group_times(event
);
583 event
->state
= PERF_EVENT_STATE_OFF
;
586 spin_unlock_irq(&ctx
->lock
);
590 event_sched_in(struct perf_event
*event
,
591 struct perf_cpu_context
*cpuctx
,
592 struct perf_event_context
*ctx
,
595 if (event
->state
<= PERF_EVENT_STATE_OFF
)
598 event
->state
= PERF_EVENT_STATE_ACTIVE
;
599 event
->oncpu
= cpu
; /* TODO: put 'cpu' into cpuctx->cpu */
601 * The new state must be visible before we turn it on in the hardware:
605 if (event
->pmu
->enable(event
)) {
606 event
->state
= PERF_EVENT_STATE_INACTIVE
;
611 event
->tstamp_running
+= ctx
->time
- event
->tstamp_stopped
;
613 if (!is_software_event(event
))
614 cpuctx
->active_oncpu
++;
617 if (event
->attr
.exclusive
)
618 cpuctx
->exclusive
= 1;
624 group_sched_in(struct perf_event
*group_event
,
625 struct perf_cpu_context
*cpuctx
,
626 struct perf_event_context
*ctx
,
629 struct perf_event
*event
, *partial_group
;
632 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
635 ret
= hw_perf_group_sched_in(group_event
, cpuctx
, ctx
, cpu
);
637 return ret
< 0 ? ret
: 0;
639 if (event_sched_in(group_event
, cpuctx
, ctx
, cpu
))
643 * Schedule in siblings as one group (if any):
645 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
646 if (event_sched_in(event
, cpuctx
, ctx
, cpu
)) {
647 partial_group
= event
;
656 * Groups can be scheduled in as one unit only, so undo any
657 * partial group before returning:
659 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
660 if (event
== partial_group
)
662 event_sched_out(event
, cpuctx
, ctx
);
664 event_sched_out(group_event
, cpuctx
, ctx
);
670 * Return 1 for a group consisting entirely of software events,
671 * 0 if the group contains any hardware events.
673 static int is_software_only_group(struct perf_event
*leader
)
675 struct perf_event
*event
;
677 if (!is_software_event(leader
))
680 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
681 if (!is_software_event(event
))
688 * Work out whether we can put this event group on the CPU now.
690 static int group_can_go_on(struct perf_event
*event
,
691 struct perf_cpu_context
*cpuctx
,
695 * Groups consisting entirely of software events can always go on.
697 if (is_software_only_group(event
))
700 * If an exclusive group is already on, no other hardware
703 if (cpuctx
->exclusive
)
706 * If this group is exclusive and there are already
707 * events on the CPU, it can't go on.
709 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
712 * Otherwise, try to add it if all previous groups were able
718 static void add_event_to_ctx(struct perf_event
*event
,
719 struct perf_event_context
*ctx
)
721 list_add_event(event
, ctx
);
722 event
->tstamp_enabled
= ctx
->time
;
723 event
->tstamp_running
= ctx
->time
;
724 event
->tstamp_stopped
= ctx
->time
;
728 * Cross CPU call to install and enable a performance event
730 * Must be called with ctx->mutex held
732 static void __perf_install_in_context(void *info
)
734 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
735 struct perf_event
*event
= info
;
736 struct perf_event_context
*ctx
= event
->ctx
;
737 struct perf_event
*leader
= event
->group_leader
;
738 int cpu
= smp_processor_id();
742 * If this is a task context, we need to check whether it is
743 * the current task context of this cpu. If not it has been
744 * scheduled out before the smp call arrived.
745 * Or possibly this is the right context but it isn't
746 * on this cpu because it had no events.
748 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
749 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
751 cpuctx
->task_ctx
= ctx
;
754 spin_lock(&ctx
->lock
);
756 update_context_time(ctx
);
759 * Protect the list operation against NMI by disabling the
760 * events on a global level. NOP for non NMI based events.
764 add_event_to_ctx(event
, ctx
);
767 * Don't put the event on if it is disabled or if
768 * it is in a group and the group isn't on.
770 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
||
771 (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
))
775 * An exclusive event can't go on if there are already active
776 * hardware events, and no hardware event can go on if there
777 * is already an exclusive event on.
779 if (!group_can_go_on(event
, cpuctx
, 1))
782 err
= event_sched_in(event
, cpuctx
, ctx
, cpu
);
786 * This event couldn't go on. If it is in a group
787 * then we have to pull the whole group off.
788 * If the event group is pinned then put it in error state.
791 group_sched_out(leader
, cpuctx
, ctx
);
792 if (leader
->attr
.pinned
) {
793 update_group_times(leader
);
794 leader
->state
= PERF_EVENT_STATE_ERROR
;
798 if (!err
&& !ctx
->task
&& cpuctx
->max_pertask
)
799 cpuctx
->max_pertask
--;
804 spin_unlock(&ctx
->lock
);
808 * Attach a performance event to a context
810 * First we add the event to the list with the hardware enable bit
811 * in event->hw_config cleared.
813 * If the event is attached to a task which is on a CPU we use a smp
814 * call to enable it in the task context. The task might have been
815 * scheduled away, but we check this in the smp call again.
817 * Must be called with ctx->mutex held.
820 perf_install_in_context(struct perf_event_context
*ctx
,
821 struct perf_event
*event
,
824 struct task_struct
*task
= ctx
->task
;
828 * Per cpu events are installed via an smp call and
829 * the install is always sucessful.
831 smp_call_function_single(cpu
, __perf_install_in_context
,
837 task_oncpu_function_call(task
, __perf_install_in_context
,
840 spin_lock_irq(&ctx
->lock
);
842 * we need to retry the smp call.
844 if (ctx
->is_active
&& list_empty(&event
->group_entry
)) {
845 spin_unlock_irq(&ctx
->lock
);
850 * The lock prevents that this context is scheduled in so we
851 * can add the event safely, if it the call above did not
854 if (list_empty(&event
->group_entry
))
855 add_event_to_ctx(event
, ctx
);
856 spin_unlock_irq(&ctx
->lock
);
860 * Put a event into inactive state and update time fields.
861 * Enabling the leader of a group effectively enables all
862 * the group members that aren't explicitly disabled, so we
863 * have to update their ->tstamp_enabled also.
864 * Note: this works for group members as well as group leaders
865 * since the non-leader members' sibling_lists will be empty.
867 static void __perf_event_mark_enabled(struct perf_event
*event
,
868 struct perf_event_context
*ctx
)
870 struct perf_event
*sub
;
872 event
->state
= PERF_EVENT_STATE_INACTIVE
;
873 event
->tstamp_enabled
= ctx
->time
- event
->total_time_enabled
;
874 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
)
875 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
876 sub
->tstamp_enabled
=
877 ctx
->time
- sub
->total_time_enabled
;
881 * Cross CPU call to enable a performance event
883 static void __perf_event_enable(void *info
)
885 struct perf_event
*event
= info
;
886 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
887 struct perf_event_context
*ctx
= event
->ctx
;
888 struct perf_event
*leader
= event
->group_leader
;
892 * If this is a per-task event, need to check whether this
893 * event's task is the current task on this cpu.
895 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
896 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
898 cpuctx
->task_ctx
= ctx
;
901 spin_lock(&ctx
->lock
);
903 update_context_time(ctx
);
905 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
907 __perf_event_mark_enabled(event
, ctx
);
910 * If the event is in a group and isn't the group leader,
911 * then don't put it on unless the group is on.
913 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
916 if (!group_can_go_on(event
, cpuctx
, 1)) {
921 err
= group_sched_in(event
, cpuctx
, ctx
,
924 err
= event_sched_in(event
, cpuctx
, ctx
,
931 * If this event can't go on and it's part of a
932 * group, then the whole group has to come off.
935 group_sched_out(leader
, cpuctx
, ctx
);
936 if (leader
->attr
.pinned
) {
937 update_group_times(leader
);
938 leader
->state
= PERF_EVENT_STATE_ERROR
;
943 spin_unlock(&ctx
->lock
);
949 * If event->ctx is a cloned context, callers must make sure that
950 * every task struct that event->ctx->task could possibly point to
951 * remains valid. This condition is satisfied when called through
952 * perf_event_for_each_child or perf_event_for_each as described
953 * for perf_event_disable.
955 static void perf_event_enable(struct perf_event
*event
)
957 struct perf_event_context
*ctx
= event
->ctx
;
958 struct task_struct
*task
= ctx
->task
;
962 * Enable the event on the cpu that it's on
964 smp_call_function_single(event
->cpu
, __perf_event_enable
,
969 spin_lock_irq(&ctx
->lock
);
970 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
974 * If the event is in error state, clear that first.
975 * That way, if we see the event in error state below, we
976 * know that it has gone back into error state, as distinct
977 * from the task having been scheduled away before the
978 * cross-call arrived.
980 if (event
->state
== PERF_EVENT_STATE_ERROR
)
981 event
->state
= PERF_EVENT_STATE_OFF
;
984 spin_unlock_irq(&ctx
->lock
);
985 task_oncpu_function_call(task
, __perf_event_enable
, event
);
987 spin_lock_irq(&ctx
->lock
);
990 * If the context is active and the event is still off,
991 * we need to retry the cross-call.
993 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
)
997 * Since we have the lock this context can't be scheduled
998 * in, so we can change the state safely.
1000 if (event
->state
== PERF_EVENT_STATE_OFF
)
1001 __perf_event_mark_enabled(event
, ctx
);
1004 spin_unlock_irq(&ctx
->lock
);
1007 static int perf_event_refresh(struct perf_event
*event
, int refresh
)
1010 * not supported on inherited events
1012 if (event
->attr
.inherit
)
1015 atomic_add(refresh
, &event
->event_limit
);
1016 perf_event_enable(event
);
1021 void __perf_event_sched_out(struct perf_event_context
*ctx
,
1022 struct perf_cpu_context
*cpuctx
)
1024 struct perf_event
*event
;
1026 spin_lock(&ctx
->lock
);
1028 if (likely(!ctx
->nr_events
))
1030 update_context_time(ctx
);
1033 if (ctx
->nr_active
) {
1034 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1035 if (event
!= event
->group_leader
)
1036 event_sched_out(event
, cpuctx
, ctx
);
1038 group_sched_out(event
, cpuctx
, ctx
);
1043 spin_unlock(&ctx
->lock
);
1047 * Test whether two contexts are equivalent, i.e. whether they
1048 * have both been cloned from the same version of the same context
1049 * and they both have the same number of enabled events.
1050 * If the number of enabled events is the same, then the set
1051 * of enabled events should be the same, because these are both
1052 * inherited contexts, therefore we can't access individual events
1053 * in them directly with an fd; we can only enable/disable all
1054 * events via prctl, or enable/disable all events in a family
1055 * via ioctl, which will have the same effect on both contexts.
1057 static int context_equiv(struct perf_event_context
*ctx1
,
1058 struct perf_event_context
*ctx2
)
1060 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1061 && ctx1
->parent_gen
== ctx2
->parent_gen
1062 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1065 static void __perf_event_read(void *event
);
1067 static void __perf_event_sync_stat(struct perf_event
*event
,
1068 struct perf_event
*next_event
)
1072 if (!event
->attr
.inherit_stat
)
1076 * Update the event value, we cannot use perf_event_read()
1077 * because we're in the middle of a context switch and have IRQs
1078 * disabled, which upsets smp_call_function_single(), however
1079 * we know the event must be on the current CPU, therefore we
1080 * don't need to use it.
1082 switch (event
->state
) {
1083 case PERF_EVENT_STATE_ACTIVE
:
1084 __perf_event_read(event
);
1087 case PERF_EVENT_STATE_INACTIVE
:
1088 update_event_times(event
);
1096 * In order to keep per-task stats reliable we need to flip the event
1097 * values when we flip the contexts.
1099 value
= atomic64_read(&next_event
->count
);
1100 value
= atomic64_xchg(&event
->count
, value
);
1101 atomic64_set(&next_event
->count
, value
);
1103 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1104 swap(event
->total_time_running
, next_event
->total_time_running
);
1107 * Since we swizzled the values, update the user visible data too.
1109 perf_event_update_userpage(event
);
1110 perf_event_update_userpage(next_event
);
1113 #define list_next_entry(pos, member) \
1114 list_entry(pos->member.next, typeof(*pos), member)
1116 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1117 struct perf_event_context
*next_ctx
)
1119 struct perf_event
*event
, *next_event
;
1124 event
= list_first_entry(&ctx
->event_list
,
1125 struct perf_event
, event_entry
);
1127 next_event
= list_first_entry(&next_ctx
->event_list
,
1128 struct perf_event
, event_entry
);
1130 while (&event
->event_entry
!= &ctx
->event_list
&&
1131 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1133 __perf_event_sync_stat(event
, next_event
);
1135 event
= list_next_entry(event
, event_entry
);
1136 next_event
= list_next_entry(next_event
, event_entry
);
1141 * Called from scheduler to remove the events of the current task,
1142 * with interrupts disabled.
1144 * We stop each event and update the event value in event->count.
1146 * This does not protect us against NMI, but disable()
1147 * sets the disabled bit in the control field of event _before_
1148 * accessing the event control register. If a NMI hits, then it will
1149 * not restart the event.
1151 void perf_event_task_sched_out(struct task_struct
*task
,
1152 struct task_struct
*next
, int cpu
)
1154 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1155 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1156 struct perf_event_context
*next_ctx
;
1157 struct perf_event_context
*parent
;
1158 struct pt_regs
*regs
;
1161 regs
= task_pt_regs(task
);
1162 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES
, 1, 1, regs
, 0);
1164 if (likely(!ctx
|| !cpuctx
->task_ctx
))
1167 update_context_time(ctx
);
1170 parent
= rcu_dereference(ctx
->parent_ctx
);
1171 next_ctx
= next
->perf_event_ctxp
;
1172 if (parent
&& next_ctx
&&
1173 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1175 * Looks like the two contexts are clones, so we might be
1176 * able to optimize the context switch. We lock both
1177 * contexts and check that they are clones under the
1178 * lock (including re-checking that neither has been
1179 * uncloned in the meantime). It doesn't matter which
1180 * order we take the locks because no other cpu could
1181 * be trying to lock both of these tasks.
1183 spin_lock(&ctx
->lock
);
1184 spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1185 if (context_equiv(ctx
, next_ctx
)) {
1187 * XXX do we need a memory barrier of sorts
1188 * wrt to rcu_dereference() of perf_event_ctxp
1190 task
->perf_event_ctxp
= next_ctx
;
1191 next
->perf_event_ctxp
= ctx
;
1193 next_ctx
->task
= task
;
1196 perf_event_sync_stat(ctx
, next_ctx
);
1198 spin_unlock(&next_ctx
->lock
);
1199 spin_unlock(&ctx
->lock
);
1204 __perf_event_sched_out(ctx
, cpuctx
);
1205 cpuctx
->task_ctx
= NULL
;
1210 * Called with IRQs disabled
1212 static void __perf_event_task_sched_out(struct perf_event_context
*ctx
)
1214 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1216 if (!cpuctx
->task_ctx
)
1219 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1222 __perf_event_sched_out(ctx
, cpuctx
);
1223 cpuctx
->task_ctx
= NULL
;
1227 * Called with IRQs disabled
1229 static void perf_event_cpu_sched_out(struct perf_cpu_context
*cpuctx
)
1231 __perf_event_sched_out(&cpuctx
->ctx
, cpuctx
);
1235 __perf_event_sched_in(struct perf_event_context
*ctx
,
1236 struct perf_cpu_context
*cpuctx
, int cpu
)
1238 struct perf_event
*event
;
1241 spin_lock(&ctx
->lock
);
1243 if (likely(!ctx
->nr_events
))
1246 ctx
->timestamp
= perf_clock();
1251 * First go through the list and put on any pinned groups
1252 * in order to give them the best chance of going on.
1254 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1255 if (event
->state
<= PERF_EVENT_STATE_OFF
||
1256 !event
->attr
.pinned
)
1258 if (event
->cpu
!= -1 && event
->cpu
!= cpu
)
1261 if (event
!= event
->group_leader
)
1262 event_sched_in(event
, cpuctx
, ctx
, cpu
);
1264 if (group_can_go_on(event
, cpuctx
, 1))
1265 group_sched_in(event
, cpuctx
, ctx
, cpu
);
1269 * If this pinned group hasn't been scheduled,
1270 * put it in error state.
1272 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1273 update_group_times(event
);
1274 event
->state
= PERF_EVENT_STATE_ERROR
;
1278 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1280 * Ignore events in OFF or ERROR state, and
1281 * ignore pinned events since we did them already.
1283 if (event
->state
<= PERF_EVENT_STATE_OFF
||
1288 * Listen to the 'cpu' scheduling filter constraint
1291 if (event
->cpu
!= -1 && event
->cpu
!= cpu
)
1294 if (event
!= event
->group_leader
) {
1295 if (event_sched_in(event
, cpuctx
, ctx
, cpu
))
1298 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
1299 if (group_sched_in(event
, cpuctx
, ctx
, cpu
))
1306 spin_unlock(&ctx
->lock
);
1310 * Called from scheduler to add the events of the current task
1311 * with interrupts disabled.
1313 * We restore the event value and then enable it.
1315 * This does not protect us against NMI, but enable()
1316 * sets the enabled bit in the control field of event _before_
1317 * accessing the event control register. If a NMI hits, then it will
1318 * keep the event running.
1320 void perf_event_task_sched_in(struct task_struct
*task
, int cpu
)
1322 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1323 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1327 if (cpuctx
->task_ctx
== ctx
)
1329 __perf_event_sched_in(ctx
, cpuctx
, cpu
);
1330 cpuctx
->task_ctx
= ctx
;
1333 static void perf_event_cpu_sched_in(struct perf_cpu_context
*cpuctx
, int cpu
)
1335 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
1337 __perf_event_sched_in(ctx
, cpuctx
, cpu
);
1340 #define MAX_INTERRUPTS (~0ULL)
1342 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1344 static void perf_adjust_period(struct perf_event
*event
, u64 events
)
1346 struct hw_perf_event
*hwc
= &event
->hw
;
1347 u64 period
, sample_period
;
1350 events
*= hwc
->sample_period
;
1351 period
= div64_u64(events
, event
->attr
.sample_freq
);
1353 delta
= (s64
)(period
- hwc
->sample_period
);
1354 delta
= (delta
+ 7) / 8; /* low pass filter */
1356 sample_period
= hwc
->sample_period
+ delta
;
1361 hwc
->sample_period
= sample_period
;
1364 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
)
1366 struct perf_event
*event
;
1367 struct hw_perf_event
*hwc
;
1368 u64 interrupts
, freq
;
1370 spin_lock(&ctx
->lock
);
1371 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1372 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1377 interrupts
= hwc
->interrupts
;
1378 hwc
->interrupts
= 0;
1381 * unthrottle events on the tick
1383 if (interrupts
== MAX_INTERRUPTS
) {
1384 perf_log_throttle(event
, 1);
1385 event
->pmu
->unthrottle(event
);
1386 interrupts
= 2*sysctl_perf_event_sample_rate
/HZ
;
1389 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
1393 * if the specified freq < HZ then we need to skip ticks
1395 if (event
->attr
.sample_freq
< HZ
) {
1396 freq
= event
->attr
.sample_freq
;
1398 hwc
->freq_count
+= freq
;
1399 hwc
->freq_interrupts
+= interrupts
;
1401 if (hwc
->freq_count
< HZ
)
1404 interrupts
= hwc
->freq_interrupts
;
1405 hwc
->freq_interrupts
= 0;
1406 hwc
->freq_count
-= HZ
;
1410 perf_adjust_period(event
, freq
* interrupts
);
1413 * In order to avoid being stalled by an (accidental) huge
1414 * sample period, force reset the sample period if we didn't
1415 * get any events in this freq period.
1419 event
->pmu
->disable(event
);
1420 atomic64_set(&hwc
->period_left
, 0);
1421 event
->pmu
->enable(event
);
1425 spin_unlock(&ctx
->lock
);
1429 * Round-robin a context's events:
1431 static void rotate_ctx(struct perf_event_context
*ctx
)
1433 struct perf_event
*event
;
1435 if (!ctx
->nr_events
)
1438 spin_lock(&ctx
->lock
);
1440 * Rotate the first entry last (works just fine for group events too):
1443 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1444 list_move_tail(&event
->group_entry
, &ctx
->group_list
);
1449 spin_unlock(&ctx
->lock
);
1452 void perf_event_task_tick(struct task_struct
*curr
, int cpu
)
1454 struct perf_cpu_context
*cpuctx
;
1455 struct perf_event_context
*ctx
;
1457 if (!atomic_read(&nr_events
))
1460 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1461 ctx
= curr
->perf_event_ctxp
;
1463 perf_ctx_adjust_freq(&cpuctx
->ctx
);
1465 perf_ctx_adjust_freq(ctx
);
1467 perf_event_cpu_sched_out(cpuctx
);
1469 __perf_event_task_sched_out(ctx
);
1471 rotate_ctx(&cpuctx
->ctx
);
1475 perf_event_cpu_sched_in(cpuctx
, cpu
);
1477 perf_event_task_sched_in(curr
, cpu
);
1481 * Enable all of a task's events that have been marked enable-on-exec.
1482 * This expects task == current.
1484 static void perf_event_enable_on_exec(struct task_struct
*task
)
1486 struct perf_event_context
*ctx
;
1487 struct perf_event
*event
;
1488 unsigned long flags
;
1491 local_irq_save(flags
);
1492 ctx
= task
->perf_event_ctxp
;
1493 if (!ctx
|| !ctx
->nr_events
)
1496 __perf_event_task_sched_out(ctx
);
1498 spin_lock(&ctx
->lock
);
1500 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1501 if (!event
->attr
.enable_on_exec
)
1503 event
->attr
.enable_on_exec
= 0;
1504 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1506 __perf_event_mark_enabled(event
, ctx
);
1511 * Unclone this context if we enabled any event.
1516 spin_unlock(&ctx
->lock
);
1518 perf_event_task_sched_in(task
, smp_processor_id());
1520 local_irq_restore(flags
);
1524 * Cross CPU call to read the hardware event
1526 static void __perf_event_read(void *info
)
1528 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1529 struct perf_event
*event
= info
;
1530 struct perf_event_context
*ctx
= event
->ctx
;
1531 unsigned long flags
;
1534 * If this is a task context, we need to check whether it is
1535 * the current task context of this cpu. If not it has been
1536 * scheduled out before the smp call arrived. In that case
1537 * event->count would have been updated to a recent sample
1538 * when the event was scheduled out.
1540 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1543 local_irq_save(flags
);
1545 update_context_time(ctx
);
1546 event
->pmu
->read(event
);
1547 update_event_times(event
);
1548 local_irq_restore(flags
);
1551 static u64
perf_event_read(struct perf_event
*event
)
1554 * If event is enabled and currently active on a CPU, update the
1555 * value in the event structure:
1557 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1558 smp_call_function_single(event
->oncpu
,
1559 __perf_event_read
, event
, 1);
1560 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1561 update_event_times(event
);
1564 return atomic64_read(&event
->count
);
1568 * Initialize the perf_event context in a task_struct:
1571 __perf_event_init_context(struct perf_event_context
*ctx
,
1572 struct task_struct
*task
)
1574 memset(ctx
, 0, sizeof(*ctx
));
1575 spin_lock_init(&ctx
->lock
);
1576 mutex_init(&ctx
->mutex
);
1577 INIT_LIST_HEAD(&ctx
->group_list
);
1578 INIT_LIST_HEAD(&ctx
->event_list
);
1579 atomic_set(&ctx
->refcount
, 1);
1583 static struct perf_event_context
*find_get_context(pid_t pid
, int cpu
)
1585 struct perf_event_context
*ctx
;
1586 struct perf_cpu_context
*cpuctx
;
1587 struct task_struct
*task
;
1588 unsigned long flags
;
1592 * If cpu is not a wildcard then this is a percpu event:
1595 /* Must be root to operate on a CPU event: */
1596 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
1597 return ERR_PTR(-EACCES
);
1599 if (cpu
< 0 || cpu
> num_possible_cpus())
1600 return ERR_PTR(-EINVAL
);
1603 * We could be clever and allow to attach a event to an
1604 * offline CPU and activate it when the CPU comes up, but
1607 if (!cpu_isset(cpu
, cpu_online_map
))
1608 return ERR_PTR(-ENODEV
);
1610 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1621 task
= find_task_by_vpid(pid
);
1623 get_task_struct(task
);
1627 return ERR_PTR(-ESRCH
);
1630 * Can't attach events to a dying task.
1633 if (task
->flags
& PF_EXITING
)
1636 /* Reuse ptrace permission checks for now. */
1638 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
1642 ctx
= perf_lock_task_context(task
, &flags
);
1645 spin_unlock_irqrestore(&ctx
->lock
, flags
);
1649 ctx
= kmalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
1653 __perf_event_init_context(ctx
, task
);
1655 if (cmpxchg(&task
->perf_event_ctxp
, NULL
, ctx
)) {
1657 * We raced with some other task; use
1658 * the context they set.
1663 get_task_struct(task
);
1666 put_task_struct(task
);
1670 put_task_struct(task
);
1671 return ERR_PTR(err
);
1674 static void free_event_rcu(struct rcu_head
*head
)
1676 struct perf_event
*event
;
1678 event
= container_of(head
, struct perf_event
, rcu_head
);
1680 put_pid_ns(event
->ns
);
1684 static void perf_pending_sync(struct perf_event
*event
);
1686 static void free_event(struct perf_event
*event
)
1688 perf_pending_sync(event
);
1690 if (!event
->parent
) {
1691 atomic_dec(&nr_events
);
1692 if (event
->attr
.mmap
)
1693 atomic_dec(&nr_mmap_events
);
1694 if (event
->attr
.comm
)
1695 atomic_dec(&nr_comm_events
);
1696 if (event
->attr
.task
)
1697 atomic_dec(&nr_task_events
);
1700 if (event
->output
) {
1701 fput(event
->output
->filp
);
1702 event
->output
= NULL
;
1706 event
->destroy(event
);
1708 put_ctx(event
->ctx
);
1709 call_rcu(&event
->rcu_head
, free_event_rcu
);
1713 * Called when the last reference to the file is gone.
1715 static int perf_release(struct inode
*inode
, struct file
*file
)
1717 struct perf_event
*event
= file
->private_data
;
1718 struct perf_event_context
*ctx
= event
->ctx
;
1720 file
->private_data
= NULL
;
1722 WARN_ON_ONCE(ctx
->parent_ctx
);
1723 mutex_lock(&ctx
->mutex
);
1724 perf_event_remove_from_context(event
);
1725 mutex_unlock(&ctx
->mutex
);
1727 mutex_lock(&event
->owner
->perf_event_mutex
);
1728 list_del_init(&event
->owner_entry
);
1729 mutex_unlock(&event
->owner
->perf_event_mutex
);
1730 put_task_struct(event
->owner
);
1737 static int perf_event_read_size(struct perf_event
*event
)
1739 int entry
= sizeof(u64
); /* value */
1743 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1744 size
+= sizeof(u64
);
1746 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1747 size
+= sizeof(u64
);
1749 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1750 entry
+= sizeof(u64
);
1752 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1753 nr
+= event
->group_leader
->nr_siblings
;
1754 size
+= sizeof(u64
);
1762 static u64
perf_event_read_value(struct perf_event
*event
)
1764 struct perf_event
*child
;
1767 total
+= perf_event_read(event
);
1768 list_for_each_entry(child
, &event
->child_list
, child_list
)
1769 total
+= perf_event_read(child
);
1774 static int perf_event_read_entry(struct perf_event
*event
,
1775 u64 read_format
, char __user
*buf
)
1777 int n
= 0, count
= 0;
1780 values
[n
++] = perf_event_read_value(event
);
1781 if (read_format
& PERF_FORMAT_ID
)
1782 values
[n
++] = primary_event_id(event
);
1784 count
= n
* sizeof(u64
);
1786 if (copy_to_user(buf
, values
, count
))
1792 static int perf_event_read_group(struct perf_event
*event
,
1793 u64 read_format
, char __user
*buf
)
1795 struct perf_event
*leader
= event
->group_leader
, *sub
;
1796 int n
= 0, size
= 0, err
= -EFAULT
;
1799 values
[n
++] = 1 + leader
->nr_siblings
;
1800 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
1801 values
[n
++] = leader
->total_time_enabled
+
1802 atomic64_read(&leader
->child_total_time_enabled
);
1804 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
1805 values
[n
++] = leader
->total_time_running
+
1806 atomic64_read(&leader
->child_total_time_running
);
1809 size
= n
* sizeof(u64
);
1811 if (copy_to_user(buf
, values
, size
))
1814 err
= perf_event_read_entry(leader
, read_format
, buf
+ size
);
1820 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
1821 err
= perf_event_read_entry(sub
, read_format
,
1832 static int perf_event_read_one(struct perf_event
*event
,
1833 u64 read_format
, char __user
*buf
)
1838 values
[n
++] = perf_event_read_value(event
);
1839 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
1840 values
[n
++] = event
->total_time_enabled
+
1841 atomic64_read(&event
->child_total_time_enabled
);
1843 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
1844 values
[n
++] = event
->total_time_running
+
1845 atomic64_read(&event
->child_total_time_running
);
1847 if (read_format
& PERF_FORMAT_ID
)
1848 values
[n
++] = primary_event_id(event
);
1850 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
1853 return n
* sizeof(u64
);
1857 * Read the performance event - simple non blocking version for now
1860 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
1862 u64 read_format
= event
->attr
.read_format
;
1866 * Return end-of-file for a read on a event that is in
1867 * error state (i.e. because it was pinned but it couldn't be
1868 * scheduled on to the CPU at some point).
1870 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1873 if (count
< perf_event_read_size(event
))
1876 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
1877 mutex_lock(&event
->child_mutex
);
1878 if (read_format
& PERF_FORMAT_GROUP
)
1879 ret
= perf_event_read_group(event
, read_format
, buf
);
1881 ret
= perf_event_read_one(event
, read_format
, buf
);
1882 mutex_unlock(&event
->child_mutex
);
1888 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
1890 struct perf_event
*event
= file
->private_data
;
1892 return perf_read_hw(event
, buf
, count
);
1895 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
1897 struct perf_event
*event
= file
->private_data
;
1898 struct perf_mmap_data
*data
;
1899 unsigned int events
= POLL_HUP
;
1902 data
= rcu_dereference(event
->data
);
1904 events
= atomic_xchg(&data
->poll
, 0);
1907 poll_wait(file
, &event
->waitq
, wait
);
1912 static void perf_event_reset(struct perf_event
*event
)
1914 (void)perf_event_read(event
);
1915 atomic64_set(&event
->count
, 0);
1916 perf_event_update_userpage(event
);
1920 * Holding the top-level event's child_mutex means that any
1921 * descendant process that has inherited this event will block
1922 * in sync_child_event if it goes to exit, thus satisfying the
1923 * task existence requirements of perf_event_enable/disable.
1925 static void perf_event_for_each_child(struct perf_event
*event
,
1926 void (*func
)(struct perf_event
*))
1928 struct perf_event
*child
;
1930 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
1931 mutex_lock(&event
->child_mutex
);
1933 list_for_each_entry(child
, &event
->child_list
, child_list
)
1935 mutex_unlock(&event
->child_mutex
);
1938 static void perf_event_for_each(struct perf_event
*event
,
1939 void (*func
)(struct perf_event
*))
1941 struct perf_event_context
*ctx
= event
->ctx
;
1942 struct perf_event
*sibling
;
1944 WARN_ON_ONCE(ctx
->parent_ctx
);
1945 mutex_lock(&ctx
->mutex
);
1946 event
= event
->group_leader
;
1948 perf_event_for_each_child(event
, func
);
1950 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
1951 perf_event_for_each_child(event
, func
);
1952 mutex_unlock(&ctx
->mutex
);
1955 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
1957 struct perf_event_context
*ctx
= event
->ctx
;
1962 if (!event
->attr
.sample_period
)
1965 size
= copy_from_user(&value
, arg
, sizeof(value
));
1966 if (size
!= sizeof(value
))
1972 spin_lock_irq(&ctx
->lock
);
1973 if (event
->attr
.freq
) {
1974 if (value
> sysctl_perf_event_sample_rate
) {
1979 event
->attr
.sample_freq
= value
;
1981 event
->attr
.sample_period
= value
;
1982 event
->hw
.sample_period
= value
;
1985 spin_unlock_irq(&ctx
->lock
);
1990 int perf_event_set_output(struct perf_event
*event
, int output_fd
);
1992 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1994 struct perf_event
*event
= file
->private_data
;
1995 void (*func
)(struct perf_event
*);
1999 case PERF_EVENT_IOC_ENABLE
:
2000 func
= perf_event_enable
;
2002 case PERF_EVENT_IOC_DISABLE
:
2003 func
= perf_event_disable
;
2005 case PERF_EVENT_IOC_RESET
:
2006 func
= perf_event_reset
;
2009 case PERF_EVENT_IOC_REFRESH
:
2010 return perf_event_refresh(event
, arg
);
2012 case PERF_EVENT_IOC_PERIOD
:
2013 return perf_event_period(event
, (u64 __user
*)arg
);
2015 case PERF_EVENT_IOC_SET_OUTPUT
:
2016 return perf_event_set_output(event
, arg
);
2022 if (flags
& PERF_IOC_FLAG_GROUP
)
2023 perf_event_for_each(event
, func
);
2025 perf_event_for_each_child(event
, func
);
2030 int perf_event_task_enable(void)
2032 struct perf_event
*event
;
2034 mutex_lock(¤t
->perf_event_mutex
);
2035 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2036 perf_event_for_each_child(event
, perf_event_enable
);
2037 mutex_unlock(¤t
->perf_event_mutex
);
2042 int perf_event_task_disable(void)
2044 struct perf_event
*event
;
2046 mutex_lock(¤t
->perf_event_mutex
);
2047 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2048 perf_event_for_each_child(event
, perf_event_disable
);
2049 mutex_unlock(¤t
->perf_event_mutex
);
2054 #ifndef PERF_EVENT_INDEX_OFFSET
2055 # define PERF_EVENT_INDEX_OFFSET 0
2058 static int perf_event_index(struct perf_event
*event
)
2060 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2063 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
2067 * Callers need to ensure there can be no nesting of this function, otherwise
2068 * the seqlock logic goes bad. We can not serialize this because the arch
2069 * code calls this from NMI context.
2071 void perf_event_update_userpage(struct perf_event
*event
)
2073 struct perf_event_mmap_page
*userpg
;
2074 struct perf_mmap_data
*data
;
2077 data
= rcu_dereference(event
->data
);
2081 userpg
= data
->user_page
;
2084 * Disable preemption so as to not let the corresponding user-space
2085 * spin too long if we get preempted.
2090 userpg
->index
= perf_event_index(event
);
2091 userpg
->offset
= atomic64_read(&event
->count
);
2092 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2093 userpg
->offset
-= atomic64_read(&event
->hw
.prev_count
);
2095 userpg
->time_enabled
= event
->total_time_enabled
+
2096 atomic64_read(&event
->child_total_time_enabled
);
2098 userpg
->time_running
= event
->total_time_running
+
2099 atomic64_read(&event
->child_total_time_running
);
2108 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2110 struct perf_event
*event
= vma
->vm_file
->private_data
;
2111 struct perf_mmap_data
*data
;
2112 int ret
= VM_FAULT_SIGBUS
;
2114 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
2115 if (vmf
->pgoff
== 0)
2121 data
= rcu_dereference(event
->data
);
2125 if (vmf
->pgoff
== 0) {
2126 vmf
->page
= virt_to_page(data
->user_page
);
2128 int nr
= vmf
->pgoff
- 1;
2130 if ((unsigned)nr
> data
->nr_pages
)
2133 if (vmf
->flags
& FAULT_FLAG_WRITE
)
2136 vmf
->page
= virt_to_page(data
->data_pages
[nr
]);
2139 get_page(vmf
->page
);
2140 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
2141 vmf
->page
->index
= vmf
->pgoff
;
2150 static int perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2152 struct perf_mmap_data
*data
;
2156 WARN_ON(atomic_read(&event
->mmap_count
));
2158 size
= sizeof(struct perf_mmap_data
);
2159 size
+= nr_pages
* sizeof(void *);
2161 data
= kzalloc(size
, GFP_KERNEL
);
2165 data
->user_page
= (void *)get_zeroed_page(GFP_KERNEL
);
2166 if (!data
->user_page
)
2167 goto fail_user_page
;
2169 for (i
= 0; i
< nr_pages
; i
++) {
2170 data
->data_pages
[i
] = (void *)get_zeroed_page(GFP_KERNEL
);
2171 if (!data
->data_pages
[i
])
2172 goto fail_data_pages
;
2175 data
->nr_pages
= nr_pages
;
2176 atomic_set(&data
->lock
, -1);
2178 if (event
->attr
.watermark
) {
2179 data
->watermark
= min_t(long, PAGE_SIZE
* nr_pages
,
2180 event
->attr
.wakeup_watermark
);
2182 if (!data
->watermark
)
2183 data
->watermark
= max(PAGE_SIZE
, PAGE_SIZE
* nr_pages
/ 4);
2185 rcu_assign_pointer(event
->data
, data
);
2190 for (i
--; i
>= 0; i
--)
2191 free_page((unsigned long)data
->data_pages
[i
]);
2193 free_page((unsigned long)data
->user_page
);
2202 static void perf_mmap_free_page(unsigned long addr
)
2204 struct page
*page
= virt_to_page((void *)addr
);
2206 page
->mapping
= NULL
;
2210 static void __perf_mmap_data_free(struct rcu_head
*rcu_head
)
2212 struct perf_mmap_data
*data
;
2215 data
= container_of(rcu_head
, struct perf_mmap_data
, rcu_head
);
2217 perf_mmap_free_page((unsigned long)data
->user_page
);
2218 for (i
= 0; i
< data
->nr_pages
; i
++)
2219 perf_mmap_free_page((unsigned long)data
->data_pages
[i
]);
2224 static void perf_mmap_data_free(struct perf_event
*event
)
2226 struct perf_mmap_data
*data
= event
->data
;
2228 WARN_ON(atomic_read(&event
->mmap_count
));
2230 rcu_assign_pointer(event
->data
, NULL
);
2231 call_rcu(&data
->rcu_head
, __perf_mmap_data_free
);
2234 static void perf_mmap_open(struct vm_area_struct
*vma
)
2236 struct perf_event
*event
= vma
->vm_file
->private_data
;
2238 atomic_inc(&event
->mmap_count
);
2241 static void perf_mmap_close(struct vm_area_struct
*vma
)
2243 struct perf_event
*event
= vma
->vm_file
->private_data
;
2245 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2246 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
2247 struct user_struct
*user
= current_user();
2249 atomic_long_sub(event
->data
->nr_pages
+ 1, &user
->locked_vm
);
2250 vma
->vm_mm
->locked_vm
-= event
->data
->nr_locked
;
2251 perf_mmap_data_free(event
);
2252 mutex_unlock(&event
->mmap_mutex
);
2256 static struct vm_operations_struct perf_mmap_vmops
= {
2257 .open
= perf_mmap_open
,
2258 .close
= perf_mmap_close
,
2259 .fault
= perf_mmap_fault
,
2260 .page_mkwrite
= perf_mmap_fault
,
2263 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2265 struct perf_event
*event
= file
->private_data
;
2266 unsigned long user_locked
, user_lock_limit
;
2267 struct user_struct
*user
= current_user();
2268 unsigned long locked
, lock_limit
;
2269 unsigned long vma_size
;
2270 unsigned long nr_pages
;
2271 long user_extra
, extra
;
2274 if (!(vma
->vm_flags
& VM_SHARED
))
2277 vma_size
= vma
->vm_end
- vma
->vm_start
;
2278 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
2281 * If we have data pages ensure they're a power-of-two number, so we
2282 * can do bitmasks instead of modulo.
2284 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
2287 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
2290 if (vma
->vm_pgoff
!= 0)
2293 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2294 mutex_lock(&event
->mmap_mutex
);
2295 if (event
->output
) {
2300 if (atomic_inc_not_zero(&event
->mmap_count
)) {
2301 if (nr_pages
!= event
->data
->nr_pages
)
2306 user_extra
= nr_pages
+ 1;
2307 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
2310 * Increase the limit linearly with more CPUs:
2312 user_lock_limit
*= num_online_cpus();
2314 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
2317 if (user_locked
> user_lock_limit
)
2318 extra
= user_locked
- user_lock_limit
;
2320 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
2321 lock_limit
>>= PAGE_SHIFT
;
2322 locked
= vma
->vm_mm
->locked_vm
+ extra
;
2324 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
2325 !capable(CAP_IPC_LOCK
)) {
2330 WARN_ON(event
->data
);
2331 ret
= perf_mmap_data_alloc(event
, nr_pages
);
2335 atomic_set(&event
->mmap_count
, 1);
2336 atomic_long_add(user_extra
, &user
->locked_vm
);
2337 vma
->vm_mm
->locked_vm
+= extra
;
2338 event
->data
->nr_locked
= extra
;
2339 if (vma
->vm_flags
& VM_WRITE
)
2340 event
->data
->writable
= 1;
2343 mutex_unlock(&event
->mmap_mutex
);
2345 vma
->vm_flags
|= VM_RESERVED
;
2346 vma
->vm_ops
= &perf_mmap_vmops
;
2351 static int perf_fasync(int fd
, struct file
*filp
, int on
)
2353 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2354 struct perf_event
*event
= filp
->private_data
;
2357 mutex_lock(&inode
->i_mutex
);
2358 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
2359 mutex_unlock(&inode
->i_mutex
);
2367 static const struct file_operations perf_fops
= {
2368 .release
= perf_release
,
2371 .unlocked_ioctl
= perf_ioctl
,
2372 .compat_ioctl
= perf_ioctl
,
2374 .fasync
= perf_fasync
,
2380 * If there's data, ensure we set the poll() state and publish everything
2381 * to user-space before waking everybody up.
2384 void perf_event_wakeup(struct perf_event
*event
)
2386 wake_up_all(&event
->waitq
);
2388 if (event
->pending_kill
) {
2389 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
2390 event
->pending_kill
= 0;
2397 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2399 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2400 * single linked list and use cmpxchg() to add entries lockless.
2403 static void perf_pending_event(struct perf_pending_entry
*entry
)
2405 struct perf_event
*event
= container_of(entry
,
2406 struct perf_event
, pending
);
2408 if (event
->pending_disable
) {
2409 event
->pending_disable
= 0;
2410 __perf_event_disable(event
);
2413 if (event
->pending_wakeup
) {
2414 event
->pending_wakeup
= 0;
2415 perf_event_wakeup(event
);
2419 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2421 static DEFINE_PER_CPU(struct perf_pending_entry
*, perf_pending_head
) = {
2425 static void perf_pending_queue(struct perf_pending_entry
*entry
,
2426 void (*func
)(struct perf_pending_entry
*))
2428 struct perf_pending_entry
**head
;
2430 if (cmpxchg(&entry
->next
, NULL
, PENDING_TAIL
) != NULL
)
2435 head
= &get_cpu_var(perf_pending_head
);
2438 entry
->next
= *head
;
2439 } while (cmpxchg(head
, entry
->next
, entry
) != entry
->next
);
2441 set_perf_event_pending();
2443 put_cpu_var(perf_pending_head
);
2446 static int __perf_pending_run(void)
2448 struct perf_pending_entry
*list
;
2451 list
= xchg(&__get_cpu_var(perf_pending_head
), PENDING_TAIL
);
2452 while (list
!= PENDING_TAIL
) {
2453 void (*func
)(struct perf_pending_entry
*);
2454 struct perf_pending_entry
*entry
= list
;
2461 * Ensure we observe the unqueue before we issue the wakeup,
2462 * so that we won't be waiting forever.
2463 * -- see perf_not_pending().
2474 static inline int perf_not_pending(struct perf_event
*event
)
2477 * If we flush on whatever cpu we run, there is a chance we don't
2481 __perf_pending_run();
2485 * Ensure we see the proper queue state before going to sleep
2486 * so that we do not miss the wakeup. -- see perf_pending_handle()
2489 return event
->pending
.next
== NULL
;
2492 static void perf_pending_sync(struct perf_event
*event
)
2494 wait_event(event
->waitq
, perf_not_pending(event
));
2497 void perf_event_do_pending(void)
2499 __perf_pending_run();
2503 * Callchain support -- arch specific
2506 __weak
struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2514 static bool perf_output_space(struct perf_mmap_data
*data
, unsigned long tail
,
2515 unsigned long offset
, unsigned long head
)
2519 if (!data
->writable
)
2522 mask
= (data
->nr_pages
<< PAGE_SHIFT
) - 1;
2524 offset
= (offset
- tail
) & mask
;
2525 head
= (head
- tail
) & mask
;
2527 if ((int)(head
- offset
) < 0)
2533 static void perf_output_wakeup(struct perf_output_handle
*handle
)
2535 atomic_set(&handle
->data
->poll
, POLL_IN
);
2538 handle
->event
->pending_wakeup
= 1;
2539 perf_pending_queue(&handle
->event
->pending
,
2540 perf_pending_event
);
2542 perf_event_wakeup(handle
->event
);
2546 * Curious locking construct.
2548 * We need to ensure a later event_id doesn't publish a head when a former
2549 * event_id isn't done writing. However since we need to deal with NMIs we
2550 * cannot fully serialize things.
2552 * What we do is serialize between CPUs so we only have to deal with NMI
2553 * nesting on a single CPU.
2555 * We only publish the head (and generate a wakeup) when the outer-most
2556 * event_id completes.
2558 static void perf_output_lock(struct perf_output_handle
*handle
)
2560 struct perf_mmap_data
*data
= handle
->data
;
2565 local_irq_save(handle
->flags
);
2566 cpu
= smp_processor_id();
2568 if (in_nmi() && atomic_read(&data
->lock
) == cpu
)
2571 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2577 static void perf_output_unlock(struct perf_output_handle
*handle
)
2579 struct perf_mmap_data
*data
= handle
->data
;
2583 data
->done_head
= data
->head
;
2585 if (!handle
->locked
)
2590 * The xchg implies a full barrier that ensures all writes are done
2591 * before we publish the new head, matched by a rmb() in userspace when
2592 * reading this position.
2594 while ((head
= atomic_long_xchg(&data
->done_head
, 0)))
2595 data
->user_page
->data_head
= head
;
2598 * NMI can happen here, which means we can miss a done_head update.
2601 cpu
= atomic_xchg(&data
->lock
, -1);
2602 WARN_ON_ONCE(cpu
!= smp_processor_id());
2605 * Therefore we have to validate we did not indeed do so.
2607 if (unlikely(atomic_long_read(&data
->done_head
))) {
2609 * Since we had it locked, we can lock it again.
2611 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2617 if (atomic_xchg(&data
->wakeup
, 0))
2618 perf_output_wakeup(handle
);
2620 local_irq_restore(handle
->flags
);
2623 void perf_output_copy(struct perf_output_handle
*handle
,
2624 const void *buf
, unsigned int len
)
2626 unsigned int pages_mask
;
2627 unsigned int offset
;
2631 offset
= handle
->offset
;
2632 pages_mask
= handle
->data
->nr_pages
- 1;
2633 pages
= handle
->data
->data_pages
;
2636 unsigned int page_offset
;
2639 nr
= (offset
>> PAGE_SHIFT
) & pages_mask
;
2640 page_offset
= offset
& (PAGE_SIZE
- 1);
2641 size
= min_t(unsigned int, PAGE_SIZE
- page_offset
, len
);
2643 memcpy(pages
[nr
] + page_offset
, buf
, size
);
2650 handle
->offset
= offset
;
2653 * Check we didn't copy past our reservation window, taking the
2654 * possible unsigned int wrap into account.
2656 WARN_ON_ONCE(((long)(handle
->head
- handle
->offset
)) < 0);
2659 int perf_output_begin(struct perf_output_handle
*handle
,
2660 struct perf_event
*event
, unsigned int size
,
2661 int nmi
, int sample
)
2663 struct perf_event
*output_event
;
2664 struct perf_mmap_data
*data
;
2665 unsigned long tail
, offset
, head
;
2668 struct perf_event_header header
;
2675 * For inherited events we send all the output towards the parent.
2678 event
= event
->parent
;
2680 output_event
= rcu_dereference(event
->output
);
2682 event
= output_event
;
2684 data
= rcu_dereference(event
->data
);
2688 handle
->data
= data
;
2689 handle
->event
= event
;
2691 handle
->sample
= sample
;
2693 if (!data
->nr_pages
)
2696 have_lost
= atomic_read(&data
->lost
);
2698 size
+= sizeof(lost_event
);
2700 perf_output_lock(handle
);
2704 * Userspace could choose to issue a mb() before updating the
2705 * tail pointer. So that all reads will be completed before the
2708 tail
= ACCESS_ONCE(data
->user_page
->data_tail
);
2710 offset
= head
= atomic_long_read(&data
->head
);
2712 if (unlikely(!perf_output_space(data
, tail
, offset
, head
)))
2714 } while (atomic_long_cmpxchg(&data
->head
, offset
, head
) != offset
);
2716 handle
->offset
= offset
;
2717 handle
->head
= head
;
2719 if (head
- tail
> data
->watermark
)
2720 atomic_set(&data
->wakeup
, 1);
2723 lost_event
.header
.type
= PERF_RECORD_LOST
;
2724 lost_event
.header
.misc
= 0;
2725 lost_event
.header
.size
= sizeof(lost_event
);
2726 lost_event
.id
= event
->id
;
2727 lost_event
.lost
= atomic_xchg(&data
->lost
, 0);
2729 perf_output_put(handle
, lost_event
);
2735 atomic_inc(&data
->lost
);
2736 perf_output_unlock(handle
);
2743 void perf_output_end(struct perf_output_handle
*handle
)
2745 struct perf_event
*event
= handle
->event
;
2746 struct perf_mmap_data
*data
= handle
->data
;
2748 int wakeup_events
= event
->attr
.wakeup_events
;
2750 if (handle
->sample
&& wakeup_events
) {
2751 int events
= atomic_inc_return(&data
->events
);
2752 if (events
>= wakeup_events
) {
2753 atomic_sub(wakeup_events
, &data
->events
);
2754 atomic_set(&data
->wakeup
, 1);
2758 perf_output_unlock(handle
);
2762 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
2765 * only top level events have the pid namespace they were created in
2768 event
= event
->parent
;
2770 return task_tgid_nr_ns(p
, event
->ns
);
2773 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
2776 * only top level events have the pid namespace they were created in
2779 event
= event
->parent
;
2781 return task_pid_nr_ns(p
, event
->ns
);
2784 static void perf_output_read_one(struct perf_output_handle
*handle
,
2785 struct perf_event
*event
)
2787 u64 read_format
= event
->attr
.read_format
;
2791 values
[n
++] = atomic64_read(&event
->count
);
2792 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
2793 values
[n
++] = event
->total_time_enabled
+
2794 atomic64_read(&event
->child_total_time_enabled
);
2796 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
2797 values
[n
++] = event
->total_time_running
+
2798 atomic64_read(&event
->child_total_time_running
);
2800 if (read_format
& PERF_FORMAT_ID
)
2801 values
[n
++] = primary_event_id(event
);
2803 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2807 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2809 static void perf_output_read_group(struct perf_output_handle
*handle
,
2810 struct perf_event
*event
)
2812 struct perf_event
*leader
= event
->group_leader
, *sub
;
2813 u64 read_format
= event
->attr
.read_format
;
2817 values
[n
++] = 1 + leader
->nr_siblings
;
2819 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2820 values
[n
++] = leader
->total_time_enabled
;
2822 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2823 values
[n
++] = leader
->total_time_running
;
2825 if (leader
!= event
)
2826 leader
->pmu
->read(leader
);
2828 values
[n
++] = atomic64_read(&leader
->count
);
2829 if (read_format
& PERF_FORMAT_ID
)
2830 values
[n
++] = primary_event_id(leader
);
2832 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2834 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
2838 sub
->pmu
->read(sub
);
2840 values
[n
++] = atomic64_read(&sub
->count
);
2841 if (read_format
& PERF_FORMAT_ID
)
2842 values
[n
++] = primary_event_id(sub
);
2844 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2848 static void perf_output_read(struct perf_output_handle
*handle
,
2849 struct perf_event
*event
)
2851 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
2852 perf_output_read_group(handle
, event
);
2854 perf_output_read_one(handle
, event
);
2857 void perf_output_sample(struct perf_output_handle
*handle
,
2858 struct perf_event_header
*header
,
2859 struct perf_sample_data
*data
,
2860 struct perf_event
*event
)
2862 u64 sample_type
= data
->type
;
2864 perf_output_put(handle
, *header
);
2866 if (sample_type
& PERF_SAMPLE_IP
)
2867 perf_output_put(handle
, data
->ip
);
2869 if (sample_type
& PERF_SAMPLE_TID
)
2870 perf_output_put(handle
, data
->tid_entry
);
2872 if (sample_type
& PERF_SAMPLE_TIME
)
2873 perf_output_put(handle
, data
->time
);
2875 if (sample_type
& PERF_SAMPLE_ADDR
)
2876 perf_output_put(handle
, data
->addr
);
2878 if (sample_type
& PERF_SAMPLE_ID
)
2879 perf_output_put(handle
, data
->id
);
2881 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
2882 perf_output_put(handle
, data
->stream_id
);
2884 if (sample_type
& PERF_SAMPLE_CPU
)
2885 perf_output_put(handle
, data
->cpu_entry
);
2887 if (sample_type
& PERF_SAMPLE_PERIOD
)
2888 perf_output_put(handle
, data
->period
);
2890 if (sample_type
& PERF_SAMPLE_READ
)
2891 perf_output_read(handle
, event
);
2893 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
2894 if (data
->callchain
) {
2897 if (data
->callchain
)
2898 size
+= data
->callchain
->nr
;
2900 size
*= sizeof(u64
);
2902 perf_output_copy(handle
, data
->callchain
, size
);
2905 perf_output_put(handle
, nr
);
2909 if (sample_type
& PERF_SAMPLE_RAW
) {
2911 perf_output_put(handle
, data
->raw
->size
);
2912 perf_output_copy(handle
, data
->raw
->data
,
2919 .size
= sizeof(u32
),
2922 perf_output_put(handle
, raw
);
2927 void perf_prepare_sample(struct perf_event_header
*header
,
2928 struct perf_sample_data
*data
,
2929 struct perf_event
*event
,
2930 struct pt_regs
*regs
)
2932 u64 sample_type
= event
->attr
.sample_type
;
2934 data
->type
= sample_type
;
2936 header
->type
= PERF_RECORD_SAMPLE
;
2937 header
->size
= sizeof(*header
);
2940 header
->misc
|= perf_misc_flags(regs
);
2942 if (sample_type
& PERF_SAMPLE_IP
) {
2943 data
->ip
= perf_instruction_pointer(regs
);
2945 header
->size
+= sizeof(data
->ip
);
2948 if (sample_type
& PERF_SAMPLE_TID
) {
2949 /* namespace issues */
2950 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
2951 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
2953 header
->size
+= sizeof(data
->tid_entry
);
2956 if (sample_type
& PERF_SAMPLE_TIME
) {
2957 data
->time
= perf_clock();
2959 header
->size
+= sizeof(data
->time
);
2962 if (sample_type
& PERF_SAMPLE_ADDR
)
2963 header
->size
+= sizeof(data
->addr
);
2965 if (sample_type
& PERF_SAMPLE_ID
) {
2966 data
->id
= primary_event_id(event
);
2968 header
->size
+= sizeof(data
->id
);
2971 if (sample_type
& PERF_SAMPLE_STREAM_ID
) {
2972 data
->stream_id
= event
->id
;
2974 header
->size
+= sizeof(data
->stream_id
);
2977 if (sample_type
& PERF_SAMPLE_CPU
) {
2978 data
->cpu_entry
.cpu
= raw_smp_processor_id();
2979 data
->cpu_entry
.reserved
= 0;
2981 header
->size
+= sizeof(data
->cpu_entry
);
2984 if (sample_type
& PERF_SAMPLE_PERIOD
)
2985 header
->size
+= sizeof(data
->period
);
2987 if (sample_type
& PERF_SAMPLE_READ
)
2988 header
->size
+= perf_event_read_size(event
);
2990 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
2993 data
->callchain
= perf_callchain(regs
);
2995 if (data
->callchain
)
2996 size
+= data
->callchain
->nr
;
2998 header
->size
+= size
* sizeof(u64
);
3001 if (sample_type
& PERF_SAMPLE_RAW
) {
3002 int size
= sizeof(u32
);
3005 size
+= data
->raw
->size
;
3007 size
+= sizeof(u32
);
3009 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
3010 header
->size
+= size
;
3014 static void perf_event_output(struct perf_event
*event
, int nmi
,
3015 struct perf_sample_data
*data
,
3016 struct pt_regs
*regs
)
3018 struct perf_output_handle handle
;
3019 struct perf_event_header header
;
3021 perf_prepare_sample(&header
, data
, event
, regs
);
3023 if (perf_output_begin(&handle
, event
, header
.size
, nmi
, 1))
3026 perf_output_sample(&handle
, &header
, data
, event
);
3028 perf_output_end(&handle
);
3035 struct perf_read_event
{
3036 struct perf_event_header header
;
3043 perf_event_read_event(struct perf_event
*event
,
3044 struct task_struct
*task
)
3046 struct perf_output_handle handle
;
3047 struct perf_read_event read_event
= {
3049 .type
= PERF_RECORD_READ
,
3051 .size
= sizeof(read_event
) + perf_event_read_size(event
),
3053 .pid
= perf_event_pid(event
, task
),
3054 .tid
= perf_event_tid(event
, task
),
3058 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
, 0, 0);
3062 perf_output_put(&handle
, read_event
);
3063 perf_output_read(&handle
, event
);
3065 perf_output_end(&handle
);
3069 * task tracking -- fork/exit
3071 * enabled by: attr.comm | attr.mmap | attr.task
3074 struct perf_task_event
{
3075 struct task_struct
*task
;
3076 struct perf_event_context
*task_ctx
;
3079 struct perf_event_header header
;
3089 static void perf_event_task_output(struct perf_event
*event
,
3090 struct perf_task_event
*task_event
)
3092 struct perf_output_handle handle
;
3094 struct task_struct
*task
= task_event
->task
;
3097 size
= task_event
->event_id
.header
.size
;
3098 ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3103 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
3104 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
3106 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
3107 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
3109 task_event
->event_id
.time
= perf_clock();
3111 perf_output_put(&handle
, task_event
->event_id
);
3113 perf_output_end(&handle
);
3116 static int perf_event_task_match(struct perf_event
*event
)
3118 if (event
->attr
.comm
|| event
->attr
.mmap
|| event
->attr
.task
)
3124 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
3125 struct perf_task_event
*task_event
)
3127 struct perf_event
*event
;
3129 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3133 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3134 if (perf_event_task_match(event
))
3135 perf_event_task_output(event
, task_event
);
3140 static void perf_event_task_event(struct perf_task_event
*task_event
)
3142 struct perf_cpu_context
*cpuctx
;
3143 struct perf_event_context
*ctx
= task_event
->task_ctx
;
3145 cpuctx
= &get_cpu_var(perf_cpu_context
);
3146 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
3147 put_cpu_var(perf_cpu_context
);
3151 ctx
= rcu_dereference(task_event
->task
->perf_event_ctxp
);
3153 perf_event_task_ctx(ctx
, task_event
);
3157 static void perf_event_task(struct task_struct
*task
,
3158 struct perf_event_context
*task_ctx
,
3161 struct perf_task_event task_event
;
3163 if (!atomic_read(&nr_comm_events
) &&
3164 !atomic_read(&nr_mmap_events
) &&
3165 !atomic_read(&nr_task_events
))
3168 task_event
= (struct perf_task_event
){
3170 .task_ctx
= task_ctx
,
3173 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
3175 .size
= sizeof(task_event
.event_id
),
3184 perf_event_task_event(&task_event
);
3187 void perf_event_fork(struct task_struct
*task
)
3189 perf_event_task(task
, NULL
, 1);
3196 struct perf_comm_event
{
3197 struct task_struct
*task
;
3202 struct perf_event_header header
;
3209 static void perf_event_comm_output(struct perf_event
*event
,
3210 struct perf_comm_event
*comm_event
)
3212 struct perf_output_handle handle
;
3213 int size
= comm_event
->event_id
.header
.size
;
3214 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3219 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
3220 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
3222 perf_output_put(&handle
, comm_event
->event_id
);
3223 perf_output_copy(&handle
, comm_event
->comm
,
3224 comm_event
->comm_size
);
3225 perf_output_end(&handle
);
3228 static int perf_event_comm_match(struct perf_event
*event
)
3230 if (event
->attr
.comm
)
3236 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
3237 struct perf_comm_event
*comm_event
)
3239 struct perf_event
*event
;
3241 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3245 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3246 if (perf_event_comm_match(event
))
3247 perf_event_comm_output(event
, comm_event
);
3252 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
3254 struct perf_cpu_context
*cpuctx
;
3255 struct perf_event_context
*ctx
;
3257 char comm
[TASK_COMM_LEN
];
3259 memset(comm
, 0, sizeof(comm
));
3260 strncpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
3261 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
3263 comm_event
->comm
= comm
;
3264 comm_event
->comm_size
= size
;
3266 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
3268 cpuctx
= &get_cpu_var(perf_cpu_context
);
3269 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
3270 put_cpu_var(perf_cpu_context
);
3274 * doesn't really matter which of the child contexts the
3275 * events ends up in.
3277 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3279 perf_event_comm_ctx(ctx
, comm_event
);
3283 void perf_event_comm(struct task_struct
*task
)
3285 struct perf_comm_event comm_event
;
3287 if (task
->perf_event_ctxp
)
3288 perf_event_enable_on_exec(task
);
3290 if (!atomic_read(&nr_comm_events
))
3293 comm_event
= (struct perf_comm_event
){
3299 .type
= PERF_RECORD_COMM
,
3308 perf_event_comm_event(&comm_event
);
3315 struct perf_mmap_event
{
3316 struct vm_area_struct
*vma
;
3318 const char *file_name
;
3322 struct perf_event_header header
;
3332 static void perf_event_mmap_output(struct perf_event
*event
,
3333 struct perf_mmap_event
*mmap_event
)
3335 struct perf_output_handle handle
;
3336 int size
= mmap_event
->event_id
.header
.size
;
3337 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3342 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
3343 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
3345 perf_output_put(&handle
, mmap_event
->event_id
);
3346 perf_output_copy(&handle
, mmap_event
->file_name
,
3347 mmap_event
->file_size
);
3348 perf_output_end(&handle
);
3351 static int perf_event_mmap_match(struct perf_event
*event
,
3352 struct perf_mmap_event
*mmap_event
)
3354 if (event
->attr
.mmap
)
3360 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
3361 struct perf_mmap_event
*mmap_event
)
3363 struct perf_event
*event
;
3365 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3369 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3370 if (perf_event_mmap_match(event
, mmap_event
))
3371 perf_event_mmap_output(event
, mmap_event
);
3376 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
3378 struct perf_cpu_context
*cpuctx
;
3379 struct perf_event_context
*ctx
;
3380 struct vm_area_struct
*vma
= mmap_event
->vma
;
3381 struct file
*file
= vma
->vm_file
;
3387 memset(tmp
, 0, sizeof(tmp
));
3391 * d_path works from the end of the buffer backwards, so we
3392 * need to add enough zero bytes after the string to handle
3393 * the 64bit alignment we do later.
3395 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
3397 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
3400 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
3402 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
3406 if (arch_vma_name(mmap_event
->vma
)) {
3407 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
3413 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
3417 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
3422 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
3424 mmap_event
->file_name
= name
;
3425 mmap_event
->file_size
= size
;
3427 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
3429 cpuctx
= &get_cpu_var(perf_cpu_context
);
3430 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
);
3431 put_cpu_var(perf_cpu_context
);
3435 * doesn't really matter which of the child contexts the
3436 * events ends up in.
3438 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3440 perf_event_mmap_ctx(ctx
, mmap_event
);
3446 void __perf_event_mmap(struct vm_area_struct
*vma
)
3448 struct perf_mmap_event mmap_event
;
3450 if (!atomic_read(&nr_mmap_events
))
3453 mmap_event
= (struct perf_mmap_event
){
3459 .type
= PERF_RECORD_MMAP
,
3465 .start
= vma
->vm_start
,
3466 .len
= vma
->vm_end
- vma
->vm_start
,
3467 .pgoff
= vma
->vm_pgoff
,
3471 perf_event_mmap_event(&mmap_event
);
3475 * IRQ throttle logging
3478 static void perf_log_throttle(struct perf_event
*event
, int enable
)
3480 struct perf_output_handle handle
;
3484 struct perf_event_header header
;
3488 } throttle_event
= {
3490 .type
= PERF_RECORD_THROTTLE
,
3492 .size
= sizeof(throttle_event
),
3494 .time
= perf_clock(),
3495 .id
= primary_event_id(event
),
3496 .stream_id
= event
->id
,
3500 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
3502 ret
= perf_output_begin(&handle
, event
, sizeof(throttle_event
), 1, 0);
3506 perf_output_put(&handle
, throttle_event
);
3507 perf_output_end(&handle
);
3511 * Generic event overflow handling, sampling.
3514 static int __perf_event_overflow(struct perf_event
*event
, int nmi
,
3515 int throttle
, struct perf_sample_data
*data
,
3516 struct pt_regs
*regs
)
3518 int events
= atomic_read(&event
->event_limit
);
3519 struct hw_perf_event
*hwc
= &event
->hw
;
3522 throttle
= (throttle
&& event
->pmu
->unthrottle
!= NULL
);
3527 if (hwc
->interrupts
!= MAX_INTERRUPTS
) {
3529 if (HZ
* hwc
->interrupts
>
3530 (u64
)sysctl_perf_event_sample_rate
) {
3531 hwc
->interrupts
= MAX_INTERRUPTS
;
3532 perf_log_throttle(event
, 0);
3537 * Keep re-disabling events even though on the previous
3538 * pass we disabled it - just in case we raced with a
3539 * sched-in and the event got enabled again:
3545 if (event
->attr
.freq
) {
3546 u64 now
= perf_clock();
3547 s64 delta
= now
- hwc
->freq_stamp
;
3549 hwc
->freq_stamp
= now
;
3551 if (delta
> 0 && delta
< TICK_NSEC
)
3552 perf_adjust_period(event
, NSEC_PER_SEC
/ (int)delta
);
3556 * XXX event_limit might not quite work as expected on inherited
3560 event
->pending_kill
= POLL_IN
;
3561 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
3563 event
->pending_kill
= POLL_HUP
;
3565 event
->pending_disable
= 1;
3566 perf_pending_queue(&event
->pending
,
3567 perf_pending_event
);
3569 perf_event_disable(event
);
3572 perf_event_output(event
, nmi
, data
, regs
);
3576 int perf_event_overflow(struct perf_event
*event
, int nmi
,
3577 struct perf_sample_data
*data
,
3578 struct pt_regs
*regs
)
3580 return __perf_event_overflow(event
, nmi
, 1, data
, regs
);
3584 * Generic software event infrastructure
3588 * We directly increment event->count and keep a second value in
3589 * event->hw.period_left to count intervals. This period event
3590 * is kept in the range [-sample_period, 0] so that we can use the
3594 static u64
perf_swevent_set_period(struct perf_event
*event
)
3596 struct hw_perf_event
*hwc
= &event
->hw
;
3597 u64 period
= hwc
->last_period
;
3601 hwc
->last_period
= hwc
->sample_period
;
3604 old
= val
= atomic64_read(&hwc
->period_left
);
3608 nr
= div64_u64(period
+ val
, period
);
3609 offset
= nr
* period
;
3611 if (atomic64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
3617 static void perf_swevent_overflow(struct perf_event
*event
,
3618 int nmi
, struct perf_sample_data
*data
,
3619 struct pt_regs
*regs
)
3621 struct hw_perf_event
*hwc
= &event
->hw
;
3625 data
->period
= event
->hw
.last_period
;
3626 overflow
= perf_swevent_set_period(event
);
3628 if (hwc
->interrupts
== MAX_INTERRUPTS
)
3631 for (; overflow
; overflow
--) {
3632 if (__perf_event_overflow(event
, nmi
, throttle
,
3635 * We inhibit the overflow from happening when
3636 * hwc->interrupts == MAX_INTERRUPTS.
3644 static void perf_swevent_unthrottle(struct perf_event
*event
)
3647 * Nothing to do, we already reset hwc->interrupts.
3651 static void perf_swevent_add(struct perf_event
*event
, u64 nr
,
3652 int nmi
, struct perf_sample_data
*data
,
3653 struct pt_regs
*regs
)
3655 struct hw_perf_event
*hwc
= &event
->hw
;
3657 atomic64_add(nr
, &event
->count
);
3659 if (!hwc
->sample_period
)
3665 if (!atomic64_add_negative(nr
, &hwc
->period_left
))
3666 perf_swevent_overflow(event
, nmi
, data
, regs
);
3669 static int perf_swevent_is_counting(struct perf_event
*event
)
3672 * The event is active, we're good!
3674 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3678 * The event is off/error, not counting.
3680 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
)
3684 * The event is inactive, if the context is active
3685 * we're part of a group that didn't make it on the 'pmu',
3688 if (event
->ctx
->is_active
)
3692 * We're inactive and the context is too, this means the
3693 * task is scheduled out, we're counting events that happen
3694 * to us, like migration events.
3699 static int perf_swevent_match(struct perf_event
*event
,
3700 enum perf_type_id type
,
3701 u32 event_id
, struct pt_regs
*regs
)
3703 if (!perf_swevent_is_counting(event
))
3706 if (event
->attr
.type
!= type
)
3708 if (event
->attr
.config
!= event_id
)
3712 if (event
->attr
.exclude_user
&& user_mode(regs
))
3715 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
3722 static void perf_swevent_ctx_event(struct perf_event_context
*ctx
,
3723 enum perf_type_id type
,
3724 u32 event_id
, u64 nr
, int nmi
,
3725 struct perf_sample_data
*data
,
3726 struct pt_regs
*regs
)
3728 struct perf_event
*event
;
3730 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3734 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3735 if (perf_swevent_match(event
, type
, event_id
, regs
))
3736 perf_swevent_add(event
, nr
, nmi
, data
, regs
);
3741 static int *perf_swevent_recursion_context(struct perf_cpu_context
*cpuctx
)
3744 return &cpuctx
->recursion
[3];
3747 return &cpuctx
->recursion
[2];
3750 return &cpuctx
->recursion
[1];
3752 return &cpuctx
->recursion
[0];
3755 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
3757 struct perf_sample_data
*data
,
3758 struct pt_regs
*regs
)
3760 struct perf_cpu_context
*cpuctx
= &get_cpu_var(perf_cpu_context
);
3761 int *recursion
= perf_swevent_recursion_context(cpuctx
);
3762 struct perf_event_context
*ctx
;
3770 perf_swevent_ctx_event(&cpuctx
->ctx
, type
, event_id
,
3771 nr
, nmi
, data
, regs
);
3774 * doesn't really matter which of the child contexts the
3775 * events ends up in.
3777 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3779 perf_swevent_ctx_event(ctx
, type
, event_id
, nr
, nmi
, data
, regs
);
3786 put_cpu_var(perf_cpu_context
);
3789 void __perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
3790 struct pt_regs
*regs
, u64 addr
)
3792 struct perf_sample_data data
= {
3796 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, nmi
,
3800 static void perf_swevent_read(struct perf_event
*event
)
3804 static int perf_swevent_enable(struct perf_event
*event
)
3806 struct hw_perf_event
*hwc
= &event
->hw
;
3808 if (hwc
->sample_period
) {
3809 hwc
->last_period
= hwc
->sample_period
;
3810 perf_swevent_set_period(event
);
3815 static void perf_swevent_disable(struct perf_event
*event
)
3819 static const struct pmu perf_ops_generic
= {
3820 .enable
= perf_swevent_enable
,
3821 .disable
= perf_swevent_disable
,
3822 .read
= perf_swevent_read
,
3823 .unthrottle
= perf_swevent_unthrottle
,
3827 * hrtimer based swevent callback
3830 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
3832 enum hrtimer_restart ret
= HRTIMER_RESTART
;
3833 struct perf_sample_data data
;
3834 struct pt_regs
*regs
;
3835 struct perf_event
*event
;
3838 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
3839 event
->pmu
->read(event
);
3842 regs
= get_irq_regs();
3844 * In case we exclude kernel IPs or are somehow not in interrupt
3845 * context, provide the next best thing, the user IP.
3847 if ((event
->attr
.exclude_kernel
|| !regs
) &&
3848 !event
->attr
.exclude_user
)
3849 regs
= task_pt_regs(current
);
3852 if (perf_event_overflow(event
, 0, &data
, regs
))
3853 ret
= HRTIMER_NORESTART
;
3856 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
3857 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
3863 * Software event: cpu wall time clock
3866 static void cpu_clock_perf_event_update(struct perf_event
*event
)
3868 int cpu
= raw_smp_processor_id();
3872 now
= cpu_clock(cpu
);
3873 prev
= atomic64_read(&event
->hw
.prev_count
);
3874 atomic64_set(&event
->hw
.prev_count
, now
);
3875 atomic64_add(now
- prev
, &event
->count
);
3878 static int cpu_clock_perf_event_enable(struct perf_event
*event
)
3880 struct hw_perf_event
*hwc
= &event
->hw
;
3881 int cpu
= raw_smp_processor_id();
3883 atomic64_set(&hwc
->prev_count
, cpu_clock(cpu
));
3884 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
3885 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
3886 if (hwc
->sample_period
) {
3887 u64 period
= max_t(u64
, 10000, hwc
->sample_period
);
3888 __hrtimer_start_range_ns(&hwc
->hrtimer
,
3889 ns_to_ktime(period
), 0,
3890 HRTIMER_MODE_REL
, 0);
3896 static void cpu_clock_perf_event_disable(struct perf_event
*event
)
3898 if (event
->hw
.sample_period
)
3899 hrtimer_cancel(&event
->hw
.hrtimer
);
3900 cpu_clock_perf_event_update(event
);
3903 static void cpu_clock_perf_event_read(struct perf_event
*event
)
3905 cpu_clock_perf_event_update(event
);
3908 static const struct pmu perf_ops_cpu_clock
= {
3909 .enable
= cpu_clock_perf_event_enable
,
3910 .disable
= cpu_clock_perf_event_disable
,
3911 .read
= cpu_clock_perf_event_read
,
3915 * Software event: task time clock
3918 static void task_clock_perf_event_update(struct perf_event
*event
, u64 now
)
3923 prev
= atomic64_xchg(&event
->hw
.prev_count
, now
);
3925 atomic64_add(delta
, &event
->count
);
3928 static int task_clock_perf_event_enable(struct perf_event
*event
)
3930 struct hw_perf_event
*hwc
= &event
->hw
;
3933 now
= event
->ctx
->time
;
3935 atomic64_set(&hwc
->prev_count
, now
);
3936 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
3937 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
3938 if (hwc
->sample_period
) {
3939 u64 period
= max_t(u64
, 10000, hwc
->sample_period
);
3940 __hrtimer_start_range_ns(&hwc
->hrtimer
,
3941 ns_to_ktime(period
), 0,
3942 HRTIMER_MODE_REL
, 0);
3948 static void task_clock_perf_event_disable(struct perf_event
*event
)
3950 if (event
->hw
.sample_period
)
3951 hrtimer_cancel(&event
->hw
.hrtimer
);
3952 task_clock_perf_event_update(event
, event
->ctx
->time
);
3956 static void task_clock_perf_event_read(struct perf_event
*event
)
3961 update_context_time(event
->ctx
);
3962 time
= event
->ctx
->time
;
3964 u64 now
= perf_clock();
3965 u64 delta
= now
- event
->ctx
->timestamp
;
3966 time
= event
->ctx
->time
+ delta
;
3969 task_clock_perf_event_update(event
, time
);
3972 static const struct pmu perf_ops_task_clock
= {
3973 .enable
= task_clock_perf_event_enable
,
3974 .disable
= task_clock_perf_event_disable
,
3975 .read
= task_clock_perf_event_read
,
3978 #ifdef CONFIG_EVENT_PROFILE
3979 void perf_tp_event(int event_id
, u64 addr
, u64 count
, void *record
,
3982 struct perf_raw_record raw
= {
3987 struct perf_sample_data data
= {
3992 struct pt_regs
*regs
= get_irq_regs();
3995 regs
= task_pt_regs(current
);
3997 do_perf_sw_event(PERF_TYPE_TRACEPOINT
, event_id
, count
, 1,
4000 EXPORT_SYMBOL_GPL(perf_tp_event
);
4002 extern int ftrace_profile_enable(int);
4003 extern void ftrace_profile_disable(int);
4005 static void tp_perf_event_destroy(struct perf_event
*event
)
4007 ftrace_profile_disable(event
->attr
.config
);
4010 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4013 * Raw tracepoint data is a severe data leak, only allow root to
4016 if ((event
->attr
.sample_type
& PERF_SAMPLE_RAW
) &&
4017 perf_paranoid_tracepoint_raw() &&
4018 !capable(CAP_SYS_ADMIN
))
4019 return ERR_PTR(-EPERM
);
4021 if (ftrace_profile_enable(event
->attr
.config
))
4024 event
->destroy
= tp_perf_event_destroy
;
4026 return &perf_ops_generic
;
4029 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4035 atomic_t perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
4037 static void sw_perf_event_destroy(struct perf_event
*event
)
4039 u64 event_id
= event
->attr
.config
;
4041 WARN_ON(event
->parent
);
4043 atomic_dec(&perf_swevent_enabled
[event_id
]);
4046 static const struct pmu
*sw_perf_event_init(struct perf_event
*event
)
4048 const struct pmu
*pmu
= NULL
;
4049 u64 event_id
= event
->attr
.config
;
4052 * Software events (currently) can't in general distinguish
4053 * between user, kernel and hypervisor events.
4054 * However, context switches and cpu migrations are considered
4055 * to be kernel events, and page faults are never hypervisor
4059 case PERF_COUNT_SW_CPU_CLOCK
:
4060 pmu
= &perf_ops_cpu_clock
;
4063 case PERF_COUNT_SW_TASK_CLOCK
:
4065 * If the user instantiates this as a per-cpu event,
4066 * use the cpu_clock event instead.
4068 if (event
->ctx
->task
)
4069 pmu
= &perf_ops_task_clock
;
4071 pmu
= &perf_ops_cpu_clock
;
4074 case PERF_COUNT_SW_PAGE_FAULTS
:
4075 case PERF_COUNT_SW_PAGE_FAULTS_MIN
:
4076 case PERF_COUNT_SW_PAGE_FAULTS_MAJ
:
4077 case PERF_COUNT_SW_CONTEXT_SWITCHES
:
4078 case PERF_COUNT_SW_CPU_MIGRATIONS
:
4079 if (!event
->parent
) {
4080 atomic_inc(&perf_swevent_enabled
[event_id
]);
4081 event
->destroy
= sw_perf_event_destroy
;
4083 pmu
= &perf_ops_generic
;
4091 * Allocate and initialize a event structure
4093 static struct perf_event
*
4094 perf_event_alloc(struct perf_event_attr
*attr
,
4096 struct perf_event_context
*ctx
,
4097 struct perf_event
*group_leader
,
4098 struct perf_event
*parent_event
,
4101 const struct pmu
*pmu
;
4102 struct perf_event
*event
;
4103 struct hw_perf_event
*hwc
;
4106 event
= kzalloc(sizeof(*event
), gfpflags
);
4108 return ERR_PTR(-ENOMEM
);
4111 * Single events are their own group leaders, with an
4112 * empty sibling list:
4115 group_leader
= event
;
4117 mutex_init(&event
->child_mutex
);
4118 INIT_LIST_HEAD(&event
->child_list
);
4120 INIT_LIST_HEAD(&event
->group_entry
);
4121 INIT_LIST_HEAD(&event
->event_entry
);
4122 INIT_LIST_HEAD(&event
->sibling_list
);
4123 init_waitqueue_head(&event
->waitq
);
4125 mutex_init(&event
->mmap_mutex
);
4128 event
->attr
= *attr
;
4129 event
->group_leader
= group_leader
;
4134 event
->parent
= parent_event
;
4136 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
4137 event
->id
= atomic64_inc_return(&perf_event_id
);
4139 event
->state
= PERF_EVENT_STATE_INACTIVE
;
4142 event
->state
= PERF_EVENT_STATE_OFF
;
4147 hwc
->sample_period
= attr
->sample_period
;
4148 if (attr
->freq
&& attr
->sample_freq
)
4149 hwc
->sample_period
= 1;
4150 hwc
->last_period
= hwc
->sample_period
;
4152 atomic64_set(&hwc
->period_left
, hwc
->sample_period
);
4155 * we currently do not support PERF_FORMAT_GROUP on inherited events
4157 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
4160 switch (attr
->type
) {
4162 case PERF_TYPE_HARDWARE
:
4163 case PERF_TYPE_HW_CACHE
:
4164 pmu
= hw_perf_event_init(event
);
4167 case PERF_TYPE_SOFTWARE
:
4168 pmu
= sw_perf_event_init(event
);
4171 case PERF_TYPE_TRACEPOINT
:
4172 pmu
= tp_perf_event_init(event
);
4182 else if (IS_ERR(pmu
))
4187 put_pid_ns(event
->ns
);
4189 return ERR_PTR(err
);
4194 if (!event
->parent
) {
4195 atomic_inc(&nr_events
);
4196 if (event
->attr
.mmap
)
4197 atomic_inc(&nr_mmap_events
);
4198 if (event
->attr
.comm
)
4199 atomic_inc(&nr_comm_events
);
4200 if (event
->attr
.task
)
4201 atomic_inc(&nr_task_events
);
4207 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
4208 struct perf_event_attr
*attr
)
4213 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
4217 * zero the full structure, so that a short copy will be nice.
4219 memset(attr
, 0, sizeof(*attr
));
4221 ret
= get_user(size
, &uattr
->size
);
4225 if (size
> PAGE_SIZE
) /* silly large */
4228 if (!size
) /* abi compat */
4229 size
= PERF_ATTR_SIZE_VER0
;
4231 if (size
< PERF_ATTR_SIZE_VER0
)
4235 * If we're handed a bigger struct than we know of,
4236 * ensure all the unknown bits are 0 - i.e. new
4237 * user-space does not rely on any kernel feature
4238 * extensions we dont know about yet.
4240 if (size
> sizeof(*attr
)) {
4241 unsigned char __user
*addr
;
4242 unsigned char __user
*end
;
4245 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4246 end
= (void __user
*)uattr
+ size
;
4248 for (; addr
< end
; addr
++) {
4249 ret
= get_user(val
, addr
);
4255 size
= sizeof(*attr
);
4258 ret
= copy_from_user(attr
, uattr
, size
);
4263 * If the type exists, the corresponding creation will verify
4266 if (attr
->type
>= PERF_TYPE_MAX
)
4269 if (attr
->__reserved_1
|| attr
->__reserved_2
|| attr
->__reserved_3
)
4272 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
4275 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
4282 put_user(sizeof(*attr
), &uattr
->size
);
4287 int perf_event_set_output(struct perf_event
*event
, int output_fd
)
4289 struct perf_event
*output_event
= NULL
;
4290 struct file
*output_file
= NULL
;
4291 struct perf_event
*old_output
;
4292 int fput_needed
= 0;
4298 output_file
= fget_light(output_fd
, &fput_needed
);
4302 if (output_file
->f_op
!= &perf_fops
)
4305 output_event
= output_file
->private_data
;
4307 /* Don't chain output fds */
4308 if (output_event
->output
)
4311 /* Don't set an output fd when we already have an output channel */
4315 atomic_long_inc(&output_file
->f_count
);
4318 mutex_lock(&event
->mmap_mutex
);
4319 old_output
= event
->output
;
4320 rcu_assign_pointer(event
->output
, output_event
);
4321 mutex_unlock(&event
->mmap_mutex
);
4325 * we need to make sure no existing perf_output_*()
4326 * is still referencing this event.
4329 fput(old_output
->filp
);
4334 fput_light(output_file
, fput_needed
);
4339 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4341 * @attr_uptr: event_id type attributes for monitoring/sampling
4344 * @group_fd: group leader event fd
4346 SYSCALL_DEFINE5(perf_event_open
,
4347 struct perf_event_attr __user
*, attr_uptr
,
4348 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
4350 struct perf_event
*event
, *group_leader
;
4351 struct perf_event_attr attr
;
4352 struct perf_event_context
*ctx
;
4353 struct file
*event_file
= NULL
;
4354 struct file
*group_file
= NULL
;
4355 int fput_needed
= 0;
4356 int fput_needed2
= 0;
4359 /* for future expandability... */
4360 if (flags
& ~(PERF_FLAG_FD_NO_GROUP
| PERF_FLAG_FD_OUTPUT
))
4363 err
= perf_copy_attr(attr_uptr
, &attr
);
4367 if (!attr
.exclude_kernel
) {
4368 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
4373 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
4378 * Get the target context (task or percpu):
4380 ctx
= find_get_context(pid
, cpu
);
4382 return PTR_ERR(ctx
);
4385 * Look up the group leader (we will attach this event to it):
4387 group_leader
= NULL
;
4388 if (group_fd
!= -1 && !(flags
& PERF_FLAG_FD_NO_GROUP
)) {
4390 group_file
= fget_light(group_fd
, &fput_needed
);
4392 goto err_put_context
;
4393 if (group_file
->f_op
!= &perf_fops
)
4394 goto err_put_context
;
4396 group_leader
= group_file
->private_data
;
4398 * Do not allow a recursive hierarchy (this new sibling
4399 * becoming part of another group-sibling):
4401 if (group_leader
->group_leader
!= group_leader
)
4402 goto err_put_context
;
4404 * Do not allow to attach to a group in a different
4405 * task or CPU context:
4407 if (group_leader
->ctx
!= ctx
)
4408 goto err_put_context
;
4410 * Only a group leader can be exclusive or pinned
4412 if (attr
.exclusive
|| attr
.pinned
)
4413 goto err_put_context
;
4416 event
= perf_event_alloc(&attr
, cpu
, ctx
, group_leader
,
4418 err
= PTR_ERR(event
);
4420 goto err_put_context
;
4422 err
= anon_inode_getfd("[perf_event]", &perf_fops
, event
, 0);
4424 goto err_free_put_context
;
4426 event_file
= fget_light(err
, &fput_needed2
);
4428 goto err_free_put_context
;
4430 if (flags
& PERF_FLAG_FD_OUTPUT
) {
4431 err
= perf_event_set_output(event
, group_fd
);
4433 goto err_fput_free_put_context
;
4436 event
->filp
= event_file
;
4437 WARN_ON_ONCE(ctx
->parent_ctx
);
4438 mutex_lock(&ctx
->mutex
);
4439 perf_install_in_context(ctx
, event
, cpu
);
4441 mutex_unlock(&ctx
->mutex
);
4443 event
->owner
= current
;
4444 get_task_struct(current
);
4445 mutex_lock(¤t
->perf_event_mutex
);
4446 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
4447 mutex_unlock(¤t
->perf_event_mutex
);
4449 err_fput_free_put_context
:
4450 fput_light(event_file
, fput_needed2
);
4452 err_free_put_context
:
4460 fput_light(group_file
, fput_needed
);
4466 * inherit a event from parent task to child task:
4468 static struct perf_event
*
4469 inherit_event(struct perf_event
*parent_event
,
4470 struct task_struct
*parent
,
4471 struct perf_event_context
*parent_ctx
,
4472 struct task_struct
*child
,
4473 struct perf_event
*group_leader
,
4474 struct perf_event_context
*child_ctx
)
4476 struct perf_event
*child_event
;
4479 * Instead of creating recursive hierarchies of events,
4480 * we link inherited events back to the original parent,
4481 * which has a filp for sure, which we use as the reference
4484 if (parent_event
->parent
)
4485 parent_event
= parent_event
->parent
;
4487 child_event
= perf_event_alloc(&parent_event
->attr
,
4488 parent_event
->cpu
, child_ctx
,
4489 group_leader
, parent_event
,
4491 if (IS_ERR(child_event
))
4496 * Make the child state follow the state of the parent event,
4497 * not its attr.disabled bit. We hold the parent's mutex,
4498 * so we won't race with perf_event_{en, dis}able_family.
4500 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
4501 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
4503 child_event
->state
= PERF_EVENT_STATE_OFF
;
4505 if (parent_event
->attr
.freq
)
4506 child_event
->hw
.sample_period
= parent_event
->hw
.sample_period
;
4509 * Link it up in the child's context:
4511 add_event_to_ctx(child_event
, child_ctx
);
4514 * Get a reference to the parent filp - we will fput it
4515 * when the child event exits. This is safe to do because
4516 * we are in the parent and we know that the filp still
4517 * exists and has a nonzero count:
4519 atomic_long_inc(&parent_event
->filp
->f_count
);
4522 * Link this into the parent event's child list
4524 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
4525 mutex_lock(&parent_event
->child_mutex
);
4526 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
4527 mutex_unlock(&parent_event
->child_mutex
);
4532 static int inherit_group(struct perf_event
*parent_event
,
4533 struct task_struct
*parent
,
4534 struct perf_event_context
*parent_ctx
,
4535 struct task_struct
*child
,
4536 struct perf_event_context
*child_ctx
)
4538 struct perf_event
*leader
;
4539 struct perf_event
*sub
;
4540 struct perf_event
*child_ctr
;
4542 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
4543 child
, NULL
, child_ctx
);
4545 return PTR_ERR(leader
);
4546 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
4547 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
4548 child
, leader
, child_ctx
);
4549 if (IS_ERR(child_ctr
))
4550 return PTR_ERR(child_ctr
);
4555 static void sync_child_event(struct perf_event
*child_event
,
4556 struct task_struct
*child
)
4558 struct perf_event
*parent_event
= child_event
->parent
;
4561 if (child_event
->attr
.inherit_stat
)
4562 perf_event_read_event(child_event
, child
);
4564 child_val
= atomic64_read(&child_event
->count
);
4567 * Add back the child's count to the parent's count:
4569 atomic64_add(child_val
, &parent_event
->count
);
4570 atomic64_add(child_event
->total_time_enabled
,
4571 &parent_event
->child_total_time_enabled
);
4572 atomic64_add(child_event
->total_time_running
,
4573 &parent_event
->child_total_time_running
);
4576 * Remove this event from the parent's list
4578 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
4579 mutex_lock(&parent_event
->child_mutex
);
4580 list_del_init(&child_event
->child_list
);
4581 mutex_unlock(&parent_event
->child_mutex
);
4584 * Release the parent event, if this was the last
4587 fput(parent_event
->filp
);
4591 __perf_event_exit_task(struct perf_event
*child_event
,
4592 struct perf_event_context
*child_ctx
,
4593 struct task_struct
*child
)
4595 struct perf_event
*parent_event
;
4597 update_event_times(child_event
);
4598 perf_event_remove_from_context(child_event
);
4600 parent_event
= child_event
->parent
;
4602 * It can happen that parent exits first, and has events
4603 * that are still around due to the child reference. These
4604 * events need to be zapped - but otherwise linger.
4607 sync_child_event(child_event
, child
);
4608 free_event(child_event
);
4613 * When a child task exits, feed back event values to parent events.
4615 void perf_event_exit_task(struct task_struct
*child
)
4617 struct perf_event
*child_event
, *tmp
;
4618 struct perf_event_context
*child_ctx
;
4619 unsigned long flags
;
4621 if (likely(!child
->perf_event_ctxp
)) {
4622 perf_event_task(child
, NULL
, 0);
4626 local_irq_save(flags
);
4628 * We can't reschedule here because interrupts are disabled,
4629 * and either child is current or it is a task that can't be
4630 * scheduled, so we are now safe from rescheduling changing
4633 child_ctx
= child
->perf_event_ctxp
;
4634 __perf_event_task_sched_out(child_ctx
);
4637 * Take the context lock here so that if find_get_context is
4638 * reading child->perf_event_ctxp, we wait until it has
4639 * incremented the context's refcount before we do put_ctx below.
4641 spin_lock(&child_ctx
->lock
);
4642 child
->perf_event_ctxp
= NULL
;
4644 * If this context is a clone; unclone it so it can't get
4645 * swapped to another process while we're removing all
4646 * the events from it.
4648 unclone_ctx(child_ctx
);
4649 spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
4652 * Report the task dead after unscheduling the events so that we
4653 * won't get any samples after PERF_RECORD_EXIT. We can however still
4654 * get a few PERF_RECORD_READ events.
4656 perf_event_task(child
, child_ctx
, 0);
4659 * We can recurse on the same lock type through:
4661 * __perf_event_exit_task()
4662 * sync_child_event()
4663 * fput(parent_event->filp)
4665 * mutex_lock(&ctx->mutex)
4667 * But since its the parent context it won't be the same instance.
4669 mutex_lock_nested(&child_ctx
->mutex
, SINGLE_DEPTH_NESTING
);
4672 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->group_list
,
4674 __perf_event_exit_task(child_event
, child_ctx
, child
);
4677 * If the last event was a group event, it will have appended all
4678 * its siblings to the list, but we obtained 'tmp' before that which
4679 * will still point to the list head terminating the iteration.
4681 if (!list_empty(&child_ctx
->group_list
))
4684 mutex_unlock(&child_ctx
->mutex
);
4690 * free an unexposed, unused context as created by inheritance by
4691 * init_task below, used by fork() in case of fail.
4693 void perf_event_free_task(struct task_struct
*task
)
4695 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
4696 struct perf_event
*event
, *tmp
;
4701 mutex_lock(&ctx
->mutex
);
4703 list_for_each_entry_safe(event
, tmp
, &ctx
->group_list
, group_entry
) {
4704 struct perf_event
*parent
= event
->parent
;
4706 if (WARN_ON_ONCE(!parent
))
4709 mutex_lock(&parent
->child_mutex
);
4710 list_del_init(&event
->child_list
);
4711 mutex_unlock(&parent
->child_mutex
);
4715 list_del_event(event
, ctx
);
4719 if (!list_empty(&ctx
->group_list
))
4722 mutex_unlock(&ctx
->mutex
);
4728 * Initialize the perf_event context in task_struct
4730 int perf_event_init_task(struct task_struct
*child
)
4732 struct perf_event_context
*child_ctx
, *parent_ctx
;
4733 struct perf_event_context
*cloned_ctx
;
4734 struct perf_event
*event
;
4735 struct task_struct
*parent
= current
;
4736 int inherited_all
= 1;
4739 child
->perf_event_ctxp
= NULL
;
4741 mutex_init(&child
->perf_event_mutex
);
4742 INIT_LIST_HEAD(&child
->perf_event_list
);
4744 if (likely(!parent
->perf_event_ctxp
))
4748 * This is executed from the parent task context, so inherit
4749 * events that have been marked for cloning.
4750 * First allocate and initialize a context for the child.
4753 child_ctx
= kmalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
4757 __perf_event_init_context(child_ctx
, child
);
4758 child
->perf_event_ctxp
= child_ctx
;
4759 get_task_struct(child
);
4762 * If the parent's context is a clone, pin it so it won't get
4765 parent_ctx
= perf_pin_task_context(parent
);
4768 * No need to check if parent_ctx != NULL here; since we saw
4769 * it non-NULL earlier, the only reason for it to become NULL
4770 * is if we exit, and since we're currently in the middle of
4771 * a fork we can't be exiting at the same time.
4775 * Lock the parent list. No need to lock the child - not PID
4776 * hashed yet and not running, so nobody can access it.
4778 mutex_lock(&parent_ctx
->mutex
);
4781 * We dont have to disable NMIs - we are only looking at
4782 * the list, not manipulating it:
4784 list_for_each_entry_rcu(event
, &parent_ctx
->event_list
, event_entry
) {
4785 if (event
!= event
->group_leader
)
4788 if (!event
->attr
.inherit
) {
4793 ret
= inherit_group(event
, parent
, parent_ctx
,
4801 if (inherited_all
) {
4803 * Mark the child context as a clone of the parent
4804 * context, or of whatever the parent is a clone of.
4805 * Note that if the parent is a clone, it could get
4806 * uncloned at any point, but that doesn't matter
4807 * because the list of events and the generation
4808 * count can't have changed since we took the mutex.
4810 cloned_ctx
= rcu_dereference(parent_ctx
->parent_ctx
);
4812 child_ctx
->parent_ctx
= cloned_ctx
;
4813 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
4815 child_ctx
->parent_ctx
= parent_ctx
;
4816 child_ctx
->parent_gen
= parent_ctx
->generation
;
4818 get_ctx(child_ctx
->parent_ctx
);
4821 mutex_unlock(&parent_ctx
->mutex
);
4823 perf_unpin_context(parent_ctx
);
4828 static void __cpuinit
perf_event_init_cpu(int cpu
)
4830 struct perf_cpu_context
*cpuctx
;
4832 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
4833 __perf_event_init_context(&cpuctx
->ctx
, NULL
);
4835 spin_lock(&perf_resource_lock
);
4836 cpuctx
->max_pertask
= perf_max_events
- perf_reserved_percpu
;
4837 spin_unlock(&perf_resource_lock
);
4839 hw_perf_event_setup(cpu
);
4842 #ifdef CONFIG_HOTPLUG_CPU
4843 static void __perf_event_exit_cpu(void *info
)
4845 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
4846 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
4847 struct perf_event
*event
, *tmp
;
4849 list_for_each_entry_safe(event
, tmp
, &ctx
->group_list
, group_entry
)
4850 __perf_event_remove_from_context(event
);
4852 static void perf_event_exit_cpu(int cpu
)
4854 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
4855 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
4857 mutex_lock(&ctx
->mutex
);
4858 smp_call_function_single(cpu
, __perf_event_exit_cpu
, NULL
, 1);
4859 mutex_unlock(&ctx
->mutex
);
4862 static inline void perf_event_exit_cpu(int cpu
) { }
4865 static int __cpuinit
4866 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
4868 unsigned int cpu
= (long)hcpu
;
4872 case CPU_UP_PREPARE
:
4873 case CPU_UP_PREPARE_FROZEN
:
4874 perf_event_init_cpu(cpu
);
4878 case CPU_ONLINE_FROZEN
:
4879 hw_perf_event_setup_online(cpu
);
4882 case CPU_DOWN_PREPARE
:
4883 case CPU_DOWN_PREPARE_FROZEN
:
4884 perf_event_exit_cpu(cpu
);
4895 * This has to have a higher priority than migration_notifier in sched.c.
4897 static struct notifier_block __cpuinitdata perf_cpu_nb
= {
4898 .notifier_call
= perf_cpu_notify
,
4902 void __init
perf_event_init(void)
4904 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_UP_PREPARE
,
4905 (void *)(long)smp_processor_id());
4906 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_ONLINE
,
4907 (void *)(long)smp_processor_id());
4908 register_cpu_notifier(&perf_cpu_nb
);
4911 static ssize_t
perf_show_reserve_percpu(struct sysdev_class
*class, char *buf
)
4913 return sprintf(buf
, "%d\n", perf_reserved_percpu
);
4917 perf_set_reserve_percpu(struct sysdev_class
*class,
4921 struct perf_cpu_context
*cpuctx
;
4925 err
= strict_strtoul(buf
, 10, &val
);
4928 if (val
> perf_max_events
)
4931 spin_lock(&perf_resource_lock
);
4932 perf_reserved_percpu
= val
;
4933 for_each_online_cpu(cpu
) {
4934 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
4935 spin_lock_irq(&cpuctx
->ctx
.lock
);
4936 mpt
= min(perf_max_events
- cpuctx
->ctx
.nr_events
,
4937 perf_max_events
- perf_reserved_percpu
);
4938 cpuctx
->max_pertask
= mpt
;
4939 spin_unlock_irq(&cpuctx
->ctx
.lock
);
4941 spin_unlock(&perf_resource_lock
);
4946 static ssize_t
perf_show_overcommit(struct sysdev_class
*class, char *buf
)
4948 return sprintf(buf
, "%d\n", perf_overcommit
);
4952 perf_set_overcommit(struct sysdev_class
*class, const char *buf
, size_t count
)
4957 err
= strict_strtoul(buf
, 10, &val
);
4963 spin_lock(&perf_resource_lock
);
4964 perf_overcommit
= val
;
4965 spin_unlock(&perf_resource_lock
);
4970 static SYSDEV_CLASS_ATTR(
4973 perf_show_reserve_percpu
,
4974 perf_set_reserve_percpu
4977 static SYSDEV_CLASS_ATTR(
4980 perf_show_overcommit
,
4984 static struct attribute
*perfclass_attrs
[] = {
4985 &attr_reserve_percpu
.attr
,
4986 &attr_overcommit
.attr
,
4990 static struct attribute_group perfclass_attr_group
= {
4991 .attrs
= perfclass_attrs
,
4992 .name
= "perf_events",
4995 static int __init
perf_event_sysfs_init(void)
4997 return sysfs_create_group(&cpu_sysdev_class
.kset
.kobj
,
4998 &perfclass_attr_group
);
5000 device_initcall(perf_event_sysfs_init
);