2 * linux/arch/alpha/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
6 * This file contains the PC-specific time handling details:
7 * reading the RTC at bootup, etc..
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1995-03-26 Markus Kuhn
11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12 * precision CMOS clock update
13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
14 * "A Kernel Model for Precision Timekeeping" by Dave Mills
15 * 1997-01-09 Adrian Sun
16 * use interval timer if CONFIG_RTC=y
17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca)
18 * fixed tick loss calculation in timer_interrupt
19 * (round system clock to nearest tick instead of truncating)
20 * fixed algorithm in time_init for getting time from CMOS clock
21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
22 * fixed algorithm in do_gettimeofday() for calculating the precise time
23 * from processor cycle counter (now taking lost_ticks into account)
24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de>
25 * Fixed time_init to be aware of epoches != 1900. This prevents
26 * booting up in 2048 for me;) Code is stolen from rtc.c.
27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
30 #include <linux/errno.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/param.h>
35 #include <linux/string.h>
37 #include <linux/delay.h>
38 #include <linux/ioport.h>
39 #include <linux/irq.h>
40 #include <linux/interrupt.h>
41 #include <linux/init.h>
42 #include <linux/bcd.h>
43 #include <linux/profile.h>
44 #include <linux/irq_work.h>
46 #include <asm/uaccess.h>
48 #include <asm/hwrpb.h>
49 #include <asm/8253pit.h>
52 #include <linux/mc146818rtc.h>
53 #include <linux/time.h>
54 #include <linux/timex.h>
55 #include <linux/clocksource.h>
60 static int set_rtc_mmss(unsigned long);
62 DEFINE_SPINLOCK(rtc_lock
);
63 EXPORT_SYMBOL(rtc_lock
);
65 #define TICK_SIZE (tick_nsec / 1000)
68 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting
69 * by 48 gives us 16 bits for HZ while keeping the accuracy good even
70 * for large CPU clock rates.
74 /* lump static variables together for more efficient access: */
76 /* cycle counter last time it got invoked */
78 /* ticks/cycle * 2^48 */
79 unsigned long scaled_ticks_per_cycle
;
80 /* partial unused tick */
81 unsigned long partial_tick
;
84 unsigned long est_cycle_freq
;
86 #ifdef CONFIG_IRQ_WORK
88 DEFINE_PER_CPU(u8
, irq_work_pending
);
90 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
91 #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
92 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
94 void set_irq_work_pending(void)
96 set_irq_work_pending_flag();
99 #else /* CONFIG_IRQ_WORK */
101 #define test_irq_work_pending() 0
102 #define clear_irq_work_pending()
104 #endif /* CONFIG_IRQ_WORK */
107 static inline __u32
rpcc(void)
110 asm volatile ("rpcc %0" : "=r"(result
));
114 int update_persistent_clock(struct timespec now
)
116 return set_rtc_mmss(now
.tv_sec
);
119 void read_persistent_clock(struct timespec
*ts
)
121 unsigned int year
, mon
, day
, hour
, min
, sec
, epoch
;
123 sec
= CMOS_READ(RTC_SECONDS
);
124 min
= CMOS_READ(RTC_MINUTES
);
125 hour
= CMOS_READ(RTC_HOURS
);
126 day
= CMOS_READ(RTC_DAY_OF_MONTH
);
127 mon
= CMOS_READ(RTC_MONTH
);
128 year
= CMOS_READ(RTC_YEAR
);
130 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
133 hour
= bcd2bin(hour
);
136 year
= bcd2bin(year
);
139 /* PC-like is standard; used for year >= 70 */
143 else if (year
>= 20 && year
< 48)
146 else if (year
>= 48 && year
< 70)
147 /* Digital UNIX epoch */
150 printk(KERN_INFO
"Using epoch = %d\n", epoch
);
152 if ((year
+= epoch
) < 1970)
155 ts
->tv_sec
= mktime(year
, mon
, day
, hour
, min
, sec
);
161 * timer_interrupt() needs to keep up the real-time clock,
162 * as well as call the "xtime_update()" routine every clocktick
164 irqreturn_t
timer_interrupt(int irq
, void *dev
)
171 /* Not SMP, do kernel PC profiling here. */
172 profile_tick(CPU_PROFILING
);
176 * Calculate how many ticks have passed since the last update,
177 * including any previous partial leftover. Save any resulting
178 * fraction for the next pass.
181 delta
= now
- state
.last_time
;
182 state
.last_time
= now
;
183 delta
= delta
* state
.scaled_ticks_per_cycle
+ state
.partial_tick
;
184 state
.partial_tick
= delta
& ((1UL << FIX_SHIFT
) - 1);
185 nticks
= delta
>> FIX_SHIFT
;
188 xtime_update(nticks
);
190 if (test_irq_work_pending()) {
191 clear_irq_work_pending();
197 update_process_times(user_mode(get_irq_regs()));
204 common_init_rtc(void)
208 /* Reset periodic interrupt frequency. */
209 x
= CMOS_READ(RTC_FREQ_SELECT
) & 0x3f;
210 /* Test includes known working values on various platforms
211 where 0x26 is wrong; we refuse to change those. */
212 if (x
!= 0x26 && x
!= 0x25 && x
!= 0x19 && x
!= 0x06) {
213 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x
);
214 CMOS_WRITE(0x26, RTC_FREQ_SELECT
);
217 /* Turn on periodic interrupts. */
218 x
= CMOS_READ(RTC_CONTROL
);
219 if (!(x
& RTC_PIE
)) {
220 printk("Turning on RTC interrupts.\n");
222 x
&= ~(RTC_AIE
| RTC_UIE
);
223 CMOS_WRITE(x
, RTC_CONTROL
);
225 (void) CMOS_READ(RTC_INTR_FLAGS
);
227 outb(0x36, 0x43); /* pit counter 0: system timer */
231 outb(0xb6, 0x43); /* pit counter 2: speaker */
238 unsigned int common_get_rtc_time(struct rtc_time
*time
)
240 return __get_rtc_time(time
);
243 int common_set_rtc_time(struct rtc_time
*time
)
245 return __set_rtc_time(time
);
248 /* Validate a computed cycle counter result against the known bounds for
249 the given processor core. There's too much brokenness in the way of
250 timing hardware for any one method to work everywhere. :-(
252 Return 0 if the result cannot be trusted, otherwise return the argument. */
254 static unsigned long __init
255 validate_cc_value(unsigned long cc
)
257 static struct bounds
{
258 unsigned int min
, max
;
259 } cpu_hz
[] __initdata
= {
260 [EV3_CPU
] = { 50000000, 200000000 }, /* guess */
261 [EV4_CPU
] = { 100000000, 300000000 },
262 [LCA4_CPU
] = { 100000000, 300000000 }, /* guess */
263 [EV45_CPU
] = { 200000000, 300000000 },
264 [EV5_CPU
] = { 250000000, 433000000 },
265 [EV56_CPU
] = { 333000000, 667000000 },
266 [PCA56_CPU
] = { 400000000, 600000000 }, /* guess */
267 [PCA57_CPU
] = { 500000000, 600000000 }, /* guess */
268 [EV6_CPU
] = { 466000000, 600000000 },
269 [EV67_CPU
] = { 600000000, 750000000 },
270 [EV68AL_CPU
] = { 750000000, 940000000 },
271 [EV68CB_CPU
] = { 1000000000, 1333333333 },
272 /* None of the following are shipping as of 2001-11-01. */
273 [EV68CX_CPU
] = { 1000000000, 1700000000 }, /* guess */
274 [EV69_CPU
] = { 1000000000, 1700000000 }, /* guess */
275 [EV7_CPU
] = { 800000000, 1400000000 }, /* guess */
276 [EV79_CPU
] = { 1000000000, 2000000000 }, /* guess */
279 /* Allow for some drift in the crystal. 10MHz is more than enough. */
280 const unsigned int deviation
= 10000000;
282 struct percpu_struct
*cpu
;
285 cpu
= (struct percpu_struct
*)((char*)hwrpb
+ hwrpb
->processor_offset
);
286 index
= cpu
->type
& 0xffffffff;
288 /* If index out of bounds, no way to validate. */
289 if (index
>= ARRAY_SIZE(cpu_hz
))
292 /* If index contains no data, no way to validate. */
293 if (cpu_hz
[index
].max
== 0)
296 if (cc
< cpu_hz
[index
].min
- deviation
297 || cc
> cpu_hz
[index
].max
+ deviation
)
305 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
309 #define CALIBRATE_LATCH 0xffff
310 #define TIMEOUT_COUNT 0x100000
312 static unsigned long __init
313 calibrate_cc_with_pit(void)
317 /* Set the Gate high, disable speaker */
318 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
321 * Now let's take care of CTC channel 2
323 * Set the Gate high, program CTC channel 2 for mode 0,
324 * (interrupt on terminal count mode), binary count,
325 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
327 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
328 outb(CALIBRATE_LATCH
& 0xff, 0x42); /* LSB of count */
329 outb(CALIBRATE_LATCH
>> 8, 0x42); /* MSB of count */
334 } while ((inb(0x61) & 0x20) == 0 && count
< TIMEOUT_COUNT
);
337 /* Error: ECTCNEVERSET or ECPUTOOFAST. */
338 if (count
<= 1 || count
== TIMEOUT_COUNT
)
341 return ((long)cc
* PIT_TICK_RATE
) / (CALIBRATE_LATCH
+ 1);
344 /* The Linux interpretation of the CMOS clock register contents:
345 When the Update-In-Progress (UIP) flag goes from 1 to 0, the
346 RTC registers show the second which has precisely just started.
347 Let's hope other operating systems interpret the RTC the same way. */
349 static unsigned long __init
350 rpcc_after_update_in_progress(void)
352 do { } while (!(CMOS_READ(RTC_FREQ_SELECT
) & RTC_UIP
));
353 do { } while (CMOS_READ(RTC_FREQ_SELECT
) & RTC_UIP
);
359 /* Until and unless we figure out how to get cpu cycle counters
360 in sync and keep them there, we can't use the rpcc. */
361 static cycle_t
read_rpcc(struct clocksource
*cs
)
363 cycle_t ret
= (cycle_t
)rpcc();
367 static struct clocksource clocksource_rpcc
= {
371 .mask
= CLOCKSOURCE_MASK(32),
372 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
375 static inline void register_rpcc_clocksource(long cycle_freq
)
377 clocksource_calc_mult_shift(&clocksource_rpcc
, cycle_freq
, 4);
378 clocksource_register(&clocksource_rpcc
);
380 #else /* !CONFIG_SMP */
381 static inline void register_rpcc_clocksource(long cycle_freq
)
384 #endif /* !CONFIG_SMP */
389 unsigned int cc1
, cc2
;
390 unsigned long cycle_freq
, tolerance
;
393 /* Calibrate CPU clock -- attempt #1. */
395 est_cycle_freq
= validate_cc_value(calibrate_cc_with_pit());
399 /* Calibrate CPU clock -- attempt #2. */
400 if (!est_cycle_freq
) {
401 cc1
= rpcc_after_update_in_progress();
402 cc2
= rpcc_after_update_in_progress();
403 est_cycle_freq
= validate_cc_value(cc2
- cc1
);
407 cycle_freq
= hwrpb
->cycle_freq
;
408 if (est_cycle_freq
) {
409 /* If the given value is within 250 PPM of what we calculated,
410 accept it. Otherwise, use what we found. */
411 tolerance
= cycle_freq
/ 4000;
412 diff
= cycle_freq
- est_cycle_freq
;
415 if ((unsigned long)diff
> tolerance
) {
416 cycle_freq
= est_cycle_freq
;
417 printk("HWRPB cycle frequency bogus. "
418 "Estimated %lu Hz\n", cycle_freq
);
422 } else if (! validate_cc_value (cycle_freq
)) {
423 printk("HWRPB cycle frequency bogus, "
424 "and unable to estimate a proper value!\n");
427 /* From John Bowman <bowman@math.ualberta.ca>: allow the values
428 to settle, as the Update-In-Progress bit going low isn't good
429 enough on some hardware. 2ms is our guess; we haven't found
430 bogomips yet, but this is close on a 500Mhz box. */
435 extern void __you_loose (void);
439 register_rpcc_clocksource(cycle_freq
);
441 state
.last_time
= cc1
;
442 state
.scaled_ticks_per_cycle
443 = ((unsigned long) HZ
<< FIX_SHIFT
) / cycle_freq
;
444 state
.partial_tick
= 0L;
446 /* Startup the timer source. */
451 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
452 * called 500 ms after the second nowtime has started, because when
453 * nowtime is written into the registers of the CMOS clock, it will
454 * jump to the next second precisely 500 ms later. Check the Motorola
455 * MC146818A or Dallas DS12887 data sheet for details.
457 * BUG: This routine does not handle hour overflow properly; it just
458 * sets the minutes. Usually you won't notice until after reboot!
463 set_rtc_mmss(unsigned long nowtime
)
466 int real_seconds
, real_minutes
, cmos_minutes
;
467 unsigned char save_control
, save_freq_select
;
469 /* irq are locally disabled here */
470 spin_lock(&rtc_lock
);
471 /* Tell the clock it's being set */
472 save_control
= CMOS_READ(RTC_CONTROL
);
473 CMOS_WRITE((save_control
|RTC_SET
), RTC_CONTROL
);
475 /* Stop and reset prescaler */
476 save_freq_select
= CMOS_READ(RTC_FREQ_SELECT
);
477 CMOS_WRITE((save_freq_select
|RTC_DIV_RESET2
), RTC_FREQ_SELECT
);
479 cmos_minutes
= CMOS_READ(RTC_MINUTES
);
480 if (!(save_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
481 cmos_minutes
= bcd2bin(cmos_minutes
);
484 * since we're only adjusting minutes and seconds,
485 * don't interfere with hour overflow. This avoids
486 * messing with unknown time zones but requires your
487 * RTC not to be off by more than 15 minutes
489 real_seconds
= nowtime
% 60;
490 real_minutes
= nowtime
/ 60;
491 if (((abs(real_minutes
- cmos_minutes
) + 15)/30) & 1) {
492 /* correct for half hour time zone */
497 if (abs(real_minutes
- cmos_minutes
) < 30) {
498 if (!(save_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
499 real_seconds
= bin2bcd(real_seconds
);
500 real_minutes
= bin2bcd(real_minutes
);
502 CMOS_WRITE(real_seconds
,RTC_SECONDS
);
503 CMOS_WRITE(real_minutes
,RTC_MINUTES
);
505 printk_once(KERN_NOTICE
506 "set_rtc_mmss: can't update from %d to %d\n",
507 cmos_minutes
, real_minutes
);
511 /* The following flags have to be released exactly in this order,
512 * otherwise the DS12887 (popular MC146818A clone with integrated
513 * battery and quartz) will not reset the oscillator and will not
514 * update precisely 500 ms later. You won't find this mentioned in
515 * the Dallas Semiconductor data sheets, but who believes data
516 * sheets anyway ... -- Markus Kuhn
518 CMOS_WRITE(save_control
, RTC_CONTROL
);
519 CMOS_WRITE(save_freq_select
, RTC_FREQ_SELECT
);
520 spin_unlock(&rtc_lock
);