2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 * Copyright (C) 2004 Mips Technologies, Inc
17 * Copyright (C) 2008 Kevin D. Kissell
20 #include <linux/clockchips.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/cpumask.h>
25 #include <linux/interrupt.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/module.h>
28 #include <linux/ftrace.h>
29 #include <linux/slab.h>
32 #include <asm/processor.h>
33 #include <asm/atomic.h>
34 #include <asm/system.h>
35 #include <asm/hardirq.h>
36 #include <asm/hazards.h>
38 #include <asm/mmu_context.h>
39 #include <asm/mipsregs.h>
40 #include <asm/cacheflush.h>
42 #include <asm/addrspace.h>
44 #include <asm/smtc_proc.h>
47 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
48 * in do_IRQ. These are passed in setup_irq_smtc() and stored
51 unsigned long irq_hwmask
[NR_IRQS
];
53 #define LOCK_MT_PRA() \
54 local_irq_save(flags); \
57 #define UNLOCK_MT_PRA() \
59 local_irq_restore(flags)
61 #define LOCK_CORE_PRA() \
62 local_irq_save(flags); \
65 #define UNLOCK_CORE_PRA() \
67 local_irq_restore(flags)
70 * Data structures purely associated with SMTC parallelism
75 * Table for tracking ASIDs whose lifetime is prolonged.
78 asiduse smtc_live_asid
[MAX_SMTC_TLBS
][MAX_SMTC_ASIDS
];
81 * Number of InterProcessor Interrupt (IPI) message buffers to allocate
84 #define IPIBUF_PER_CPU 4
86 struct smtc_ipi_q IPIQ
[NR_CPUS
];
87 static struct smtc_ipi_q freeIPIq
;
90 /* Forward declarations */
92 void ipi_decode(struct smtc_ipi
*);
93 static void post_direct_ipi(int cpu
, struct smtc_ipi
*pipi
);
94 static void setup_cross_vpe_interrupts(unsigned int nvpe
);
95 void init_smtc_stats(void);
97 /* Global SMTC Status */
99 unsigned int smtc_status
;
101 /* Boot command line configuration overrides */
103 static int vpe0limit
;
104 static int ipibuffers
;
107 unsigned long smtc_asid_mask
= 0xff;
109 static int __init
vpe0tcs(char *str
)
111 get_option(&str
, &vpe0limit
);
116 static int __init
ipibufs(char *str
)
118 get_option(&str
, &ipibuffers
);
122 static int __init
stlb_disable(char *s
)
128 static int __init
asidmask_set(char *str
)
130 get_option(&str
, &asidmask
);
140 smtc_asid_mask
= (unsigned long)asidmask
;
143 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask
);
148 __setup("vpe0tcs=", vpe0tcs
);
149 __setup("ipibufs=", ipibufs
);
150 __setup("nostlb", stlb_disable
);
151 __setup("asidmask=", asidmask_set
);
153 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
155 static int hang_trig
;
157 static int __init
hangtrig_enable(char *s
)
164 __setup("hangtrig", hangtrig_enable
);
166 #define DEFAULT_BLOCKED_IPI_LIMIT 32
168 static int timerq_limit
= DEFAULT_BLOCKED_IPI_LIMIT
;
170 static int __init
tintq(char *str
)
172 get_option(&str
, &timerq_limit
);
176 __setup("tintq=", tintq
);
178 static int imstuckcount
[2][8];
179 /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
180 static int vpemask
[2][8] = {
181 {0, 0, 1, 0, 0, 0, 0, 1},
182 {0, 0, 0, 0, 0, 0, 0, 1}
184 int tcnoprog
[NR_CPUS
];
185 static atomic_t idle_hook_initialized
= ATOMIC_INIT(0);
186 static int clock_hang_reported
[NR_CPUS
];
188 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
191 * Configure shared TLB - VPC configuration bit must be set by caller
194 static void smtc_configure_tlb(void)
197 unsigned long mvpconf0
;
198 unsigned long config1val
;
200 /* Set up ASID preservation table */
201 for (vpes
=0; vpes
<MAX_SMTC_TLBS
; vpes
++) {
202 for(i
= 0; i
< MAX_SMTC_ASIDS
; i
++) {
203 smtc_live_asid
[vpes
][i
] = 0;
206 mvpconf0
= read_c0_mvpconf0();
208 if ((vpes
= ((mvpconf0
& MVPCONF0_PVPE
)
209 >> MVPCONF0_PVPE_SHIFT
) + 1) > 1) {
210 /* If we have multiple VPEs, try to share the TLB */
211 if ((mvpconf0
& MVPCONF0_TLBS
) && !nostlb
) {
213 * If TLB sizing is programmable, shared TLB
214 * size is the total available complement.
215 * Otherwise, we have to take the sum of all
216 * static VPE TLB entries.
218 if ((tlbsiz
= ((mvpconf0
& MVPCONF0_PTLBE
)
219 >> MVPCONF0_PTLBE_SHIFT
)) == 0) {
221 * If there's more than one VPE, there had better
222 * be more than one TC, because we need one to bind
223 * to each VPE in turn to be able to read
224 * its configuration state!
227 /* Stop the TC from doing anything foolish */
228 write_tc_c0_tchalt(TCHALT_H
);
230 /* No need to un-Halt - that happens later anyway */
231 for (i
=0; i
< vpes
; i
++) {
232 write_tc_c0_tcbind(i
);
234 * To be 100% sure we're really getting the right
235 * information, we exit the configuration state
236 * and do an IHB after each rebinding.
239 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC
);
242 * Only count if the MMU Type indicated is TLB
244 if (((read_vpe_c0_config() & MIPS_CONF_MT
) >> 7) == 1) {
245 config1val
= read_vpe_c0_config1();
246 tlbsiz
+= ((config1val
>> 25) & 0x3f) + 1;
249 /* Put core back in configuration state */
251 read_c0_mvpcontrol() | MVPCONTROL_VPC
);
255 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB
);
259 * Setup kernel data structures to use software total,
260 * rather than read the per-VPE Config1 value. The values
261 * for "CPU 0" gets copied to all the other CPUs as part
262 * of their initialization in smtc_cpu_setup().
265 /* MIPS32 limits TLB indices to 64 */
268 cpu_data
[0].tlbsize
= current_cpu_data
.tlbsize
= tlbsiz
;
269 smtc_status
|= SMTC_TLB_SHARED
;
270 local_flush_tlb_all();
272 printk("TLB of %d entry pairs shared by %d VPEs\n",
275 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
282 * Incrementally build the CPU map out of constituent MIPS MT cores,
283 * using the specified available VPEs and TCs. Plaform code needs
284 * to ensure that each MIPS MT core invokes this routine on reset,
287 * This version of the build_cpu_map and prepare_cpus routines assumes
288 * that *all* TCs of a MIPS MT core will be used for Linux, and that
289 * they will be spread across *all* available VPEs (to minimise the
290 * loss of efficiency due to exception service serialization).
291 * An improved version would pick up configuration information and
292 * possibly leave some TCs/VPEs as "slave" processors.
294 * Use c0_MVPConf0 to find out how many TCs are available, setting up
295 * cpu_possible_map and the logical/physical mappings.
298 int __init
smtc_build_cpu_map(int start_cpu_slot
)
303 * The CPU map isn't actually used for anything at this point,
304 * so it's not clear what else we should do apart from set
305 * everything up so that "logical" = "physical".
307 ntcs
= ((read_c0_mvpconf0() & MVPCONF0_PTC
) >> MVPCONF0_PTC_SHIFT
) + 1;
308 for (i
=start_cpu_slot
; i
<NR_CPUS
&& i
<ntcs
; i
++) {
309 set_cpu_possible(i
, true);
310 __cpu_number_map
[i
] = i
;
311 __cpu_logical_map
[i
] = i
;
313 #ifdef CONFIG_MIPS_MT_FPAFF
314 /* Initialize map of CPUs with FPUs */
315 cpus_clear(mt_fpu_cpumask
);
318 /* One of those TC's is the one booting, and not a secondary... */
319 printk("%i available secondary CPU TC(s)\n", i
- 1);
325 * Common setup before any secondaries are started
326 * Make sure all CPU's are in a sensible state before we boot any of the
329 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
330 * as possible across the available VPEs.
333 static void smtc_tc_setup(int vpe
, int tc
, int cpu
)
336 write_tc_c0_tchalt(TCHALT_H
);
338 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
339 & ~(TCSTATUS_TKSU
| TCSTATUS_DA
| TCSTATUS_IXMT
))
342 * TCContext gets an offset from the base of the IPIQ array
343 * to be used in low-level code to detect the presence of
344 * an active IPI queue
346 write_tc_c0_tccontext((sizeof(struct smtc_ipi_q
) * cpu
) << 16);
348 write_tc_c0_tcbind(vpe
);
349 /* In general, all TCs should have the same cpu_data indications */
350 memcpy(&cpu_data
[cpu
], &cpu_data
[0], sizeof(struct cpuinfo_mips
));
351 /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
352 if (cpu_data
[0].cputype
== CPU_34K
||
353 cpu_data
[0].cputype
== CPU_1004K
)
354 cpu_data
[cpu
].options
&= ~MIPS_CPU_FPU
;
355 cpu_data
[cpu
].vpe_id
= vpe
;
356 cpu_data
[cpu
].tc_id
= tc
;
357 /* Multi-core SMTC hasn't been tested, but be prepared */
358 cpu_data
[cpu
].core
= (read_vpe_c0_ebase() >> 1) & 0xff;
362 * Tweak to get Count registes in as close a sync as possible.
363 * Value seems good for 34K-class cores.
368 void smtc_prepare_cpus(int cpus
)
370 int i
, vpe
, tc
, ntc
, nvpe
, tcpervpe
[NR_CPUS
], slop
, cpu
;
374 struct smtc_ipi
*pipi
;
376 /* disable interrupts so we can disable MT */
377 local_irq_save(flags
);
378 /* disable MT so we can configure */
382 spin_lock_init(&freeIPIq
.lock
);
385 * We probably don't have as many VPEs as we do SMP "CPUs",
386 * but it's possible - and in any case we'll never use more!
388 for (i
=0; i
<NR_CPUS
; i
++) {
389 IPIQ
[i
].head
= IPIQ
[i
].tail
= NULL
;
390 spin_lock_init(&IPIQ
[i
].lock
);
392 IPIQ
[i
].resched_flag
= 0; /* No reschedules queued initially */
395 /* cpu_data index starts at zero */
397 cpu_data
[cpu
].vpe_id
= 0;
398 cpu_data
[cpu
].tc_id
= 0;
399 cpu_data
[cpu
].core
= (read_c0_ebase() >> 1) & 0xff;
402 /* Report on boot-time options */
403 mips_mt_set_cpuoptions();
405 printk("Limit of %d VPEs set\n", vpelimit
);
407 printk("Limit of %d TCs set\n", tclimit
);
409 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
412 printk("ASID mask value override to 0x%x\n", asidmask
);
415 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
417 printk("Logic Analyser Trigger on suspected TC hang\n");
418 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
420 /* Put MVPE's into 'configuration state' */
421 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC
);
423 val
= read_c0_mvpconf0();
424 nvpe
= ((val
& MVPCONF0_PVPE
) >> MVPCONF0_PVPE_SHIFT
) + 1;
425 if (vpelimit
> 0 && nvpe
> vpelimit
)
427 ntc
= ((val
& MVPCONF0_PTC
) >> MVPCONF0_PTC_SHIFT
) + 1;
430 if (tclimit
> 0 && ntc
> tclimit
)
433 for (i
= 0; i
< nvpe
; i
++) {
434 tcpervpe
[i
] = ntc
/ nvpe
;
436 if((slop
- i
) > 0) tcpervpe
[i
]++;
439 /* Handle command line override for VPE0 */
440 if (vpe0limit
> ntc
) vpe0limit
= ntc
;
443 if (vpe0limit
< tcpervpe
[0]) {
444 /* Reducing TC count - distribute to others */
445 slop
= tcpervpe
[0] - vpe0limit
;
446 slopslop
= slop
% (nvpe
- 1);
447 tcpervpe
[0] = vpe0limit
;
448 for (i
= 1; i
< nvpe
; i
++) {
449 tcpervpe
[i
] += slop
/ (nvpe
- 1);
450 if(slopslop
&& ((slopslop
- (i
- 1) > 0)))
453 } else if (vpe0limit
> tcpervpe
[0]) {
454 /* Increasing TC count - steal from others */
455 slop
= vpe0limit
- tcpervpe
[0];
456 slopslop
= slop
% (nvpe
- 1);
457 tcpervpe
[0] = vpe0limit
;
458 for (i
= 1; i
< nvpe
; i
++) {
459 tcpervpe
[i
] -= slop
/ (nvpe
- 1);
460 if(slopslop
&& ((slopslop
- (i
- 1) > 0)))
466 /* Set up shared TLB */
467 smtc_configure_tlb();
469 for (tc
= 0, vpe
= 0 ; (vpe
< nvpe
) && (tc
< ntc
) ; vpe
++) {
470 if (tcpervpe
[vpe
] == 0)
474 printk("VPE %d: TC", vpe
);
475 for (i
= 0; i
< tcpervpe
[vpe
]; i
++) {
477 * TC 0 is bound to VPE 0 at reset,
478 * and is presumably executing this
479 * code. Leave it alone!
482 smtc_tc_setup(vpe
, tc
, cpu
);
490 * Allow this VPE to control others.
492 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() |
496 * Clear any stale software interrupts from VPE's Cause
498 write_vpe_c0_cause(0);
501 * Clear ERL/EXL of VPEs other than 0
502 * and set restricted interrupt enable/mask.
504 write_vpe_c0_status((read_vpe_c0_status()
505 & ~(ST0_BEV
| ST0_ERL
| ST0_EXL
| ST0_IM
))
506 | (STATUSF_IP0
| STATUSF_IP1
| STATUSF_IP7
509 * set config to be the same as vpe0,
510 * particularly kseg0 coherency alg
512 write_vpe_c0_config(read_c0_config());
513 /* Clear any pending timer interrupt */
514 write_vpe_c0_compare(0);
515 /* Propagate Config7 */
516 write_vpe_c0_config7(read_c0_config7());
517 write_vpe_c0_count(read_c0_count() + CP0_SKEW
);
520 /* enable multi-threading within VPE */
521 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE
);
523 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA
);
527 * Pull any physically present but unused TCs out of circulation.
529 while (tc
< (((val
& MVPCONF0_PTC
) >> MVPCONF0_PTC_SHIFT
) + 1)) {
530 set_cpu_possible(tc
, false);
531 set_cpu_present(tc
, false);
535 /* release config state */
536 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC
);
540 /* Set up coprocessor affinity CPU mask(s) */
542 #ifdef CONFIG_MIPS_MT_FPAFF
543 for (tc
= 0; tc
< ntc
; tc
++) {
544 if (cpu_data
[tc
].options
& MIPS_CPU_FPU
)
545 cpu_set(tc
, mt_fpu_cpumask
);
549 /* set up ipi interrupts... */
551 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
553 setup_cross_vpe_interrupts(nvpe
);
555 /* Set up queue of free IPI "messages". */
556 nipi
= NR_CPUS
* IPIBUF_PER_CPU
;
560 pipi
= kmalloc(nipi
*sizeof(struct smtc_ipi
), GFP_KERNEL
);
562 panic("kmalloc of IPI message buffers failed\n");
564 printk("IPI buffer pool of %d buffers\n", nipi
);
565 for (i
= 0; i
< nipi
; i
++) {
566 smtc_ipi_nq(&freeIPIq
, pipi
);
570 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
573 local_irq_restore(flags
);
574 /* Initialize SMTC /proc statistics/diagnostics */
580 * Setup the PC, SP, and GP of a secondary processor and start it
582 * smp_bootstrap is the place to resume from
583 * __KSTK_TOS(idle) is apparently the stack pointer
584 * (unsigned long)idle->thread_info the gp
587 void __cpuinit
smtc_boot_secondary(int cpu
, struct task_struct
*idle
)
589 extern u32 kernelsp
[NR_CPUS
];
594 if (cpu_data
[cpu
].vpe_id
!= cpu_data
[smp_processor_id()].vpe_id
) {
597 settc(cpu_data
[cpu
].tc_id
);
600 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap
);
603 kernelsp
[cpu
] = __KSTK_TOS(idle
);
604 write_tc_gpr_sp(__KSTK_TOS(idle
));
607 write_tc_gpr_gp((unsigned long)task_thread_info(idle
));
609 smtc_status
|= SMTC_MTC_ACTIVE
;
610 write_tc_c0_tchalt(0);
611 if (cpu_data
[cpu
].vpe_id
!= cpu_data
[smp_processor_id()].vpe_id
) {
617 void smtc_init_secondary(void)
622 void smtc_smp_finish(void)
624 int cpu
= smp_processor_id();
627 * Lowest-numbered CPU per VPE starts a clock tick.
628 * Like per_cpu_trap_init() hack, this assumes that
629 * SMTC init code assigns TCs consdecutively and
630 * in ascending order across available VPEs.
632 if (cpu
> 0 && (cpu_data
[cpu
].vpe_id
!= cpu_data
[cpu
- 1].vpe_id
))
633 write_c0_compare(read_c0_count() + mips_hpt_frequency
/HZ
);
635 printk("TC %d going on-line as CPU %d\n",
636 cpu_data
[smp_processor_id()].tc_id
, smp_processor_id());
639 void smtc_cpus_done(void)
644 * Support for SMTC-optimized driver IRQ registration
648 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
649 * in do_IRQ. These are passed in setup_irq_smtc() and stored
653 int setup_irq_smtc(unsigned int irq
, struct irqaction
* new,
654 unsigned long hwmask
)
656 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
657 unsigned int vpe
= current_cpu_data
.vpe_id
;
659 vpemask
[vpe
][irq
- MIPS_CPU_IRQ_BASE
] = 1;
661 irq_hwmask
[irq
] = hwmask
;
663 return setup_irq(irq
, new);
666 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
668 * Support for IRQ affinity to TCs
671 void smtc_set_irq_affinity(unsigned int irq
, cpumask_t affinity
)
674 * If a "fast path" cache of quickly decodable affinity state
675 * is maintained, this is where it gets done, on a call up
676 * from the platform affinity code.
680 void smtc_forward_irq(struct irq_data
*d
)
682 unsigned int irq
= d
->irq
;
686 * OK wise guy, now figure out how to get the IRQ
687 * to be serviced on an authorized "CPU".
689 * Ideally, to handle the situation where an IRQ has multiple
690 * eligible CPUS, we would maintain state per IRQ that would
691 * allow a fair distribution of service requests. Since the
692 * expected use model is any-or-only-one, for simplicity
693 * and efficiency, we just pick the easiest one to find.
696 target
= cpumask_first(d
->affinity
);
699 * We depend on the platform code to have correctly processed
700 * IRQ affinity change requests to ensure that the IRQ affinity
701 * mask has been purged of bits corresponding to nonexistent and
702 * offline "CPUs", and to TCs bound to VPEs other than the VPE
703 * connected to the physical interrupt input for the interrupt
704 * in question. Otherwise we have a nasty problem with interrupt
705 * mask management. This is best handled in non-performance-critical
706 * platform IRQ affinity setting code, to minimize interrupt-time
710 /* If no one is eligible, service locally */
711 if (target
>= NR_CPUS
)
712 do_IRQ_no_affinity(irq
);
714 smtc_send_ipi(target
, IRQ_AFFINITY_IPI
, irq
);
717 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
720 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
721 * Within a VPE one TC can interrupt another by different approaches.
722 * The easiest to get right would probably be to make all TCs except
723 * the target IXMT and set a software interrupt, but an IXMT-based
724 * scheme requires that a handler must run before a new IPI could
725 * be sent, which would break the "broadcast" loops in MIPS MT.
726 * A more gonzo approach within a VPE is to halt the TC, extract
727 * its Restart, Status, and a couple of GPRs, and program the Restart
728 * address to emulate an interrupt.
730 * Within a VPE, one can be confident that the target TC isn't in
731 * a critical EXL state when halted, since the write to the Halt
732 * register could not have issued on the writing thread if the
733 * halting thread had EXL set. So k0 and k1 of the target TC
734 * can be used by the injection code. Across VPEs, one can't
735 * be certain that the target TC isn't in a critical exception
736 * state. So we try a two-step process of sending a software
737 * interrupt to the target VPE, which either handles the event
738 * itself (if it was the target) or injects the event within
742 static void smtc_ipi_qdump(void)
745 struct smtc_ipi
*temp
;
747 for (i
= 0; i
< NR_CPUS
;i
++) {
748 pr_info("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
749 i
, (unsigned)IPIQ
[i
].head
, (unsigned)IPIQ
[i
].tail
,
753 while (temp
!= IPIQ
[i
].tail
) {
754 pr_debug("%d %d %d: ", temp
->type
, temp
->dest
,
756 #ifdef SMTC_IPI_DEBUG
757 pr_debug("%u %lu\n", temp
->sender
, temp
->stamp
);
767 * The standard atomic.h primitives don't quite do what we want
768 * here: We need an atomic add-and-return-previous-value (which
769 * could be done with atomic_add_return and a decrement) and an
770 * atomic set/zero-and-return-previous-value (which can't really
771 * be done with the atomic.h primitives). And since this is
772 * MIPS MT, we can assume that we have LL/SC.
774 static inline int atomic_postincrement(atomic_t
*v
)
776 unsigned long result
;
780 __asm__
__volatile__(
786 : "=&r" (result
), "=&r" (temp
), "=m" (v
->counter
)
793 void smtc_send_ipi(int cpu
, int type
, unsigned int action
)
796 struct smtc_ipi
*pipi
;
799 unsigned long tcrestart
;
800 extern void r4k_wait_irqoff(void), __pastwait(void);
801 int set_resched_flag
= (type
== LINUX_SMP_IPI
&&
802 action
== SMP_RESCHEDULE_YOURSELF
);
804 if (cpu
== smp_processor_id()) {
805 printk("Cannot Send IPI to self!\n");
808 if (set_resched_flag
&& IPIQ
[cpu
].resched_flag
!= 0)
809 return; /* There is a reschedule queued already */
811 /* Set up a descriptor, to be delivered either promptly or queued */
812 pipi
= smtc_ipi_dq(&freeIPIq
);
815 mips_mt_regdump(dvpe());
816 panic("IPI Msg. Buffers Depleted\n");
819 pipi
->arg
= (void *)action
;
821 if (cpu_data
[cpu
].vpe_id
!= cpu_data
[smp_processor_id()].vpe_id
) {
822 /* If not on same VPE, enqueue and send cross-VPE interrupt */
823 IPIQ
[cpu
].resched_flag
|= set_resched_flag
;
824 smtc_ipi_nq(&IPIQ
[cpu
], pipi
);
826 settc(cpu_data
[cpu
].tc_id
);
827 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1
);
831 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
832 * since ASID shootdown on the other VPE may
833 * collide with this operation.
836 settc(cpu_data
[cpu
].tc_id
);
837 /* Halt the targeted TC */
838 write_tc_c0_tchalt(TCHALT_H
);
842 * Inspect TCStatus - if IXMT is set, we have to queue
843 * a message. Otherwise, we set up the "interrupt"
846 tcstatus
= read_tc_c0_tcstatus();
848 if ((tcstatus
& TCSTATUS_IXMT
) != 0) {
850 * If we're in the the irq-off version of the wait
851 * loop, we need to force exit from the wait and
852 * do a direct post of the IPI.
854 if (cpu_wait
== r4k_wait_irqoff
) {
855 tcrestart
= read_tc_c0_tcrestart();
856 if (tcrestart
>= (unsigned long)r4k_wait_irqoff
857 && tcrestart
< (unsigned long)__pastwait
) {
858 write_tc_c0_tcrestart(__pastwait
);
859 tcstatus
&= ~TCSTATUS_IXMT
;
860 write_tc_c0_tcstatus(tcstatus
);
865 * Otherwise we queue the message for the target TC
866 * to pick up when he does a local_irq_restore()
868 write_tc_c0_tchalt(0);
870 IPIQ
[cpu
].resched_flag
|= set_resched_flag
;
871 smtc_ipi_nq(&IPIQ
[cpu
], pipi
);
874 post_direct_ipi(cpu
, pipi
);
875 write_tc_c0_tchalt(0);
882 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
884 static void post_direct_ipi(int cpu
, struct smtc_ipi
*pipi
)
886 struct pt_regs
*kstack
;
887 unsigned long tcstatus
;
888 unsigned long tcrestart
;
889 extern u32 kernelsp
[NR_CPUS
];
890 extern void __smtc_ipi_vector(void);
891 //printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
893 /* Extract Status, EPC from halted TC */
894 tcstatus
= read_tc_c0_tcstatus();
895 tcrestart
= read_tc_c0_tcrestart();
896 /* If TCRestart indicates a WAIT instruction, advance the PC */
897 if ((tcrestart
& 0x80000000)
898 && ((*(unsigned int *)tcrestart
& 0xfe00003f) == 0x42000020)) {
902 * Save on TC's future kernel stack
904 * CU bit of Status is indicator that TC was
905 * already running on a kernel stack...
907 if (tcstatus
& ST0_CU0
) {
908 /* Note that this "- 1" is pointer arithmetic */
909 kstack
= ((struct pt_regs
*)read_tc_gpr_sp()) - 1;
911 kstack
= ((struct pt_regs
*)kernelsp
[cpu
]) - 1;
914 kstack
->cp0_epc
= (long)tcrestart
;
916 kstack
->cp0_tcstatus
= tcstatus
;
917 /* Pass token of operation to be performed kernel stack pad area */
918 kstack
->pad0
[4] = (unsigned long)pipi
;
919 /* Pass address of function to be called likewise */
920 kstack
->pad0
[5] = (unsigned long)&ipi_decode
;
921 /* Set interrupt exempt and kernel mode */
922 tcstatus
|= TCSTATUS_IXMT
;
923 tcstatus
&= ~TCSTATUS_TKSU
;
924 write_tc_c0_tcstatus(tcstatus
);
926 /* Set TC Restart address to be SMTC IPI vector */
927 write_tc_c0_tcrestart(__smtc_ipi_vector
);
930 static void ipi_resched_interrupt(void)
932 /* Return from interrupt should be enough to cause scheduler check */
935 static void ipi_call_interrupt(void)
937 /* Invoke generic function invocation code in smp.c */
938 smp_call_function_interrupt();
941 DECLARE_PER_CPU(struct clock_event_device
, mips_clockevent_device
);
943 static void __irq_entry
smtc_clock_tick_interrupt(void)
945 unsigned int cpu
= smp_processor_id();
946 struct clock_event_device
*cd
;
947 int irq
= MIPS_CPU_IRQ_BASE
+ 1;
950 kstat_incr_irqs_this_cpu(irq
, irq_to_desc(irq
));
951 cd
= &per_cpu(mips_clockevent_device
, cpu
);
952 cd
->event_handler(cd
);
956 void ipi_decode(struct smtc_ipi
*pipi
)
958 void *arg_copy
= pipi
->arg
;
959 int type_copy
= pipi
->type
;
961 smtc_ipi_nq(&freeIPIq
, pipi
);
964 case SMTC_CLOCK_TICK
:
965 smtc_clock_tick_interrupt();
969 switch ((int)arg_copy
) {
970 case SMP_RESCHEDULE_YOURSELF
:
971 ipi_resched_interrupt();
973 case SMP_CALL_FUNCTION
:
974 ipi_call_interrupt();
977 printk("Impossible SMTC IPI Argument %p\n", arg_copy
);
981 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
982 case IRQ_AFFINITY_IPI
:
984 * Accept a "forwarded" interrupt that was initially
985 * taken by a TC who doesn't have affinity for the IRQ.
987 do_IRQ_no_affinity((int)arg_copy
);
989 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
991 printk("Impossible SMTC IPI Type 0x%x\n", type_copy
);
997 * Similar to smtc_ipi_replay(), but invoked from context restore,
998 * so it reuses the current exception frame rather than set up a
999 * new one with self_ipi.
1002 void deferred_smtc_ipi(void)
1004 int cpu
= smp_processor_id();
1007 * Test is not atomic, but much faster than a dequeue,
1008 * and the vast majority of invocations will have a null queue.
1009 * If irq_disabled when this was called, then any IPIs queued
1010 * after we test last will be taken on the next irq_enable/restore.
1011 * If interrupts were enabled, then any IPIs added after the
1012 * last test will be taken directly.
1015 while (IPIQ
[cpu
].head
!= NULL
) {
1016 struct smtc_ipi_q
*q
= &IPIQ
[cpu
];
1017 struct smtc_ipi
*pipi
;
1018 unsigned long flags
;
1021 * It may be possible we'll come in with interrupts
1024 local_irq_save(flags
);
1025 spin_lock(&q
->lock
);
1026 pipi
= __smtc_ipi_dq(q
);
1027 spin_unlock(&q
->lock
);
1029 if (pipi
->type
== LINUX_SMP_IPI
&&
1030 (int)pipi
->arg
== SMP_RESCHEDULE_YOURSELF
)
1031 IPIQ
[cpu
].resched_flag
= 0;
1035 * The use of the __raw_local restore isn't
1036 * as obviously necessary here as in smtc_ipi_replay(),
1037 * but it's more efficient, given that we're already
1038 * running down the IPI queue.
1040 __arch_local_irq_restore(flags
);
1045 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
1046 * set via cross-VPE MTTR manipulation of the Cause register. It would be
1047 * in some regards preferable to have external logic for "doorbell" hardware
1051 static int cpu_ipi_irq
= MIPS_CPU_IRQ_BASE
+ MIPS_CPU_IPI_IRQ
;
1053 static irqreturn_t
ipi_interrupt(int irq
, void *dev_idm
)
1055 int my_vpe
= cpu_data
[smp_processor_id()].vpe_id
;
1056 int my_tc
= cpu_data
[smp_processor_id()].tc_id
;
1058 struct smtc_ipi
*pipi
;
1059 unsigned long tcstatus
;
1061 unsigned long flags
;
1062 unsigned int mtflags
;
1063 unsigned int vpflags
;
1066 * So long as cross-VPE interrupts are done via
1067 * MFTR/MTTR read-modify-writes of Cause, we need
1068 * to stop other VPEs whenever the local VPE does
1071 local_irq_save(flags
);
1073 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ
);
1074 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ
);
1075 irq_enable_hazard();
1077 local_irq_restore(flags
);
1080 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
1081 * queued for TCs on this VPE other than the current one.
1082 * Return-from-interrupt should cause us to drain the queue
1083 * for the current TC, so we ought not to have to do it explicitly here.
1086 for_each_online_cpu(cpu
) {
1087 if (cpu_data
[cpu
].vpe_id
!= my_vpe
)
1090 pipi
= smtc_ipi_dq(&IPIQ
[cpu
]);
1092 if (cpu_data
[cpu
].tc_id
!= my_tc
) {
1095 settc(cpu_data
[cpu
].tc_id
);
1096 write_tc_c0_tchalt(TCHALT_H
);
1098 tcstatus
= read_tc_c0_tcstatus();
1099 if ((tcstatus
& TCSTATUS_IXMT
) == 0) {
1100 post_direct_ipi(cpu
, pipi
);
1103 write_tc_c0_tchalt(0);
1106 smtc_ipi_req(&IPIQ
[cpu
], pipi
);
1110 * ipi_decode() should be called
1111 * with interrupts off
1113 local_irq_save(flags
);
1114 if (pipi
->type
== LINUX_SMP_IPI
&&
1115 (int)pipi
->arg
== SMP_RESCHEDULE_YOURSELF
)
1116 IPIQ
[cpu
].resched_flag
= 0;
1118 local_irq_restore(flags
);
1126 static void ipi_irq_dispatch(void)
1128 do_IRQ(cpu_ipi_irq
);
1131 static struct irqaction irq_ipi
= {
1132 .handler
= ipi_interrupt
,
1133 .flags
= IRQF_DISABLED
| IRQF_PERCPU
,
1137 static void setup_cross_vpe_interrupts(unsigned int nvpe
)
1143 panic("SMTC Kernel requires Vectored Interrupt support");
1145 set_vi_handler(MIPS_CPU_IPI_IRQ
, ipi_irq_dispatch
);
1147 setup_irq_smtc(cpu_ipi_irq
, &irq_ipi
, (0x100 << MIPS_CPU_IPI_IRQ
));
1149 irq_set_handler(cpu_ipi_irq
, handle_percpu_irq
);
1153 * SMTC-specific hacks invoked from elsewhere in the kernel.
1157 * smtc_ipi_replay is called from raw_local_irq_restore
1160 void smtc_ipi_replay(void)
1162 unsigned int cpu
= smp_processor_id();
1165 * To the extent that we've ever turned interrupts off,
1166 * we may have accumulated deferred IPIs. This is subtle.
1167 * we should be OK: If we pick up something and dispatch
1168 * it here, that's great. If we see nothing, but concurrent
1169 * with this operation, another TC sends us an IPI, IXMT
1170 * is clear, and we'll handle it as a real pseudo-interrupt
1171 * and not a pseudo-pseudo interrupt. The important thing
1172 * is to do the last check for queued message *after* the
1173 * re-enabling of interrupts.
1175 while (IPIQ
[cpu
].head
!= NULL
) {
1176 struct smtc_ipi_q
*q
= &IPIQ
[cpu
];
1177 struct smtc_ipi
*pipi
;
1178 unsigned long flags
;
1181 * It's just possible we'll come in with interrupts
1184 local_irq_save(flags
);
1186 spin_lock(&q
->lock
);
1187 pipi
= __smtc_ipi_dq(q
);
1188 spin_unlock(&q
->lock
);
1190 ** But use a raw restore here to avoid recursion.
1192 __arch_local_irq_restore(flags
);
1196 smtc_cpu_stats
[cpu
].selfipis
++;
1201 EXPORT_SYMBOL(smtc_ipi_replay
);
1203 void smtc_idle_loop_hook(void)
1205 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1214 * printk within DMT-protected regions can deadlock,
1215 * so buffer diagnostic messages for later output.
1218 char id_ho_db_msg
[768]; /* worst-case use should be less than 700 */
1220 if (atomic_read(&idle_hook_initialized
) == 0) { /* fast test */
1221 if (atomic_add_return(1, &idle_hook_initialized
) == 1) {
1223 /* Tedious stuff to just do once */
1224 mvpconf0
= read_c0_mvpconf0();
1225 hook_ntcs
= ((mvpconf0
& MVPCONF0_PTC
) >> MVPCONF0_PTC_SHIFT
) + 1;
1226 if (hook_ntcs
> NR_CPUS
)
1227 hook_ntcs
= NR_CPUS
;
1228 for (tc
= 0; tc
< hook_ntcs
; tc
++) {
1230 clock_hang_reported
[tc
] = 0;
1232 for (vpe
= 0; vpe
< 2; vpe
++)
1233 for (im
= 0; im
< 8; im
++)
1234 imstuckcount
[vpe
][im
] = 0;
1235 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs
);
1236 atomic_set(&idle_hook_initialized
, 1000);
1238 /* Someone else is initializing in parallel - let 'em finish */
1239 while (atomic_read(&idle_hook_initialized
) < 1000)
1244 /* Have we stupidly left IXMT set somewhere? */
1245 if (read_c0_tcstatus() & 0x400) {
1246 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1248 printk("Dangling IXMT in cpu_idle()\n");
1251 /* Have we stupidly left an IM bit turned off? */
1252 #define IM_LIMIT 2000
1253 local_irq_save(flags
);
1255 pdb_msg
= &id_ho_db_msg
[0];
1256 im
= read_c0_status();
1257 vpe
= current_cpu_data
.vpe_id
;
1258 for (bit
= 0; bit
< 8; bit
++) {
1260 * In current prototype, I/O interrupts
1261 * are masked for VPE > 0
1263 if (vpemask
[vpe
][bit
]) {
1264 if (!(im
& (0x100 << bit
)))
1265 imstuckcount
[vpe
][bit
]++;
1267 imstuckcount
[vpe
][bit
] = 0;
1268 if (imstuckcount
[vpe
][bit
] > IM_LIMIT
) {
1269 set_c0_status(0x100 << bit
);
1271 imstuckcount
[vpe
][bit
] = 0;
1272 pdb_msg
+= sprintf(pdb_msg
,
1273 "Dangling IM %d fixed for VPE %d\n", bit
,
1280 local_irq_restore(flags
);
1281 if (pdb_msg
!= &id_ho_db_msg
[0])
1282 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg
);
1283 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1288 void smtc_soft_dump(void)
1292 printk("Counter Interrupts taken per CPU (TC)\n");
1293 for (i
=0; i
< NR_CPUS
; i
++) {
1294 printk("%d: %ld\n", i
, smtc_cpu_stats
[i
].timerints
);
1296 printk("Self-IPI invocations:\n");
1297 for (i
=0; i
< NR_CPUS
; i
++) {
1298 printk("%d: %ld\n", i
, smtc_cpu_stats
[i
].selfipis
);
1301 printk("%d Recoveries of \"stolen\" FPU\n",
1302 atomic_read(&smtc_fpu_recoveries
));
1307 * TLB management routines special to SMTC
1310 void smtc_get_new_mmu_context(struct mm_struct
*mm
, unsigned long cpu
)
1312 unsigned long flags
, mtflags
, tcstat
, prevhalt
, asid
;
1316 * It would be nice to be able to use a spinlock here,
1317 * but this is invoked from within TLB flush routines
1318 * that protect themselves with DVPE, so if a lock is
1319 * held by another TC, it'll never be freed.
1321 * DVPE/DMT must not be done with interrupts enabled,
1322 * so even so most callers will already have disabled
1323 * them, let's be really careful...
1326 local_irq_save(flags
);
1327 if (smtc_status
& SMTC_TLB_SHARED
) {
1332 tlb
= cpu_data
[cpu
].vpe_id
;
1334 asid
= asid_cache(cpu
);
1337 if (!((asid
+= ASID_INC
) & ASID_MASK
) ) {
1338 if (cpu_has_vtag_icache
)
1340 /* Traverse all online CPUs (hack requires contiguous range) */
1341 for_each_online_cpu(i
) {
1343 * We don't need to worry about our own CPU, nor those of
1344 * CPUs who don't share our TLB.
1346 if ((i
!= smp_processor_id()) &&
1347 ((smtc_status
& SMTC_TLB_SHARED
) ||
1348 (cpu_data
[i
].vpe_id
== cpu_data
[cpu
].vpe_id
))) {
1349 settc(cpu_data
[i
].tc_id
);
1350 prevhalt
= read_tc_c0_tchalt() & TCHALT_H
;
1352 write_tc_c0_tchalt(TCHALT_H
);
1355 tcstat
= read_tc_c0_tcstatus();
1356 smtc_live_asid
[tlb
][(tcstat
& ASID_MASK
)] |= (asiduse
)(0x1 << i
);
1358 write_tc_c0_tchalt(0);
1361 if (!asid
) /* fix version if needed */
1362 asid
= ASID_FIRST_VERSION
;
1363 local_flush_tlb_all(); /* start new asid cycle */
1365 } while (smtc_live_asid
[tlb
][(asid
& ASID_MASK
)]);
1368 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1370 for_each_online_cpu(i
) {
1371 if ((smtc_status
& SMTC_TLB_SHARED
) ||
1372 (cpu_data
[i
].vpe_id
== cpu_data
[cpu
].vpe_id
))
1373 cpu_context(i
, mm
) = asid_cache(i
) = asid
;
1376 if (smtc_status
& SMTC_TLB_SHARED
)
1380 local_irq_restore(flags
);
1384 * Invoked from macros defined in mmu_context.h
1385 * which must already have disabled interrupts
1386 * and done a DVPE or DMT as appropriate.
1389 void smtc_flush_tlb_asid(unsigned long asid
)
1394 entry
= read_c0_wired();
1396 /* Traverse all non-wired entries */
1397 while (entry
< current_cpu_data
.tlbsize
) {
1398 write_c0_index(entry
);
1402 ehi
= read_c0_entryhi();
1403 if ((ehi
& ASID_MASK
) == asid
) {
1405 * Invalidate only entries with specified ASID,
1406 * makiing sure all entries differ.
1408 write_c0_entryhi(CKSEG0
+ (entry
<< (PAGE_SHIFT
+ 1)));
1409 write_c0_entrylo0(0);
1410 write_c0_entrylo1(0);
1412 tlb_write_indexed();
1416 write_c0_index(PARKED_INDEX
);
1421 * Support for single-threading cache flush operations.
1424 static int halt_state_save
[NR_CPUS
];
1427 * To really, really be sure that nothing is being done
1428 * by other TCs, halt them all. This code assumes that
1429 * a DVPE has already been done, so while their Halted
1430 * state is theoretically architecturally unstable, in
1431 * practice, it's not going to change while we're looking
1435 void smtc_cflush_lockdown(void)
1439 for_each_online_cpu(cpu
) {
1440 if (cpu
!= smp_processor_id()) {
1441 settc(cpu_data
[cpu
].tc_id
);
1442 halt_state_save
[cpu
] = read_tc_c0_tchalt();
1443 write_tc_c0_tchalt(TCHALT_H
);
1449 /* It would be cheating to change the cpu_online states during a flush! */
1451 void smtc_cflush_release(void)
1456 * Start with a hazard barrier to ensure
1457 * that all CACHE ops have played through.
1461 for_each_online_cpu(cpu
) {
1462 if (cpu
!= smp_processor_id()) {
1463 settc(cpu_data
[cpu
].tc_id
);
1464 write_tc_c0_tchalt(halt_state_save
[cpu
]);