xen: cleancache shim to Xen Transcendent Memory
[linux-2.6/next.git] / arch / mips / sgi-ip27 / ip27-nmi.c
blobbc4fa8dd67f318b4f5f1881d7f353b6ab80b49f8
1 #include <linux/kernel.h>
2 #include <linux/mmzone.h>
3 #include <linux/nodemask.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <asm/atomic.h>
7 #include <asm/sn/types.h>
8 #include <asm/sn/addrs.h>
9 #include <asm/sn/nmi.h>
10 #include <asm/sn/arch.h>
11 #include <asm/sn/sn0/hub.h>
13 #if 0
14 #define NODE_NUM_CPUS(n) CNODE_NUM_CPUS(n)
15 #else
16 #define NODE_NUM_CPUS(n) CPUS_PER_NODE
17 #endif
19 #define CNODEID_NONE (cnodeid_t)-1
21 typedef unsigned long machreg_t;
23 static arch_spinlock_t nmi_lock = __ARCH_SPIN_LOCK_UNLOCKED;
26 * Lets see what else we need to do here. Set up sp, gp?
28 void nmi_dump(void)
30 void cont_nmi_dump(void);
32 cont_nmi_dump();
35 void install_cpu_nmi_handler(int slice)
37 nmi_t *nmi_addr;
39 nmi_addr = (nmi_t *)NMI_ADDR(get_nasid(), slice);
40 if (nmi_addr->call_addr)
41 return;
42 nmi_addr->magic = NMI_MAGIC;
43 nmi_addr->call_addr = (void *)nmi_dump;
44 nmi_addr->call_addr_c =
45 (void *)(~((unsigned long)(nmi_addr->call_addr)));
46 nmi_addr->call_parm = 0;
50 * Copy the cpu registers which have been saved in the IP27prom format
51 * into the eframe format for the node under consideration.
54 void nmi_cpu_eframe_save(nasid_t nasid, int slice)
56 struct reg_struct *nr;
57 int i;
59 /* Get the pointer to the current cpu's register set. */
60 nr = (struct reg_struct *)
61 (TO_UNCAC(TO_NODE(nasid, IP27_NMI_KREGS_OFFSET)) +
62 slice * IP27_NMI_KREGS_CPU_SIZE);
64 printk("NMI nasid %d: slice %d\n", nasid, slice);
67 * Saved main processor registers
69 for (i = 0; i < 32; ) {
70 if ((i % 4) == 0)
71 printk("$%2d :", i);
72 printk(" %016lx", nr->gpr[i]);
74 i++;
75 if ((i % 4) == 0)
76 printk("\n");
79 printk("Hi : (value lost)\n");
80 printk("Lo : (value lost)\n");
83 * Saved cp0 registers
85 printk("epc : %016lx %pS\n", nr->epc, (void *) nr->epc);
86 printk("%s\n", print_tainted());
87 printk("ErrEPC: %016lx %pS\n", nr->error_epc, (void *) nr->error_epc);
88 printk("ra : %016lx %pS\n", nr->gpr[31], (void *) nr->gpr[31]);
89 printk("Status: %08lx ", nr->sr);
91 if (nr->sr & ST0_KX)
92 printk("KX ");
93 if (nr->sr & ST0_SX)
94 printk("SX ");
95 if (nr->sr & ST0_UX)
96 printk("UX ");
98 switch (nr->sr & ST0_KSU) {
99 case KSU_USER:
100 printk("USER ");
101 break;
102 case KSU_SUPERVISOR:
103 printk("SUPERVISOR ");
104 break;
105 case KSU_KERNEL:
106 printk("KERNEL ");
107 break;
108 default:
109 printk("BAD_MODE ");
110 break;
113 if (nr->sr & ST0_ERL)
114 printk("ERL ");
115 if (nr->sr & ST0_EXL)
116 printk("EXL ");
117 if (nr->sr & ST0_IE)
118 printk("IE ");
119 printk("\n");
121 printk("Cause : %08lx\n", nr->cause);
122 printk("PrId : %08x\n", read_c0_prid());
123 printk("BadVA : %016lx\n", nr->badva);
124 printk("CErr : %016lx\n", nr->cache_err);
125 printk("NMI_SR: %016lx\n", nr->nmi_sr);
127 printk("\n");
130 void nmi_dump_hub_irq(nasid_t nasid, int slice)
132 hubreg_t mask0, mask1, pend0, pend1;
134 if (slice == 0) { /* Slice A */
135 mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_A);
136 mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_A);
137 } else { /* Slice B */
138 mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_B);
139 mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_B);
142 pend0 = REMOTE_HUB_L(nasid, PI_INT_PEND0);
143 pend1 = REMOTE_HUB_L(nasid, PI_INT_PEND1);
145 printk("PI_INT_MASK0: %16Lx PI_INT_MASK1: %16Lx\n", mask0, mask1);
146 printk("PI_INT_PEND0: %16Lx PI_INT_PEND1: %16Lx\n", pend0, pend1);
147 printk("\n\n");
151 * Copy the cpu registers which have been saved in the IP27prom format
152 * into the eframe format for the node under consideration.
154 void nmi_node_eframe_save(cnodeid_t cnode)
156 nasid_t nasid;
157 int slice;
159 /* Make sure that we have a valid node */
160 if (cnode == CNODEID_NONE)
161 return;
163 nasid = COMPACT_TO_NASID_NODEID(cnode);
164 if (nasid == INVALID_NASID)
165 return;
167 /* Save the registers into eframe for each cpu */
168 for (slice = 0; slice < NODE_NUM_CPUS(slice); slice++) {
169 nmi_cpu_eframe_save(nasid, slice);
170 nmi_dump_hub_irq(nasid, slice);
175 * Save the nmi cpu registers for all cpus in the system.
177 void
178 nmi_eframes_save(void)
180 cnodeid_t cnode;
182 for_each_online_node(cnode)
183 nmi_node_eframe_save(cnode);
186 void
187 cont_nmi_dump(void)
189 #ifndef REAL_NMI_SIGNAL
190 static atomic_t nmied_cpus = ATOMIC_INIT(0);
192 atomic_inc(&nmied_cpus);
193 #endif
195 * Only allow 1 cpu to proceed
197 arch_spin_lock(&nmi_lock);
199 #ifdef REAL_NMI_SIGNAL
201 * Wait up to 15 seconds for the other cpus to respond to the NMI.
202 * If a cpu has not responded after 10 sec, send it 1 additional NMI.
203 * This is for 2 reasons:
204 * - sometimes a MMSC fail to NMI all cpus.
205 * - on 512p SN0 system, the MMSC will only send NMIs to
206 * half the cpus. Unfortunately, we don't know which cpus may be
207 * NMIed - it depends on how the site chooses to configure.
209 * Note: it has been measure that it takes the MMSC up to 2.3 secs to
210 * send NMIs to all cpus on a 256p system.
212 for (i=0; i < 1500; i++) {
213 for_each_online_node(node)
214 if (NODEPDA(node)->dump_count == 0)
215 break;
216 if (node == MAX_NUMNODES)
217 break;
218 if (i == 1000) {
219 for_each_online_node(node)
220 if (NODEPDA(node)->dump_count == 0) {
221 cpu = cpumask_first(cpumask_of_node(node));
222 for (n=0; n < CNODE_NUM_CPUS(node); cpu++, n++) {
223 CPUMASK_SETB(nmied_cpus, cpu);
225 * cputonasid, cputoslice
226 * needs kernel cpuid
228 SEND_NMI((cputonasid(cpu)), (cputoslice(cpu)));
233 udelay(10000);
235 #else
236 while (atomic_read(&nmied_cpus) != num_online_cpus());
237 #endif
240 * Save the nmi cpu registers for all cpu in the eframe format.
242 nmi_eframes_save();
243 LOCAL_HUB_S(NI_PORT_RESET, NPR_PORTRESET | NPR_LOCALRESET);