2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
15 #include <linux/sched.h>
16 #include <linux/preempt.h>
17 #include <linux/module.h>
19 #include <linux/kprobes.h>
20 #include <linux/elfcore.h>
21 #include <linux/tick.h>
22 #include <linux/init.h>
24 #include <linux/compat.h>
25 #include <linux/hardirq.h>
26 #include <linux/syscalls.h>
27 #include <linux/kernel.h>
28 #include <asm/system.h>
29 #include <asm/stack.h>
30 #include <asm/homecache.h>
31 #include <asm/syscalls.h>
32 #ifdef CONFIG_HARDWALL
33 #include <asm/hardwall.h>
35 #include <arch/chip.h>
40 * Use the (x86) "idle=poll" option to prefer low latency when leaving the
41 * idle loop over low power while in the idle loop, e.g. if we have
42 * one thread per core and we want to get threads out of futex waits fast.
44 static int no_idle_nap
;
45 static int __init
idle_setup(char *str
)
50 if (!strcmp(str
, "poll")) {
51 pr_info("using polling idle threads.\n");
53 } else if (!strcmp(str
, "halt"))
60 early_param("idle", idle_setup
);
63 * The idle thread. There's no useful work to be
64 * done, so just try to conserve power and have a
65 * low exit latency (ie sit in a loop waiting for
66 * somebody to say that they'd like to reschedule)
70 int cpu
= smp_processor_id();
73 current_thread_info()->status
|= TS_POLLING
;
77 while (!need_resched())
83 /* endless idle loop with no priority at all */
85 tick_nohz_stop_sched_tick(1);
86 while (!need_resched()) {
87 if (cpu_is_offline(cpu
))
88 BUG(); /* no HOTPLUG_CPU */
91 __get_cpu_var(irq_stat
).idle_timestamp
= jiffies
;
92 current_thread_info()->status
&= ~TS_POLLING
;
94 * TS_POLLING-cleared state must be visible before we
103 current_thread_info()->status
|= TS_POLLING
;
105 tick_nohz_restart_sched_tick();
106 preempt_enable_no_resched();
112 struct thread_info
*alloc_thread_info_node(struct task_struct
*task
, int node
)
115 gfp_t flags
= GFP_KERNEL
;
117 #ifdef CONFIG_DEBUG_STACK_USAGE
121 page
= alloc_pages_node(node
, flags
, THREAD_SIZE_ORDER
);
125 return (struct thread_info
*)page_address(page
);
129 * Free a thread_info node, and all of its derivative
132 void free_thread_info(struct thread_info
*info
)
134 struct single_step_state
*step_state
= info
->step_state
;
136 #ifdef CONFIG_HARDWALL
138 * We free a thread_info from the context of the task that has
139 * been scheduled next, so the original task is already dead.
140 * Calling deactivate here just frees up the data structures.
141 * If the task we're freeing held the last reference to a
142 * hardwall fd, it would have been released prior to this point
143 * anyway via exit_files(), and "hardwall" would be NULL by now.
145 if (info
->task
->thread
.hardwall
)
146 hardwall_deactivate(info
->task
);
152 * FIXME: we don't munmap step_state->buffer
153 * because the mm_struct for this process (info->task->mm)
154 * has already been zeroed in exit_mm(). Keeping a
155 * reference to it here seems like a bad move, so this
156 * means we can't munmap() the buffer, and therefore if we
157 * ptrace multiple threads in a process, we will slowly
158 * leak user memory. (Note that as soon as the last
159 * thread in a process dies, we will reclaim all user
160 * memory including single-step buffers in the usual way.)
161 * We should either assign a kernel VA to this buffer
162 * somehow, or we should associate the buffer(s) with the
163 * mm itself so we can clean them up that way.
168 free_pages((unsigned long)info
, THREAD_SIZE_ORDER
);
171 static void save_arch_state(struct thread_struct
*t
);
173 int copy_thread(unsigned long clone_flags
, unsigned long sp
,
174 unsigned long stack_size
,
175 struct task_struct
*p
, struct pt_regs
*regs
)
177 struct pt_regs
*childregs
;
181 * When creating a new kernel thread we pass sp as zero.
182 * Assign it to a reasonable value now that we have the stack.
184 if (sp
== 0 && regs
->ex1
== PL_ICS_EX1(KERNEL_PL
, 0))
188 * Do not clone step state from the parent; each thread
189 * must make its own lazily.
191 task_thread_info(p
)->step_state
= NULL
;
194 * Start new thread in ret_from_fork so it schedules properly
195 * and then return from interrupt like the parent.
197 p
->thread
.pc
= (unsigned long) ret_from_fork
;
199 /* Save user stack top pointer so we can ID the stack vm area later. */
202 /* Record the pid of the process that created this one. */
203 p
->thread
.creator_pid
= current
->pid
;
206 * Copy the registers onto the kernel stack so the
207 * return-from-interrupt code will reload it into registers.
209 childregs
= task_pt_regs(p
);
211 childregs
->regs
[0] = 0; /* return value is zero */
212 childregs
->sp
= sp
; /* override with new user stack pointer */
215 * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
216 * which is passed in as arg #5 to sys_clone().
218 if (clone_flags
& CLONE_SETTLS
)
219 childregs
->tp
= regs
->regs
[4];
222 * Copy the callee-saved registers from the passed pt_regs struct
223 * into the context-switch callee-saved registers area.
224 * This way when we start the interrupt-return sequence, the
225 * callee-save registers will be correctly in registers, which
226 * is how we assume the compiler leaves them as we start doing
227 * the normal return-from-interrupt path after calling C code.
228 * Zero out the C ABI save area to mark the top of the stack.
230 ksp
= (unsigned long) childregs
;
231 ksp
-= C_ABI_SAVE_AREA_SIZE
; /* interrupt-entry save area */
232 ((long *)ksp
)[0] = ((long *)ksp
)[1] = 0;
233 ksp
-= CALLEE_SAVED_REGS_COUNT
* sizeof(unsigned long);
234 memcpy((void *)ksp
, ®s
->regs
[CALLEE_SAVED_FIRST_REG
],
235 CALLEE_SAVED_REGS_COUNT
* sizeof(unsigned long));
236 ksp
-= C_ABI_SAVE_AREA_SIZE
; /* __switch_to() save area */
237 ((long *)ksp
)[0] = ((long *)ksp
)[1] = 0;
240 #if CHIP_HAS_TILE_DMA()
242 * No DMA in the new thread. We model this on the fact that
243 * fork() clears the pending signals, alarms, and aio for the child.
245 memset(&p
->thread
.tile_dma_state
, 0, sizeof(struct tile_dma_state
));
246 memset(&p
->thread
.dma_async_tlb
, 0, sizeof(struct async_tlb
));
249 #if CHIP_HAS_SN_PROC()
250 /* Likewise, the new thread is not running static processor code. */
251 p
->thread
.sn_proc_running
= 0;
252 memset(&p
->thread
.sn_async_tlb
, 0, sizeof(struct async_tlb
));
255 #if CHIP_HAS_PROC_STATUS_SPR()
256 /* New thread has its miscellaneous processor state bits clear. */
257 p
->thread
.proc_status
= 0;
260 #ifdef CONFIG_HARDWALL
261 /* New thread does not own any networks. */
262 p
->thread
.hardwall
= NULL
;
267 * Start the new thread with the current architecture state
268 * (user interrupt masks, etc.).
270 save_arch_state(&p
->thread
);
276 * Return "current" if it looks plausible, or else a pointer to a dummy.
277 * This can be helpful if we are just trying to emit a clean panic.
279 struct task_struct
*validate_current(void)
281 static struct task_struct corrupt
= { .comm
= "<corrupt>" };
282 struct task_struct
*tsk
= current
;
283 if (unlikely((unsigned long)tsk
< PAGE_OFFSET
||
284 (void *)tsk
> high_memory
||
285 ((unsigned long)tsk
& (__alignof__(*tsk
) - 1)) != 0)) {
286 pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk
, stack_pointer
);
292 /* Take and return the pointer to the previous task, for schedule_tail(). */
293 struct task_struct
*sim_notify_fork(struct task_struct
*prev
)
295 struct task_struct
*tsk
= current
;
296 __insn_mtspr(SPR_SIM_CONTROL
, SIM_CONTROL_OS_FORK_PARENT
|
297 (tsk
->thread
.creator_pid
<< _SIM_CONTROL_OPERATOR_BITS
));
298 __insn_mtspr(SPR_SIM_CONTROL
, SIM_CONTROL_OS_FORK
|
299 (tsk
->pid
<< _SIM_CONTROL_OPERATOR_BITS
));
303 int dump_task_regs(struct task_struct
*tsk
, elf_gregset_t
*regs
)
305 struct pt_regs
*ptregs
= task_pt_regs(tsk
);
306 elf_core_copy_regs(regs
, ptregs
);
310 #if CHIP_HAS_TILE_DMA()
312 /* Allow user processes to access the DMA SPRs */
313 void grant_dma_mpls(void)
315 #if CONFIG_KERNEL_PL == 2
316 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1
, 1);
317 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1
, 1);
319 __insn_mtspr(SPR_MPL_DMA_CPL_SET_0
, 1);
320 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0
, 1);
324 /* Forbid user processes from accessing the DMA SPRs */
325 void restrict_dma_mpls(void)
327 #if CONFIG_KERNEL_PL == 2
328 __insn_mtspr(SPR_MPL_DMA_CPL_SET_2
, 1);
329 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2
, 1);
331 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1
, 1);
332 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1
, 1);
336 /* Pause the DMA engine, then save off its state registers. */
337 static void save_tile_dma_state(struct tile_dma_state
*dma
)
339 unsigned long state
= __insn_mfspr(SPR_DMA_USER_STATUS
);
340 unsigned long post_suspend_state
;
342 /* If we're running, suspend the engine. */
343 if ((state
& DMA_STATUS_MASK
) == SPR_DMA_STATUS__RUNNING_MASK
)
344 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__SUSPEND_MASK
);
347 * Wait for the engine to idle, then save regs. Note that we
348 * want to record the "running" bit from before suspension,
349 * and the "done" bit from after, so that we can properly
350 * distinguish a case where the user suspended the engine from
351 * the case where the kernel suspended as part of the context
355 post_suspend_state
= __insn_mfspr(SPR_DMA_USER_STATUS
);
356 } while (post_suspend_state
& SPR_DMA_STATUS__BUSY_MASK
);
358 dma
->src
= __insn_mfspr(SPR_DMA_SRC_ADDR
);
359 dma
->src_chunk
= __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR
);
360 dma
->dest
= __insn_mfspr(SPR_DMA_DST_ADDR
);
361 dma
->dest_chunk
= __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR
);
362 dma
->strides
= __insn_mfspr(SPR_DMA_STRIDE
);
363 dma
->chunk_size
= __insn_mfspr(SPR_DMA_CHUNK_SIZE
);
364 dma
->byte
= __insn_mfspr(SPR_DMA_BYTE
);
365 dma
->status
= (state
& SPR_DMA_STATUS__RUNNING_MASK
) |
366 (post_suspend_state
& SPR_DMA_STATUS__DONE_MASK
);
369 /* Restart a DMA that was running before we were context-switched out. */
370 static void restore_tile_dma_state(struct thread_struct
*t
)
372 const struct tile_dma_state
*dma
= &t
->tile_dma_state
;
375 * The only way to restore the done bit is to run a zero
376 * length transaction.
378 if ((dma
->status
& SPR_DMA_STATUS__DONE_MASK
) &&
379 !(__insn_mfspr(SPR_DMA_USER_STATUS
) & SPR_DMA_STATUS__DONE_MASK
)) {
380 __insn_mtspr(SPR_DMA_BYTE
, 0);
381 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__REQUEST_MASK
);
382 while (__insn_mfspr(SPR_DMA_USER_STATUS
) &
383 SPR_DMA_STATUS__BUSY_MASK
)
387 __insn_mtspr(SPR_DMA_SRC_ADDR
, dma
->src
);
388 __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR
, dma
->src_chunk
);
389 __insn_mtspr(SPR_DMA_DST_ADDR
, dma
->dest
);
390 __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR
, dma
->dest_chunk
);
391 __insn_mtspr(SPR_DMA_STRIDE
, dma
->strides
);
392 __insn_mtspr(SPR_DMA_CHUNK_SIZE
, dma
->chunk_size
);
393 __insn_mtspr(SPR_DMA_BYTE
, dma
->byte
);
396 * Restart the engine if we were running and not done.
397 * Clear a pending async DMA fault that we were waiting on return
398 * to user space to execute, since we expect the DMA engine
399 * to regenerate those faults for us now. Note that we don't
400 * try to clear the TIF_ASYNC_TLB flag, since it's relatively
401 * harmless if set, and it covers both DMA and the SN processor.
403 if ((dma
->status
& DMA_STATUS_MASK
) == SPR_DMA_STATUS__RUNNING_MASK
) {
404 t
->dma_async_tlb
.fault_num
= 0;
405 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__REQUEST_MASK
);
411 static void save_arch_state(struct thread_struct
*t
)
413 #if CHIP_HAS_SPLIT_INTR_MASK()
414 t
->interrupt_mask
= __insn_mfspr(SPR_INTERRUPT_MASK_0_0
) |
415 ((u64
)__insn_mfspr(SPR_INTERRUPT_MASK_0_1
) << 32);
417 t
->interrupt_mask
= __insn_mfspr(SPR_INTERRUPT_MASK_0
);
419 t
->ex_context
[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0
);
420 t
->ex_context
[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1
);
421 t
->system_save
[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0
);
422 t
->system_save
[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1
);
423 t
->system_save
[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2
);
424 t
->system_save
[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3
);
425 t
->intctrl_0
= __insn_mfspr(SPR_INTCTRL_0_STATUS
);
426 #if CHIP_HAS_PROC_STATUS_SPR()
427 t
->proc_status
= __insn_mfspr(SPR_PROC_STATUS
);
429 #if !CHIP_HAS_FIXED_INTVEC_BASE()
430 t
->interrupt_vector_base
= __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0
);
432 #if CHIP_HAS_TILE_RTF_HWM()
433 t
->tile_rtf_hwm
= __insn_mfspr(SPR_TILE_RTF_HWM
);
435 #if CHIP_HAS_DSTREAM_PF()
436 t
->dstream_pf
= __insn_mfspr(SPR_DSTREAM_PF
);
440 static void restore_arch_state(const struct thread_struct
*t
)
442 #if CHIP_HAS_SPLIT_INTR_MASK()
443 __insn_mtspr(SPR_INTERRUPT_MASK_0_0
, (u32
) t
->interrupt_mask
);
444 __insn_mtspr(SPR_INTERRUPT_MASK_0_1
, t
->interrupt_mask
>> 32);
446 __insn_mtspr(SPR_INTERRUPT_MASK_0
, t
->interrupt_mask
);
448 __insn_mtspr(SPR_EX_CONTEXT_0_0
, t
->ex_context
[0]);
449 __insn_mtspr(SPR_EX_CONTEXT_0_1
, t
->ex_context
[1]);
450 __insn_mtspr(SPR_SYSTEM_SAVE_0_0
, t
->system_save
[0]);
451 __insn_mtspr(SPR_SYSTEM_SAVE_0_1
, t
->system_save
[1]);
452 __insn_mtspr(SPR_SYSTEM_SAVE_0_2
, t
->system_save
[2]);
453 __insn_mtspr(SPR_SYSTEM_SAVE_0_3
, t
->system_save
[3]);
454 __insn_mtspr(SPR_INTCTRL_0_STATUS
, t
->intctrl_0
);
455 #if CHIP_HAS_PROC_STATUS_SPR()
456 __insn_mtspr(SPR_PROC_STATUS
, t
->proc_status
);
458 #if !CHIP_HAS_FIXED_INTVEC_BASE()
459 __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0
, t
->interrupt_vector_base
);
461 #if CHIP_HAS_TILE_RTF_HWM()
462 __insn_mtspr(SPR_TILE_RTF_HWM
, t
->tile_rtf_hwm
);
464 #if CHIP_HAS_DSTREAM_PF()
465 __insn_mtspr(SPR_DSTREAM_PF
, t
->dstream_pf
);
470 void _prepare_arch_switch(struct task_struct
*next
)
472 #if CHIP_HAS_SN_PROC()
475 #if CHIP_HAS_TILE_DMA()
476 struct tile_dma_state
*dma
= ¤t
->thread
.tile_dma_state
;
478 save_tile_dma_state(dma
);
480 #if CHIP_HAS_SN_PROC()
482 * Suspend the static network processor if it was running.
483 * We do not suspend the fabric itself, just like we don't
484 * try to suspend the UDN.
486 snctl
= __insn_mfspr(SPR_SNCTL
);
487 current
->thread
.sn_proc_running
=
488 (snctl
& SPR_SNCTL__FRZPROC_MASK
) == 0;
489 if (current
->thread
.sn_proc_running
)
490 __insn_mtspr(SPR_SNCTL
, snctl
| SPR_SNCTL__FRZPROC_MASK
);
495 struct task_struct
*__sched
_switch_to(struct task_struct
*prev
,
496 struct task_struct
*next
)
498 /* DMA state is already saved; save off other arch state. */
499 save_arch_state(&prev
->thread
);
501 #if CHIP_HAS_TILE_DMA()
503 * Restore DMA in new task if desired.
504 * Note that it is only safe to restart here since interrupts
505 * are disabled, so we can't take any DMATLB miss or access
506 * interrupts before we have finished switching stacks.
508 if (next
->thread
.tile_dma_state
.enabled
) {
509 restore_tile_dma_state(&next
->thread
);
516 /* Restore other arch state. */
517 restore_arch_state(&next
->thread
);
519 #if CHIP_HAS_SN_PROC()
521 * Restart static network processor in the new process
522 * if it was running before.
524 if (next
->thread
.sn_proc_running
) {
525 int snctl
= __insn_mfspr(SPR_SNCTL
);
526 __insn_mtspr(SPR_SNCTL
, snctl
& ~SPR_SNCTL__FRZPROC_MASK
);
530 #ifdef CONFIG_HARDWALL
531 /* Enable or disable access to the network registers appropriately. */
532 if (prev
->thread
.hardwall
!= NULL
) {
533 if (next
->thread
.hardwall
== NULL
)
534 restrict_network_mpls();
535 } else if (next
->thread
.hardwall
!= NULL
) {
536 grant_network_mpls();
541 * Switch kernel SP, PC, and callee-saved registers.
542 * In the context of the new task, return the old task pointer
543 * (i.e. the task that actually called __switch_to).
544 * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
546 return __switch_to(prev
, next
, next_current_ksp0(next
));
549 /* Note there is an implicit fifth argument if (clone_flags & CLONE_SETTLS). */
550 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
551 void __user
*, parent_tidptr
, void __user
*, child_tidptr
,
552 struct pt_regs
*, regs
)
556 return do_fork(clone_flags
, newsp
, regs
, 0,
557 parent_tidptr
, child_tidptr
);
561 * sys_execve() executes a new program.
563 SYSCALL_DEFINE4(execve
, const char __user
*, path
,
564 const char __user
*const __user
*, argv
,
565 const char __user
*const __user
*, envp
,
566 struct pt_regs
*, regs
)
571 filename
= getname(path
);
572 error
= PTR_ERR(filename
);
573 if (IS_ERR(filename
))
575 error
= do_execve(filename
, argv
, envp
, regs
);
578 single_step_execve();
584 long compat_sys_execve(const char __user
*path
,
585 const compat_uptr_t __user
*argv
,
586 const compat_uptr_t __user
*envp
,
587 struct pt_regs
*regs
)
592 filename
= getname(path
);
593 error
= PTR_ERR(filename
);
594 if (IS_ERR(filename
))
596 error
= compat_do_execve(filename
, argv
, envp
, regs
);
599 single_step_execve();
605 unsigned long get_wchan(struct task_struct
*p
)
607 struct KBacktraceIterator kbt
;
609 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
612 for (KBacktraceIterator_init(&kbt
, p
, NULL
);
613 !KBacktraceIterator_end(&kbt
);
614 KBacktraceIterator_next(&kbt
)) {
615 if (!in_sched_functions(kbt
.it
.pc
))
623 * We pass in lr as zero (cleared in kernel_thread) and the caller
624 * part of the backtrace ABI on the stack also zeroed (in copy_thread)
625 * so that backtraces will stop with this function.
626 * Note that we don't use r0, since copy_thread() clears it.
628 static void start_kernel_thread(int dummy
, int (*fn
)(int), int arg
)
634 * Create a kernel thread
636 int kernel_thread(int (*fn
)(void *), void * arg
, unsigned long flags
)
640 memset(®s
, 0, sizeof(regs
));
641 regs
.ex1
= PL_ICS_EX1(KERNEL_PL
, 0); /* run at kernel PL, no ICS */
642 regs
.pc
= (long) start_kernel_thread
;
643 regs
.flags
= PT_FLAGS_CALLER_SAVES
; /* need to restore r1 and r2 */
644 regs
.regs
[1] = (long) fn
; /* function pointer */
645 regs
.regs
[2] = (long) arg
; /* parameter register */
647 /* Ok, create the new process.. */
648 return do_fork(flags
| CLONE_VM
| CLONE_UNTRACED
, 0, ®s
,
651 EXPORT_SYMBOL(kernel_thread
);
653 /* Flush thread state. */
654 void flush_thread(void)
660 * Free current thread data structures etc..
662 void exit_thread(void)
667 void show_regs(struct pt_regs
*regs
)
669 struct task_struct
*tsk
= validate_current();
673 pr_err(" Pid: %d, comm: %20s, CPU: %d\n",
674 tsk
->pid
, tsk
->comm
, smp_processor_id());
676 for (i
= 0; i
< 51; i
+= 3)
677 pr_err(" r%-2d: "REGFMT
" r%-2d: "REGFMT
" r%-2d: "REGFMT
"\n",
678 i
, regs
->regs
[i
], i
+1, regs
->regs
[i
+1],
679 i
+2, regs
->regs
[i
+2]);
680 pr_err(" r51: "REGFMT
" r52: "REGFMT
" tp : "REGFMT
"\n",
681 regs
->regs
[51], regs
->regs
[52], regs
->tp
);
682 pr_err(" sp : "REGFMT
" lr : "REGFMT
"\n", regs
->sp
, regs
->lr
);
684 for (i
= 0; i
< 52; i
+= 4)
685 pr_err(" r%-2d: "REGFMT
" r%-2d: "REGFMT
686 " r%-2d: "REGFMT
" r%-2d: "REGFMT
"\n",
687 i
, regs
->regs
[i
], i
+1, regs
->regs
[i
+1],
688 i
+2, regs
->regs
[i
+2], i
+3, regs
->regs
[i
+3]);
689 pr_err(" r52: "REGFMT
" tp : "REGFMT
" sp : "REGFMT
" lr : "REGFMT
"\n",
690 regs
->regs
[52], regs
->tp
, regs
->sp
, regs
->lr
);
692 pr_err(" pc : "REGFMT
" ex1: %ld faultnum: %ld\n",
693 regs
->pc
, regs
->ex1
, regs
->faultnum
);
695 dump_stack_regs(regs
);