2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
14 * A code-rewriter that enables instruction single-stepping.
15 * Derived from iLib's single-stepping code.
18 #ifndef __tilegx__ /* Hardware support for single step unavailable. */
20 /* These functions are only used on the TILE platform */
21 #include <linux/slab.h>
22 #include <linux/thread_info.h>
23 #include <linux/uaccess.h>
24 #include <linux/mman.h>
25 #include <linux/types.h>
26 #include <linux/err.h>
27 #include <asm/cacheflush.h>
28 #include <asm/opcode-tile.h>
29 #include <asm/opcode_constants.h>
32 #define signExtend17(val) sign_extend((val), 17)
33 #define TILE_X1_MASK (0xffffffffULL << 31)
37 static int __init
setup_unaligned_printk(char *str
)
40 if (strict_strtol(str
, 0, &val
) != 0)
42 unaligned_printk
= val
;
43 pr_info("Printk for each unaligned data accesses is %s\n",
44 unaligned_printk
? "enabled" : "disabled");
47 __setup("unaligned_printk=", setup_unaligned_printk
);
49 unsigned int unaligned_fixup_count
;
59 static inline tile_bundle_bits
set_BrOff_X1(tile_bundle_bits n
, s32 offset
)
61 tile_bundle_bits result
;
63 /* mask out the old offset */
64 tile_bundle_bits mask
= create_BrOff_X1(-1);
67 /* or in the new offset */
68 result
|= create_BrOff_X1(offset
);
73 static inline tile_bundle_bits
move_X1(tile_bundle_bits n
, int dest
, int src
)
75 tile_bundle_bits result
;
78 result
= n
& (~TILE_X1_MASK
);
80 op
= create_Opcode_X1(SPECIAL_0_OPCODE_X1
) |
81 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1
) |
82 create_Dest_X1(dest
) |
83 create_SrcB_X1(TREG_ZERO
) |
90 static inline tile_bundle_bits
nop_X1(tile_bundle_bits n
)
92 return move_X1(n
, TREG_ZERO
, TREG_ZERO
);
95 static inline tile_bundle_bits
addi_X1(
96 tile_bundle_bits n
, int dest
, int src
, int imm
)
100 n
|= (create_SrcA_X1(src
) |
101 create_Dest_X1(dest
) |
102 create_Imm8_X1(imm
) |
104 create_Opcode_X1(IMM_0_OPCODE_X1
) |
105 create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1
));
110 static tile_bundle_bits
rewrite_load_store_unaligned(
111 struct single_step_state
*state
,
112 tile_bundle_bits bundle
,
113 struct pt_regs
*regs
,
115 int size
, int sign_ext
)
117 unsigned char __user
*addr
;
118 int val_reg
, addr_reg
, err
, val
;
120 /* Get address and value registers */
121 if (bundle
& TILE_BUNDLE_Y_ENCODING_MASK
) {
122 addr_reg
= get_SrcA_Y2(bundle
);
123 val_reg
= get_SrcBDest_Y2(bundle
);
124 } else if (mem_op
== MEMOP_LOAD
|| mem_op
== MEMOP_LOAD_POSTINCR
) {
125 addr_reg
= get_SrcA_X1(bundle
);
126 val_reg
= get_Dest_X1(bundle
);
128 addr_reg
= get_SrcA_X1(bundle
);
129 val_reg
= get_SrcB_X1(bundle
);
133 * If registers are not GPRs, don't try to handle it.
135 * FIXME: we could handle non-GPR loads by getting the real value
136 * from memory, writing it to the single step buffer, using a
137 * temp_reg to hold a pointer to that memory, then executing that
138 * instruction and resetting temp_reg. For non-GPR stores, it's a
139 * little trickier; we could use the single step buffer for that
140 * too, but we'd have to add some more state bits so that we could
141 * call back in here to copy that value to the real target. For
142 * now, we just handle the simple case.
144 if ((val_reg
>= PTREGS_NR_GPRS
&&
145 (val_reg
!= TREG_ZERO
||
146 mem_op
== MEMOP_LOAD
||
147 mem_op
== MEMOP_LOAD_POSTINCR
)) ||
148 addr_reg
>= PTREGS_NR_GPRS
)
151 /* If it's aligned, don't handle it specially */
152 addr
= (void __user
*)regs
->regs
[addr_reg
];
153 if (((unsigned long)addr
% size
) == 0)
156 #ifndef __LITTLE_ENDIAN
157 # error We assume little-endian representation with copy_xx_user size 2 here
159 /* Handle unaligned load/store */
160 if (mem_op
== MEMOP_LOAD
|| mem_op
== MEMOP_LOAD_POSTINCR
) {
161 unsigned short val_16
;
164 err
= copy_from_user(&val_16
, addr
, sizeof(val_16
));
165 val
= sign_ext
? ((short)val_16
) : val_16
;
168 err
= copy_from_user(&val
, addr
, sizeof(val
));
174 state
->update_reg
= val_reg
;
175 state
->update_value
= val
;
179 val
= (val_reg
== TREG_ZERO
) ? 0 : regs
->regs
[val_reg
];
180 err
= copy_to_user(addr
, &val
, size
);
186 .si_code
= SEGV_MAPERR
,
189 force_sig_info(info
.si_signo
, &info
, current
);
190 return (tile_bundle_bits
) 0;
193 if (unaligned_fixup
== 0) {
196 .si_code
= BUS_ADRALN
,
199 force_sig_info(info
.si_signo
, &info
, current
);
200 return (tile_bundle_bits
) 0;
203 if (unaligned_printk
|| unaligned_fixup_count
== 0) {
204 pr_info("Process %d/%s: PC %#lx: Fixup of"
205 " unaligned %s at %#lx.\n",
206 current
->pid
, current
->comm
, regs
->pc
,
207 (mem_op
== MEMOP_LOAD
||
208 mem_op
== MEMOP_LOAD_POSTINCR
) ?
210 (unsigned long)addr
);
211 if (!unaligned_printk
) {
214 P("Unaligned fixups in the kernel will slow your application considerably.\n");
215 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
216 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
217 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
218 P("access will become a SIGBUS you can debug. No further warnings will be\n");
219 P("shown so as to avoid additional slowdown, but you can track the number\n");
220 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
221 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
226 ++unaligned_fixup_count
;
228 if (bundle
& TILE_BUNDLE_Y_ENCODING_MASK
) {
229 /* Convert the Y2 instruction to a prefetch. */
230 bundle
&= ~(create_SrcBDest_Y2(-1) |
231 create_Opcode_Y2(-1));
232 bundle
|= (create_SrcBDest_Y2(TREG_ZERO
) |
233 create_Opcode_Y2(LW_OPCODE_Y2
));
234 /* Replace the load postincr with an addi */
235 } else if (mem_op
== MEMOP_LOAD_POSTINCR
) {
236 bundle
= addi_X1(bundle
, addr_reg
, addr_reg
,
237 get_Imm8_X1(bundle
));
238 /* Replace the store postincr with an addi */
239 } else if (mem_op
== MEMOP_STORE_POSTINCR
) {
240 bundle
= addi_X1(bundle
, addr_reg
, addr_reg
,
241 get_Dest_Imm8_X1(bundle
));
243 /* Convert the X1 instruction to a nop. */
244 bundle
&= ~(create_Opcode_X1(-1) |
245 create_UnShOpcodeExtension_X1(-1) |
246 create_UnOpcodeExtension_X1(-1));
247 bundle
|= (create_Opcode_X1(SHUN_0_OPCODE_X1
) |
248 create_UnShOpcodeExtension_X1(
249 UN_0_SHUN_0_OPCODE_X1
) |
250 create_UnOpcodeExtension_X1(
251 NOP_UN_0_SHUN_0_OPCODE_X1
));
258 * Called after execve() has started the new image. This allows us
259 * to reset the info state. Note that the the mmap'ed memory, if there
260 * was any, has already been unmapped by the exec.
262 void single_step_execve(void)
264 struct thread_info
*ti
= current_thread_info();
265 kfree(ti
->step_state
);
266 ti
->step_state
= NULL
;
270 * single_step_once() - entry point when single stepping has been triggered.
271 * @regs: The machine register state
273 * When we arrive at this routine via a trampoline, the single step
274 * engine copies the executing bundle to the single step buffer.
275 * If the instruction is a condition branch, then the target is
276 * reset to one past the next instruction. If the instruction
277 * sets the lr, then that is noted. If the instruction is a jump
278 * or call, then the new target pc is preserved and the current
279 * bundle instruction set to null.
281 * The necessary post-single-step rewriting information is stored in
282 * single_step_state-> We use data segment values because the
283 * stack will be rewound when we run the rewritten single-stepped
286 void single_step_once(struct pt_regs
*regs
)
288 extern tile_bundle_bits __single_step_ill_insn
;
289 extern tile_bundle_bits __single_step_j_insn
;
290 extern tile_bundle_bits __single_step_addli_insn
;
291 extern tile_bundle_bits __single_step_auli_insn
;
292 struct thread_info
*info
= (void *)current_thread_info();
293 struct single_step_state
*state
= info
->step_state
;
294 int is_single_step
= test_ti_thread_flag(info
, TIF_SINGLESTEP
);
295 tile_bundle_bits __user
*buffer
, *pc
;
296 tile_bundle_bits bundle
;
298 int target_reg
= TREG_LR
;
300 enum mem_op mem_op
= MEMOP_NONE
;
301 int size
= 0, sign_ext
= 0; /* happy compiler */
304 " .pushsection .rodata.single_step\n"
306 " .globl __single_step_ill_insn\n"
307 "__single_step_ill_insn:\n"
309 " .globl __single_step_addli_insn\n"
310 "__single_step_addli_insn:\n"
311 " { nop; addli r0, zero, 0 }\n"
312 " .globl __single_step_auli_insn\n"
313 "__single_step_auli_insn:\n"
314 " { nop; auli r0, r0, 0 }\n"
315 " .globl __single_step_j_insn\n"
316 "__single_step_j_insn:\n"
322 /* allocate a page of writable, executable memory */
323 state
= kmalloc(sizeof(struct single_step_state
), GFP_KERNEL
);
325 pr_err("Out of kernel memory trying to single-step\n");
329 /* allocate a cache line of writable, executable memory */
330 down_write(¤t
->mm
->mmap_sem
);
331 buffer
= (void __user
*) do_mmap(NULL
, 0, 64,
332 PROT_EXEC
| PROT_READ
| PROT_WRITE
,
333 MAP_PRIVATE
| MAP_ANONYMOUS
,
335 up_write(¤t
->mm
->mmap_sem
);
337 if (IS_ERR((void __force
*)buffer
)) {
339 pr_err("Out of kernel pages trying to single-step\n");
343 state
->buffer
= buffer
;
344 state
->is_enabled
= 0;
346 info
->step_state
= state
;
348 /* Validate our stored instruction patterns */
349 BUG_ON(get_Opcode_X1(__single_step_addli_insn
) !=
351 BUG_ON(get_Opcode_X1(__single_step_auli_insn
) !=
353 BUG_ON(get_SrcA_X1(__single_step_addli_insn
) != TREG_ZERO
);
354 BUG_ON(get_Dest_X1(__single_step_addli_insn
) != 0);
355 BUG_ON(get_JOffLong_X1(__single_step_j_insn
) != 0);
359 * If we are returning from a syscall, we still haven't hit the
360 * "ill" for the swint1 instruction. So back the PC up to be
361 * pointing at the swint1, but we'll actually return directly
362 * back to the "ill" so we come back in via SIGILL as if we
363 * had "executed" the swint1 without ever being in kernel space.
365 if (regs
->faultnum
== INT_SWINT_1
)
368 pc
= (tile_bundle_bits __user
*)(regs
->pc
);
369 if (get_user(bundle
, pc
) != 0) {
370 pr_err("Couldn't read instruction at %p trying to step\n", pc
);
374 /* We'll follow the instruction with 2 ill op bundles */
375 state
->orig_pc
= (unsigned long)pc
;
376 state
->next_pc
= (unsigned long)(pc
+ 1);
377 state
->branch_next_pc
= 0;
380 if (!(bundle
& TILE_BUNDLE_Y_ENCODING_MASK
)) {
381 /* two wide, check for control flow */
382 int opcode
= get_Opcode_X1(bundle
);
386 case BRANCH_OPCODE_X1
:
388 s32 offset
= signExtend17(get_BrOff_X1(bundle
));
391 * For branches, we use a rewriting trick to let the
392 * hardware evaluate whether the branch is taken or
393 * untaken. We record the target offset and then
394 * rewrite the branch instruction to target 1 insn
395 * ahead if the branch is taken. We then follow the
396 * rewritten branch with two bundles, each containing
397 * an "ill" instruction. The supervisor examines the
398 * pc after the single step code is executed, and if
399 * the pc is the first ill instruction, then the
400 * branch (if any) was not taken. If the pc is the
401 * second ill instruction, then the branch was
402 * taken. The new pc is computed for these cases, and
403 * inserted into the registers for the thread. If
404 * the pc is the start of the single step code, then
405 * an exception or interrupt was taken before the
406 * code started processing, and the same "original"
407 * pc is restored. This change, different from the
408 * original implementation, has the advantage of
409 * executing a single user instruction.
411 state
->branch_next_pc
= (unsigned long)(pc
+ offset
);
413 /* rewrite branch offset to go forward one bundle */
414 bundle
= set_BrOff_X1(bundle
, 2);
423 (unsigned long) (pc
+ get_JOffLong_X1(bundle
));
429 (unsigned long) (pc
+ get_JOffLong_X1(bundle
));
430 bundle
= nop_X1(bundle
);
433 case SPECIAL_0_OPCODE_X1
:
434 switch (get_RRROpcodeExtension_X1(bundle
)) {
436 case JALRP_SPECIAL_0_OPCODE_X1
:
437 case JALR_SPECIAL_0_OPCODE_X1
:
440 regs
->regs
[get_SrcA_X1(bundle
)];
443 case JRP_SPECIAL_0_OPCODE_X1
:
444 case JR_SPECIAL_0_OPCODE_X1
:
446 regs
->regs
[get_SrcA_X1(bundle
)];
447 bundle
= nop_X1(bundle
);
450 case LNK_SPECIAL_0_OPCODE_X1
:
452 target_reg
= get_Dest_X1(bundle
);
456 case SH_SPECIAL_0_OPCODE_X1
:
457 mem_op
= MEMOP_STORE
;
461 case SW_SPECIAL_0_OPCODE_X1
:
462 mem_op
= MEMOP_STORE
;
469 case SHUN_0_OPCODE_X1
:
470 if (get_UnShOpcodeExtension_X1(bundle
) ==
471 UN_0_SHUN_0_OPCODE_X1
) {
472 switch (get_UnOpcodeExtension_X1(bundle
)) {
473 case LH_UN_0_SHUN_0_OPCODE_X1
:
479 case LH_U_UN_0_SHUN_0_OPCODE_X1
:
485 case LW_UN_0_SHUN_0_OPCODE_X1
:
490 case IRET_UN_0_SHUN_0_OPCODE_X1
:
492 unsigned long ex0_0
= __insn_mfspr(
494 unsigned long ex0_1
= __insn_mfspr(
497 * Special-case it if we're iret'ing
498 * to PL0 again. Otherwise just let
499 * it run and it will generate SIGILL.
501 if (EX1_PL(ex0_1
) == USER_PL
) {
502 state
->next_pc
= ex0_0
;
504 bundle
= nop_X1(bundle
);
512 /* postincrement operations */
513 case IMM_0_OPCODE_X1
:
514 switch (get_ImmOpcodeExtension_X1(bundle
)) {
515 case LWADD_IMM_0_OPCODE_X1
:
516 mem_op
= MEMOP_LOAD_POSTINCR
;
520 case LHADD_IMM_0_OPCODE_X1
:
521 mem_op
= MEMOP_LOAD_POSTINCR
;
526 case LHADD_U_IMM_0_OPCODE_X1
:
527 mem_op
= MEMOP_LOAD_POSTINCR
;
532 case SWADD_IMM_0_OPCODE_X1
:
533 mem_op
= MEMOP_STORE_POSTINCR
;
537 case SHADD_IMM_0_OPCODE_X1
:
538 mem_op
= MEMOP_STORE_POSTINCR
;
546 #endif /* CHIP_HAS_WH64() */
551 * Get an available register. We start with a
552 * bitmask with 1's for available registers.
553 * We truncate to the low 32 registers since
554 * we are guaranteed to have set bits in the
555 * low 32 bits, then use ctz to pick the first.
557 u32 mask
= (u32
) ~((1ULL << get_Dest_X0(bundle
)) |
558 (1ULL << get_SrcA_X0(bundle
)) |
559 (1ULL << get_SrcB_X0(bundle
)) |
560 (1ULL << target_reg
));
561 temp_reg
= __builtin_ctz(mask
);
562 state
->update_reg
= temp_reg
;
563 state
->update_value
= regs
->regs
[temp_reg
];
564 regs
->regs
[temp_reg
] = (unsigned long) (pc
+1);
565 regs
->flags
|= PT_FLAGS_RESTORE_REGS
;
566 bundle
= move_X1(bundle
, target_reg
, temp_reg
);
569 int opcode
= get_Opcode_Y2(bundle
);
592 mem_op
= MEMOP_STORE
;
597 mem_op
= MEMOP_STORE
;
604 * Check if we need to rewrite an unaligned load/store.
605 * Returning zero is a special value meaning we need to SIGSEGV.
607 if (mem_op
!= MEMOP_NONE
&& unaligned_fixup
>= 0) {
608 bundle
= rewrite_load_store_unaligned(state
, bundle
, regs
,
609 mem_op
, size
, sign_ext
);
614 /* write the bundle to our execution area */
615 buffer
= state
->buffer
;
616 err
= __put_user(bundle
, buffer
++);
619 * If we're really single-stepping, we take an INT_ILL after.
620 * If we're just handling an unaligned access, we can just
621 * jump directly back to where we were in user code.
623 if (is_single_step
) {
624 err
|= __put_user(__single_step_ill_insn
, buffer
++);
625 err
|= __put_user(__single_step_ill_insn
, buffer
++);
630 /* We have some state to update; do it inline */
632 bundle
= __single_step_addli_insn
;
633 bundle
|= create_Dest_X1(state
->update_reg
);
634 bundle
|= create_Imm16_X1(state
->update_value
);
635 err
|= __put_user(bundle
, buffer
++);
636 bundle
= __single_step_auli_insn
;
637 bundle
|= create_Dest_X1(state
->update_reg
);
638 bundle
|= create_SrcA_X1(state
->update_reg
);
639 ha16
= (state
->update_value
+ 0x8000) >> 16;
640 bundle
|= create_Imm16_X1(ha16
);
641 err
|= __put_user(bundle
, buffer
++);
645 /* End with a jump back to the next instruction */
646 delta
= ((regs
->pc
+ TILE_BUNDLE_SIZE_IN_BYTES
) -
647 (unsigned long)buffer
) >>
648 TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES
;
649 bundle
= __single_step_j_insn
;
650 bundle
|= create_JOffLong_X1(delta
);
651 err
|= __put_user(bundle
, buffer
++);
655 pr_err("Fault when writing to single-step buffer\n");
661 * We do a local flush only, since this is a thread-specific buffer.
663 __flush_icache_range((unsigned long)state
->buffer
,
664 (unsigned long)buffer
);
666 /* Indicate enabled */
667 state
->is_enabled
= is_single_step
;
668 regs
->pc
= (unsigned long)state
->buffer
;
670 /* Fault immediately if we are coming back from a syscall. */
671 if (regs
->faultnum
== INT_SWINT_1
)
676 #include <linux/smp.h>
677 #include <linux/ptrace.h>
678 #include <arch/spr_def.h>
680 static DEFINE_PER_CPU(unsigned long, ss_saved_pc
);
684 * Called directly on the occasion of an interrupt.
686 * If the process doesn't have single step set, then we use this as an
687 * opportunity to turn single step off.
689 * It has been mentioned that we could conditionally turn off single stepping
690 * on each entry into the kernel and rely on single_step_once to turn it
691 * on for the processes that matter (as we already do), but this
692 * implementation is somewhat more efficient in that we muck with registers
693 * once on a bum interrupt rather than on every entry into the kernel.
695 * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
696 * so we have to run through this process again before we can say that an
697 * instruction has executed.
699 * swint will set CANCELED, but it's a legitimate instruction. Fortunately
700 * it changes the PC. If it hasn't changed, then we know that the interrupt
701 * wasn't generated by swint and we'll need to run this process again before
702 * we can say an instruction has executed.
704 * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
708 void gx_singlestep_handle(struct pt_regs
*regs
, int fault_num
)
710 unsigned long *ss_pc
= &__get_cpu_var(ss_saved_pc
);
711 struct thread_info
*info
= (void *)current_thread_info();
712 int is_single_step
= test_ti_thread_flag(info
, TIF_SINGLESTEP
);
713 unsigned long control
= __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K
);
715 if (is_single_step
== 0) {
716 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K
, 0);
718 } else if ((*ss_pc
!= regs
->pc
) ||
719 (!(control
& SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK
))) {
721 ptrace_notify(SIGTRAP
);
722 control
|= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK
;
723 control
|= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK
;
724 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K
, control
);
730 * Called from need_singlestep. Set up the control registers and the enable
731 * register, then return back.
734 void single_step_once(struct pt_regs
*regs
)
736 unsigned long *ss_pc
= &__get_cpu_var(ss_saved_pc
);
737 unsigned long control
= __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K
);
740 control
|= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK
;
741 control
|= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK
;
742 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K
, control
);
743 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K
, 1 << USER_PL
);
746 void single_step_execve(void)
751 #endif /* !__tilegx__ */