xen: cleancache shim to Xen Transcendent Memory
[linux-2.6/next.git] / arch / unicore32 / mm / fault.c
blob283aa4b50b7a3354714973b1a79623b3660e7b5b
1 /*
2 * linux/arch/unicore32/mm/fault.c
4 * Code specific to PKUnity SoC and UniCore ISA
6 * Copyright (C) 2001-2010 GUAN Xue-tao
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/signal.h>
14 #include <linux/mm.h>
15 #include <linux/hardirq.h>
16 #include <linux/init.h>
17 #include <linux/kprobes.h>
18 #include <linux/uaccess.h>
19 #include <linux/page-flags.h>
20 #include <linux/sched.h>
21 #include <linux/io.h>
23 #include <asm/system.h>
24 #include <asm/pgtable.h>
25 #include <asm/tlbflush.h>
28 * Fault status register encodings. We steal bit 31 for our own purposes.
30 #define FSR_LNX_PF (1 << 31)
32 static inline int fsr_fs(unsigned int fsr)
34 /* xyabcde will be abcde+xy */
35 return (fsr & 31) + ((fsr & (3 << 5)) >> 5);
39 * This is useful to dump out the page tables associated with
40 * 'addr' in mm 'mm'.
42 void show_pte(struct mm_struct *mm, unsigned long addr)
44 pgd_t *pgd;
46 if (!mm)
47 mm = &init_mm;
49 printk(KERN_ALERT "pgd = %p\n", mm->pgd);
50 pgd = pgd_offset(mm, addr);
51 printk(KERN_ALERT "[%08lx] *pgd=%08lx", addr, pgd_val(*pgd));
53 do {
54 pmd_t *pmd;
55 pte_t *pte;
57 if (pgd_none(*pgd))
58 break;
60 if (pgd_bad(*pgd)) {
61 printk("(bad)");
62 break;
65 pmd = pmd_offset((pud_t *) pgd, addr);
66 if (PTRS_PER_PMD != 1)
67 printk(", *pmd=%08lx", pmd_val(*pmd));
69 if (pmd_none(*pmd))
70 break;
72 if (pmd_bad(*pmd)) {
73 printk("(bad)");
74 break;
77 /* We must not map this if we have highmem enabled */
78 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
79 break;
81 pte = pte_offset_map(pmd, addr);
82 printk(", *pte=%08lx", pte_val(*pte));
83 pte_unmap(pte);
84 } while (0);
86 printk("\n");
90 * Oops. The kernel tried to access some page that wasn't present.
92 static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr,
93 unsigned int fsr, struct pt_regs *regs)
96 * Are we prepared to handle this kernel fault?
98 if (fixup_exception(regs))
99 return;
102 * No handler, we'll have to terminate things with extreme prejudice.
104 bust_spinlocks(1);
105 printk(KERN_ALERT
106 "Unable to handle kernel %s at virtual address %08lx\n",
107 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
108 "paging request", addr);
110 show_pte(mm, addr);
111 die("Oops", regs, fsr);
112 bust_spinlocks(0);
113 do_exit(SIGKILL);
117 * Something tried to access memory that isn't in our memory map..
118 * User mode accesses just cause a SIGSEGV
120 static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
121 unsigned int fsr, unsigned int sig, int code,
122 struct pt_regs *regs)
124 struct siginfo si;
126 tsk->thread.address = addr;
127 tsk->thread.error_code = fsr;
128 tsk->thread.trap_no = 14;
129 si.si_signo = sig;
130 si.si_errno = 0;
131 si.si_code = code;
132 si.si_addr = (void __user *)addr;
133 force_sig_info(sig, &si, tsk);
136 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
138 struct task_struct *tsk = current;
139 struct mm_struct *mm = tsk->active_mm;
142 * If we are in kernel mode at this point, we
143 * have no context to handle this fault with.
145 if (user_mode(regs))
146 __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
147 else
148 __do_kernel_fault(mm, addr, fsr, regs);
151 #define VM_FAULT_BADMAP 0x010000
152 #define VM_FAULT_BADACCESS 0x020000
155 * Check that the permissions on the VMA allow for the fault which occurred.
156 * If we encountered a write fault, we must have write permission, otherwise
157 * we allow any permission.
159 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
161 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
163 if (!(fsr ^ 0x12)) /* write? */
164 mask = VM_WRITE;
165 if (fsr & FSR_LNX_PF)
166 mask = VM_EXEC;
168 return vma->vm_flags & mask ? false : true;
171 static int __do_pf(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
172 struct task_struct *tsk)
174 struct vm_area_struct *vma;
175 int fault;
177 vma = find_vma(mm, addr);
178 fault = VM_FAULT_BADMAP;
179 if (unlikely(!vma))
180 goto out;
181 if (unlikely(vma->vm_start > addr))
182 goto check_stack;
185 * Ok, we have a good vm_area for this
186 * memory access, so we can handle it.
188 good_area:
189 if (access_error(fsr, vma)) {
190 fault = VM_FAULT_BADACCESS;
191 goto out;
195 * If for any reason at all we couldn't handle the fault, make
196 * sure we exit gracefully rather than endlessly redo the fault.
198 fault = handle_mm_fault(mm, vma, addr & PAGE_MASK,
199 (!(fsr ^ 0x12)) ? FAULT_FLAG_WRITE : 0);
200 if (unlikely(fault & VM_FAULT_ERROR))
201 return fault;
202 if (fault & VM_FAULT_MAJOR)
203 tsk->maj_flt++;
204 else
205 tsk->min_flt++;
206 return fault;
208 check_stack:
209 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
210 goto good_area;
211 out:
212 return fault;
215 static int do_pf(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
217 struct task_struct *tsk;
218 struct mm_struct *mm;
219 int fault, sig, code;
221 tsk = current;
222 mm = tsk->mm;
225 * If we're in an interrupt or have no user
226 * context, we must not take the fault..
228 if (in_atomic() || !mm)
229 goto no_context;
232 * As per x86, we may deadlock here. However, since the kernel only
233 * validly references user space from well defined areas of the code,
234 * we can bug out early if this is from code which shouldn't.
236 if (!down_read_trylock(&mm->mmap_sem)) {
237 if (!user_mode(regs)
238 && !search_exception_tables(regs->UCreg_pc))
239 goto no_context;
240 down_read(&mm->mmap_sem);
241 } else {
243 * The above down_read_trylock() might have succeeded in
244 * which case, we'll have missed the might_sleep() from
245 * down_read()
247 might_sleep();
248 #ifdef CONFIG_DEBUG_VM
249 if (!user_mode(regs) &&
250 !search_exception_tables(regs->UCreg_pc))
251 goto no_context;
252 #endif
255 fault = __do_pf(mm, addr, fsr, tsk);
256 up_read(&mm->mmap_sem);
259 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
261 if (likely(!(fault &
262 (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
263 return 0;
265 if (fault & VM_FAULT_OOM) {
267 * We ran out of memory, call the OOM killer, and return to
268 * userspace (which will retry the fault, or kill us if we
269 * got oom-killed)
271 pagefault_out_of_memory();
272 return 0;
276 * If we are in kernel mode at this point, we
277 * have no context to handle this fault with.
279 if (!user_mode(regs))
280 goto no_context;
282 if (fault & VM_FAULT_SIGBUS) {
284 * We had some memory, but were unable to
285 * successfully fix up this page fault.
287 sig = SIGBUS;
288 code = BUS_ADRERR;
289 } else {
291 * Something tried to access memory that
292 * isn't in our memory map..
294 sig = SIGSEGV;
295 code = fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR;
298 __do_user_fault(tsk, addr, fsr, sig, code, regs);
299 return 0;
301 no_context:
302 __do_kernel_fault(mm, addr, fsr, regs);
303 return 0;
307 * First Level Translation Fault Handler
309 * We enter here because the first level page table doesn't contain
310 * a valid entry for the address.
312 * If the address is in kernel space (>= TASK_SIZE), then we are
313 * probably faulting in the vmalloc() area.
315 * If the init_task's first level page tables contains the relevant
316 * entry, we copy the it to this task. If not, we send the process
317 * a signal, fixup the exception, or oops the kernel.
319 * NOTE! We MUST NOT take any locks for this case. We may be in an
320 * interrupt or a critical region, and should only copy the information
321 * from the master page table, nothing more.
323 static int do_ifault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
325 unsigned int index;
326 pgd_t *pgd, *pgd_k;
327 pmd_t *pmd, *pmd_k;
329 if (addr < TASK_SIZE)
330 return do_pf(addr, fsr, regs);
332 if (user_mode(regs))
333 goto bad_area;
335 index = pgd_index(addr);
337 pgd = cpu_get_pgd() + index;
338 pgd_k = init_mm.pgd + index;
340 if (pgd_none(*pgd_k))
341 goto bad_area;
343 pmd_k = pmd_offset((pud_t *) pgd_k, addr);
344 pmd = pmd_offset((pud_t *) pgd, addr);
346 if (pmd_none(*pmd_k))
347 goto bad_area;
349 set_pmd(pmd, *pmd_k);
350 flush_pmd_entry(pmd);
351 return 0;
353 bad_area:
354 do_bad_area(addr, fsr, regs);
355 return 0;
359 * This abort handler always returns "fault".
361 static int do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
363 return 1;
366 static int do_good(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
368 unsigned int res1, res2;
370 printk("dabt exception but no error!\n");
372 __asm__ __volatile__(
373 "mff %0,f0\n"
374 "mff %1,f1\n"
375 : "=r"(res1), "=r"(res2)
377 : "memory");
379 printk(KERN_EMERG "r0 :%08x r1 :%08x\n", res1, res2);
380 panic("shut up\n");
381 return 0;
384 static struct fsr_info {
385 int (*fn) (unsigned long addr, unsigned int fsr, struct pt_regs *regs);
386 int sig;
387 int code;
388 const char *name;
389 } fsr_info[] = {
391 * The following are the standard Unicore-I and UniCore-II aborts.
393 { do_good, SIGBUS, 0, "no error" },
394 { do_bad, SIGBUS, BUS_ADRALN, "alignment exception" },
395 { do_bad, SIGBUS, BUS_OBJERR, "external exception" },
396 { do_bad, SIGBUS, 0, "burst operation" },
397 { do_bad, SIGBUS, 0, "unknown 00100" },
398 { do_ifault, SIGSEGV, SEGV_MAPERR, "2nd level pt non-exist"},
399 { do_bad, SIGBUS, 0, "2nd lvl large pt non-exist" },
400 { do_bad, SIGBUS, 0, "invalid pte" },
401 { do_pf, SIGSEGV, SEGV_MAPERR, "page miss" },
402 { do_bad, SIGBUS, 0, "middle page miss" },
403 { do_bad, SIGBUS, 0, "large page miss" },
404 { do_pf, SIGSEGV, SEGV_MAPERR, "super page (section) miss" },
405 { do_bad, SIGBUS, 0, "unknown 01100" },
406 { do_bad, SIGBUS, 0, "unknown 01101" },
407 { do_bad, SIGBUS, 0, "unknown 01110" },
408 { do_bad, SIGBUS, 0, "unknown 01111" },
409 { do_bad, SIGBUS, 0, "addr: up 3G or IO" },
410 { do_pf, SIGSEGV, SEGV_ACCERR, "read unreadable addr" },
411 { do_pf, SIGSEGV, SEGV_ACCERR, "write unwriteable addr"},
412 { do_pf, SIGSEGV, SEGV_ACCERR, "exec unexecutable addr"},
413 { do_bad, SIGBUS, 0, "unknown 10100" },
414 { do_bad, SIGBUS, 0, "unknown 10101" },
415 { do_bad, SIGBUS, 0, "unknown 10110" },
416 { do_bad, SIGBUS, 0, "unknown 10111" },
417 { do_bad, SIGBUS, 0, "unknown 11000" },
418 { do_bad, SIGBUS, 0, "unknown 11001" },
419 { do_bad, SIGBUS, 0, "unknown 11010" },
420 { do_bad, SIGBUS, 0, "unknown 11011" },
421 { do_bad, SIGBUS, 0, "unknown 11100" },
422 { do_bad, SIGBUS, 0, "unknown 11101" },
423 { do_bad, SIGBUS, 0, "unknown 11110" },
424 { do_bad, SIGBUS, 0, "unknown 11111" }
427 void __init hook_fault_code(int nr,
428 int (*fn) (unsigned long, unsigned int, struct pt_regs *),
429 int sig, int code, const char *name)
431 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
432 BUG();
434 fsr_info[nr].fn = fn;
435 fsr_info[nr].sig = sig;
436 fsr_info[nr].code = code;
437 fsr_info[nr].name = name;
441 * Dispatch a data abort to the relevant handler.
443 asmlinkage void do_DataAbort(unsigned long addr, unsigned int fsr,
444 struct pt_regs *regs)
446 const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
447 struct siginfo info;
449 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
450 return;
452 printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
453 inf->name, fsr, addr);
455 info.si_signo = inf->sig;
456 info.si_errno = 0;
457 info.si_code = inf->code;
458 info.si_addr = (void __user *)addr;
459 uc32_notify_die("", regs, &info, fsr, 0);
462 asmlinkage void do_PrefetchAbort(unsigned long addr,
463 unsigned int ifsr, struct pt_regs *regs)
465 const struct fsr_info *inf = fsr_info + fsr_fs(ifsr);
466 struct siginfo info;
468 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
469 return;
471 printk(KERN_ALERT "Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
472 inf->name, ifsr, addr);
474 info.si_signo = inf->sig;
475 info.si_errno = 0;
476 info.si_code = inf->code;
477 info.si_addr = (void __user *)addr;
478 uc32_notify_die("", regs, &info, ifsr, 0);