1 /******************************************************************************
4 * Guest OS interface to Xen.
6 * Copyright (c) 2004, K A Fraser
9 #ifndef __XEN_PUBLIC_XEN_H__
10 #define __XEN_PUBLIC_XEN_H__
12 #include <asm/xen/interface.h>
13 #include <asm/pvclock-abi.h>
16 * XEN "SYSTEM CALLS" (a.k.a. HYPERCALLS).
20 * x86_32: EAX = vector; EBX, ECX, EDX, ESI, EDI = args 1, 2, 3, 4, 5.
22 * (argument registers may be clobbered on return)
23 * x86_64: RAX = vector; RDI, RSI, RDX, R10, R8, R9 = args 1, 2, 3, 4, 5, 6.
25 * (argument registers not clobbered on return; RCX, R11 are)
27 #define __HYPERVISOR_set_trap_table 0
28 #define __HYPERVISOR_mmu_update 1
29 #define __HYPERVISOR_set_gdt 2
30 #define __HYPERVISOR_stack_switch 3
31 #define __HYPERVISOR_set_callbacks 4
32 #define __HYPERVISOR_fpu_taskswitch 5
33 #define __HYPERVISOR_sched_op_compat 6
34 #define __HYPERVISOR_dom0_op 7
35 #define __HYPERVISOR_set_debugreg 8
36 #define __HYPERVISOR_get_debugreg 9
37 #define __HYPERVISOR_update_descriptor 10
38 #define __HYPERVISOR_memory_op 12
39 #define __HYPERVISOR_multicall 13
40 #define __HYPERVISOR_update_va_mapping 14
41 #define __HYPERVISOR_set_timer_op 15
42 #define __HYPERVISOR_event_channel_op_compat 16
43 #define __HYPERVISOR_xen_version 17
44 #define __HYPERVISOR_console_io 18
45 #define __HYPERVISOR_physdev_op_compat 19
46 #define __HYPERVISOR_grant_table_op 20
47 #define __HYPERVISOR_vm_assist 21
48 #define __HYPERVISOR_update_va_mapping_otherdomain 22
49 #define __HYPERVISOR_iret 23 /* x86 only */
50 #define __HYPERVISOR_vcpu_op 24
51 #define __HYPERVISOR_set_segment_base 25 /* x86/64 only */
52 #define __HYPERVISOR_mmuext_op 26
53 #define __HYPERVISOR_acm_op 27
54 #define __HYPERVISOR_nmi_op 28
55 #define __HYPERVISOR_sched_op 29
56 #define __HYPERVISOR_callback_op 30
57 #define __HYPERVISOR_xenoprof_op 31
58 #define __HYPERVISOR_event_channel_op 32
59 #define __HYPERVISOR_physdev_op 33
60 #define __HYPERVISOR_hvm_op 34
61 #define __HYPERVISOR_tmem_op 38
63 /* Architecture-specific hypercall definitions. */
64 #define __HYPERVISOR_arch_0 48
65 #define __HYPERVISOR_arch_1 49
66 #define __HYPERVISOR_arch_2 50
67 #define __HYPERVISOR_arch_3 51
68 #define __HYPERVISOR_arch_4 52
69 #define __HYPERVISOR_arch_5 53
70 #define __HYPERVISOR_arch_6 54
71 #define __HYPERVISOR_arch_7 55
76 * Virtual interrupts that a guest OS may receive from Xen.
78 #define VIRQ_TIMER 0 /* Timebase update, and/or requested timeout. */
79 #define VIRQ_DEBUG 1 /* Request guest to dump debug info. */
80 #define VIRQ_CONSOLE 2 /* (DOM0) Bytes received on emergency console. */
81 #define VIRQ_DOM_EXC 3 /* (DOM0) Exceptional event for some domain. */
82 #define VIRQ_DEBUGGER 6 /* (DOM0) A domain has paused for debugging. */
84 /* Architecture-specific VIRQ definitions. */
85 #define VIRQ_ARCH_0 16
86 #define VIRQ_ARCH_1 17
87 #define VIRQ_ARCH_2 18
88 #define VIRQ_ARCH_3 19
89 #define VIRQ_ARCH_4 20
90 #define VIRQ_ARCH_5 21
91 #define VIRQ_ARCH_6 22
92 #define VIRQ_ARCH_7 23
98 * HYPERVISOR_mmu_update() accepts a list of (ptr, val) pairs.
99 * A foreigndom (FD) can be specified (or DOMID_SELF for none).
100 * Where the FD has some effect, it is described below.
101 * ptr[1:0] specifies the appropriate MMU_* command.
103 * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
104 * Updates an entry in a page table. If updating an L1 table, and the new
105 * table entry is valid/present, the mapped frame must belong to the FD, if
106 * an FD has been specified. If attempting to map an I/O page then the
107 * caller assumes the privilege of the FD.
108 * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
109 * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
110 * ptr[:2] -- Machine address of the page-table entry to modify.
111 * val -- Value to write.
113 * ptr[1:0] == MMU_MACHPHYS_UPDATE:
114 * Updates an entry in the machine->pseudo-physical mapping table.
115 * ptr[:2] -- Machine address within the frame whose mapping to modify.
116 * The frame must belong to the FD, if one is specified.
117 * val -- Value to write into the mapping entry.
119 * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
120 * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
121 * with those in @val.
123 #define MMU_NORMAL_PT_UPDATE 0 /* checked '*ptr = val'. ptr is MA. */
124 #define MMU_MACHPHYS_UPDATE 1 /* ptr = MA of frame to modify entry for */
125 #define MMU_PT_UPDATE_PRESERVE_AD 2 /* atomically: *ptr = val | (*ptr&(A|D)) */
128 * MMU EXTENDED OPERATIONS
130 * HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
131 * A foreigndom (FD) can be specified (or DOMID_SELF for none).
132 * Where the FD has some effect, it is described below.
134 * cmd: MMUEXT_(UN)PIN_*_TABLE
135 * mfn: Machine frame number to be (un)pinned as a p.t. page.
136 * The frame must belong to the FD, if one is specified.
138 * cmd: MMUEXT_NEW_BASEPTR
139 * mfn: Machine frame number of new page-table base to install in MMU.
141 * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
142 * mfn: Machine frame number of new page-table base to install in MMU
143 * when in user space.
145 * cmd: MMUEXT_TLB_FLUSH_LOCAL
146 * No additional arguments. Flushes local TLB.
148 * cmd: MMUEXT_INVLPG_LOCAL
149 * linear_addr: Linear address to be flushed from the local TLB.
151 * cmd: MMUEXT_TLB_FLUSH_MULTI
152 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
154 * cmd: MMUEXT_INVLPG_MULTI
155 * linear_addr: Linear address to be flushed.
156 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
158 * cmd: MMUEXT_TLB_FLUSH_ALL
159 * No additional arguments. Flushes all VCPUs' TLBs.
161 * cmd: MMUEXT_INVLPG_ALL
162 * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
164 * cmd: MMUEXT_FLUSH_CACHE
165 * No additional arguments. Writes back and flushes cache contents.
167 * cmd: MMUEXT_SET_LDT
168 * linear_addr: Linear address of LDT base (NB. must be page-aligned).
169 * nr_ents: Number of entries in LDT.
171 #define MMUEXT_PIN_L1_TABLE 0
172 #define MMUEXT_PIN_L2_TABLE 1
173 #define MMUEXT_PIN_L3_TABLE 2
174 #define MMUEXT_PIN_L4_TABLE 3
175 #define MMUEXT_UNPIN_TABLE 4
176 #define MMUEXT_NEW_BASEPTR 5
177 #define MMUEXT_TLB_FLUSH_LOCAL 6
178 #define MMUEXT_INVLPG_LOCAL 7
179 #define MMUEXT_TLB_FLUSH_MULTI 8
180 #define MMUEXT_INVLPG_MULTI 9
181 #define MMUEXT_TLB_FLUSH_ALL 10
182 #define MMUEXT_INVLPG_ALL 11
183 #define MMUEXT_FLUSH_CACHE 12
184 #define MMUEXT_SET_LDT 13
185 #define MMUEXT_NEW_USER_BASEPTR 15
191 /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR */
193 /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
194 unsigned long linear_addr
;
198 unsigned int nr_ents
;
199 /* TLB_FLUSH_MULTI, INVLPG_MULTI */
203 DEFINE_GUEST_HANDLE_STRUCT(mmuext_op
);
206 /* These are passed as 'flags' to update_va_mapping. They can be ORed. */
207 /* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap. */
208 /* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer. */
209 #define UVMF_NONE (0UL<<0) /* No flushing at all. */
210 #define UVMF_TLB_FLUSH (1UL<<0) /* Flush entire TLB(s). */
211 #define UVMF_INVLPG (2UL<<0) /* Flush only one entry. */
212 #define UVMF_FLUSHTYPE_MASK (3UL<<0)
213 #define UVMF_MULTI (0UL<<2) /* Flush subset of TLBs. */
214 #define UVMF_LOCAL (0UL<<2) /* Flush local TLB. */
215 #define UVMF_ALL (1UL<<2) /* Flush all TLBs. */
218 * Commands to HYPERVISOR_console_io().
220 #define CONSOLEIO_write 0
221 #define CONSOLEIO_read 1
224 * Commands to HYPERVISOR_vm_assist().
226 #define VMASST_CMD_enable 0
227 #define VMASST_CMD_disable 1
228 #define VMASST_TYPE_4gb_segments 0
229 #define VMASST_TYPE_4gb_segments_notify 1
230 #define VMASST_TYPE_writable_pagetables 2
231 #define VMASST_TYPE_pae_extended_cr3 3
232 #define MAX_VMASST_TYPE 3
236 typedef uint16_t domid_t
;
238 /* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
239 #define DOMID_FIRST_RESERVED (0x7FF0U)
241 /* DOMID_SELF is used in certain contexts to refer to oneself. */
242 #define DOMID_SELF (0x7FF0U)
245 * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
246 * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
247 * is useful to ensure that no mappings to the OS's own heap are accidentally
248 * installed. (e.g., in Linux this could cause havoc as reference counts
249 * aren't adjusted on the I/O-mapping code path).
250 * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can
251 * be specified by any calling domain.
253 #define DOMID_IO (0x7FF1U)
256 * DOMID_XEN is used to allow privileged domains to map restricted parts of
257 * Xen's heap space (e.g., the machine_to_phys table).
258 * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if
259 * the caller is privileged.
261 #define DOMID_XEN (0x7FF2U)
264 * Send an array of these to HYPERVISOR_mmu_update().
265 * NB. The fields are natural pointer/address size for this architecture.
268 uint64_t ptr
; /* Machine address of PTE. */
269 uint64_t val
; /* New contents of PTE. */
271 DEFINE_GUEST_HANDLE_STRUCT(mmu_update
);
274 * Send an array of these to HYPERVISOR_multicall().
275 * NB. The fields are natural register size for this architecture.
277 struct multicall_entry
{
280 unsigned long args
[6];
282 DEFINE_GUEST_HANDLE_STRUCT(multicall_entry
);
285 * Event channel endpoints per domain:
286 * 1024 if a long is 32 bits; 4096 if a long is 64 bits.
288 #define NR_EVENT_CHANNELS (sizeof(unsigned long) * sizeof(unsigned long) * 64)
290 struct vcpu_time_info
{
292 * Updates to the following values are preceded and followed
293 * by an increment of 'version'. The guest can therefore
294 * detect updates by looking for changes to 'version'. If the
295 * least-significant bit of the version number is set then an
296 * update is in progress and the guest must wait to read a
297 * consistent set of values. The correct way to interact with
298 * the version number is similar to Linux's seqlock: see the
299 * implementations of read_seqbegin/read_seqretry.
303 uint64_t tsc_timestamp
; /* TSC at last update of time vals. */
304 uint64_t system_time
; /* Time, in nanosecs, since boot. */
306 * Current system time:
307 * system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul
308 * CPU frequency (Hz):
309 * ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
311 uint32_t tsc_to_system_mul
;
318 * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
319 * a pending notification for a particular VCPU. It is then cleared
320 * by the guest OS /before/ checking for pending work, thus avoiding
321 * a set-and-check race. Note that the mask is only accessed by Xen
322 * on the CPU that is currently hosting the VCPU. This means that the
323 * pending and mask flags can be updated by the guest without special
324 * synchronisation (i.e., no need for the x86 LOCK prefix).
325 * This may seem suboptimal because if the pending flag is set by
326 * a different CPU then an IPI may be scheduled even when the mask
327 * is set. However, note:
328 * 1. The task of 'interrupt holdoff' is covered by the per-event-
329 * channel mask bits. A 'noisy' event that is continually being
330 * triggered can be masked at source at this very precise
332 * 2. The main purpose of the per-VCPU mask is therefore to restrict
333 * reentrant execution: whether for concurrency control, or to
334 * prevent unbounded stack usage. Whatever the purpose, we expect
335 * that the mask will be asserted only for short periods at a time,
336 * and so the likelihood of a 'spurious' IPI is suitably small.
337 * The mask is read before making an event upcall to the guest: a
338 * non-zero mask therefore guarantees that the VCPU will not receive
339 * an upcall activation. The mask is cleared when the VCPU requests
340 * to block: this avoids wakeup-waiting races.
342 uint8_t evtchn_upcall_pending
;
343 uint8_t evtchn_upcall_mask
;
344 unsigned long evtchn_pending_sel
;
345 struct arch_vcpu_info arch
;
346 struct pvclock_vcpu_time_info time
;
347 }; /* 64 bytes (x86) */
350 * Xen/kernel shared data -- pointer provided in start_info.
351 * NB. We expect that this struct is smaller than a page.
354 struct vcpu_info vcpu_info
[MAX_VIRT_CPUS
];
357 * A domain can create "event channels" on which it can send and receive
358 * asynchronous event notifications. There are three classes of event that
359 * are delivered by this mechanism:
360 * 1. Bi-directional inter- and intra-domain connections. Domains must
361 * arrange out-of-band to set up a connection (usually by allocating
362 * an unbound 'listener' port and avertising that via a storage service
364 * 2. Physical interrupts. A domain with suitable hardware-access
365 * privileges can bind an event-channel port to a physical interrupt
367 * 3. Virtual interrupts ('events'). A domain can bind an event-channel
368 * port to a virtual interrupt source, such as the virtual-timer
369 * device or the emergency console.
371 * Event channels are addressed by a "port index". Each channel is
372 * associated with two bits of information:
373 * 1. PENDING -- notifies the domain that there is a pending notification
374 * to be processed. This bit is cleared by the guest.
375 * 2. MASK -- if this bit is clear then a 0->1 transition of PENDING
376 * will cause an asynchronous upcall to be scheduled. This bit is only
377 * updated by the guest. It is read-only within Xen. If a channel
378 * becomes pending while the channel is masked then the 'edge' is lost
379 * (i.e., when the channel is unmasked, the guest must manually handle
380 * pending notifications as no upcall will be scheduled by Xen).
382 * To expedite scanning of pending notifications, any 0->1 pending
383 * transition on an unmasked channel causes a corresponding bit in a
384 * per-vcpu selector word to be set. Each bit in the selector covers a
385 * 'C long' in the PENDING bitfield array.
387 unsigned long evtchn_pending
[sizeof(unsigned long) * 8];
388 unsigned long evtchn_mask
[sizeof(unsigned long) * 8];
391 * Wallclock time: updated only by control software. Guests should base
392 * their gettimeofday() syscall on this wallclock-base value.
394 struct pvclock_wall_clock wc
;
396 struct arch_shared_info arch
;
401 * Start-of-day memory layout for the initial domain (DOM0):
402 * 1. The domain is started within contiguous virtual-memory region.
403 * 2. The contiguous region begins and ends on an aligned 4MB boundary.
404 * 3. The region start corresponds to the load address of the OS image.
405 * If the load address is not 4MB aligned then the address is rounded down.
406 * 4. This the order of bootstrap elements in the initial virtual region:
407 * a. relocated kernel image
408 * b. initial ram disk [mod_start, mod_len]
409 * c. list of allocated page frames [mfn_list, nr_pages]
410 * d. start_info_t structure [register ESI (x86)]
411 * e. bootstrap page tables [pt_base, CR3 (x86)]
412 * f. bootstrap stack [register ESP (x86)]
413 * 5. Bootstrap elements are packed together, but each is 4kB-aligned.
414 * 6. The initial ram disk may be omitted.
415 * 7. The list of page frames forms a contiguous 'pseudo-physical' memory
416 * layout for the domain. In particular, the bootstrap virtual-memory
417 * region is a 1:1 mapping to the first section of the pseudo-physical map.
418 * 8. All bootstrap elements are mapped read-writable for the guest OS. The
419 * only exception is the bootstrap page table, which is mapped read-only.
420 * 9. There is guaranteed to be at least 512kB padding after the final
421 * bootstrap element. If necessary, the bootstrap virtual region is
422 * extended by an extra 4MB to ensure this.
425 #define MAX_GUEST_CMDLINE 1024
427 /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME. */
428 char magic
[32]; /* "xen-<version>-<platform>". */
429 unsigned long nr_pages
; /* Total pages allocated to this domain. */
430 unsigned long shared_info
; /* MACHINE address of shared info struct. */
431 uint32_t flags
; /* SIF_xxx flags. */
432 unsigned long store_mfn
; /* MACHINE page number of shared page. */
433 uint32_t store_evtchn
; /* Event channel for store communication. */
436 unsigned long mfn
; /* MACHINE page number of console page. */
437 uint32_t evtchn
; /* Event channel for console page. */
440 uint32_t info_off
; /* Offset of console_info struct. */
441 uint32_t info_size
; /* Size of console_info struct from start.*/
444 /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME). */
445 unsigned long pt_base
; /* VIRTUAL address of page directory. */
446 unsigned long nr_pt_frames
; /* Number of bootstrap p.t. frames. */
447 unsigned long mfn_list
; /* VIRTUAL address of page-frame list. */
448 unsigned long mod_start
; /* VIRTUAL address of pre-loaded module. */
449 unsigned long mod_len
; /* Size (bytes) of pre-loaded module. */
450 int8_t cmd_line
[MAX_GUEST_CMDLINE
];
453 /* These flags are passed in the 'flags' field of start_info_t. */
454 #define SIF_PRIVILEGED (1<<0) /* Is the domain privileged? */
455 #define SIF_INITDOMAIN (1<<1) /* Is this the initial control domain? */
457 typedef uint64_t cpumap_t
;
459 typedef uint8_t xen_domain_handle_t
[16];
461 /* Turn a plain number into a C unsigned long constant. */
462 #define __mk_unsigned_long(x) x ## UL
463 #define mk_unsigned_long(x) __mk_unsigned_long(x)
465 #define TMEM_SPEC_VERSION 1
471 struct { /* for cmd == TMEM_NEW_POOL */
478 uint32_t tmem_offset
;
481 GUEST_HANDLE(void) gmfn
; /* guest machine page frame */
486 #else /* __ASSEMBLY__ */
488 /* In assembly code we cannot use C numeric constant suffixes. */
489 #define mk_unsigned_long(x) x
491 #endif /* !__ASSEMBLY__ */
493 #endif /* __XEN_PUBLIC_XEN_H__ */