xen: cleancache shim to Xen Transcendent Memory
[linux-2.6/next.git] / net / ipv4 / ip_output.c
blob459c011b1d4a7cff1bba4f40126ad22947996b2c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/mroute.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
84 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
85 EXPORT_SYMBOL(sysctl_ip_default_ttl);
87 /* Generate a checksum for an outgoing IP datagram. */
88 __inline__ void ip_send_check(struct iphdr *iph)
90 iph->check = 0;
91 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
93 EXPORT_SYMBOL(ip_send_check);
95 int __ip_local_out(struct sk_buff *skb)
97 struct iphdr *iph = ip_hdr(skb);
99 iph->tot_len = htons(skb->len);
100 ip_send_check(iph);
101 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
102 skb_dst(skb)->dev, dst_output);
105 int ip_local_out(struct sk_buff *skb)
107 int err;
109 err = __ip_local_out(skb);
110 if (likely(err == 1))
111 err = dst_output(skb);
113 return err;
115 EXPORT_SYMBOL_GPL(ip_local_out);
117 /* dev_loopback_xmit for use with netfilter. */
118 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
120 skb_reset_mac_header(newskb);
121 __skb_pull(newskb, skb_network_offset(newskb));
122 newskb->pkt_type = PACKET_LOOPBACK;
123 newskb->ip_summed = CHECKSUM_UNNECESSARY;
124 WARN_ON(!skb_dst(newskb));
125 netif_rx_ni(newskb);
126 return 0;
129 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
131 int ttl = inet->uc_ttl;
133 if (ttl < 0)
134 ttl = ip4_dst_hoplimit(dst);
135 return ttl;
139 * Add an ip header to a skbuff and send it out.
142 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
143 __be32 saddr, __be32 daddr, struct ip_options *opt)
145 struct inet_sock *inet = inet_sk(sk);
146 struct rtable *rt = skb_rtable(skb);
147 struct iphdr *iph;
149 /* Build the IP header. */
150 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
151 skb_reset_network_header(skb);
152 iph = ip_hdr(skb);
153 iph->version = 4;
154 iph->ihl = 5;
155 iph->tos = inet->tos;
156 if (ip_dont_fragment(sk, &rt->dst))
157 iph->frag_off = htons(IP_DF);
158 else
159 iph->frag_off = 0;
160 iph->ttl = ip_select_ttl(inet, &rt->dst);
161 iph->daddr = rt->rt_dst;
162 iph->saddr = rt->rt_src;
163 iph->protocol = sk->sk_protocol;
164 ip_select_ident(iph, &rt->dst, sk);
166 if (opt && opt->optlen) {
167 iph->ihl += opt->optlen>>2;
168 ip_options_build(skb, opt, daddr, rt, 0);
171 skb->priority = sk->sk_priority;
172 skb->mark = sk->sk_mark;
174 /* Send it out. */
175 return ip_local_out(skb);
177 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
179 static inline int ip_finish_output2(struct sk_buff *skb)
181 struct dst_entry *dst = skb_dst(skb);
182 struct rtable *rt = (struct rtable *)dst;
183 struct net_device *dev = dst->dev;
184 unsigned int hh_len = LL_RESERVED_SPACE(dev);
186 if (rt->rt_type == RTN_MULTICAST) {
187 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
188 } else if (rt->rt_type == RTN_BROADCAST)
189 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
191 /* Be paranoid, rather than too clever. */
192 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
193 struct sk_buff *skb2;
195 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
196 if (skb2 == NULL) {
197 kfree_skb(skb);
198 return -ENOMEM;
200 if (skb->sk)
201 skb_set_owner_w(skb2, skb->sk);
202 kfree_skb(skb);
203 skb = skb2;
206 if (dst->hh)
207 return neigh_hh_output(dst->hh, skb);
208 else if (dst->neighbour)
209 return dst->neighbour->output(skb);
211 if (net_ratelimit())
212 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
213 kfree_skb(skb);
214 return -EINVAL;
217 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
219 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
221 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
222 skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
225 static int ip_finish_output(struct sk_buff *skb)
227 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
228 /* Policy lookup after SNAT yielded a new policy */
229 if (skb_dst(skb)->xfrm != NULL) {
230 IPCB(skb)->flags |= IPSKB_REROUTED;
231 return dst_output(skb);
233 #endif
234 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
235 return ip_fragment(skb, ip_finish_output2);
236 else
237 return ip_finish_output2(skb);
240 int ip_mc_output(struct sk_buff *skb)
242 struct sock *sk = skb->sk;
243 struct rtable *rt = skb_rtable(skb);
244 struct net_device *dev = rt->dst.dev;
247 * If the indicated interface is up and running, send the packet.
249 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
251 skb->dev = dev;
252 skb->protocol = htons(ETH_P_IP);
255 * Multicasts are looped back for other local users
258 if (rt->rt_flags&RTCF_MULTICAST) {
259 if (sk_mc_loop(sk)
260 #ifdef CONFIG_IP_MROUTE
261 /* Small optimization: do not loopback not local frames,
262 which returned after forwarding; they will be dropped
263 by ip_mr_input in any case.
264 Note, that local frames are looped back to be delivered
265 to local recipients.
267 This check is duplicated in ip_mr_input at the moment.
270 ((rt->rt_flags & RTCF_LOCAL) ||
271 !(IPCB(skb)->flags & IPSKB_FORWARDED))
272 #endif
274 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
275 if (newskb)
276 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
277 newskb, NULL, newskb->dev,
278 ip_dev_loopback_xmit);
281 /* Multicasts with ttl 0 must not go beyond the host */
283 if (ip_hdr(skb)->ttl == 0) {
284 kfree_skb(skb);
285 return 0;
289 if (rt->rt_flags&RTCF_BROADCAST) {
290 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
291 if (newskb)
292 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
293 NULL, newskb->dev, ip_dev_loopback_xmit);
296 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
297 skb->dev, ip_finish_output,
298 !(IPCB(skb)->flags & IPSKB_REROUTED));
301 int ip_output(struct sk_buff *skb)
303 struct net_device *dev = skb_dst(skb)->dev;
305 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
307 skb->dev = dev;
308 skb->protocol = htons(ETH_P_IP);
310 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
311 ip_finish_output,
312 !(IPCB(skb)->flags & IPSKB_REROUTED));
315 int ip_queue_xmit(struct sk_buff *skb)
317 struct sock *sk = skb->sk;
318 struct inet_sock *inet = inet_sk(sk);
319 struct ip_options *opt = inet->opt;
320 struct rtable *rt;
321 struct iphdr *iph;
322 int res;
324 /* Skip all of this if the packet is already routed,
325 * f.e. by something like SCTP.
327 rcu_read_lock();
328 rt = skb_rtable(skb);
329 if (rt != NULL)
330 goto packet_routed;
332 /* Make sure we can route this packet. */
333 rt = (struct rtable *)__sk_dst_check(sk, 0);
334 if (rt == NULL) {
335 __be32 daddr;
337 /* Use correct destination address if we have options. */
338 daddr = inet->inet_daddr;
339 if(opt && opt->srr)
340 daddr = opt->faddr;
342 /* If this fails, retransmit mechanism of transport layer will
343 * keep trying until route appears or the connection times
344 * itself out.
346 rt = ip_route_output_ports(sock_net(sk), sk,
347 daddr, inet->inet_saddr,
348 inet->inet_dport,
349 inet->inet_sport,
350 sk->sk_protocol,
351 RT_CONN_FLAGS(sk),
352 sk->sk_bound_dev_if);
353 if (IS_ERR(rt))
354 goto no_route;
355 sk_setup_caps(sk, &rt->dst);
357 skb_dst_set_noref(skb, &rt->dst);
359 packet_routed:
360 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
361 goto no_route;
363 /* OK, we know where to send it, allocate and build IP header. */
364 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
365 skb_reset_network_header(skb);
366 iph = ip_hdr(skb);
367 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
368 if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
369 iph->frag_off = htons(IP_DF);
370 else
371 iph->frag_off = 0;
372 iph->ttl = ip_select_ttl(inet, &rt->dst);
373 iph->protocol = sk->sk_protocol;
374 iph->saddr = rt->rt_src;
375 iph->daddr = rt->rt_dst;
376 /* Transport layer set skb->h.foo itself. */
378 if (opt && opt->optlen) {
379 iph->ihl += opt->optlen >> 2;
380 ip_options_build(skb, opt, inet->inet_daddr, rt, 0);
383 ip_select_ident_more(iph, &rt->dst, sk,
384 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
386 skb->priority = sk->sk_priority;
387 skb->mark = sk->sk_mark;
389 res = ip_local_out(skb);
390 rcu_read_unlock();
391 return res;
393 no_route:
394 rcu_read_unlock();
395 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
396 kfree_skb(skb);
397 return -EHOSTUNREACH;
399 EXPORT_SYMBOL(ip_queue_xmit);
402 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
404 to->pkt_type = from->pkt_type;
405 to->priority = from->priority;
406 to->protocol = from->protocol;
407 skb_dst_drop(to);
408 skb_dst_copy(to, from);
409 to->dev = from->dev;
410 to->mark = from->mark;
412 /* Copy the flags to each fragment. */
413 IPCB(to)->flags = IPCB(from)->flags;
415 #ifdef CONFIG_NET_SCHED
416 to->tc_index = from->tc_index;
417 #endif
418 nf_copy(to, from);
419 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
420 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
421 to->nf_trace = from->nf_trace;
422 #endif
423 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
424 to->ipvs_property = from->ipvs_property;
425 #endif
426 skb_copy_secmark(to, from);
430 * This IP datagram is too large to be sent in one piece. Break it up into
431 * smaller pieces (each of size equal to IP header plus
432 * a block of the data of the original IP data part) that will yet fit in a
433 * single device frame, and queue such a frame for sending.
436 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
438 struct iphdr *iph;
439 int ptr;
440 struct net_device *dev;
441 struct sk_buff *skb2;
442 unsigned int mtu, hlen, left, len, ll_rs;
443 int offset;
444 __be16 not_last_frag;
445 struct rtable *rt = skb_rtable(skb);
446 int err = 0;
448 dev = rt->dst.dev;
451 * Point into the IP datagram header.
454 iph = ip_hdr(skb);
456 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
457 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
458 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
459 htonl(ip_skb_dst_mtu(skb)));
460 kfree_skb(skb);
461 return -EMSGSIZE;
465 * Setup starting values.
468 hlen = iph->ihl * 4;
469 mtu = dst_mtu(&rt->dst) - hlen; /* Size of data space */
470 #ifdef CONFIG_BRIDGE_NETFILTER
471 if (skb->nf_bridge)
472 mtu -= nf_bridge_mtu_reduction(skb);
473 #endif
474 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
476 /* When frag_list is given, use it. First, check its validity:
477 * some transformers could create wrong frag_list or break existing
478 * one, it is not prohibited. In this case fall back to copying.
480 * LATER: this step can be merged to real generation of fragments,
481 * we can switch to copy when see the first bad fragment.
483 if (skb_has_frag_list(skb)) {
484 struct sk_buff *frag, *frag2;
485 int first_len = skb_pagelen(skb);
487 if (first_len - hlen > mtu ||
488 ((first_len - hlen) & 7) ||
489 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
490 skb_cloned(skb))
491 goto slow_path;
493 skb_walk_frags(skb, frag) {
494 /* Correct geometry. */
495 if (frag->len > mtu ||
496 ((frag->len & 7) && frag->next) ||
497 skb_headroom(frag) < hlen)
498 goto slow_path_clean;
500 /* Partially cloned skb? */
501 if (skb_shared(frag))
502 goto slow_path_clean;
504 BUG_ON(frag->sk);
505 if (skb->sk) {
506 frag->sk = skb->sk;
507 frag->destructor = sock_wfree;
509 skb->truesize -= frag->truesize;
512 /* Everything is OK. Generate! */
514 err = 0;
515 offset = 0;
516 frag = skb_shinfo(skb)->frag_list;
517 skb_frag_list_init(skb);
518 skb->data_len = first_len - skb_headlen(skb);
519 skb->len = first_len;
520 iph->tot_len = htons(first_len);
521 iph->frag_off = htons(IP_MF);
522 ip_send_check(iph);
524 for (;;) {
525 /* Prepare header of the next frame,
526 * before previous one went down. */
527 if (frag) {
528 frag->ip_summed = CHECKSUM_NONE;
529 skb_reset_transport_header(frag);
530 __skb_push(frag, hlen);
531 skb_reset_network_header(frag);
532 memcpy(skb_network_header(frag), iph, hlen);
533 iph = ip_hdr(frag);
534 iph->tot_len = htons(frag->len);
535 ip_copy_metadata(frag, skb);
536 if (offset == 0)
537 ip_options_fragment(frag);
538 offset += skb->len - hlen;
539 iph->frag_off = htons(offset>>3);
540 if (frag->next != NULL)
541 iph->frag_off |= htons(IP_MF);
542 /* Ready, complete checksum */
543 ip_send_check(iph);
546 err = output(skb);
548 if (!err)
549 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
550 if (err || !frag)
551 break;
553 skb = frag;
554 frag = skb->next;
555 skb->next = NULL;
558 if (err == 0) {
559 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
560 return 0;
563 while (frag) {
564 skb = frag->next;
565 kfree_skb(frag);
566 frag = skb;
568 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
569 return err;
571 slow_path_clean:
572 skb_walk_frags(skb, frag2) {
573 if (frag2 == frag)
574 break;
575 frag2->sk = NULL;
576 frag2->destructor = NULL;
577 skb->truesize += frag2->truesize;
581 slow_path:
582 left = skb->len - hlen; /* Space per frame */
583 ptr = hlen; /* Where to start from */
585 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
586 * we need to make room for the encapsulating header
588 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
591 * Fragment the datagram.
594 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
595 not_last_frag = iph->frag_off & htons(IP_MF);
598 * Keep copying data until we run out.
601 while (left > 0) {
602 len = left;
603 /* IF: it doesn't fit, use 'mtu' - the data space left */
604 if (len > mtu)
605 len = mtu;
606 /* IF: we are not sending up to and including the packet end
607 then align the next start on an eight byte boundary */
608 if (len < left) {
609 len &= ~7;
612 * Allocate buffer.
615 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
616 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
617 err = -ENOMEM;
618 goto fail;
622 * Set up data on packet
625 ip_copy_metadata(skb2, skb);
626 skb_reserve(skb2, ll_rs);
627 skb_put(skb2, len + hlen);
628 skb_reset_network_header(skb2);
629 skb2->transport_header = skb2->network_header + hlen;
632 * Charge the memory for the fragment to any owner
633 * it might possess
636 if (skb->sk)
637 skb_set_owner_w(skb2, skb->sk);
640 * Copy the packet header into the new buffer.
643 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
646 * Copy a block of the IP datagram.
648 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
649 BUG();
650 left -= len;
653 * Fill in the new header fields.
655 iph = ip_hdr(skb2);
656 iph->frag_off = htons((offset >> 3));
658 /* ANK: dirty, but effective trick. Upgrade options only if
659 * the segment to be fragmented was THE FIRST (otherwise,
660 * options are already fixed) and make it ONCE
661 * on the initial skb, so that all the following fragments
662 * will inherit fixed options.
664 if (offset == 0)
665 ip_options_fragment(skb);
668 * Added AC : If we are fragmenting a fragment that's not the
669 * last fragment then keep MF on each bit
671 if (left > 0 || not_last_frag)
672 iph->frag_off |= htons(IP_MF);
673 ptr += len;
674 offset += len;
677 * Put this fragment into the sending queue.
679 iph->tot_len = htons(len + hlen);
681 ip_send_check(iph);
683 err = output(skb2);
684 if (err)
685 goto fail;
687 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
689 kfree_skb(skb);
690 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
691 return err;
693 fail:
694 kfree_skb(skb);
695 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
696 return err;
698 EXPORT_SYMBOL(ip_fragment);
701 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
703 struct iovec *iov = from;
705 if (skb->ip_summed == CHECKSUM_PARTIAL) {
706 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
707 return -EFAULT;
708 } else {
709 __wsum csum = 0;
710 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
711 return -EFAULT;
712 skb->csum = csum_block_add(skb->csum, csum, odd);
714 return 0;
716 EXPORT_SYMBOL(ip_generic_getfrag);
718 static inline __wsum
719 csum_page(struct page *page, int offset, int copy)
721 char *kaddr;
722 __wsum csum;
723 kaddr = kmap(page);
724 csum = csum_partial(kaddr + offset, copy, 0);
725 kunmap(page);
726 return csum;
729 static inline int ip_ufo_append_data(struct sock *sk,
730 struct sk_buff_head *queue,
731 int getfrag(void *from, char *to, int offset, int len,
732 int odd, struct sk_buff *skb),
733 void *from, int length, int hh_len, int fragheaderlen,
734 int transhdrlen, int mtu, unsigned int flags)
736 struct sk_buff *skb;
737 int err;
739 /* There is support for UDP fragmentation offload by network
740 * device, so create one single skb packet containing complete
741 * udp datagram
743 if ((skb = skb_peek_tail(queue)) == NULL) {
744 skb = sock_alloc_send_skb(sk,
745 hh_len + fragheaderlen + transhdrlen + 20,
746 (flags & MSG_DONTWAIT), &err);
748 if (skb == NULL)
749 return err;
751 /* reserve space for Hardware header */
752 skb_reserve(skb, hh_len);
754 /* create space for UDP/IP header */
755 skb_put(skb, fragheaderlen + transhdrlen);
757 /* initialize network header pointer */
758 skb_reset_network_header(skb);
760 /* initialize protocol header pointer */
761 skb->transport_header = skb->network_header + fragheaderlen;
763 skb->ip_summed = CHECKSUM_PARTIAL;
764 skb->csum = 0;
766 /* specify the length of each IP datagram fragment */
767 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
768 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
769 __skb_queue_tail(queue, skb);
772 return skb_append_datato_frags(sk, skb, getfrag, from,
773 (length - transhdrlen));
776 static int __ip_append_data(struct sock *sk, struct sk_buff_head *queue,
777 struct inet_cork *cork,
778 int getfrag(void *from, char *to, int offset,
779 int len, int odd, struct sk_buff *skb),
780 void *from, int length, int transhdrlen,
781 unsigned int flags)
783 struct inet_sock *inet = inet_sk(sk);
784 struct sk_buff *skb;
786 struct ip_options *opt = cork->opt;
787 int hh_len;
788 int exthdrlen;
789 int mtu;
790 int copy;
791 int err;
792 int offset = 0;
793 unsigned int maxfraglen, fragheaderlen;
794 int csummode = CHECKSUM_NONE;
795 struct rtable *rt = (struct rtable *)cork->dst;
797 exthdrlen = transhdrlen ? rt->dst.header_len : 0;
798 length += exthdrlen;
799 transhdrlen += exthdrlen;
800 mtu = cork->fragsize;
802 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
804 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
805 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
807 if (cork->length + length > 0xFFFF - fragheaderlen) {
808 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport,
809 mtu-exthdrlen);
810 return -EMSGSIZE;
814 * transhdrlen > 0 means that this is the first fragment and we wish
815 * it won't be fragmented in the future.
817 if (transhdrlen &&
818 length + fragheaderlen <= mtu &&
819 rt->dst.dev->features & NETIF_F_V4_CSUM &&
820 !exthdrlen)
821 csummode = CHECKSUM_PARTIAL;
823 skb = skb_peek_tail(queue);
825 cork->length += length;
826 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
827 (sk->sk_protocol == IPPROTO_UDP) &&
828 (rt->dst.dev->features & NETIF_F_UFO)) {
829 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
830 hh_len, fragheaderlen, transhdrlen,
831 mtu, flags);
832 if (err)
833 goto error;
834 return 0;
837 /* So, what's going on in the loop below?
839 * We use calculated fragment length to generate chained skb,
840 * each of segments is IP fragment ready for sending to network after
841 * adding appropriate IP header.
844 if (!skb)
845 goto alloc_new_skb;
847 while (length > 0) {
848 /* Check if the remaining data fits into current packet. */
849 copy = mtu - skb->len;
850 if (copy < length)
851 copy = maxfraglen - skb->len;
852 if (copy <= 0) {
853 char *data;
854 unsigned int datalen;
855 unsigned int fraglen;
856 unsigned int fraggap;
857 unsigned int alloclen;
858 struct sk_buff *skb_prev;
859 alloc_new_skb:
860 skb_prev = skb;
861 if (skb_prev)
862 fraggap = skb_prev->len - maxfraglen;
863 else
864 fraggap = 0;
867 * If remaining data exceeds the mtu,
868 * we know we need more fragment(s).
870 datalen = length + fraggap;
871 if (datalen > mtu - fragheaderlen)
872 datalen = maxfraglen - fragheaderlen;
873 fraglen = datalen + fragheaderlen;
875 if ((flags & MSG_MORE) &&
876 !(rt->dst.dev->features&NETIF_F_SG))
877 alloclen = mtu;
878 else
879 alloclen = fraglen;
881 /* The last fragment gets additional space at tail.
882 * Note, with MSG_MORE we overallocate on fragments,
883 * because we have no idea what fragment will be
884 * the last.
886 if (datalen == length + fraggap) {
887 alloclen += rt->dst.trailer_len;
888 /* make sure mtu is not reached */
889 if (datalen > mtu - fragheaderlen - rt->dst.trailer_len)
890 datalen -= ALIGN(rt->dst.trailer_len, 8);
892 if (transhdrlen) {
893 skb = sock_alloc_send_skb(sk,
894 alloclen + hh_len + 15,
895 (flags & MSG_DONTWAIT), &err);
896 } else {
897 skb = NULL;
898 if (atomic_read(&sk->sk_wmem_alloc) <=
899 2 * sk->sk_sndbuf)
900 skb = sock_wmalloc(sk,
901 alloclen + hh_len + 15, 1,
902 sk->sk_allocation);
903 if (unlikely(skb == NULL))
904 err = -ENOBUFS;
905 else
906 /* only the initial fragment is
907 time stamped */
908 cork->tx_flags = 0;
910 if (skb == NULL)
911 goto error;
914 * Fill in the control structures
916 skb->ip_summed = csummode;
917 skb->csum = 0;
918 skb_reserve(skb, hh_len);
919 skb_shinfo(skb)->tx_flags = cork->tx_flags;
922 * Find where to start putting bytes.
924 data = skb_put(skb, fraglen);
925 skb_set_network_header(skb, exthdrlen);
926 skb->transport_header = (skb->network_header +
927 fragheaderlen);
928 data += fragheaderlen;
930 if (fraggap) {
931 skb->csum = skb_copy_and_csum_bits(
932 skb_prev, maxfraglen,
933 data + transhdrlen, fraggap, 0);
934 skb_prev->csum = csum_sub(skb_prev->csum,
935 skb->csum);
936 data += fraggap;
937 pskb_trim_unique(skb_prev, maxfraglen);
940 copy = datalen - transhdrlen - fraggap;
941 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
942 err = -EFAULT;
943 kfree_skb(skb);
944 goto error;
947 offset += copy;
948 length -= datalen - fraggap;
949 transhdrlen = 0;
950 exthdrlen = 0;
951 csummode = CHECKSUM_NONE;
954 * Put the packet on the pending queue.
956 __skb_queue_tail(queue, skb);
957 continue;
960 if (copy > length)
961 copy = length;
963 if (!(rt->dst.dev->features&NETIF_F_SG)) {
964 unsigned int off;
966 off = skb->len;
967 if (getfrag(from, skb_put(skb, copy),
968 offset, copy, off, skb) < 0) {
969 __skb_trim(skb, off);
970 err = -EFAULT;
971 goto error;
973 } else {
974 int i = skb_shinfo(skb)->nr_frags;
975 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
976 struct page *page = cork->page;
977 int off = cork->off;
978 unsigned int left;
980 if (page && (left = PAGE_SIZE - off) > 0) {
981 if (copy >= left)
982 copy = left;
983 if (page != frag->page) {
984 if (i == MAX_SKB_FRAGS) {
985 err = -EMSGSIZE;
986 goto error;
988 get_page(page);
989 skb_fill_page_desc(skb, i, page, off, 0);
990 frag = &skb_shinfo(skb)->frags[i];
992 } else if (i < MAX_SKB_FRAGS) {
993 if (copy > PAGE_SIZE)
994 copy = PAGE_SIZE;
995 page = alloc_pages(sk->sk_allocation, 0);
996 if (page == NULL) {
997 err = -ENOMEM;
998 goto error;
1000 cork->page = page;
1001 cork->off = 0;
1003 skb_fill_page_desc(skb, i, page, 0, 0);
1004 frag = &skb_shinfo(skb)->frags[i];
1005 } else {
1006 err = -EMSGSIZE;
1007 goto error;
1009 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1010 err = -EFAULT;
1011 goto error;
1013 cork->off += copy;
1014 frag->size += copy;
1015 skb->len += copy;
1016 skb->data_len += copy;
1017 skb->truesize += copy;
1018 atomic_add(copy, &sk->sk_wmem_alloc);
1020 offset += copy;
1021 length -= copy;
1024 return 0;
1026 error:
1027 cork->length -= length;
1028 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1029 return err;
1032 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1033 struct ipcm_cookie *ipc, struct rtable **rtp)
1035 struct inet_sock *inet = inet_sk(sk);
1036 struct ip_options *opt;
1037 struct rtable *rt;
1040 * setup for corking.
1042 opt = ipc->opt;
1043 if (opt) {
1044 if (cork->opt == NULL) {
1045 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1046 sk->sk_allocation);
1047 if (unlikely(cork->opt == NULL))
1048 return -ENOBUFS;
1050 memcpy(cork->opt, opt, sizeof(struct ip_options) + opt->optlen);
1051 cork->flags |= IPCORK_OPT;
1052 cork->addr = ipc->addr;
1054 rt = *rtp;
1055 if (unlikely(!rt))
1056 return -EFAULT;
1058 * We steal reference to this route, caller should not release it
1060 *rtp = NULL;
1061 cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1062 rt->dst.dev->mtu : dst_mtu(rt->dst.path);
1063 cork->dst = &rt->dst;
1064 cork->length = 0;
1065 cork->tx_flags = ipc->tx_flags;
1066 cork->page = NULL;
1067 cork->off = 0;
1069 return 0;
1073 * ip_append_data() and ip_append_page() can make one large IP datagram
1074 * from many pieces of data. Each pieces will be holded on the socket
1075 * until ip_push_pending_frames() is called. Each piece can be a page
1076 * or non-page data.
1078 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1079 * this interface potentially.
1081 * LATER: length must be adjusted by pad at tail, when it is required.
1083 int ip_append_data(struct sock *sk,
1084 int getfrag(void *from, char *to, int offset, int len,
1085 int odd, struct sk_buff *skb),
1086 void *from, int length, int transhdrlen,
1087 struct ipcm_cookie *ipc, struct rtable **rtp,
1088 unsigned int flags)
1090 struct inet_sock *inet = inet_sk(sk);
1091 int err;
1093 if (flags&MSG_PROBE)
1094 return 0;
1096 if (skb_queue_empty(&sk->sk_write_queue)) {
1097 err = ip_setup_cork(sk, &inet->cork, ipc, rtp);
1098 if (err)
1099 return err;
1100 } else {
1101 transhdrlen = 0;
1104 return __ip_append_data(sk, &sk->sk_write_queue, &inet->cork, getfrag,
1105 from, length, transhdrlen, flags);
1108 ssize_t ip_append_page(struct sock *sk, struct page *page,
1109 int offset, size_t size, int flags)
1111 struct inet_sock *inet = inet_sk(sk);
1112 struct sk_buff *skb;
1113 struct rtable *rt;
1114 struct ip_options *opt = NULL;
1115 int hh_len;
1116 int mtu;
1117 int len;
1118 int err;
1119 unsigned int maxfraglen, fragheaderlen, fraggap;
1121 if (inet->hdrincl)
1122 return -EPERM;
1124 if (flags&MSG_PROBE)
1125 return 0;
1127 if (skb_queue_empty(&sk->sk_write_queue))
1128 return -EINVAL;
1130 rt = (struct rtable *)inet->cork.dst;
1131 if (inet->cork.flags & IPCORK_OPT)
1132 opt = inet->cork.opt;
1134 if (!(rt->dst.dev->features&NETIF_F_SG))
1135 return -EOPNOTSUPP;
1137 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1138 mtu = inet->cork.fragsize;
1140 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1141 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1143 if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1144 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport, mtu);
1145 return -EMSGSIZE;
1148 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1149 return -EINVAL;
1151 inet->cork.length += size;
1152 if ((size + skb->len > mtu) &&
1153 (sk->sk_protocol == IPPROTO_UDP) &&
1154 (rt->dst.dev->features & NETIF_F_UFO)) {
1155 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1156 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1160 while (size > 0) {
1161 int i;
1163 if (skb_is_gso(skb))
1164 len = size;
1165 else {
1167 /* Check if the remaining data fits into current packet. */
1168 len = mtu - skb->len;
1169 if (len < size)
1170 len = maxfraglen - skb->len;
1172 if (len <= 0) {
1173 struct sk_buff *skb_prev;
1174 int alloclen;
1176 skb_prev = skb;
1177 fraggap = skb_prev->len - maxfraglen;
1179 alloclen = fragheaderlen + hh_len + fraggap + 15;
1180 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1181 if (unlikely(!skb)) {
1182 err = -ENOBUFS;
1183 goto error;
1187 * Fill in the control structures
1189 skb->ip_summed = CHECKSUM_NONE;
1190 skb->csum = 0;
1191 skb_reserve(skb, hh_len);
1194 * Find where to start putting bytes.
1196 skb_put(skb, fragheaderlen + fraggap);
1197 skb_reset_network_header(skb);
1198 skb->transport_header = (skb->network_header +
1199 fragheaderlen);
1200 if (fraggap) {
1201 skb->csum = skb_copy_and_csum_bits(skb_prev,
1202 maxfraglen,
1203 skb_transport_header(skb),
1204 fraggap, 0);
1205 skb_prev->csum = csum_sub(skb_prev->csum,
1206 skb->csum);
1207 pskb_trim_unique(skb_prev, maxfraglen);
1211 * Put the packet on the pending queue.
1213 __skb_queue_tail(&sk->sk_write_queue, skb);
1214 continue;
1217 i = skb_shinfo(skb)->nr_frags;
1218 if (len > size)
1219 len = size;
1220 if (skb_can_coalesce(skb, i, page, offset)) {
1221 skb_shinfo(skb)->frags[i-1].size += len;
1222 } else if (i < MAX_SKB_FRAGS) {
1223 get_page(page);
1224 skb_fill_page_desc(skb, i, page, offset, len);
1225 } else {
1226 err = -EMSGSIZE;
1227 goto error;
1230 if (skb->ip_summed == CHECKSUM_NONE) {
1231 __wsum csum;
1232 csum = csum_page(page, offset, len);
1233 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1236 skb->len += len;
1237 skb->data_len += len;
1238 skb->truesize += len;
1239 atomic_add(len, &sk->sk_wmem_alloc);
1240 offset += len;
1241 size -= len;
1243 return 0;
1245 error:
1246 inet->cork.length -= size;
1247 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1248 return err;
1251 static void ip_cork_release(struct inet_cork *cork)
1253 cork->flags &= ~IPCORK_OPT;
1254 kfree(cork->opt);
1255 cork->opt = NULL;
1256 dst_release(cork->dst);
1257 cork->dst = NULL;
1261 * Combined all pending IP fragments on the socket as one IP datagram
1262 * and push them out.
1264 struct sk_buff *__ip_make_skb(struct sock *sk,
1265 struct sk_buff_head *queue,
1266 struct inet_cork *cork)
1268 struct sk_buff *skb, *tmp_skb;
1269 struct sk_buff **tail_skb;
1270 struct inet_sock *inet = inet_sk(sk);
1271 struct net *net = sock_net(sk);
1272 struct ip_options *opt = NULL;
1273 struct rtable *rt = (struct rtable *)cork->dst;
1274 struct iphdr *iph;
1275 __be16 df = 0;
1276 __u8 ttl;
1278 if ((skb = __skb_dequeue(queue)) == NULL)
1279 goto out;
1280 tail_skb = &(skb_shinfo(skb)->frag_list);
1282 /* move skb->data to ip header from ext header */
1283 if (skb->data < skb_network_header(skb))
1284 __skb_pull(skb, skb_network_offset(skb));
1285 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1286 __skb_pull(tmp_skb, skb_network_header_len(skb));
1287 *tail_skb = tmp_skb;
1288 tail_skb = &(tmp_skb->next);
1289 skb->len += tmp_skb->len;
1290 skb->data_len += tmp_skb->len;
1291 skb->truesize += tmp_skb->truesize;
1292 tmp_skb->destructor = NULL;
1293 tmp_skb->sk = NULL;
1296 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1297 * to fragment the frame generated here. No matter, what transforms
1298 * how transforms change size of the packet, it will come out.
1300 if (inet->pmtudisc < IP_PMTUDISC_DO)
1301 skb->local_df = 1;
1303 /* DF bit is set when we want to see DF on outgoing frames.
1304 * If local_df is set too, we still allow to fragment this frame
1305 * locally. */
1306 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1307 (skb->len <= dst_mtu(&rt->dst) &&
1308 ip_dont_fragment(sk, &rt->dst)))
1309 df = htons(IP_DF);
1311 if (cork->flags & IPCORK_OPT)
1312 opt = cork->opt;
1314 if (rt->rt_type == RTN_MULTICAST)
1315 ttl = inet->mc_ttl;
1316 else
1317 ttl = ip_select_ttl(inet, &rt->dst);
1319 iph = (struct iphdr *)skb->data;
1320 iph->version = 4;
1321 iph->ihl = 5;
1322 if (opt) {
1323 iph->ihl += opt->optlen>>2;
1324 ip_options_build(skb, opt, cork->addr, rt, 0);
1326 iph->tos = inet->tos;
1327 iph->frag_off = df;
1328 ip_select_ident(iph, &rt->dst, sk);
1329 iph->ttl = ttl;
1330 iph->protocol = sk->sk_protocol;
1331 iph->saddr = rt->rt_src;
1332 iph->daddr = rt->rt_dst;
1334 skb->priority = sk->sk_priority;
1335 skb->mark = sk->sk_mark;
1337 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1338 * on dst refcount
1340 cork->dst = NULL;
1341 skb_dst_set(skb, &rt->dst);
1343 if (iph->protocol == IPPROTO_ICMP)
1344 icmp_out_count(net, ((struct icmphdr *)
1345 skb_transport_header(skb))->type);
1347 ip_cork_release(cork);
1348 out:
1349 return skb;
1352 int ip_send_skb(struct sk_buff *skb)
1354 struct net *net = sock_net(skb->sk);
1355 int err;
1357 err = ip_local_out(skb);
1358 if (err) {
1359 if (err > 0)
1360 err = net_xmit_errno(err);
1361 if (err)
1362 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1365 return err;
1368 int ip_push_pending_frames(struct sock *sk)
1370 struct sk_buff *skb;
1372 skb = ip_finish_skb(sk);
1373 if (!skb)
1374 return 0;
1376 /* Netfilter gets whole the not fragmented skb. */
1377 return ip_send_skb(skb);
1381 * Throw away all pending data on the socket.
1383 static void __ip_flush_pending_frames(struct sock *sk,
1384 struct sk_buff_head *queue,
1385 struct inet_cork *cork)
1387 struct sk_buff *skb;
1389 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1390 kfree_skb(skb);
1392 ip_cork_release(cork);
1395 void ip_flush_pending_frames(struct sock *sk)
1397 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork);
1400 struct sk_buff *ip_make_skb(struct sock *sk,
1401 int getfrag(void *from, char *to, int offset,
1402 int len, int odd, struct sk_buff *skb),
1403 void *from, int length, int transhdrlen,
1404 struct ipcm_cookie *ipc, struct rtable **rtp,
1405 unsigned int flags)
1407 struct inet_cork cork = {};
1408 struct sk_buff_head queue;
1409 int err;
1411 if (flags & MSG_PROBE)
1412 return NULL;
1414 __skb_queue_head_init(&queue);
1416 err = ip_setup_cork(sk, &cork, ipc, rtp);
1417 if (err)
1418 return ERR_PTR(err);
1420 err = __ip_append_data(sk, &queue, &cork, getfrag,
1421 from, length, transhdrlen, flags);
1422 if (err) {
1423 __ip_flush_pending_frames(sk, &queue, &cork);
1424 return ERR_PTR(err);
1427 return __ip_make_skb(sk, &queue, &cork);
1431 * Fetch data from kernel space and fill in checksum if needed.
1433 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1434 int len, int odd, struct sk_buff *skb)
1436 __wsum csum;
1438 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1439 skb->csum = csum_block_add(skb->csum, csum, odd);
1440 return 0;
1444 * Generic function to send a packet as reply to another packet.
1445 * Used to send TCP resets so far. ICMP should use this function too.
1447 * Should run single threaded per socket because it uses the sock
1448 * structure to pass arguments.
1450 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1451 unsigned int len)
1453 struct inet_sock *inet = inet_sk(sk);
1454 struct {
1455 struct ip_options opt;
1456 char data[40];
1457 } replyopts;
1458 struct ipcm_cookie ipc;
1459 __be32 daddr;
1460 struct rtable *rt = skb_rtable(skb);
1462 if (ip_options_echo(&replyopts.opt, skb))
1463 return;
1465 daddr = ipc.addr = rt->rt_src;
1466 ipc.opt = NULL;
1467 ipc.tx_flags = 0;
1469 if (replyopts.opt.optlen) {
1470 ipc.opt = &replyopts.opt;
1472 if (ipc.opt->srr)
1473 daddr = replyopts.opt.faddr;
1477 struct flowi4 fl4 = {
1478 .flowi4_oif = arg->bound_dev_if,
1479 .daddr = daddr,
1480 .saddr = rt->rt_spec_dst,
1481 .flowi4_tos = RT_TOS(ip_hdr(skb)->tos),
1482 .fl4_sport = tcp_hdr(skb)->dest,
1483 .fl4_dport = tcp_hdr(skb)->source,
1484 .flowi4_proto = sk->sk_protocol,
1485 .flowi4_flags = ip_reply_arg_flowi_flags(arg),
1487 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1488 rt = ip_route_output_key(sock_net(sk), &fl4);
1489 if (IS_ERR(rt))
1490 return;
1493 /* And let IP do all the hard work.
1495 This chunk is not reenterable, hence spinlock.
1496 Note that it uses the fact, that this function is called
1497 with locally disabled BH and that sk cannot be already spinlocked.
1499 bh_lock_sock(sk);
1500 inet->tos = ip_hdr(skb)->tos;
1501 sk->sk_priority = skb->priority;
1502 sk->sk_protocol = ip_hdr(skb)->protocol;
1503 sk->sk_bound_dev_if = arg->bound_dev_if;
1504 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1505 &ipc, &rt, MSG_DONTWAIT);
1506 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1507 if (arg->csumoffset >= 0)
1508 *((__sum16 *)skb_transport_header(skb) +
1509 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1510 arg->csum));
1511 skb->ip_summed = CHECKSUM_NONE;
1512 ip_push_pending_frames(sk);
1515 bh_unlock_sock(sk);
1517 ip_rt_put(rt);
1520 void __init ip_init(void)
1522 ip_rt_init();
1523 inet_initpeers();
1525 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1526 igmp_mc_proc_init();
1527 #endif