2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
6 #ifdef CONFIG_RT_GROUP_SCHED
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
10 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
12 #ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se
));
15 return container_of(rt_se
, struct task_struct
, rt
);
18 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
23 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
28 #else /* CONFIG_RT_GROUP_SCHED */
30 #define rt_entity_is_task(rt_se) (1)
32 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
34 return container_of(rt_se
, struct task_struct
, rt
);
37 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
39 return container_of(rt_rq
, struct rq
, rt
);
42 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
44 struct task_struct
*p
= rt_task_of(rt_se
);
45 struct rq
*rq
= task_rq(p
);
50 #endif /* CONFIG_RT_GROUP_SCHED */
54 static inline int rt_overloaded(struct rq
*rq
)
56 return atomic_read(&rq
->rd
->rto_count
);
59 static inline void rt_set_overload(struct rq
*rq
)
64 cpumask_set_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
73 atomic_inc(&rq
->rd
->rto_count
);
76 static inline void rt_clear_overload(struct rq
*rq
)
81 /* the order here really doesn't matter */
82 atomic_dec(&rq
->rd
->rto_count
);
83 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
86 static void update_rt_migration(struct rt_rq
*rt_rq
)
88 if (rt_rq
->rt_nr_migratory
&& rt_rq
->rt_nr_total
> 1) {
89 if (!rt_rq
->overloaded
) {
90 rt_set_overload(rq_of_rt_rq(rt_rq
));
91 rt_rq
->overloaded
= 1;
93 } else if (rt_rq
->overloaded
) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq
));
95 rt_rq
->overloaded
= 0;
99 static void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
101 if (!rt_entity_is_task(rt_se
))
104 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
106 rt_rq
->rt_nr_total
++;
107 if (rt_se
->nr_cpus_allowed
> 1)
108 rt_rq
->rt_nr_migratory
++;
110 update_rt_migration(rt_rq
);
113 static void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
115 if (!rt_entity_is_task(rt_se
))
118 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
120 rt_rq
->rt_nr_total
--;
121 if (rt_se
->nr_cpus_allowed
> 1)
122 rt_rq
->rt_nr_migratory
--;
124 update_rt_migration(rt_rq
);
127 static void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
129 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
130 plist_node_init(&p
->pushable_tasks
, p
->prio
);
131 plist_add(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
134 static void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
136 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
139 static inline int has_pushable_tasks(struct rq
*rq
)
141 return !plist_head_empty(&rq
->rt
.pushable_tasks
);
146 static inline void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
150 static inline void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
155 void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
160 void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
164 #endif /* CONFIG_SMP */
166 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
168 return !list_empty(&rt_se
->run_list
);
171 #ifdef CONFIG_RT_GROUP_SCHED
173 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
178 return rt_rq
->rt_runtime
;
181 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
183 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
186 static inline void list_add_leaf_rt_rq(struct rt_rq
*rt_rq
)
188 list_add_rcu(&rt_rq
->leaf_rt_rq_list
,
189 &rq_of_rt_rq(rt_rq
)->leaf_rt_rq_list
);
192 static inline void list_del_leaf_rt_rq(struct rt_rq
*rt_rq
)
194 list_del_rcu(&rt_rq
->leaf_rt_rq_list
);
197 #define for_each_leaf_rt_rq(rt_rq, rq) \
198 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
200 #define for_each_sched_rt_entity(rt_se) \
201 for (; rt_se; rt_se = rt_se->parent)
203 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
208 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
);
209 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
);
211 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
213 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
214 struct sched_rt_entity
*rt_se
;
216 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
218 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
220 if (rt_rq
->rt_nr_running
) {
221 if (rt_se
&& !on_rt_rq(rt_se
))
222 enqueue_rt_entity(rt_se
, false);
223 if (rt_rq
->highest_prio
.curr
< curr
->prio
)
228 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
230 struct sched_rt_entity
*rt_se
;
231 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
233 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
235 if (rt_se
&& on_rt_rq(rt_se
))
236 dequeue_rt_entity(rt_se
);
239 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
241 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
244 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
246 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
247 struct task_struct
*p
;
250 return !!rt_rq
->rt_nr_boosted
;
252 p
= rt_task_of(rt_se
);
253 return p
->prio
!= p
->normal_prio
;
257 static inline const struct cpumask
*sched_rt_period_mask(void)
259 return cpu_rq(smp_processor_id())->rd
->span
;
262 static inline const struct cpumask
*sched_rt_period_mask(void)
264 return cpu_online_mask
;
269 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
271 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
274 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
276 return &rt_rq
->tg
->rt_bandwidth
;
279 #else /* !CONFIG_RT_GROUP_SCHED */
281 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
283 return rt_rq
->rt_runtime
;
286 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
288 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
291 static inline void list_add_leaf_rt_rq(struct rt_rq
*rt_rq
)
295 static inline void list_del_leaf_rt_rq(struct rt_rq
*rt_rq
)
299 #define for_each_leaf_rt_rq(rt_rq, rq) \
300 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
302 #define for_each_sched_rt_entity(rt_se) \
303 for (; rt_se; rt_se = NULL)
305 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
310 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
312 if (rt_rq
->rt_nr_running
)
313 resched_task(rq_of_rt_rq(rt_rq
)->curr
);
316 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
320 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
322 return rt_rq
->rt_throttled
;
325 static inline const struct cpumask
*sched_rt_period_mask(void)
327 return cpu_online_mask
;
331 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
333 return &cpu_rq(cpu
)->rt
;
336 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
338 return &def_rt_bandwidth
;
341 #endif /* CONFIG_RT_GROUP_SCHED */
345 * We ran out of runtime, see if we can borrow some from our neighbours.
347 static int do_balance_runtime(struct rt_rq
*rt_rq
)
349 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
350 struct root_domain
*rd
= cpu_rq(smp_processor_id())->rd
;
351 int i
, weight
, more
= 0;
354 weight
= cpumask_weight(rd
->span
);
356 raw_spin_lock(&rt_b
->rt_runtime_lock
);
357 rt_period
= ktime_to_ns(rt_b
->rt_period
);
358 for_each_cpu(i
, rd
->span
) {
359 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
365 raw_spin_lock(&iter
->rt_runtime_lock
);
367 * Either all rqs have inf runtime and there's nothing to steal
368 * or __disable_runtime() below sets a specific rq to inf to
369 * indicate its been disabled and disalow stealing.
371 if (iter
->rt_runtime
== RUNTIME_INF
)
375 * From runqueues with spare time, take 1/n part of their
376 * spare time, but no more than our period.
378 diff
= iter
->rt_runtime
- iter
->rt_time
;
380 diff
= div_u64((u64
)diff
, weight
);
381 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
382 diff
= rt_period
- rt_rq
->rt_runtime
;
383 iter
->rt_runtime
-= diff
;
384 rt_rq
->rt_runtime
+= diff
;
386 if (rt_rq
->rt_runtime
== rt_period
) {
387 raw_spin_unlock(&iter
->rt_runtime_lock
);
392 raw_spin_unlock(&iter
->rt_runtime_lock
);
394 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
400 * Ensure this RQ takes back all the runtime it lend to its neighbours.
402 static void __disable_runtime(struct rq
*rq
)
404 struct root_domain
*rd
= rq
->rd
;
407 if (unlikely(!scheduler_running
))
410 for_each_leaf_rt_rq(rt_rq
, rq
) {
411 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
415 raw_spin_lock(&rt_b
->rt_runtime_lock
);
416 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
418 * Either we're all inf and nobody needs to borrow, or we're
419 * already disabled and thus have nothing to do, or we have
420 * exactly the right amount of runtime to take out.
422 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
423 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
425 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
428 * Calculate the difference between what we started out with
429 * and what we current have, that's the amount of runtime
430 * we lend and now have to reclaim.
432 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
435 * Greedy reclaim, take back as much as we can.
437 for_each_cpu(i
, rd
->span
) {
438 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
442 * Can't reclaim from ourselves or disabled runqueues.
444 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
447 raw_spin_lock(&iter
->rt_runtime_lock
);
449 diff
= min_t(s64
, iter
->rt_runtime
, want
);
450 iter
->rt_runtime
-= diff
;
453 iter
->rt_runtime
-= want
;
456 raw_spin_unlock(&iter
->rt_runtime_lock
);
462 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
464 * We cannot be left wanting - that would mean some runtime
465 * leaked out of the system.
470 * Disable all the borrow logic by pretending we have inf
471 * runtime - in which case borrowing doesn't make sense.
473 rt_rq
->rt_runtime
= RUNTIME_INF
;
474 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
475 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
479 static void disable_runtime(struct rq
*rq
)
483 raw_spin_lock_irqsave(&rq
->lock
, flags
);
484 __disable_runtime(rq
);
485 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
488 static void __enable_runtime(struct rq
*rq
)
492 if (unlikely(!scheduler_running
))
496 * Reset each runqueue's bandwidth settings
498 for_each_leaf_rt_rq(rt_rq
, rq
) {
499 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
501 raw_spin_lock(&rt_b
->rt_runtime_lock
);
502 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
503 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
505 rt_rq
->rt_throttled
= 0;
506 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
507 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
511 static void enable_runtime(struct rq
*rq
)
515 raw_spin_lock_irqsave(&rq
->lock
, flags
);
516 __enable_runtime(rq
);
517 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
520 static int balance_runtime(struct rt_rq
*rt_rq
)
524 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
525 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
526 more
= do_balance_runtime(rt_rq
);
527 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
532 #else /* !CONFIG_SMP */
533 static inline int balance_runtime(struct rt_rq
*rt_rq
)
537 #endif /* CONFIG_SMP */
539 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
542 const struct cpumask
*span
;
544 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
547 span
= sched_rt_period_mask();
548 for_each_cpu(i
, span
) {
550 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
551 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
553 raw_spin_lock(&rq
->lock
);
554 if (rt_rq
->rt_time
) {
557 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
558 if (rt_rq
->rt_throttled
)
559 balance_runtime(rt_rq
);
560 runtime
= rt_rq
->rt_runtime
;
561 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
562 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
563 rt_rq
->rt_throttled
= 0;
566 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
568 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
569 } else if (rt_rq
->rt_nr_running
) {
571 if (!rt_rq_throttled(rt_rq
))
576 sched_rt_rq_enqueue(rt_rq
);
577 raw_spin_unlock(&rq
->lock
);
583 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
585 #ifdef CONFIG_RT_GROUP_SCHED
586 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
589 return rt_rq
->highest_prio
.curr
;
592 return rt_task_of(rt_se
)->prio
;
595 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
597 u64 runtime
= sched_rt_runtime(rt_rq
);
599 if (rt_rq
->rt_throttled
)
600 return rt_rq_throttled(rt_rq
);
602 if (sched_rt_runtime(rt_rq
) >= sched_rt_period(rt_rq
))
605 balance_runtime(rt_rq
);
606 runtime
= sched_rt_runtime(rt_rq
);
607 if (runtime
== RUNTIME_INF
)
610 if (rt_rq
->rt_time
> runtime
) {
611 rt_rq
->rt_throttled
= 1;
612 if (rt_rq_throttled(rt_rq
)) {
613 sched_rt_rq_dequeue(rt_rq
);
622 * Update the current task's runtime statistics. Skip current tasks that
623 * are not in our scheduling class.
625 static void update_curr_rt(struct rq
*rq
)
627 struct task_struct
*curr
= rq
->curr
;
628 struct sched_rt_entity
*rt_se
= &curr
->rt
;
629 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
632 if (curr
->sched_class
!= &rt_sched_class
)
635 delta_exec
= rq
->clock_task
- curr
->se
.exec_start
;
636 if (unlikely((s64
)delta_exec
< 0))
639 schedstat_set(curr
->se
.statistics
.exec_max
, max(curr
->se
.statistics
.exec_max
, delta_exec
));
641 curr
->se
.sum_exec_runtime
+= delta_exec
;
642 account_group_exec_runtime(curr
, delta_exec
);
644 curr
->se
.exec_start
= rq
->clock_task
;
645 cpuacct_charge(curr
, delta_exec
);
647 sched_rt_avg_update(rq
, delta_exec
);
649 if (!rt_bandwidth_enabled())
652 for_each_sched_rt_entity(rt_se
) {
653 rt_rq
= rt_rq_of_se(rt_se
);
655 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
656 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
657 rt_rq
->rt_time
+= delta_exec
;
658 if (sched_rt_runtime_exceeded(rt_rq
))
660 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
665 #if defined CONFIG_SMP
667 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
);
669 static inline int next_prio(struct rq
*rq
)
671 struct task_struct
*next
= pick_next_highest_task_rt(rq
, rq
->cpu
);
673 if (next
&& rt_prio(next
->prio
))
680 inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
682 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
684 if (prio
< prev_prio
) {
687 * If the new task is higher in priority than anything on the
688 * run-queue, we know that the previous high becomes our
691 rt_rq
->highest_prio
.next
= prev_prio
;
694 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, prio
);
696 } else if (prio
== rt_rq
->highest_prio
.curr
)
698 * If the next task is equal in priority to the highest on
699 * the run-queue, then we implicitly know that the next highest
700 * task cannot be any lower than current
702 rt_rq
->highest_prio
.next
= prio
;
703 else if (prio
< rt_rq
->highest_prio
.next
)
705 * Otherwise, we need to recompute next-highest
707 rt_rq
->highest_prio
.next
= next_prio(rq
);
711 dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
713 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
715 if (rt_rq
->rt_nr_running
&& (prio
<= rt_rq
->highest_prio
.next
))
716 rt_rq
->highest_prio
.next
= next_prio(rq
);
718 if (rq
->online
&& rt_rq
->highest_prio
.curr
!= prev_prio
)
719 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rt_rq
->highest_prio
.curr
);
722 #else /* CONFIG_SMP */
725 void inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
727 void dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
729 #endif /* CONFIG_SMP */
731 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
733 inc_rt_prio(struct rt_rq
*rt_rq
, int prio
)
735 int prev_prio
= rt_rq
->highest_prio
.curr
;
737 if (prio
< prev_prio
)
738 rt_rq
->highest_prio
.curr
= prio
;
740 inc_rt_prio_smp(rt_rq
, prio
, prev_prio
);
744 dec_rt_prio(struct rt_rq
*rt_rq
, int prio
)
746 int prev_prio
= rt_rq
->highest_prio
.curr
;
748 if (rt_rq
->rt_nr_running
) {
750 WARN_ON(prio
< prev_prio
);
753 * This may have been our highest task, and therefore
754 * we may have some recomputation to do
756 if (prio
== prev_prio
) {
757 struct rt_prio_array
*array
= &rt_rq
->active
;
759 rt_rq
->highest_prio
.curr
=
760 sched_find_first_bit(array
->bitmap
);
764 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
766 dec_rt_prio_smp(rt_rq
, prio
, prev_prio
);
771 static inline void inc_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
772 static inline void dec_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
774 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
776 #ifdef CONFIG_RT_GROUP_SCHED
779 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
781 if (rt_se_boosted(rt_se
))
782 rt_rq
->rt_nr_boosted
++;
785 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
789 dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
791 if (rt_se_boosted(rt_se
))
792 rt_rq
->rt_nr_boosted
--;
794 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
797 #else /* CONFIG_RT_GROUP_SCHED */
800 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
802 start_rt_bandwidth(&def_rt_bandwidth
);
806 void dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
) {}
808 #endif /* CONFIG_RT_GROUP_SCHED */
811 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
813 int prio
= rt_se_prio(rt_se
);
815 WARN_ON(!rt_prio(prio
));
816 rt_rq
->rt_nr_running
++;
818 inc_rt_prio(rt_rq
, prio
);
819 inc_rt_migration(rt_se
, rt_rq
);
820 inc_rt_group(rt_se
, rt_rq
);
824 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
826 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
827 WARN_ON(!rt_rq
->rt_nr_running
);
828 rt_rq
->rt_nr_running
--;
830 dec_rt_prio(rt_rq
, rt_se_prio(rt_se
));
831 dec_rt_migration(rt_se
, rt_rq
);
832 dec_rt_group(rt_se
, rt_rq
);
835 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
837 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
838 struct rt_prio_array
*array
= &rt_rq
->active
;
839 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
840 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
843 * Don't enqueue the group if its throttled, or when empty.
844 * The latter is a consequence of the former when a child group
845 * get throttled and the current group doesn't have any other
848 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
))
851 if (!rt_rq
->rt_nr_running
)
852 list_add_leaf_rt_rq(rt_rq
);
855 list_add(&rt_se
->run_list
, queue
);
857 list_add_tail(&rt_se
->run_list
, queue
);
858 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
860 inc_rt_tasks(rt_se
, rt_rq
);
863 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
865 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
866 struct rt_prio_array
*array
= &rt_rq
->active
;
868 list_del_init(&rt_se
->run_list
);
869 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
870 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
872 dec_rt_tasks(rt_se
, rt_rq
);
873 if (!rt_rq
->rt_nr_running
)
874 list_del_leaf_rt_rq(rt_rq
);
878 * Because the prio of an upper entry depends on the lower
879 * entries, we must remove entries top - down.
881 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
)
883 struct sched_rt_entity
*back
= NULL
;
885 for_each_sched_rt_entity(rt_se
) {
890 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
892 __dequeue_rt_entity(rt_se
);
896 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
898 dequeue_rt_stack(rt_se
);
899 for_each_sched_rt_entity(rt_se
)
900 __enqueue_rt_entity(rt_se
, head
);
903 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
905 dequeue_rt_stack(rt_se
);
907 for_each_sched_rt_entity(rt_se
) {
908 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
910 if (rt_rq
&& rt_rq
->rt_nr_running
)
911 __enqueue_rt_entity(rt_se
, false);
916 * Adding/removing a task to/from a priority array:
919 enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
921 struct sched_rt_entity
*rt_se
= &p
->rt
;
923 if (flags
& ENQUEUE_WAKEUP
)
926 enqueue_rt_entity(rt_se
, flags
& ENQUEUE_HEAD
);
928 if (!task_current(rq
, p
) && p
->rt
.nr_cpus_allowed
> 1)
929 enqueue_pushable_task(rq
, p
);
932 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
934 struct sched_rt_entity
*rt_se
= &p
->rt
;
937 dequeue_rt_entity(rt_se
);
939 dequeue_pushable_task(rq
, p
);
943 * Put task to the end of the run list without the overhead of dequeue
944 * followed by enqueue.
947 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
949 if (on_rt_rq(rt_se
)) {
950 struct rt_prio_array
*array
= &rt_rq
->active
;
951 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
954 list_move(&rt_se
->run_list
, queue
);
956 list_move_tail(&rt_se
->run_list
, queue
);
960 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
962 struct sched_rt_entity
*rt_se
= &p
->rt
;
965 for_each_sched_rt_entity(rt_se
) {
966 rt_rq
= rt_rq_of_se(rt_se
);
967 requeue_rt_entity(rt_rq
, rt_se
, head
);
971 static void yield_task_rt(struct rq
*rq
)
973 requeue_task_rt(rq
, rq
->curr
, 0);
977 static int find_lowest_rq(struct task_struct
*task
);
980 select_task_rq_rt(struct task_struct
*p
, int sd_flag
, int flags
)
982 struct task_struct
*curr
;
986 if (sd_flag
!= SD_BALANCE_WAKE
)
987 return smp_processor_id();
993 curr
= ACCESS_ONCE(rq
->curr
); /* unlocked access */
996 * If the current task on @p's runqueue is an RT task, then
997 * try to see if we can wake this RT task up on another
998 * runqueue. Otherwise simply start this RT task
999 * on its current runqueue.
1001 * We want to avoid overloading runqueues. If the woken
1002 * task is a higher priority, then it will stay on this CPU
1003 * and the lower prio task should be moved to another CPU.
1004 * Even though this will probably make the lower prio task
1005 * lose its cache, we do not want to bounce a higher task
1006 * around just because it gave up its CPU, perhaps for a
1009 * For equal prio tasks, we just let the scheduler sort it out.
1011 * Otherwise, just let it ride on the affined RQ and the
1012 * post-schedule router will push the preempted task away
1014 * This test is optimistic, if we get it wrong the load-balancer
1015 * will have to sort it out.
1017 if (curr
&& unlikely(rt_task(curr
)) &&
1018 (curr
->rt
.nr_cpus_allowed
< 2 ||
1019 curr
->prio
< p
->prio
) &&
1020 (p
->rt
.nr_cpus_allowed
> 1)) {
1021 int target
= find_lowest_rq(p
);
1031 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
1033 if (rq
->curr
->rt
.nr_cpus_allowed
== 1)
1036 if (p
->rt
.nr_cpus_allowed
!= 1
1037 && cpupri_find(&rq
->rd
->cpupri
, p
, NULL
))
1040 if (!cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, NULL
))
1044 * There appears to be other cpus that can accept
1045 * current and none to run 'p', so lets reschedule
1046 * to try and push current away:
1048 requeue_task_rt(rq
, p
, 1);
1049 resched_task(rq
->curr
);
1052 #endif /* CONFIG_SMP */
1055 * Preempt the current task with a newly woken task if needed:
1057 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1059 if (p
->prio
< rq
->curr
->prio
) {
1060 resched_task(rq
->curr
);
1068 * - the newly woken task is of equal priority to the current task
1069 * - the newly woken task is non-migratable while current is migratable
1070 * - current will be preempted on the next reschedule
1072 * we should check to see if current can readily move to a different
1073 * cpu. If so, we will reschedule to allow the push logic to try
1074 * to move current somewhere else, making room for our non-migratable
1077 if (p
->prio
== rq
->curr
->prio
&& !need_resched())
1078 check_preempt_equal_prio(rq
, p
);
1082 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
1083 struct rt_rq
*rt_rq
)
1085 struct rt_prio_array
*array
= &rt_rq
->active
;
1086 struct sched_rt_entity
*next
= NULL
;
1087 struct list_head
*queue
;
1090 idx
= sched_find_first_bit(array
->bitmap
);
1091 BUG_ON(idx
>= MAX_RT_PRIO
);
1093 queue
= array
->queue
+ idx
;
1094 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
1099 static struct task_struct
*_pick_next_task_rt(struct rq
*rq
)
1101 struct sched_rt_entity
*rt_se
;
1102 struct task_struct
*p
;
1103 struct rt_rq
*rt_rq
;
1107 if (unlikely(!rt_rq
->rt_nr_running
))
1110 if (rt_rq_throttled(rt_rq
))
1114 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
1116 rt_rq
= group_rt_rq(rt_se
);
1119 p
= rt_task_of(rt_se
);
1120 p
->se
.exec_start
= rq
->clock_task
;
1125 static struct task_struct
*pick_next_task_rt(struct rq
*rq
)
1127 struct task_struct
*p
= _pick_next_task_rt(rq
);
1129 /* The running task is never eligible for pushing */
1131 dequeue_pushable_task(rq
, p
);
1135 * We detect this state here so that we can avoid taking the RQ
1136 * lock again later if there is no need to push
1138 rq
->post_schedule
= has_pushable_tasks(rq
);
1144 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
1147 p
->se
.exec_start
= 0;
1150 * The previous task needs to be made eligible for pushing
1151 * if it is still active
1153 if (on_rt_rq(&p
->rt
) && p
->rt
.nr_cpus_allowed
> 1)
1154 enqueue_pushable_task(rq
, p
);
1159 /* Only try algorithms three times */
1160 #define RT_MAX_TRIES 3
1162 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
);
1164 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1166 if (!task_running(rq
, p
) &&
1167 (cpu
< 0 || cpumask_test_cpu(cpu
, &p
->cpus_allowed
)) &&
1168 (p
->rt
.nr_cpus_allowed
> 1))
1173 /* Return the second highest RT task, NULL otherwise */
1174 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
)
1176 struct task_struct
*next
= NULL
;
1177 struct sched_rt_entity
*rt_se
;
1178 struct rt_prio_array
*array
;
1179 struct rt_rq
*rt_rq
;
1182 for_each_leaf_rt_rq(rt_rq
, rq
) {
1183 array
= &rt_rq
->active
;
1184 idx
= sched_find_first_bit(array
->bitmap
);
1186 if (idx
>= MAX_RT_PRIO
)
1188 if (next
&& next
->prio
< idx
)
1190 list_for_each_entry(rt_se
, array
->queue
+ idx
, run_list
) {
1191 struct task_struct
*p
;
1193 if (!rt_entity_is_task(rt_se
))
1196 p
= rt_task_of(rt_se
);
1197 if (pick_rt_task(rq
, p
, cpu
)) {
1203 idx
= find_next_bit(array
->bitmap
, MAX_RT_PRIO
, idx
+1);
1211 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask
);
1213 static int find_lowest_rq(struct task_struct
*task
)
1215 struct sched_domain
*sd
;
1216 struct cpumask
*lowest_mask
= __get_cpu_var(local_cpu_mask
);
1217 int this_cpu
= smp_processor_id();
1218 int cpu
= task_cpu(task
);
1220 if (task
->rt
.nr_cpus_allowed
== 1)
1221 return -1; /* No other targets possible */
1223 if (!cpupri_find(&task_rq(task
)->rd
->cpupri
, task
, lowest_mask
))
1224 return -1; /* No targets found */
1227 * At this point we have built a mask of cpus representing the
1228 * lowest priority tasks in the system. Now we want to elect
1229 * the best one based on our affinity and topology.
1231 * We prioritize the last cpu that the task executed on since
1232 * it is most likely cache-hot in that location.
1234 if (cpumask_test_cpu(cpu
, lowest_mask
))
1238 * Otherwise, we consult the sched_domains span maps to figure
1239 * out which cpu is logically closest to our hot cache data.
1241 if (!cpumask_test_cpu(this_cpu
, lowest_mask
))
1242 this_cpu
= -1; /* Skip this_cpu opt if not among lowest */
1244 for_each_domain(cpu
, sd
) {
1245 if (sd
->flags
& SD_WAKE_AFFINE
) {
1249 * "this_cpu" is cheaper to preempt than a
1252 if (this_cpu
!= -1 &&
1253 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
)))
1256 best_cpu
= cpumask_first_and(lowest_mask
,
1257 sched_domain_span(sd
));
1258 if (best_cpu
< nr_cpu_ids
)
1264 * And finally, if there were no matches within the domains
1265 * just give the caller *something* to work with from the compatible
1271 cpu
= cpumask_any(lowest_mask
);
1272 if (cpu
< nr_cpu_ids
)
1277 /* Will lock the rq it finds */
1278 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
1280 struct rq
*lowest_rq
= NULL
;
1284 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
1285 cpu
= find_lowest_rq(task
);
1287 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1290 lowest_rq
= cpu_rq(cpu
);
1292 /* if the prio of this runqueue changed, try again */
1293 if (double_lock_balance(rq
, lowest_rq
)) {
1295 * We had to unlock the run queue. In
1296 * the mean time, task could have
1297 * migrated already or had its affinity changed.
1298 * Also make sure that it wasn't scheduled on its rq.
1300 if (unlikely(task_rq(task
) != rq
||
1301 !cpumask_test_cpu(lowest_rq
->cpu
,
1302 &task
->cpus_allowed
) ||
1303 task_running(rq
, task
) ||
1306 raw_spin_unlock(&lowest_rq
->lock
);
1312 /* If this rq is still suitable use it. */
1313 if (lowest_rq
->rt
.highest_prio
.curr
> task
->prio
)
1317 double_unlock_balance(rq
, lowest_rq
);
1324 static struct task_struct
*pick_next_pushable_task(struct rq
*rq
)
1326 struct task_struct
*p
;
1328 if (!has_pushable_tasks(rq
))
1331 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
1332 struct task_struct
, pushable_tasks
);
1334 BUG_ON(rq
->cpu
!= task_cpu(p
));
1335 BUG_ON(task_current(rq
, p
));
1336 BUG_ON(p
->rt
.nr_cpus_allowed
<= 1);
1339 BUG_ON(!rt_task(p
));
1345 * If the current CPU has more than one RT task, see if the non
1346 * running task can migrate over to a CPU that is running a task
1347 * of lesser priority.
1349 static int push_rt_task(struct rq
*rq
)
1351 struct task_struct
*next_task
;
1352 struct rq
*lowest_rq
;
1354 if (!rq
->rt
.overloaded
)
1357 next_task
= pick_next_pushable_task(rq
);
1362 if (unlikely(next_task
== rq
->curr
)) {
1368 * It's possible that the next_task slipped in of
1369 * higher priority than current. If that's the case
1370 * just reschedule current.
1372 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1373 resched_task(rq
->curr
);
1377 /* We might release rq lock */
1378 get_task_struct(next_task
);
1380 /* find_lock_lowest_rq locks the rq if found */
1381 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1383 struct task_struct
*task
;
1385 * find lock_lowest_rq releases rq->lock
1386 * so it is possible that next_task has migrated.
1388 * We need to make sure that the task is still on the same
1389 * run-queue and is also still the next task eligible for
1392 task
= pick_next_pushable_task(rq
);
1393 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1395 * If we get here, the task hasn't moved at all, but
1396 * it has failed to push. We will not try again,
1397 * since the other cpus will pull from us when they
1400 dequeue_pushable_task(rq
, next_task
);
1405 /* No more tasks, just exit */
1409 * Something has shifted, try again.
1411 put_task_struct(next_task
);
1416 deactivate_task(rq
, next_task
, 0);
1417 set_task_cpu(next_task
, lowest_rq
->cpu
);
1418 activate_task(lowest_rq
, next_task
, 0);
1420 resched_task(lowest_rq
->curr
);
1422 double_unlock_balance(rq
, lowest_rq
);
1425 put_task_struct(next_task
);
1430 static void push_rt_tasks(struct rq
*rq
)
1432 /* push_rt_task will return true if it moved an RT */
1433 while (push_rt_task(rq
))
1437 static int pull_rt_task(struct rq
*this_rq
)
1439 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
1440 struct task_struct
*p
;
1443 if (likely(!rt_overloaded(this_rq
)))
1446 for_each_cpu(cpu
, this_rq
->rd
->rto_mask
) {
1447 if (this_cpu
== cpu
)
1450 src_rq
= cpu_rq(cpu
);
1453 * Don't bother taking the src_rq->lock if the next highest
1454 * task is known to be lower-priority than our current task.
1455 * This may look racy, but if this value is about to go
1456 * logically higher, the src_rq will push this task away.
1457 * And if its going logically lower, we do not care
1459 if (src_rq
->rt
.highest_prio
.next
>=
1460 this_rq
->rt
.highest_prio
.curr
)
1464 * We can potentially drop this_rq's lock in
1465 * double_lock_balance, and another CPU could
1468 double_lock_balance(this_rq
, src_rq
);
1471 * Are there still pullable RT tasks?
1473 if (src_rq
->rt
.rt_nr_running
<= 1)
1476 p
= pick_next_highest_task_rt(src_rq
, this_cpu
);
1479 * Do we have an RT task that preempts
1480 * the to-be-scheduled task?
1482 if (p
&& (p
->prio
< this_rq
->rt
.highest_prio
.curr
)) {
1483 WARN_ON(p
== src_rq
->curr
);
1487 * There's a chance that p is higher in priority
1488 * than what's currently running on its cpu.
1489 * This is just that p is wakeing up and hasn't
1490 * had a chance to schedule. We only pull
1491 * p if it is lower in priority than the
1492 * current task on the run queue
1494 if (p
->prio
< src_rq
->curr
->prio
)
1499 deactivate_task(src_rq
, p
, 0);
1500 set_task_cpu(p
, this_cpu
);
1501 activate_task(this_rq
, p
, 0);
1503 * We continue with the search, just in
1504 * case there's an even higher prio task
1505 * in another runqueue. (low likelihood
1510 double_unlock_balance(this_rq
, src_rq
);
1516 static void pre_schedule_rt(struct rq
*rq
, struct task_struct
*prev
)
1518 /* Try to pull RT tasks here if we lower this rq's prio */
1519 if (unlikely(rt_task(prev
)) && rq
->rt
.highest_prio
.curr
> prev
->prio
)
1523 static void post_schedule_rt(struct rq
*rq
)
1529 * If we are not running and we are not going to reschedule soon, we should
1530 * try to push tasks away now
1532 static void task_woken_rt(struct rq
*rq
, struct task_struct
*p
)
1534 if (!task_running(rq
, p
) &&
1535 !test_tsk_need_resched(rq
->curr
) &&
1536 has_pushable_tasks(rq
) &&
1537 p
->rt
.nr_cpus_allowed
> 1 &&
1538 rt_task(rq
->curr
) &&
1539 (rq
->curr
->rt
.nr_cpus_allowed
< 2 ||
1540 rq
->curr
->prio
< p
->prio
))
1544 static void set_cpus_allowed_rt(struct task_struct
*p
,
1545 const struct cpumask
*new_mask
)
1547 int weight
= cpumask_weight(new_mask
);
1549 BUG_ON(!rt_task(p
));
1552 * Update the migration status of the RQ if we have an RT task
1553 * which is running AND changing its weight value.
1555 if (p
->on_rq
&& (weight
!= p
->rt
.nr_cpus_allowed
)) {
1556 struct rq
*rq
= task_rq(p
);
1558 if (!task_current(rq
, p
)) {
1560 * Make sure we dequeue this task from the pushable list
1561 * before going further. It will either remain off of
1562 * the list because we are no longer pushable, or it
1565 if (p
->rt
.nr_cpus_allowed
> 1)
1566 dequeue_pushable_task(rq
, p
);
1569 * Requeue if our weight is changing and still > 1
1572 enqueue_pushable_task(rq
, p
);
1576 if ((p
->rt
.nr_cpus_allowed
<= 1) && (weight
> 1)) {
1577 rq
->rt
.rt_nr_migratory
++;
1578 } else if ((p
->rt
.nr_cpus_allowed
> 1) && (weight
<= 1)) {
1579 BUG_ON(!rq
->rt
.rt_nr_migratory
);
1580 rq
->rt
.rt_nr_migratory
--;
1583 update_rt_migration(&rq
->rt
);
1586 cpumask_copy(&p
->cpus_allowed
, new_mask
);
1587 p
->rt
.nr_cpus_allowed
= weight
;
1590 /* Assumes rq->lock is held */
1591 static void rq_online_rt(struct rq
*rq
)
1593 if (rq
->rt
.overloaded
)
1594 rt_set_overload(rq
);
1596 __enable_runtime(rq
);
1598 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
1601 /* Assumes rq->lock is held */
1602 static void rq_offline_rt(struct rq
*rq
)
1604 if (rq
->rt
.overloaded
)
1605 rt_clear_overload(rq
);
1607 __disable_runtime(rq
);
1609 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
1613 * When switch from the rt queue, we bring ourselves to a position
1614 * that we might want to pull RT tasks from other runqueues.
1616 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
)
1619 * If there are other RT tasks then we will reschedule
1620 * and the scheduling of the other RT tasks will handle
1621 * the balancing. But if we are the last RT task
1622 * we may need to handle the pulling of RT tasks
1625 if (p
->on_rq
&& !rq
->rt
.rt_nr_running
)
1629 static inline void init_sched_rt_class(void)
1633 for_each_possible_cpu(i
)
1634 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask
, i
),
1635 GFP_KERNEL
, cpu_to_node(i
));
1637 #endif /* CONFIG_SMP */
1640 * When switching a task to RT, we may overload the runqueue
1641 * with RT tasks. In this case we try to push them off to
1644 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
)
1646 int check_resched
= 1;
1649 * If we are already running, then there's nothing
1650 * that needs to be done. But if we are not running
1651 * we may need to preempt the current running task.
1652 * If that current running task is also an RT task
1653 * then see if we can move to another run queue.
1655 if (p
->on_rq
&& rq
->curr
!= p
) {
1657 if (rq
->rt
.overloaded
&& push_rt_task(rq
) &&
1658 /* Don't resched if we changed runqueues */
1661 #endif /* CONFIG_SMP */
1662 if (check_resched
&& p
->prio
< rq
->curr
->prio
)
1663 resched_task(rq
->curr
);
1668 * Priority of the task has changed. This may cause
1669 * us to initiate a push or pull.
1672 prio_changed_rt(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
1677 if (rq
->curr
== p
) {
1680 * If our priority decreases while running, we
1681 * may need to pull tasks to this runqueue.
1683 if (oldprio
< p
->prio
)
1686 * If there's a higher priority task waiting to run
1687 * then reschedule. Note, the above pull_rt_task
1688 * can release the rq lock and p could migrate.
1689 * Only reschedule if p is still on the same runqueue.
1691 if (p
->prio
> rq
->rt
.highest_prio
.curr
&& rq
->curr
== p
)
1694 /* For UP simply resched on drop of prio */
1695 if (oldprio
< p
->prio
)
1697 #endif /* CONFIG_SMP */
1700 * This task is not running, but if it is
1701 * greater than the current running task
1704 if (p
->prio
< rq
->curr
->prio
)
1705 resched_task(rq
->curr
);
1709 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
1711 unsigned long soft
, hard
;
1713 /* max may change after cur was read, this will be fixed next tick */
1714 soft
= task_rlimit(p
, RLIMIT_RTTIME
);
1715 hard
= task_rlimit_max(p
, RLIMIT_RTTIME
);
1717 if (soft
!= RLIM_INFINITY
) {
1721 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
1722 if (p
->rt
.timeout
> next
)
1723 p
->cputime_expires
.sched_exp
= p
->se
.sum_exec_runtime
;
1727 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
1734 * RR tasks need a special form of timeslice management.
1735 * FIFO tasks have no timeslices.
1737 if (p
->policy
!= SCHED_RR
)
1740 if (--p
->rt
.time_slice
)
1743 p
->rt
.time_slice
= DEF_TIMESLICE
;
1746 * Requeue to the end of queue if we are not the only element
1749 if (p
->rt
.run_list
.prev
!= p
->rt
.run_list
.next
) {
1750 requeue_task_rt(rq
, p
, 0);
1751 set_tsk_need_resched(p
);
1755 static void set_curr_task_rt(struct rq
*rq
)
1757 struct task_struct
*p
= rq
->curr
;
1759 p
->se
.exec_start
= rq
->clock_task
;
1761 /* The running task is never eligible for pushing */
1762 dequeue_pushable_task(rq
, p
);
1765 static unsigned int get_rr_interval_rt(struct rq
*rq
, struct task_struct
*task
)
1768 * Time slice is 0 for SCHED_FIFO tasks
1770 if (task
->policy
== SCHED_RR
)
1771 return DEF_TIMESLICE
;
1776 static const struct sched_class rt_sched_class
= {
1777 .next
= &fair_sched_class
,
1778 .enqueue_task
= enqueue_task_rt
,
1779 .dequeue_task
= dequeue_task_rt
,
1780 .yield_task
= yield_task_rt
,
1782 .check_preempt_curr
= check_preempt_curr_rt
,
1784 .pick_next_task
= pick_next_task_rt
,
1785 .put_prev_task
= put_prev_task_rt
,
1788 .select_task_rq
= select_task_rq_rt
,
1790 .set_cpus_allowed
= set_cpus_allowed_rt
,
1791 .rq_online
= rq_online_rt
,
1792 .rq_offline
= rq_offline_rt
,
1793 .pre_schedule
= pre_schedule_rt
,
1794 .post_schedule
= post_schedule_rt
,
1795 .task_woken
= task_woken_rt
,
1796 .switched_from
= switched_from_rt
,
1799 .set_curr_task
= set_curr_task_rt
,
1800 .task_tick
= task_tick_rt
,
1802 .get_rr_interval
= get_rr_interval_rt
,
1804 .prio_changed
= prio_changed_rt
,
1805 .switched_to
= switched_to_rt
,
1808 #ifdef CONFIG_SCHED_DEBUG
1809 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
1811 static void print_rt_stats(struct seq_file
*m
, int cpu
)
1813 struct rt_rq
*rt_rq
;
1816 for_each_leaf_rt_rq(rt_rq
, cpu_rq(cpu
))
1817 print_rt_rq(m
, cpu
, rt_rq
);
1820 #endif /* CONFIG_SCHED_DEBUG */