2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67 " Smart Array G2 Series SAS/SATA Controllers");
68 MODULE_VERSION("3.6.20");
69 MODULE_LICENSE("GPL");
71 static int cciss_allow_hpsa
;
72 module_param(cciss_allow_hpsa
, int, S_IRUGO
|S_IWUSR
);
73 MODULE_PARM_DESC(cciss_allow_hpsa
,
74 "Prevent cciss driver from accessing hardware known to be "
75 " supported by the hpsa driver");
77 #include "cciss_cmd.h"
79 #include <linux/cciss_ioctl.h>
81 /* define the PCI info for the cards we can control */
82 static const struct pci_device_id cciss_pci_device_id
[] = {
83 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISS
, 0x0E11, 0x4070},
84 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4080},
85 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4082},
86 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4083},
87 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x4091},
88 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409A},
89 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409B},
90 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409C},
91 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409D},
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSA
, 0x103C, 0x3225},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3223},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3234},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3235},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3211},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3212},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3213},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3214},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3215},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3237},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x323D},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
113 MODULE_DEVICE_TABLE(pci
, cciss_pci_device_id
);
115 /* board_id = Subsystem Device ID & Vendor ID
116 * product = Marketing Name for the board
117 * access = Address of the struct of function pointers
119 static struct board_type products
[] = {
120 {0x40700E11, "Smart Array 5300", &SA5_access
},
121 {0x40800E11, "Smart Array 5i", &SA5B_access
},
122 {0x40820E11, "Smart Array 532", &SA5B_access
},
123 {0x40830E11, "Smart Array 5312", &SA5B_access
},
124 {0x409A0E11, "Smart Array 641", &SA5_access
},
125 {0x409B0E11, "Smart Array 642", &SA5_access
},
126 {0x409C0E11, "Smart Array 6400", &SA5_access
},
127 {0x409D0E11, "Smart Array 6400 EM", &SA5_access
},
128 {0x40910E11, "Smart Array 6i", &SA5_access
},
129 {0x3225103C, "Smart Array P600", &SA5_access
},
130 {0x3235103C, "Smart Array P400i", &SA5_access
},
131 {0x3211103C, "Smart Array E200i", &SA5_access
},
132 {0x3212103C, "Smart Array E200", &SA5_access
},
133 {0x3213103C, "Smart Array E200i", &SA5_access
},
134 {0x3214103C, "Smart Array E200i", &SA5_access
},
135 {0x3215103C, "Smart Array E200i", &SA5_access
},
136 {0x3237103C, "Smart Array E500", &SA5_access
},
137 /* controllers below this line are also supported by the hpsa driver. */
138 #define HPSA_BOUNDARY 0x3223103C
139 {0x3223103C, "Smart Array P800", &SA5_access
},
140 {0x3234103C, "Smart Array P400", &SA5_access
},
141 {0x323D103C, "Smart Array P700m", &SA5_access
},
142 {0x3241103C, "Smart Array P212", &SA5_access
},
143 {0x3243103C, "Smart Array P410", &SA5_access
},
144 {0x3245103C, "Smart Array P410i", &SA5_access
},
145 {0x3247103C, "Smart Array P411", &SA5_access
},
146 {0x3249103C, "Smart Array P812", &SA5_access
},
147 {0x324A103C, "Smart Array P712m", &SA5_access
},
148 {0x324B103C, "Smart Array P711m", &SA5_access
},
151 /* How long to wait (in milliseconds) for board to go into simple mode */
152 #define MAX_CONFIG_WAIT 30000
153 #define MAX_IOCTL_CONFIG_WAIT 1000
155 /*define how many times we will try a command because of bus resets */
156 #define MAX_CMD_RETRIES 3
160 /* Originally cciss driver only supports 8 major numbers */
161 #define MAX_CTLR_ORIG 8
163 static ctlr_info_t
*hba
[MAX_CTLR
];
165 static struct task_struct
*cciss_scan_thread
;
166 static DEFINE_MUTEX(scan_mutex
);
167 static LIST_HEAD(scan_q
);
169 static void do_cciss_request(struct request_queue
*q
);
170 static irqreturn_t
do_cciss_intr(int irq
, void *dev_id
);
171 static int cciss_open(struct block_device
*bdev
, fmode_t mode
);
172 static int cciss_release(struct gendisk
*disk
, fmode_t mode
);
173 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
174 unsigned int cmd
, unsigned long arg
);
175 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
);
177 static int cciss_revalidate(struct gendisk
*disk
);
178 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
, int via_ioctl
);
179 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
180 int clear_all
, int via_ioctl
);
182 static void cciss_read_capacity(int ctlr
, int logvol
,
183 sector_t
*total_size
, unsigned int *block_size
);
184 static void cciss_read_capacity_16(int ctlr
, int logvol
,
185 sector_t
*total_size
, unsigned int *block_size
);
186 static void cciss_geometry_inquiry(int ctlr
, int logvol
,
188 unsigned int block_size
, InquiryData_struct
*inq_buff
,
189 drive_info_struct
*drv
);
190 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*, struct pci_dev
*,
192 static void start_io(ctlr_info_t
*h
);
193 static int sendcmd_withirq(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
194 __u8 page_code
, unsigned char scsi3addr
[],
196 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
198 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
);
200 static void fail_all_cmds(unsigned long ctlr
);
201 static int add_to_scan_list(struct ctlr_info
*h
);
202 static int scan_thread(void *data
);
203 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
);
204 static void cciss_hba_release(struct device
*dev
);
205 static void cciss_device_release(struct device
*dev
);
206 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
);
207 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
);
209 #ifdef CONFIG_PROC_FS
210 static void cciss_procinit(int i
);
212 static void cciss_procinit(int i
)
215 #endif /* CONFIG_PROC_FS */
218 static int cciss_compat_ioctl(struct block_device
*, fmode_t
,
219 unsigned, unsigned long);
222 static const struct block_device_operations cciss_fops
= {
223 .owner
= THIS_MODULE
,
225 .release
= cciss_release
,
226 .locked_ioctl
= cciss_ioctl
,
227 .getgeo
= cciss_getgeo
,
229 .compat_ioctl
= cciss_compat_ioctl
,
231 .revalidate_disk
= cciss_revalidate
,
235 * Enqueuing and dequeuing functions for cmdlists.
237 static inline void addQ(struct hlist_head
*list
, CommandList_struct
*c
)
239 hlist_add_head(&c
->list
, list
);
242 static inline void removeQ(CommandList_struct
*c
)
245 * After kexec/dump some commands might still
246 * be in flight, which the firmware will try
247 * to complete. Resetting the firmware doesn't work
248 * with old fw revisions, so we have to mark
249 * them off as 'stale' to prevent the driver from
252 if (WARN_ON(hlist_unhashed(&c
->list
))) {
253 c
->cmd_type
= CMD_MSG_STALE
;
257 hlist_del_init(&c
->list
);
260 #include "cciss_scsi.c" /* For SCSI tape support */
262 static const char *raid_label
[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
265 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
267 #ifdef CONFIG_PROC_FS
270 * Report information about this controller.
272 #define ENG_GIG 1000000000
273 #define ENG_GIG_FACTOR (ENG_GIG/512)
274 #define ENGAGE_SCSI "engage scsi"
276 static struct proc_dir_entry
*proc_cciss
;
278 static void cciss_seq_show_header(struct seq_file
*seq
)
280 ctlr_info_t
*h
= seq
->private;
282 seq_printf(seq
, "%s: HP %s Controller\n"
283 "Board ID: 0x%08lx\n"
284 "Firmware Version: %c%c%c%c\n"
286 "Logical drives: %d\n"
287 "Current Q depth: %d\n"
288 "Current # commands on controller: %d\n"
289 "Max Q depth since init: %d\n"
290 "Max # commands on controller since init: %d\n"
291 "Max SG entries since init: %d\n",
294 (unsigned long)h
->board_id
,
295 h
->firm_ver
[0], h
->firm_ver
[1], h
->firm_ver
[2],
296 h
->firm_ver
[3], (unsigned int)h
->intr
[SIMPLE_MODE_INT
],
298 h
->Qdepth
, h
->commands_outstanding
,
299 h
->maxQsinceinit
, h
->max_outstanding
, h
->maxSG
);
301 #ifdef CONFIG_CISS_SCSI_TAPE
302 cciss_seq_tape_report(seq
, h
->ctlr
);
303 #endif /* CONFIG_CISS_SCSI_TAPE */
306 static void *cciss_seq_start(struct seq_file
*seq
, loff_t
*pos
)
308 ctlr_info_t
*h
= seq
->private;
309 unsigned ctlr
= h
->ctlr
;
312 /* prevent displaying bogus info during configuration
313 * or deconfiguration of a logical volume
315 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
316 if (h
->busy_configuring
) {
317 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
318 return ERR_PTR(-EBUSY
);
320 h
->busy_configuring
= 1;
321 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
324 cciss_seq_show_header(seq
);
329 static int cciss_seq_show(struct seq_file
*seq
, void *v
)
331 sector_t vol_sz
, vol_sz_frac
;
332 ctlr_info_t
*h
= seq
->private;
333 unsigned ctlr
= h
->ctlr
;
335 drive_info_struct
*drv
= h
->drv
[*pos
];
337 if (*pos
> h
->highest_lun
)
343 vol_sz
= drv
->nr_blocks
;
344 vol_sz_frac
= sector_div(vol_sz
, ENG_GIG_FACTOR
);
346 sector_div(vol_sz_frac
, ENG_GIG_FACTOR
);
348 if (drv
->raid_level
< 0 || drv
->raid_level
> RAID_UNKNOWN
)
349 drv
->raid_level
= RAID_UNKNOWN
;
350 seq_printf(seq
, "cciss/c%dd%d:"
351 "\t%4u.%02uGB\tRAID %s\n",
352 ctlr
, (int) *pos
, (int)vol_sz
, (int)vol_sz_frac
,
353 raid_label
[drv
->raid_level
]);
357 static void *cciss_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
359 ctlr_info_t
*h
= seq
->private;
361 if (*pos
> h
->highest_lun
)
368 static void cciss_seq_stop(struct seq_file
*seq
, void *v
)
370 ctlr_info_t
*h
= seq
->private;
372 /* Only reset h->busy_configuring if we succeeded in setting
373 * it during cciss_seq_start. */
374 if (v
== ERR_PTR(-EBUSY
))
377 h
->busy_configuring
= 0;
380 static const struct seq_operations cciss_seq_ops
= {
381 .start
= cciss_seq_start
,
382 .show
= cciss_seq_show
,
383 .next
= cciss_seq_next
,
384 .stop
= cciss_seq_stop
,
387 static int cciss_seq_open(struct inode
*inode
, struct file
*file
)
389 int ret
= seq_open(file
, &cciss_seq_ops
);
390 struct seq_file
*seq
= file
->private_data
;
393 seq
->private = PDE(inode
)->data
;
399 cciss_proc_write(struct file
*file
, const char __user
*buf
,
400 size_t length
, loff_t
*ppos
)
405 #ifndef CONFIG_CISS_SCSI_TAPE
409 if (!buf
|| length
> PAGE_SIZE
- 1)
412 buffer
= (char *)__get_free_page(GFP_KERNEL
);
417 if (copy_from_user(buffer
, buf
, length
))
419 buffer
[length
] = '\0';
421 #ifdef CONFIG_CISS_SCSI_TAPE
422 if (strncmp(ENGAGE_SCSI
, buffer
, sizeof ENGAGE_SCSI
- 1) == 0) {
423 struct seq_file
*seq
= file
->private_data
;
424 ctlr_info_t
*h
= seq
->private;
426 err
= cciss_engage_scsi(h
->ctlr
);
430 #endif /* CONFIG_CISS_SCSI_TAPE */
432 /* might be nice to have "disengage" too, but it's not
433 safely possible. (only 1 module use count, lock issues.) */
436 free_page((unsigned long)buffer
);
440 static const struct file_operations cciss_proc_fops
= {
441 .owner
= THIS_MODULE
,
442 .open
= cciss_seq_open
,
445 .release
= seq_release
,
446 .write
= cciss_proc_write
,
449 static void __devinit
cciss_procinit(int i
)
451 struct proc_dir_entry
*pde
;
453 if (proc_cciss
== NULL
)
454 proc_cciss
= proc_mkdir("driver/cciss", NULL
);
457 pde
= proc_create_data(hba
[i
]->devname
, S_IWUSR
| S_IRUSR
| S_IRGRP
|
459 &cciss_proc_fops
, hba
[i
]);
461 #endif /* CONFIG_PROC_FS */
463 #define MAX_PRODUCT_NAME_LEN 19
465 #define to_hba(n) container_of(n, struct ctlr_info, dev)
466 #define to_drv(n) container_of(n, drive_info_struct, dev)
468 static ssize_t
host_store_rescan(struct device
*dev
,
469 struct device_attribute
*attr
,
470 const char *buf
, size_t count
)
472 struct ctlr_info
*h
= to_hba(dev
);
475 wake_up_process(cciss_scan_thread
);
476 wait_for_completion_interruptible(&h
->scan_wait
);
480 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
482 static ssize_t
dev_show_unique_id(struct device
*dev
,
483 struct device_attribute
*attr
,
486 drive_info_struct
*drv
= to_drv(dev
);
487 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
492 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
493 if (h
->busy_configuring
)
496 memcpy(sn
, drv
->serial_no
, sizeof(sn
));
497 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
502 return snprintf(buf
, 16 * 2 + 2,
503 "%02X%02X%02X%02X%02X%02X%02X%02X"
504 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
505 sn
[0], sn
[1], sn
[2], sn
[3],
506 sn
[4], sn
[5], sn
[6], sn
[7],
507 sn
[8], sn
[9], sn
[10], sn
[11],
508 sn
[12], sn
[13], sn
[14], sn
[15]);
510 static DEVICE_ATTR(unique_id
, S_IRUGO
, dev_show_unique_id
, NULL
);
512 static ssize_t
dev_show_vendor(struct device
*dev
,
513 struct device_attribute
*attr
,
516 drive_info_struct
*drv
= to_drv(dev
);
517 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
518 char vendor
[VENDOR_LEN
+ 1];
522 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
523 if (h
->busy_configuring
)
526 memcpy(vendor
, drv
->vendor
, VENDOR_LEN
+ 1);
527 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
532 return snprintf(buf
, sizeof(vendor
) + 1, "%s\n", drv
->vendor
);
534 static DEVICE_ATTR(vendor
, S_IRUGO
, dev_show_vendor
, NULL
);
536 static ssize_t
dev_show_model(struct device
*dev
,
537 struct device_attribute
*attr
,
540 drive_info_struct
*drv
= to_drv(dev
);
541 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
542 char model
[MODEL_LEN
+ 1];
546 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
547 if (h
->busy_configuring
)
550 memcpy(model
, drv
->model
, MODEL_LEN
+ 1);
551 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
556 return snprintf(buf
, sizeof(model
) + 1, "%s\n", drv
->model
);
558 static DEVICE_ATTR(model
, S_IRUGO
, dev_show_model
, NULL
);
560 static ssize_t
dev_show_rev(struct device
*dev
,
561 struct device_attribute
*attr
,
564 drive_info_struct
*drv
= to_drv(dev
);
565 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
566 char rev
[REV_LEN
+ 1];
570 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
571 if (h
->busy_configuring
)
574 memcpy(rev
, drv
->rev
, REV_LEN
+ 1);
575 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
580 return snprintf(buf
, sizeof(rev
) + 1, "%s\n", drv
->rev
);
582 static DEVICE_ATTR(rev
, S_IRUGO
, dev_show_rev
, NULL
);
584 static ssize_t
cciss_show_lunid(struct device
*dev
,
585 struct device_attribute
*attr
, char *buf
)
587 drive_info_struct
*drv
= to_drv(dev
);
588 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
590 unsigned char lunid
[8];
592 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
593 if (h
->busy_configuring
) {
594 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
598 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
601 memcpy(lunid
, drv
->LunID
, sizeof(lunid
));
602 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
603 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
604 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
605 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
607 static DEVICE_ATTR(lunid
, S_IRUGO
, cciss_show_lunid
, NULL
);
609 static ssize_t
cciss_show_raid_level(struct device
*dev
,
610 struct device_attribute
*attr
, char *buf
)
612 drive_info_struct
*drv
= to_drv(dev
);
613 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
617 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
618 if (h
->busy_configuring
) {
619 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
622 raid
= drv
->raid_level
;
623 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
624 if (raid
< 0 || raid
> RAID_UNKNOWN
)
627 return snprintf(buf
, strlen(raid_label
[raid
]) + 7, "RAID %s\n",
630 static DEVICE_ATTR(raid_level
, S_IRUGO
, cciss_show_raid_level
, NULL
);
632 static ssize_t
cciss_show_usage_count(struct device
*dev
,
633 struct device_attribute
*attr
, char *buf
)
635 drive_info_struct
*drv
= to_drv(dev
);
636 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
640 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
641 if (h
->busy_configuring
) {
642 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
645 count
= drv
->usage_count
;
646 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
647 return snprintf(buf
, 20, "%d\n", count
);
649 static DEVICE_ATTR(usage_count
, S_IRUGO
, cciss_show_usage_count
, NULL
);
651 static struct attribute
*cciss_host_attrs
[] = {
652 &dev_attr_rescan
.attr
,
656 static struct attribute_group cciss_host_attr_group
= {
657 .attrs
= cciss_host_attrs
,
660 static const struct attribute_group
*cciss_host_attr_groups
[] = {
661 &cciss_host_attr_group
,
665 static struct device_type cciss_host_type
= {
666 .name
= "cciss_host",
667 .groups
= cciss_host_attr_groups
,
668 .release
= cciss_hba_release
,
671 static struct attribute
*cciss_dev_attrs
[] = {
672 &dev_attr_unique_id
.attr
,
673 &dev_attr_model
.attr
,
674 &dev_attr_vendor
.attr
,
676 &dev_attr_lunid
.attr
,
677 &dev_attr_raid_level
.attr
,
678 &dev_attr_usage_count
.attr
,
682 static struct attribute_group cciss_dev_attr_group
= {
683 .attrs
= cciss_dev_attrs
,
686 static const struct attribute_group
*cciss_dev_attr_groups
[] = {
687 &cciss_dev_attr_group
,
691 static struct device_type cciss_dev_type
= {
692 .name
= "cciss_device",
693 .groups
= cciss_dev_attr_groups
,
694 .release
= cciss_device_release
,
697 static struct bus_type cciss_bus_type
= {
702 * cciss_hba_release is called when the reference count
703 * of h->dev goes to zero.
705 static void cciss_hba_release(struct device
*dev
)
708 * nothing to do, but need this to avoid a warning
709 * about not having a release handler from lib/kref.c.
714 * Initialize sysfs entry for each controller. This sets up and registers
715 * the 'cciss#' directory for each individual controller under
716 * /sys/bus/pci/devices/<dev>/.
718 static int cciss_create_hba_sysfs_entry(struct ctlr_info
*h
)
720 device_initialize(&h
->dev
);
721 h
->dev
.type
= &cciss_host_type
;
722 h
->dev
.bus
= &cciss_bus_type
;
723 dev_set_name(&h
->dev
, "%s", h
->devname
);
724 h
->dev
.parent
= &h
->pdev
->dev
;
726 return device_add(&h
->dev
);
730 * Remove sysfs entries for an hba.
732 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info
*h
)
735 put_device(&h
->dev
); /* final put. */
738 /* cciss_device_release is called when the reference count
739 * of h->drv[x]dev goes to zero.
741 static void cciss_device_release(struct device
*dev
)
743 drive_info_struct
*drv
= to_drv(dev
);
748 * Initialize sysfs for each logical drive. This sets up and registers
749 * the 'c#d#' directory for each individual logical drive under
750 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
751 * /sys/block/cciss!c#d# to this entry.
753 static long cciss_create_ld_sysfs_entry(struct ctlr_info
*h
,
758 if (h
->drv
[drv_index
]->device_initialized
)
761 dev
= &h
->drv
[drv_index
]->dev
;
762 device_initialize(dev
);
763 dev
->type
= &cciss_dev_type
;
764 dev
->bus
= &cciss_bus_type
;
765 dev_set_name(dev
, "c%dd%d", h
->ctlr
, drv_index
);
766 dev
->parent
= &h
->dev
;
767 h
->drv
[drv_index
]->device_initialized
= 1;
768 return device_add(dev
);
772 * Remove sysfs entries for a logical drive.
774 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info
*h
, int drv_index
,
777 struct device
*dev
= &h
->drv
[drv_index
]->dev
;
779 /* special case for c*d0, we only destroy it on controller exit */
780 if (drv_index
== 0 && !ctlr_exiting
)
784 put_device(dev
); /* the "final" put. */
785 h
->drv
[drv_index
] = NULL
;
789 * For operations that cannot sleep, a command block is allocated at init,
790 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
791 * which ones are free or in use. For operations that can wait for kmalloc
792 * to possible sleep, this routine can be called with get_from_pool set to 0.
793 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
795 static CommandList_struct
*cmd_alloc(ctlr_info_t
*h
, int get_from_pool
)
797 CommandList_struct
*c
;
800 dma_addr_t cmd_dma_handle
, err_dma_handle
;
802 if (!get_from_pool
) {
803 c
= (CommandList_struct
*) pci_alloc_consistent(h
->pdev
,
804 sizeof(CommandList_struct
), &cmd_dma_handle
);
807 memset(c
, 0, sizeof(CommandList_struct
));
811 c
->err_info
= (ErrorInfo_struct
*)
812 pci_alloc_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
815 if (c
->err_info
== NULL
) {
816 pci_free_consistent(h
->pdev
,
817 sizeof(CommandList_struct
), c
, cmd_dma_handle
);
820 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
821 } else { /* get it out of the controllers pool */
824 i
= find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
);
827 } while (test_and_set_bit
828 (i
& (BITS_PER_LONG
- 1),
829 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
)) != 0);
831 printk(KERN_DEBUG
"cciss: using command buffer %d\n", i
);
834 memset(c
, 0, sizeof(CommandList_struct
));
835 cmd_dma_handle
= h
->cmd_pool_dhandle
836 + i
* sizeof(CommandList_struct
);
837 c
->err_info
= h
->errinfo_pool
+ i
;
838 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
839 err_dma_handle
= h
->errinfo_pool_dhandle
840 + i
* sizeof(ErrorInfo_struct
);
846 INIT_HLIST_NODE(&c
->list
);
847 c
->busaddr
= (__u32
) cmd_dma_handle
;
848 temp64
.val
= (__u64
) err_dma_handle
;
849 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
850 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
851 c
->ErrDesc
.Len
= sizeof(ErrorInfo_struct
);
858 * Frees a command block that was previously allocated with cmd_alloc().
860 static void cmd_free(ctlr_info_t
*h
, CommandList_struct
*c
, int got_from_pool
)
865 if (!got_from_pool
) {
866 temp64
.val32
.lower
= c
->ErrDesc
.Addr
.lower
;
867 temp64
.val32
.upper
= c
->ErrDesc
.Addr
.upper
;
868 pci_free_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
869 c
->err_info
, (dma_addr_t
) temp64
.val
);
870 pci_free_consistent(h
->pdev
, sizeof(CommandList_struct
),
871 c
, (dma_addr_t
) c
->busaddr
);
874 clear_bit(i
& (BITS_PER_LONG
- 1),
875 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
880 static inline ctlr_info_t
*get_host(struct gendisk
*disk
)
882 return disk
->queue
->queuedata
;
885 static inline drive_info_struct
*get_drv(struct gendisk
*disk
)
887 return disk
->private_data
;
891 * Open. Make sure the device is really there.
893 static int cciss_open(struct block_device
*bdev
, fmode_t mode
)
895 ctlr_info_t
*host
= get_host(bdev
->bd_disk
);
896 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
899 printk(KERN_DEBUG
"cciss_open %s\n", bdev
->bd_disk
->disk_name
);
900 #endif /* CCISS_DEBUG */
902 if (drv
->busy_configuring
)
905 * Root is allowed to open raw volume zero even if it's not configured
906 * so array config can still work. Root is also allowed to open any
907 * volume that has a LUN ID, so it can issue IOCTL to reread the
908 * disk information. I don't think I really like this
909 * but I'm already using way to many device nodes to claim another one
910 * for "raw controller".
912 if (drv
->heads
== 0) {
913 if (MINOR(bdev
->bd_dev
) != 0) { /* not node 0? */
914 /* if not node 0 make sure it is a partition = 0 */
915 if (MINOR(bdev
->bd_dev
) & 0x0f) {
917 /* if it is, make sure we have a LUN ID */
918 } else if (memcmp(drv
->LunID
, CTLR_LUNID
,
919 sizeof(drv
->LunID
))) {
923 if (!capable(CAP_SYS_ADMIN
))
934 static int cciss_release(struct gendisk
*disk
, fmode_t mode
)
936 ctlr_info_t
*host
= get_host(disk
);
937 drive_info_struct
*drv
= get_drv(disk
);
940 printk(KERN_DEBUG
"cciss_release %s\n", disk
->disk_name
);
941 #endif /* CCISS_DEBUG */
950 static int do_ioctl(struct block_device
*bdev
, fmode_t mode
,
951 unsigned cmd
, unsigned long arg
)
955 ret
= cciss_ioctl(bdev
, mode
, cmd
, arg
);
960 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
961 unsigned cmd
, unsigned long arg
);
962 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
963 unsigned cmd
, unsigned long arg
);
965 static int cciss_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
966 unsigned cmd
, unsigned long arg
)
969 case CCISS_GETPCIINFO
:
970 case CCISS_GETINTINFO
:
971 case CCISS_SETINTINFO
:
972 case CCISS_GETNODENAME
:
973 case CCISS_SETNODENAME
:
974 case CCISS_GETHEARTBEAT
:
975 case CCISS_GETBUSTYPES
:
976 case CCISS_GETFIRMVER
:
977 case CCISS_GETDRIVVER
:
978 case CCISS_REVALIDVOLS
:
979 case CCISS_DEREGDISK
:
980 case CCISS_REGNEWDISK
:
982 case CCISS_RESCANDISK
:
983 case CCISS_GETLUNINFO
:
984 return do_ioctl(bdev
, mode
, cmd
, arg
);
986 case CCISS_PASSTHRU32
:
987 return cciss_ioctl32_passthru(bdev
, mode
, cmd
, arg
);
988 case CCISS_BIG_PASSTHRU32
:
989 return cciss_ioctl32_big_passthru(bdev
, mode
, cmd
, arg
);
996 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
997 unsigned cmd
, unsigned long arg
)
999 IOCTL32_Command_struct __user
*arg32
=
1000 (IOCTL32_Command_struct __user
*) arg
;
1001 IOCTL_Command_struct arg64
;
1002 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
1008 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1009 sizeof(arg64
.LUN_info
));
1011 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1012 sizeof(arg64
.Request
));
1014 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1015 sizeof(arg64
.error_info
));
1016 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1017 err
|= get_user(cp
, &arg32
->buf
);
1018 arg64
.buf
= compat_ptr(cp
);
1019 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1024 err
= do_ioctl(bdev
, mode
, CCISS_PASSTHRU
, (unsigned long)p
);
1028 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1029 sizeof(arg32
->error_info
));
1035 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
1036 unsigned cmd
, unsigned long arg
)
1038 BIG_IOCTL32_Command_struct __user
*arg32
=
1039 (BIG_IOCTL32_Command_struct __user
*) arg
;
1040 BIG_IOCTL_Command_struct arg64
;
1041 BIG_IOCTL_Command_struct __user
*p
=
1042 compat_alloc_user_space(sizeof(arg64
));
1048 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1049 sizeof(arg64
.LUN_info
));
1051 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1052 sizeof(arg64
.Request
));
1054 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1055 sizeof(arg64
.error_info
));
1056 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1057 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
1058 err
|= get_user(cp
, &arg32
->buf
);
1059 arg64
.buf
= compat_ptr(cp
);
1060 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1065 err
= do_ioctl(bdev
, mode
, CCISS_BIG_PASSTHRU
, (unsigned long)p
);
1069 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1070 sizeof(arg32
->error_info
));
1077 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
1079 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
1081 if (!drv
->cylinders
)
1084 geo
->heads
= drv
->heads
;
1085 geo
->sectors
= drv
->sectors
;
1086 geo
->cylinders
= drv
->cylinders
;
1090 static void check_ioctl_unit_attention(ctlr_info_t
*host
, CommandList_struct
*c
)
1092 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
1093 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
1094 (void)check_for_unit_attention(host
, c
);
1099 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
1100 unsigned int cmd
, unsigned long arg
)
1102 struct gendisk
*disk
= bdev
->bd_disk
;
1103 ctlr_info_t
*host
= get_host(disk
);
1104 drive_info_struct
*drv
= get_drv(disk
);
1105 int ctlr
= host
->ctlr
;
1106 void __user
*argp
= (void __user
*)arg
;
1109 printk(KERN_DEBUG
"cciss_ioctl: Called with cmd=%x %lx\n", cmd
, arg
);
1110 #endif /* CCISS_DEBUG */
1113 case CCISS_GETPCIINFO
:
1115 cciss_pci_info_struct pciinfo
;
1119 pciinfo
.domain
= pci_domain_nr(host
->pdev
->bus
);
1120 pciinfo
.bus
= host
->pdev
->bus
->number
;
1121 pciinfo
.dev_fn
= host
->pdev
->devfn
;
1122 pciinfo
.board_id
= host
->board_id
;
1124 (argp
, &pciinfo
, sizeof(cciss_pci_info_struct
)))
1128 case CCISS_GETINTINFO
:
1130 cciss_coalint_struct intinfo
;
1134 readl(&host
->cfgtable
->HostWrite
.CoalIntDelay
);
1136 readl(&host
->cfgtable
->HostWrite
.CoalIntCount
);
1138 (argp
, &intinfo
, sizeof(cciss_coalint_struct
)))
1142 case CCISS_SETINTINFO
:
1144 cciss_coalint_struct intinfo
;
1145 unsigned long flags
;
1150 if (!capable(CAP_SYS_ADMIN
))
1153 (&intinfo
, argp
, sizeof(cciss_coalint_struct
)))
1155 if ((intinfo
.delay
== 0) && (intinfo
.count
== 0))
1157 // printk("cciss_ioctl: delay and count cannot be 0\n");
1160 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1161 /* Update the field, and then ring the doorbell */
1162 writel(intinfo
.delay
,
1163 &(host
->cfgtable
->HostWrite
.CoalIntDelay
));
1164 writel(intinfo
.count
,
1165 &(host
->cfgtable
->HostWrite
.CoalIntCount
));
1166 writel(CFGTBL_ChangeReq
, host
->vaddr
+ SA5_DOORBELL
);
1168 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1169 if (!(readl(host
->vaddr
+ SA5_DOORBELL
)
1170 & CFGTBL_ChangeReq
))
1172 /* delay and try again */
1175 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1176 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1180 case CCISS_GETNODENAME
:
1182 NodeName_type NodeName
;
1187 for (i
= 0; i
< 16; i
++)
1189 readb(&host
->cfgtable
->ServerName
[i
]);
1190 if (copy_to_user(argp
, NodeName
, sizeof(NodeName_type
)))
1194 case CCISS_SETNODENAME
:
1196 NodeName_type NodeName
;
1197 unsigned long flags
;
1202 if (!capable(CAP_SYS_ADMIN
))
1206 (NodeName
, argp
, sizeof(NodeName_type
)))
1209 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1211 /* Update the field, and then ring the doorbell */
1212 for (i
= 0; i
< 16; i
++)
1214 &host
->cfgtable
->ServerName
[i
]);
1216 writel(CFGTBL_ChangeReq
, host
->vaddr
+ SA5_DOORBELL
);
1218 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1219 if (!(readl(host
->vaddr
+ SA5_DOORBELL
)
1220 & CFGTBL_ChangeReq
))
1222 /* delay and try again */
1225 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1226 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1231 case CCISS_GETHEARTBEAT
:
1233 Heartbeat_type heartbeat
;
1237 heartbeat
= readl(&host
->cfgtable
->HeartBeat
);
1239 (argp
, &heartbeat
, sizeof(Heartbeat_type
)))
1243 case CCISS_GETBUSTYPES
:
1245 BusTypes_type BusTypes
;
1249 BusTypes
= readl(&host
->cfgtable
->BusTypes
);
1251 (argp
, &BusTypes
, sizeof(BusTypes_type
)))
1255 case CCISS_GETFIRMVER
:
1257 FirmwareVer_type firmware
;
1261 memcpy(firmware
, host
->firm_ver
, 4);
1264 (argp
, firmware
, sizeof(FirmwareVer_type
)))
1268 case CCISS_GETDRIVVER
:
1270 DriverVer_type DriverVer
= DRIVER_VERSION
;
1276 (argp
, &DriverVer
, sizeof(DriverVer_type
)))
1281 case CCISS_DEREGDISK
:
1283 case CCISS_REVALIDVOLS
:
1284 return rebuild_lun_table(host
, 0, 1);
1286 case CCISS_GETLUNINFO
:{
1287 LogvolInfo_struct luninfo
;
1289 memcpy(&luninfo
.LunID
, drv
->LunID
,
1290 sizeof(luninfo
.LunID
));
1291 luninfo
.num_opens
= drv
->usage_count
;
1292 luninfo
.num_parts
= 0;
1293 if (copy_to_user(argp
, &luninfo
,
1294 sizeof(LogvolInfo_struct
)))
1298 case CCISS_PASSTHRU
:
1300 IOCTL_Command_struct iocommand
;
1301 CommandList_struct
*c
;
1304 unsigned long flags
;
1305 DECLARE_COMPLETION_ONSTACK(wait
);
1310 if (!capable(CAP_SYS_RAWIO
))
1314 (&iocommand
, argp
, sizeof(IOCTL_Command_struct
)))
1316 if ((iocommand
.buf_size
< 1) &&
1317 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
1320 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1321 /* Check kmalloc limits */
1322 if (iocommand
.buf_size
> 128000)
1325 if (iocommand
.buf_size
> 0) {
1326 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
1330 if (iocommand
.Request
.Type
.Direction
== XFER_WRITE
) {
1331 /* Copy the data into the buffer we created */
1333 (buff
, iocommand
.buf
, iocommand
.buf_size
)) {
1338 memset(buff
, 0, iocommand
.buf_size
);
1340 if ((c
= cmd_alloc(host
, 0)) == NULL
) {
1344 // Fill in the command type
1345 c
->cmd_type
= CMD_IOCTL_PEND
;
1346 // Fill in Command Header
1347 c
->Header
.ReplyQueue
= 0; // unused in simple mode
1348 if (iocommand
.buf_size
> 0) // buffer to fill
1350 c
->Header
.SGList
= 1;
1351 c
->Header
.SGTotal
= 1;
1352 } else // no buffers to fill
1354 c
->Header
.SGList
= 0;
1355 c
->Header
.SGTotal
= 0;
1357 c
->Header
.LUN
= iocommand
.LUN_info
;
1358 c
->Header
.Tag
.lower
= c
->busaddr
; // use the kernel address the cmd block for tag
1360 // Fill in Request block
1361 c
->Request
= iocommand
.Request
;
1363 // Fill in the scatter gather information
1364 if (iocommand
.buf_size
> 0) {
1365 temp64
.val
= pci_map_single(host
->pdev
, buff
,
1367 PCI_DMA_BIDIRECTIONAL
);
1368 c
->SG
[0].Addr
.lower
= temp64
.val32
.lower
;
1369 c
->SG
[0].Addr
.upper
= temp64
.val32
.upper
;
1370 c
->SG
[0].Len
= iocommand
.buf_size
;
1371 c
->SG
[0].Ext
= 0; // we are not chaining
1375 /* Put the request on the tail of the request queue */
1376 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1377 addQ(&host
->reqQ
, c
);
1380 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1382 wait_for_completion(&wait
);
1384 /* unlock the buffers from DMA */
1385 temp64
.val32
.lower
= c
->SG
[0].Addr
.lower
;
1386 temp64
.val32
.upper
= c
->SG
[0].Addr
.upper
;
1387 pci_unmap_single(host
->pdev
, (dma_addr_t
) temp64
.val
,
1389 PCI_DMA_BIDIRECTIONAL
);
1391 check_ioctl_unit_attention(host
, c
);
1393 /* Copy the error information out */
1394 iocommand
.error_info
= *(c
->err_info
);
1396 (argp
, &iocommand
, sizeof(IOCTL_Command_struct
))) {
1398 cmd_free(host
, c
, 0);
1402 if (iocommand
.Request
.Type
.Direction
== XFER_READ
) {
1403 /* Copy the data out of the buffer we created */
1405 (iocommand
.buf
, buff
, iocommand
.buf_size
)) {
1407 cmd_free(host
, c
, 0);
1412 cmd_free(host
, c
, 0);
1415 case CCISS_BIG_PASSTHRU
:{
1416 BIG_IOCTL_Command_struct
*ioc
;
1417 CommandList_struct
*c
;
1418 unsigned char **buff
= NULL
;
1419 int *buff_size
= NULL
;
1421 unsigned long flags
;
1425 DECLARE_COMPLETION_ONSTACK(wait
);
1428 BYTE __user
*data_ptr
;
1432 if (!capable(CAP_SYS_RAWIO
))
1434 ioc
= (BIG_IOCTL_Command_struct
*)
1435 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
1440 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
1444 if ((ioc
->buf_size
< 1) &&
1445 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
1449 /* Check kmalloc limits using all SGs */
1450 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
1454 if (ioc
->buf_size
> ioc
->malloc_size
* MAXSGENTRIES
) {
1459 kzalloc(MAXSGENTRIES
* sizeof(char *), GFP_KERNEL
);
1464 buff_size
= kmalloc(MAXSGENTRIES
* sizeof(int),
1470 left
= ioc
->buf_size
;
1471 data_ptr
= ioc
->buf
;
1474 ioc
->malloc_size
) ? ioc
->
1476 buff_size
[sg_used
] = sz
;
1477 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
1478 if (buff
[sg_used
] == NULL
) {
1482 if (ioc
->Request
.Type
.Direction
== XFER_WRITE
) {
1484 (buff
[sg_used
], data_ptr
, sz
)) {
1489 memset(buff
[sg_used
], 0, sz
);
1495 if ((c
= cmd_alloc(host
, 0)) == NULL
) {
1499 c
->cmd_type
= CMD_IOCTL_PEND
;
1500 c
->Header
.ReplyQueue
= 0;
1502 if (ioc
->buf_size
> 0) {
1503 c
->Header
.SGList
= sg_used
;
1504 c
->Header
.SGTotal
= sg_used
;
1506 c
->Header
.SGList
= 0;
1507 c
->Header
.SGTotal
= 0;
1509 c
->Header
.LUN
= ioc
->LUN_info
;
1510 c
->Header
.Tag
.lower
= c
->busaddr
;
1512 c
->Request
= ioc
->Request
;
1513 if (ioc
->buf_size
> 0) {
1515 for (i
= 0; i
< sg_used
; i
++) {
1517 pci_map_single(host
->pdev
, buff
[i
],
1519 PCI_DMA_BIDIRECTIONAL
);
1520 c
->SG
[i
].Addr
.lower
=
1522 c
->SG
[i
].Addr
.upper
=
1524 c
->SG
[i
].Len
= buff_size
[i
];
1525 c
->SG
[i
].Ext
= 0; /* we are not chaining */
1529 /* Put the request on the tail of the request queue */
1530 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1531 addQ(&host
->reqQ
, c
);
1534 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1535 wait_for_completion(&wait
);
1536 /* unlock the buffers from DMA */
1537 for (i
= 0; i
< sg_used
; i
++) {
1538 temp64
.val32
.lower
= c
->SG
[i
].Addr
.lower
;
1539 temp64
.val32
.upper
= c
->SG
[i
].Addr
.upper
;
1540 pci_unmap_single(host
->pdev
,
1541 (dma_addr_t
) temp64
.val
, buff_size
[i
],
1542 PCI_DMA_BIDIRECTIONAL
);
1544 check_ioctl_unit_attention(host
, c
);
1545 /* Copy the error information out */
1546 ioc
->error_info
= *(c
->err_info
);
1547 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
1548 cmd_free(host
, c
, 0);
1552 if (ioc
->Request
.Type
.Direction
== XFER_READ
) {
1553 /* Copy the data out of the buffer we created */
1554 BYTE __user
*ptr
= ioc
->buf
;
1555 for (i
= 0; i
< sg_used
; i
++) {
1557 (ptr
, buff
[i
], buff_size
[i
])) {
1558 cmd_free(host
, c
, 0);
1562 ptr
+= buff_size
[i
];
1565 cmd_free(host
, c
, 0);
1569 for (i
= 0; i
< sg_used
; i
++)
1578 /* scsi_cmd_ioctl handles these, below, though some are not */
1579 /* very meaningful for cciss. SG_IO is the main one people want. */
1581 case SG_GET_VERSION_NUM
:
1582 case SG_SET_TIMEOUT
:
1583 case SG_GET_TIMEOUT
:
1584 case SG_GET_RESERVED_SIZE
:
1585 case SG_SET_RESERVED_SIZE
:
1586 case SG_EMULATED_HOST
:
1588 case SCSI_IOCTL_SEND_COMMAND
:
1589 return scsi_cmd_ioctl(disk
->queue
, disk
, mode
, cmd
, argp
);
1591 /* scsi_cmd_ioctl would normally handle these, below, but */
1592 /* they aren't a good fit for cciss, as CD-ROMs are */
1593 /* not supported, and we don't have any bus/target/lun */
1594 /* which we present to the kernel. */
1596 case CDROM_SEND_PACKET
:
1597 case CDROMCLOSETRAY
:
1599 case SCSI_IOCTL_GET_IDLUN
:
1600 case SCSI_IOCTL_GET_BUS_NUMBER
:
1606 static void cciss_check_queues(ctlr_info_t
*h
)
1608 int start_queue
= h
->next_to_run
;
1611 /* check to see if we have maxed out the number of commands that can
1612 * be placed on the queue. If so then exit. We do this check here
1613 * in case the interrupt we serviced was from an ioctl and did not
1614 * free any new commands.
1616 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
)
1619 /* We have room on the queue for more commands. Now we need to queue
1620 * them up. We will also keep track of the next queue to run so
1621 * that every queue gets a chance to be started first.
1623 for (i
= 0; i
< h
->highest_lun
+ 1; i
++) {
1624 int curr_queue
= (start_queue
+ i
) % (h
->highest_lun
+ 1);
1625 /* make sure the disk has been added and the drive is real
1626 * because this can be called from the middle of init_one.
1628 if (!h
->drv
[curr_queue
])
1630 if (!(h
->drv
[curr_queue
]->queue
) ||
1631 !(h
->drv
[curr_queue
]->heads
))
1633 blk_start_queue(h
->gendisk
[curr_queue
]->queue
);
1635 /* check to see if we have maxed out the number of commands
1636 * that can be placed on the queue.
1638 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
) {
1639 if (curr_queue
== start_queue
) {
1641 (start_queue
+ 1) % (h
->highest_lun
+ 1);
1644 h
->next_to_run
= curr_queue
;
1651 static void cciss_softirq_done(struct request
*rq
)
1653 CommandList_struct
*cmd
= rq
->completion_data
;
1654 ctlr_info_t
*h
= hba
[cmd
->ctlr
];
1655 SGDescriptor_struct
*curr_sg
= cmd
->SG
;
1656 unsigned long flags
;
1661 if (cmd
->Request
.Type
.Direction
== XFER_READ
)
1662 ddir
= PCI_DMA_FROMDEVICE
;
1664 ddir
= PCI_DMA_TODEVICE
;
1666 /* command did not need to be retried */
1667 /* unmap the DMA mapping for all the scatter gather elements */
1668 for (i
= 0; i
< cmd
->Header
.SGList
; i
++) {
1669 if (curr_sg
[sg_index
].Ext
== CCISS_SG_CHAIN
) {
1670 temp64
.val32
.lower
= cmd
->SG
[i
].Addr
.lower
;
1671 temp64
.val32
.upper
= cmd
->SG
[i
].Addr
.upper
;
1672 pci_dma_sync_single_for_cpu(h
->pdev
, temp64
.val
,
1673 cmd
->SG
[i
].Len
, ddir
);
1674 pci_unmap_single(h
->pdev
, temp64
.val
,
1675 cmd
->SG
[i
].Len
, ddir
);
1676 /* Point to the next block */
1677 curr_sg
= h
->cmd_sg_list
[cmd
->cmdindex
]->sgchain
;
1680 temp64
.val32
.lower
= curr_sg
[sg_index
].Addr
.lower
;
1681 temp64
.val32
.upper
= curr_sg
[sg_index
].Addr
.upper
;
1682 pci_unmap_page(h
->pdev
, temp64
.val
, curr_sg
[sg_index
].Len
,
1688 printk("Done with %p\n", rq
);
1689 #endif /* CCISS_DEBUG */
1691 /* set the residual count for pc requests */
1692 if (blk_pc_request(rq
))
1693 rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
1695 blk_end_request_all(rq
, (rq
->errors
== 0) ? 0 : -EIO
);
1697 spin_lock_irqsave(&h
->lock
, flags
);
1698 cmd_free(h
, cmd
, 1);
1699 cciss_check_queues(h
);
1700 spin_unlock_irqrestore(&h
->lock
, flags
);
1703 static inline void log_unit_to_scsi3addr(ctlr_info_t
*h
,
1704 unsigned char scsi3addr
[], uint32_t log_unit
)
1706 memcpy(scsi3addr
, h
->drv
[log_unit
]->LunID
,
1707 sizeof(h
->drv
[log_unit
]->LunID
));
1710 /* This function gets the SCSI vendor, model, and revision of a logical drive
1711 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1712 * they cannot be read.
1714 static void cciss_get_device_descr(int ctlr
, int logvol
,
1715 char *vendor
, char *model
, char *rev
)
1718 InquiryData_struct
*inq_buf
;
1719 unsigned char scsi3addr
[8];
1725 inq_buf
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1729 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
1730 rc
= sendcmd_withirq(CISS_INQUIRY
, ctlr
, inq_buf
, sizeof(*inq_buf
), 0,
1731 scsi3addr
, TYPE_CMD
);
1733 memcpy(vendor
, &inq_buf
->data_byte
[8], VENDOR_LEN
);
1734 vendor
[VENDOR_LEN
] = '\0';
1735 memcpy(model
, &inq_buf
->data_byte
[16], MODEL_LEN
);
1736 model
[MODEL_LEN
] = '\0';
1737 memcpy(rev
, &inq_buf
->data_byte
[32], REV_LEN
);
1738 rev
[REV_LEN
] = '\0';
1745 /* This function gets the serial number of a logical drive via
1746 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1747 * number cannot be had, for whatever reason, 16 bytes of 0xff
1748 * are returned instead.
1750 static void cciss_get_serial_no(int ctlr
, int logvol
,
1751 unsigned char *serial_no
, int buflen
)
1753 #define PAGE_83_INQ_BYTES 64
1756 unsigned char scsi3addr
[8];
1760 memset(serial_no
, 0xff, buflen
);
1761 buf
= kzalloc(PAGE_83_INQ_BYTES
, GFP_KERNEL
);
1764 memset(serial_no
, 0, buflen
);
1765 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
1766 rc
= sendcmd_withirq(CISS_INQUIRY
, ctlr
, buf
,
1767 PAGE_83_INQ_BYTES
, 0x83, scsi3addr
, TYPE_CMD
);
1769 memcpy(serial_no
, &buf
[8], buflen
);
1775 * cciss_add_disk sets up the block device queue for a logical drive
1777 static int cciss_add_disk(ctlr_info_t
*h
, struct gendisk
*disk
,
1780 disk
->queue
= blk_init_queue(do_cciss_request
, &h
->lock
);
1782 goto init_queue_failure
;
1783 sprintf(disk
->disk_name
, "cciss/c%dd%d", h
->ctlr
, drv_index
);
1784 disk
->major
= h
->major
;
1785 disk
->first_minor
= drv_index
<< NWD_SHIFT
;
1786 disk
->fops
= &cciss_fops
;
1787 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
1789 disk
->private_data
= h
->drv
[drv_index
];
1790 disk
->driverfs_dev
= &h
->drv
[drv_index
]->dev
;
1792 /* Set up queue information */
1793 blk_queue_bounce_limit(disk
->queue
, h
->pdev
->dma_mask
);
1795 /* This is a hardware imposed limit. */
1796 blk_queue_max_hw_segments(disk
->queue
, h
->maxsgentries
);
1798 /* This is a limit in the driver and could be eliminated. */
1799 blk_queue_max_phys_segments(disk
->queue
, h
->maxsgentries
);
1801 blk_queue_max_sectors(disk
->queue
, h
->cciss_max_sectors
);
1803 blk_queue_softirq_done(disk
->queue
, cciss_softirq_done
);
1805 disk
->queue
->queuedata
= h
;
1807 blk_queue_logical_block_size(disk
->queue
,
1808 h
->drv
[drv_index
]->block_size
);
1810 /* Make sure all queue data is written out before */
1811 /* setting h->drv[drv_index]->queue, as setting this */
1812 /* allows the interrupt handler to start the queue */
1814 h
->drv
[drv_index
]->queue
= disk
->queue
;
1819 blk_cleanup_queue(disk
->queue
);
1825 /* This function will check the usage_count of the drive to be updated/added.
1826 * If the usage_count is zero and it is a heretofore unknown drive, or,
1827 * the drive's capacity, geometry, or serial number has changed,
1828 * then the drive information will be updated and the disk will be
1829 * re-registered with the kernel. If these conditions don't hold,
1830 * then it will be left alone for the next reboot. The exception to this
1831 * is disk 0 which will always be left registered with the kernel since it
1832 * is also the controller node. Any changes to disk 0 will show up on
1835 static void cciss_update_drive_info(int ctlr
, int drv_index
, int first_time
,
1838 ctlr_info_t
*h
= hba
[ctlr
];
1839 struct gendisk
*disk
;
1840 InquiryData_struct
*inq_buff
= NULL
;
1841 unsigned int block_size
;
1842 sector_t total_size
;
1843 unsigned long flags
= 0;
1845 drive_info_struct
*drvinfo
;
1847 /* Get information about the disk and modify the driver structure */
1848 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1849 drvinfo
= kzalloc(sizeof(*drvinfo
), GFP_KERNEL
);
1850 if (inq_buff
== NULL
|| drvinfo
== NULL
)
1853 /* testing to see if 16-byte CDBs are already being used */
1854 if (h
->cciss_read
== CCISS_READ_16
) {
1855 cciss_read_capacity_16(h
->ctlr
, drv_index
,
1856 &total_size
, &block_size
);
1859 cciss_read_capacity(ctlr
, drv_index
, &total_size
, &block_size
);
1860 /* if read_capacity returns all F's this volume is >2TB */
1861 /* in size so we switch to 16-byte CDB's for all */
1862 /* read/write ops */
1863 if (total_size
== 0xFFFFFFFFULL
) {
1864 cciss_read_capacity_16(ctlr
, drv_index
,
1865 &total_size
, &block_size
);
1866 h
->cciss_read
= CCISS_READ_16
;
1867 h
->cciss_write
= CCISS_WRITE_16
;
1869 h
->cciss_read
= CCISS_READ_10
;
1870 h
->cciss_write
= CCISS_WRITE_10
;
1874 cciss_geometry_inquiry(ctlr
, drv_index
, total_size
, block_size
,
1876 drvinfo
->block_size
= block_size
;
1877 drvinfo
->nr_blocks
= total_size
+ 1;
1879 cciss_get_device_descr(ctlr
, drv_index
, drvinfo
->vendor
,
1880 drvinfo
->model
, drvinfo
->rev
);
1881 cciss_get_serial_no(ctlr
, drv_index
, drvinfo
->serial_no
,
1882 sizeof(drvinfo
->serial_no
));
1883 /* Save the lunid in case we deregister the disk, below. */
1884 memcpy(drvinfo
->LunID
, h
->drv
[drv_index
]->LunID
,
1885 sizeof(drvinfo
->LunID
));
1887 /* Is it the same disk we already know, and nothing's changed? */
1888 if (h
->drv
[drv_index
]->raid_level
!= -1 &&
1889 ((memcmp(drvinfo
->serial_no
,
1890 h
->drv
[drv_index
]->serial_no
, 16) == 0) &&
1891 drvinfo
->block_size
== h
->drv
[drv_index
]->block_size
&&
1892 drvinfo
->nr_blocks
== h
->drv
[drv_index
]->nr_blocks
&&
1893 drvinfo
->heads
== h
->drv
[drv_index
]->heads
&&
1894 drvinfo
->sectors
== h
->drv
[drv_index
]->sectors
&&
1895 drvinfo
->cylinders
== h
->drv
[drv_index
]->cylinders
))
1896 /* The disk is unchanged, nothing to update */
1899 /* If we get here it's not the same disk, or something's changed,
1900 * so we need to * deregister it, and re-register it, if it's not
1902 * If the disk already exists then deregister it before proceeding
1903 * (unless it's the first disk (for the controller node).
1905 if (h
->drv
[drv_index
]->raid_level
!= -1 && drv_index
!= 0) {
1906 printk(KERN_WARNING
"disk %d has changed.\n", drv_index
);
1907 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
1908 h
->drv
[drv_index
]->busy_configuring
= 1;
1909 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
1911 /* deregister_disk sets h->drv[drv_index]->queue = NULL
1912 * which keeps the interrupt handler from starting
1915 ret
= deregister_disk(h
, drv_index
, 0, via_ioctl
);
1918 /* If the disk is in use return */
1922 /* Save the new information from cciss_geometry_inquiry
1923 * and serial number inquiry. If the disk was deregistered
1924 * above, then h->drv[drv_index] will be NULL.
1926 if (h
->drv
[drv_index
] == NULL
) {
1927 drvinfo
->device_initialized
= 0;
1928 h
->drv
[drv_index
] = drvinfo
;
1929 drvinfo
= NULL
; /* so it won't be freed below. */
1931 /* special case for cxd0 */
1932 h
->drv
[drv_index
]->block_size
= drvinfo
->block_size
;
1933 h
->drv
[drv_index
]->nr_blocks
= drvinfo
->nr_blocks
;
1934 h
->drv
[drv_index
]->heads
= drvinfo
->heads
;
1935 h
->drv
[drv_index
]->sectors
= drvinfo
->sectors
;
1936 h
->drv
[drv_index
]->cylinders
= drvinfo
->cylinders
;
1937 h
->drv
[drv_index
]->raid_level
= drvinfo
->raid_level
;
1938 memcpy(h
->drv
[drv_index
]->serial_no
, drvinfo
->serial_no
, 16);
1939 memcpy(h
->drv
[drv_index
]->vendor
, drvinfo
->vendor
,
1941 memcpy(h
->drv
[drv_index
]->model
, drvinfo
->model
, MODEL_LEN
+ 1);
1942 memcpy(h
->drv
[drv_index
]->rev
, drvinfo
->rev
, REV_LEN
+ 1);
1946 disk
= h
->gendisk
[drv_index
];
1947 set_capacity(disk
, h
->drv
[drv_index
]->nr_blocks
);
1949 /* If it's not disk 0 (drv_index != 0)
1950 * or if it was disk 0, but there was previously
1951 * no actual corresponding configured logical drive
1952 * (raid_leve == -1) then we want to update the
1953 * logical drive's information.
1955 if (drv_index
|| first_time
) {
1956 if (cciss_add_disk(h
, disk
, drv_index
) != 0) {
1957 cciss_free_gendisk(h
, drv_index
);
1958 cciss_free_drive_info(h
, drv_index
);
1959 printk(KERN_WARNING
"cciss:%d could not update "
1960 "disk %d\n", h
->ctlr
, drv_index
);
1970 printk(KERN_ERR
"cciss: out of memory\n");
1974 /* This function will find the first index of the controllers drive array
1975 * that has a null drv pointer and allocate the drive info struct and
1976 * will return that index This is where new drives will be added.
1977 * If the index to be returned is greater than the highest_lun index for
1978 * the controller then highest_lun is set * to this new index.
1979 * If there are no available indexes or if tha allocation fails, then -1
1980 * is returned. * "controller_node" is used to know if this is a real
1981 * logical drive, or just the controller node, which determines if this
1982 * counts towards highest_lun.
1984 static int cciss_alloc_drive_info(ctlr_info_t
*h
, int controller_node
)
1987 drive_info_struct
*drv
;
1989 /* Search for an empty slot for our drive info */
1990 for (i
= 0; i
< CISS_MAX_LUN
; i
++) {
1992 /* if not cxd0 case, and it's occupied, skip it. */
1993 if (h
->drv
[i
] && i
!= 0)
1996 * If it's cxd0 case, and drv is alloc'ed already, and a
1997 * disk is configured there, skip it.
1999 if (i
== 0 && h
->drv
[i
] && h
->drv
[i
]->raid_level
!= -1)
2003 * We've found an empty slot. Update highest_lun
2004 * provided this isn't just the fake cxd0 controller node.
2006 if (i
> h
->highest_lun
&& !controller_node
)
2009 /* If adding a real disk at cxd0, and it's already alloc'ed */
2010 if (i
== 0 && h
->drv
[i
] != NULL
)
2014 * Found an empty slot, not already alloc'ed. Allocate it.
2015 * Mark it with raid_level == -1, so we know it's new later on.
2017 drv
= kzalloc(sizeof(*drv
), GFP_KERNEL
);
2020 drv
->raid_level
= -1; /* so we know it's new */
2027 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
)
2029 kfree(h
->drv
[drv_index
]);
2030 h
->drv
[drv_index
] = NULL
;
2033 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
)
2035 put_disk(h
->gendisk
[drv_index
]);
2036 h
->gendisk
[drv_index
] = NULL
;
2039 /* cciss_add_gendisk finds a free hba[]->drv structure
2040 * and allocates a gendisk if needed, and sets the lunid
2041 * in the drvinfo structure. It returns the index into
2042 * the ->drv[] array, or -1 if none are free.
2043 * is_controller_node indicates whether highest_lun should
2044 * count this disk, or if it's only being added to provide
2045 * a means to talk to the controller in case no logical
2046 * drives have yet been configured.
2048 static int cciss_add_gendisk(ctlr_info_t
*h
, unsigned char lunid
[],
2049 int controller_node
)
2053 drv_index
= cciss_alloc_drive_info(h
, controller_node
);
2054 if (drv_index
== -1)
2057 /*Check if the gendisk needs to be allocated */
2058 if (!h
->gendisk
[drv_index
]) {
2059 h
->gendisk
[drv_index
] =
2060 alloc_disk(1 << NWD_SHIFT
);
2061 if (!h
->gendisk
[drv_index
]) {
2062 printk(KERN_ERR
"cciss%d: could not "
2063 "allocate a new disk %d\n",
2064 h
->ctlr
, drv_index
);
2065 goto err_free_drive_info
;
2068 memcpy(h
->drv
[drv_index
]->LunID
, lunid
,
2069 sizeof(h
->drv
[drv_index
]->LunID
));
2070 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
2072 /* Don't need to mark this busy because nobody */
2073 /* else knows about this disk yet to contend */
2074 /* for access to it. */
2075 h
->drv
[drv_index
]->busy_configuring
= 0;
2080 cciss_free_gendisk(h
, drv_index
);
2081 err_free_drive_info
:
2082 cciss_free_drive_info(h
, drv_index
);
2086 /* This is for the special case of a controller which
2087 * has no logical drives. In this case, we still need
2088 * to register a disk so the controller can be accessed
2089 * by the Array Config Utility.
2091 static void cciss_add_controller_node(ctlr_info_t
*h
)
2093 struct gendisk
*disk
;
2096 if (h
->gendisk
[0] != NULL
) /* already did this? Then bail. */
2099 drv_index
= cciss_add_gendisk(h
, CTLR_LUNID
, 1);
2100 if (drv_index
== -1)
2102 h
->drv
[drv_index
]->block_size
= 512;
2103 h
->drv
[drv_index
]->nr_blocks
= 0;
2104 h
->drv
[drv_index
]->heads
= 0;
2105 h
->drv
[drv_index
]->sectors
= 0;
2106 h
->drv
[drv_index
]->cylinders
= 0;
2107 h
->drv
[drv_index
]->raid_level
= -1;
2108 memset(h
->drv
[drv_index
]->serial_no
, 0, 16);
2109 disk
= h
->gendisk
[drv_index
];
2110 if (cciss_add_disk(h
, disk
, drv_index
) == 0)
2112 cciss_free_gendisk(h
, drv_index
);
2113 cciss_free_drive_info(h
, drv_index
);
2115 printk(KERN_WARNING
"cciss%d: could not "
2116 "add disk 0.\n", h
->ctlr
);
2120 /* This function will add and remove logical drives from the Logical
2121 * drive array of the controller and maintain persistency of ordering
2122 * so that mount points are preserved until the next reboot. This allows
2123 * for the removal of logical drives in the middle of the drive array
2124 * without a re-ordering of those drives.
2126 * h = The controller to perform the operations on
2128 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
,
2133 ReportLunData_struct
*ld_buff
= NULL
;
2139 unsigned char lunid
[8] = CTLR_LUNID
;
2140 unsigned long flags
;
2142 if (!capable(CAP_SYS_RAWIO
))
2145 /* Set busy_configuring flag for this operation */
2146 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
2147 if (h
->busy_configuring
) {
2148 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2151 h
->busy_configuring
= 1;
2152 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2154 ld_buff
= kzalloc(sizeof(ReportLunData_struct
), GFP_KERNEL
);
2155 if (ld_buff
== NULL
)
2158 return_code
= sendcmd_withirq(CISS_REPORT_LOG
, ctlr
, ld_buff
,
2159 sizeof(ReportLunData_struct
),
2160 0, CTLR_LUNID
, TYPE_CMD
);
2162 if (return_code
== IO_OK
)
2163 listlength
= be32_to_cpu(*(__be32
*) ld_buff
->LUNListLength
);
2164 else { /* reading number of logical volumes failed */
2165 printk(KERN_WARNING
"cciss: report logical volume"
2166 " command failed\n");
2171 num_luns
= listlength
/ 8; /* 8 bytes per entry */
2172 if (num_luns
> CISS_MAX_LUN
) {
2173 num_luns
= CISS_MAX_LUN
;
2174 printk(KERN_WARNING
"cciss: more luns configured"
2175 " on controller than can be handled by"
2180 cciss_add_controller_node(h
);
2182 /* Compare controller drive array to driver's drive array
2183 * to see if any drives are missing on the controller due
2184 * to action of Array Config Utility (user deletes drive)
2185 * and deregister logical drives which have disappeared.
2187 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2191 /* skip holes in the array from already deleted drives */
2192 if (h
->drv
[i
] == NULL
)
2195 for (j
= 0; j
< num_luns
; j
++) {
2196 memcpy(lunid
, &ld_buff
->LUN
[j
][0], sizeof(lunid
));
2197 if (memcmp(h
->drv
[i
]->LunID
, lunid
,
2198 sizeof(lunid
)) == 0) {
2204 /* Deregister it from the OS, it's gone. */
2205 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
2206 h
->drv
[i
]->busy_configuring
= 1;
2207 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2208 return_code
= deregister_disk(h
, i
, 1, via_ioctl
);
2209 if (h
->drv
[i
] != NULL
)
2210 h
->drv
[i
]->busy_configuring
= 0;
2214 /* Compare controller drive array to driver's drive array.
2215 * Check for updates in the drive information and any new drives
2216 * on the controller due to ACU adding logical drives, or changing
2217 * a logical drive's size, etc. Reregister any new/changed drives
2219 for (i
= 0; i
< num_luns
; i
++) {
2224 memcpy(lunid
, &ld_buff
->LUN
[i
][0], sizeof(lunid
));
2225 /* Find if the LUN is already in the drive array
2226 * of the driver. If so then update its info
2227 * if not in use. If it does not exist then find
2228 * the first free index and add it.
2230 for (j
= 0; j
<= h
->highest_lun
; j
++) {
2231 if (h
->drv
[j
] != NULL
&&
2232 memcmp(h
->drv
[j
]->LunID
, lunid
,
2233 sizeof(h
->drv
[j
]->LunID
)) == 0) {
2240 /* check if the drive was found already in the array */
2242 drv_index
= cciss_add_gendisk(h
, lunid
, 0);
2243 if (drv_index
== -1)
2246 cciss_update_drive_info(ctlr
, drv_index
, first_time
,
2252 h
->busy_configuring
= 0;
2253 /* We return -1 here to tell the ACU that we have registered/updated
2254 * all of the drives that we can and to keep it from calling us
2259 printk(KERN_ERR
"cciss: out of memory\n");
2260 h
->busy_configuring
= 0;
2264 static void cciss_clear_drive_info(drive_info_struct
*drive_info
)
2266 /* zero out the disk size info */
2267 drive_info
->nr_blocks
= 0;
2268 drive_info
->block_size
= 0;
2269 drive_info
->heads
= 0;
2270 drive_info
->sectors
= 0;
2271 drive_info
->cylinders
= 0;
2272 drive_info
->raid_level
= -1;
2273 memset(drive_info
->serial_no
, 0, sizeof(drive_info
->serial_no
));
2274 memset(drive_info
->model
, 0, sizeof(drive_info
->model
));
2275 memset(drive_info
->rev
, 0, sizeof(drive_info
->rev
));
2276 memset(drive_info
->vendor
, 0, sizeof(drive_info
->vendor
));
2278 * don't clear the LUNID though, we need to remember which
2283 /* This function will deregister the disk and it's queue from the
2284 * kernel. It must be called with the controller lock held and the
2285 * drv structures busy_configuring flag set. It's parameters are:
2287 * disk = This is the disk to be deregistered
2288 * drv = This is the drive_info_struct associated with the disk to be
2289 * deregistered. It contains information about the disk used
2291 * clear_all = This flag determines whether or not the disk information
2292 * is going to be completely cleared out and the highest_lun
2293 * reset. Sometimes we want to clear out information about
2294 * the disk in preparation for re-adding it. In this case
2295 * the highest_lun should be left unchanged and the LunID
2296 * should not be cleared.
2298 * This indicates whether we've reached this path via ioctl.
2299 * This affects the maximum usage count allowed for c0d0 to be messed with.
2300 * If this path is reached via ioctl(), then the max_usage_count will
2301 * be 1, as the process calling ioctl() has got to have the device open.
2302 * If we get here via sysfs, then the max usage count will be zero.
2304 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
2305 int clear_all
, int via_ioctl
)
2308 struct gendisk
*disk
;
2309 drive_info_struct
*drv
;
2310 int recalculate_highest_lun
;
2312 if (!capable(CAP_SYS_RAWIO
))
2315 drv
= h
->drv
[drv_index
];
2316 disk
= h
->gendisk
[drv_index
];
2318 /* make sure logical volume is NOT is use */
2319 if (clear_all
|| (h
->gendisk
[0] == disk
)) {
2320 if (drv
->usage_count
> via_ioctl
)
2322 } else if (drv
->usage_count
> 0)
2325 recalculate_highest_lun
= (drv
== h
->drv
[h
->highest_lun
]);
2327 /* invalidate the devices and deregister the disk. If it is disk
2328 * zero do not deregister it but just zero out it's values. This
2329 * allows us to delete disk zero but keep the controller registered.
2331 if (h
->gendisk
[0] != disk
) {
2332 struct request_queue
*q
= disk
->queue
;
2333 if (disk
->flags
& GENHD_FL_UP
) {
2334 cciss_destroy_ld_sysfs_entry(h
, drv_index
, 0);
2338 blk_cleanup_queue(q
);
2339 /* If clear_all is set then we are deleting the logical
2340 * drive, not just refreshing its info. For drives
2341 * other than disk 0 we will call put_disk. We do not
2342 * do this for disk 0 as we need it to be able to
2343 * configure the controller.
2346 /* This isn't pretty, but we need to find the
2347 * disk in our array and NULL our the pointer.
2348 * This is so that we will call alloc_disk if
2349 * this index is used again later.
2351 for (i
=0; i
< CISS_MAX_LUN
; i
++){
2352 if (h
->gendisk
[i
] == disk
) {
2353 h
->gendisk
[i
] = NULL
;
2360 set_capacity(disk
, 0);
2361 cciss_clear_drive_info(drv
);
2366 /* if it was the last disk, find the new hightest lun */
2367 if (clear_all
&& recalculate_highest_lun
) {
2368 int i
, newhighest
= -1;
2369 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2370 /* if the disk has size > 0, it is available */
2371 if (h
->drv
[i
] && h
->drv
[i
]->heads
)
2374 h
->highest_lun
= newhighest
;
2379 static int fill_cmd(CommandList_struct
*c
, __u8 cmd
, int ctlr
, void *buff
,
2380 size_t size
, __u8 page_code
, unsigned char *scsi3addr
,
2383 ctlr_info_t
*h
= hba
[ctlr
];
2384 u64bit buff_dma_handle
;
2387 c
->cmd_type
= CMD_IOCTL_PEND
;
2388 c
->Header
.ReplyQueue
= 0;
2390 c
->Header
.SGList
= 1;
2391 c
->Header
.SGTotal
= 1;
2393 c
->Header
.SGList
= 0;
2394 c
->Header
.SGTotal
= 0;
2396 c
->Header
.Tag
.lower
= c
->busaddr
;
2397 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
2399 c
->Request
.Type
.Type
= cmd_type
;
2400 if (cmd_type
== TYPE_CMD
) {
2403 /* are we trying to read a vital product page */
2404 if (page_code
!= 0) {
2405 c
->Request
.CDB
[1] = 0x01;
2406 c
->Request
.CDB
[2] = page_code
;
2408 c
->Request
.CDBLen
= 6;
2409 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2410 c
->Request
.Type
.Direction
= XFER_READ
;
2411 c
->Request
.Timeout
= 0;
2412 c
->Request
.CDB
[0] = CISS_INQUIRY
;
2413 c
->Request
.CDB
[4] = size
& 0xFF;
2415 case CISS_REPORT_LOG
:
2416 case CISS_REPORT_PHYS
:
2417 /* Talking to controller so It's a physical command
2418 mode = 00 target = 0. Nothing to write.
2420 c
->Request
.CDBLen
= 12;
2421 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2422 c
->Request
.Type
.Direction
= XFER_READ
;
2423 c
->Request
.Timeout
= 0;
2424 c
->Request
.CDB
[0] = cmd
;
2425 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; //MSB
2426 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
2427 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
2428 c
->Request
.CDB
[9] = size
& 0xFF;
2431 case CCISS_READ_CAPACITY
:
2432 c
->Request
.CDBLen
= 10;
2433 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2434 c
->Request
.Type
.Direction
= XFER_READ
;
2435 c
->Request
.Timeout
= 0;
2436 c
->Request
.CDB
[0] = cmd
;
2438 case CCISS_READ_CAPACITY_16
:
2439 c
->Request
.CDBLen
= 16;
2440 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2441 c
->Request
.Type
.Direction
= XFER_READ
;
2442 c
->Request
.Timeout
= 0;
2443 c
->Request
.CDB
[0] = cmd
;
2444 c
->Request
.CDB
[1] = 0x10;
2445 c
->Request
.CDB
[10] = (size
>> 24) & 0xFF;
2446 c
->Request
.CDB
[11] = (size
>> 16) & 0xFF;
2447 c
->Request
.CDB
[12] = (size
>> 8) & 0xFF;
2448 c
->Request
.CDB
[13] = size
& 0xFF;
2449 c
->Request
.Timeout
= 0;
2450 c
->Request
.CDB
[0] = cmd
;
2452 case CCISS_CACHE_FLUSH
:
2453 c
->Request
.CDBLen
= 12;
2454 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2455 c
->Request
.Type
.Direction
= XFER_WRITE
;
2456 c
->Request
.Timeout
= 0;
2457 c
->Request
.CDB
[0] = BMIC_WRITE
;
2458 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
2460 case TEST_UNIT_READY
:
2461 c
->Request
.CDBLen
= 6;
2462 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2463 c
->Request
.Type
.Direction
= XFER_NONE
;
2464 c
->Request
.Timeout
= 0;
2468 "cciss%d: Unknown Command 0x%c\n", ctlr
, cmd
);
2471 } else if (cmd_type
== TYPE_MSG
) {
2473 case 0: /* ABORT message */
2474 c
->Request
.CDBLen
= 12;
2475 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2476 c
->Request
.Type
.Direction
= XFER_WRITE
;
2477 c
->Request
.Timeout
= 0;
2478 c
->Request
.CDB
[0] = cmd
; /* abort */
2479 c
->Request
.CDB
[1] = 0; /* abort a command */
2480 /* buff contains the tag of the command to abort */
2481 memcpy(&c
->Request
.CDB
[4], buff
, 8);
2483 case 1: /* RESET message */
2484 c
->Request
.CDBLen
= 16;
2485 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2486 c
->Request
.Type
.Direction
= XFER_NONE
;
2487 c
->Request
.Timeout
= 0;
2488 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
2489 c
->Request
.CDB
[0] = cmd
; /* reset */
2490 c
->Request
.CDB
[1] = 0x03; /* reset a target */
2492 case 3: /* No-Op message */
2493 c
->Request
.CDBLen
= 1;
2494 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2495 c
->Request
.Type
.Direction
= XFER_WRITE
;
2496 c
->Request
.Timeout
= 0;
2497 c
->Request
.CDB
[0] = cmd
;
2501 "cciss%d: unknown message type %d\n", ctlr
, cmd
);
2506 "cciss%d: unknown command type %d\n", ctlr
, cmd_type
);
2509 /* Fill in the scatter gather information */
2511 buff_dma_handle
.val
= (__u64
) pci_map_single(h
->pdev
,
2513 PCI_DMA_BIDIRECTIONAL
);
2514 c
->SG
[0].Addr
.lower
= buff_dma_handle
.val32
.lower
;
2515 c
->SG
[0].Addr
.upper
= buff_dma_handle
.val32
.upper
;
2516 c
->SG
[0].Len
= size
;
2517 c
->SG
[0].Ext
= 0; /* we are not chaining */
2522 static int check_target_status(ctlr_info_t
*h
, CommandList_struct
*c
)
2524 switch (c
->err_info
->ScsiStatus
) {
2527 case SAM_STAT_CHECK_CONDITION
:
2528 switch (0xf & c
->err_info
->SenseInfo
[2]) {
2529 case 0: return IO_OK
; /* no sense */
2530 case 1: return IO_OK
; /* recovered error */
2532 if (check_for_unit_attention(h
, c
))
2533 return IO_NEEDS_RETRY
;
2534 printk(KERN_WARNING
"cciss%d: cmd 0x%02x "
2535 "check condition, sense key = 0x%02x\n",
2536 h
->ctlr
, c
->Request
.CDB
[0],
2537 c
->err_info
->SenseInfo
[2]);
2541 printk(KERN_WARNING
"cciss%d: cmd 0x%02x"
2542 "scsi status = 0x%02x\n", h
->ctlr
,
2543 c
->Request
.CDB
[0], c
->err_info
->ScsiStatus
);
2549 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
)
2551 int return_status
= IO_OK
;
2553 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
2556 switch (c
->err_info
->CommandStatus
) {
2557 case CMD_TARGET_STATUS
:
2558 return_status
= check_target_status(h
, c
);
2560 case CMD_DATA_UNDERRUN
:
2561 case CMD_DATA_OVERRUN
:
2562 /* expected for inquiry and report lun commands */
2565 printk(KERN_WARNING
"cciss: cmd 0x%02x is "
2566 "reported invalid\n", c
->Request
.CDB
[0]);
2567 return_status
= IO_ERROR
;
2569 case CMD_PROTOCOL_ERR
:
2570 printk(KERN_WARNING
"cciss: cmd 0x%02x has "
2571 "protocol error \n", c
->Request
.CDB
[0]);
2572 return_status
= IO_ERROR
;
2574 case CMD_HARDWARE_ERR
:
2575 printk(KERN_WARNING
"cciss: cmd 0x%02x had "
2576 " hardware error\n", c
->Request
.CDB
[0]);
2577 return_status
= IO_ERROR
;
2579 case CMD_CONNECTION_LOST
:
2580 printk(KERN_WARNING
"cciss: cmd 0x%02x had "
2581 "connection lost\n", c
->Request
.CDB
[0]);
2582 return_status
= IO_ERROR
;
2585 printk(KERN_WARNING
"cciss: cmd 0x%02x was "
2586 "aborted\n", c
->Request
.CDB
[0]);
2587 return_status
= IO_ERROR
;
2589 case CMD_ABORT_FAILED
:
2590 printk(KERN_WARNING
"cciss: cmd 0x%02x reports "
2591 "abort failed\n", c
->Request
.CDB
[0]);
2592 return_status
= IO_ERROR
;
2594 case CMD_UNSOLICITED_ABORT
:
2596 "cciss%d: unsolicited abort 0x%02x\n", h
->ctlr
,
2598 return_status
= IO_NEEDS_RETRY
;
2601 printk(KERN_WARNING
"cciss: cmd 0x%02x returned "
2602 "unknown status %x\n", c
->Request
.CDB
[0],
2603 c
->err_info
->CommandStatus
);
2604 return_status
= IO_ERROR
;
2606 return return_status
;
2609 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
2612 DECLARE_COMPLETION_ONSTACK(wait
);
2613 u64bit buff_dma_handle
;
2614 unsigned long flags
;
2615 int return_status
= IO_OK
;
2619 /* Put the request on the tail of the queue and send it */
2620 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
2624 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2626 wait_for_completion(&wait
);
2628 if (c
->err_info
->CommandStatus
== 0 || !attempt_retry
)
2631 return_status
= process_sendcmd_error(h
, c
);
2633 if (return_status
== IO_NEEDS_RETRY
&&
2634 c
->retry_count
< MAX_CMD_RETRIES
) {
2635 printk(KERN_WARNING
"cciss%d: retrying 0x%02x\n", h
->ctlr
,
2638 /* erase the old error information */
2639 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2640 return_status
= IO_OK
;
2641 INIT_COMPLETION(wait
);
2646 /* unlock the buffers from DMA */
2647 buff_dma_handle
.val32
.lower
= c
->SG
[0].Addr
.lower
;
2648 buff_dma_handle
.val32
.upper
= c
->SG
[0].Addr
.upper
;
2649 pci_unmap_single(h
->pdev
, (dma_addr_t
) buff_dma_handle
.val
,
2650 c
->SG
[0].Len
, PCI_DMA_BIDIRECTIONAL
);
2651 return return_status
;
2654 static int sendcmd_withirq(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
2655 __u8 page_code
, unsigned char scsi3addr
[],
2658 ctlr_info_t
*h
= hba
[ctlr
];
2659 CommandList_struct
*c
;
2662 c
= cmd_alloc(h
, 0);
2665 return_status
= fill_cmd(c
, cmd
, ctlr
, buff
, size
, page_code
,
2666 scsi3addr
, cmd_type
);
2667 if (return_status
== IO_OK
)
2668 return_status
= sendcmd_withirq_core(h
, c
, 1);
2671 return return_status
;
2674 static void cciss_geometry_inquiry(int ctlr
, int logvol
,
2675 sector_t total_size
,
2676 unsigned int block_size
,
2677 InquiryData_struct
*inq_buff
,
2678 drive_info_struct
*drv
)
2682 unsigned char scsi3addr
[8];
2684 memset(inq_buff
, 0, sizeof(InquiryData_struct
));
2685 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2686 return_code
= sendcmd_withirq(CISS_INQUIRY
, ctlr
, inq_buff
,
2687 sizeof(*inq_buff
), 0xC1, scsi3addr
, TYPE_CMD
);
2688 if (return_code
== IO_OK
) {
2689 if (inq_buff
->data_byte
[8] == 0xFF) {
2691 "cciss: reading geometry failed, volume "
2692 "does not support reading geometry\n");
2694 drv
->sectors
= 32; // Sectors per track
2695 drv
->cylinders
= total_size
+ 1;
2696 drv
->raid_level
= RAID_UNKNOWN
;
2698 drv
->heads
= inq_buff
->data_byte
[6];
2699 drv
->sectors
= inq_buff
->data_byte
[7];
2700 drv
->cylinders
= (inq_buff
->data_byte
[4] & 0xff) << 8;
2701 drv
->cylinders
+= inq_buff
->data_byte
[5];
2702 drv
->raid_level
= inq_buff
->data_byte
[8];
2704 drv
->block_size
= block_size
;
2705 drv
->nr_blocks
= total_size
+ 1;
2706 t
= drv
->heads
* drv
->sectors
;
2708 sector_t real_size
= total_size
+ 1;
2709 unsigned long rem
= sector_div(real_size
, t
);
2712 drv
->cylinders
= real_size
;
2714 } else { /* Get geometry failed */
2715 printk(KERN_WARNING
"cciss: reading geometry failed\n");
2720 cciss_read_capacity(int ctlr
, int logvol
, sector_t
*total_size
,
2721 unsigned int *block_size
)
2723 ReadCapdata_struct
*buf
;
2725 unsigned char scsi3addr
[8];
2727 buf
= kzalloc(sizeof(ReadCapdata_struct
), GFP_KERNEL
);
2729 printk(KERN_WARNING
"cciss: out of memory\n");
2733 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2734 return_code
= sendcmd_withirq(CCISS_READ_CAPACITY
, ctlr
, buf
,
2735 sizeof(ReadCapdata_struct
), 0, scsi3addr
, TYPE_CMD
);
2736 if (return_code
== IO_OK
) {
2737 *total_size
= be32_to_cpu(*(__be32
*) buf
->total_size
);
2738 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2739 } else { /* read capacity command failed */
2740 printk(KERN_WARNING
"cciss: read capacity failed\n");
2742 *block_size
= BLOCK_SIZE
;
2747 static void cciss_read_capacity_16(int ctlr
, int logvol
,
2748 sector_t
*total_size
, unsigned int *block_size
)
2750 ReadCapdata_struct_16
*buf
;
2752 unsigned char scsi3addr
[8];
2754 buf
= kzalloc(sizeof(ReadCapdata_struct_16
), GFP_KERNEL
);
2756 printk(KERN_WARNING
"cciss: out of memory\n");
2760 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2761 return_code
= sendcmd_withirq(CCISS_READ_CAPACITY_16
,
2762 ctlr
, buf
, sizeof(ReadCapdata_struct_16
),
2763 0, scsi3addr
, TYPE_CMD
);
2764 if (return_code
== IO_OK
) {
2765 *total_size
= be64_to_cpu(*(__be64
*) buf
->total_size
);
2766 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2767 } else { /* read capacity command failed */
2768 printk(KERN_WARNING
"cciss: read capacity failed\n");
2770 *block_size
= BLOCK_SIZE
;
2772 printk(KERN_INFO
" blocks= %llu block_size= %d\n",
2773 (unsigned long long)*total_size
+1, *block_size
);
2777 static int cciss_revalidate(struct gendisk
*disk
)
2779 ctlr_info_t
*h
= get_host(disk
);
2780 drive_info_struct
*drv
= get_drv(disk
);
2783 unsigned int block_size
;
2784 sector_t total_size
;
2785 InquiryData_struct
*inq_buff
= NULL
;
2787 for (logvol
= 0; logvol
< CISS_MAX_LUN
; logvol
++) {
2788 if (memcmp(h
->drv
[logvol
]->LunID
, drv
->LunID
,
2789 sizeof(drv
->LunID
)) == 0) {
2798 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
2799 if (inq_buff
== NULL
) {
2800 printk(KERN_WARNING
"cciss: out of memory\n");
2803 if (h
->cciss_read
== CCISS_READ_10
) {
2804 cciss_read_capacity(h
->ctlr
, logvol
,
2805 &total_size
, &block_size
);
2807 cciss_read_capacity_16(h
->ctlr
, logvol
,
2808 &total_size
, &block_size
);
2810 cciss_geometry_inquiry(h
->ctlr
, logvol
, total_size
, block_size
,
2813 blk_queue_logical_block_size(drv
->queue
, drv
->block_size
);
2814 set_capacity(disk
, drv
->nr_blocks
);
2821 * Map (physical) PCI mem into (virtual) kernel space
2823 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
2825 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
2826 ulong page_offs
= ((ulong
) base
) - page_base
;
2827 void __iomem
*page_remapped
= ioremap(page_base
, page_offs
+ size
);
2829 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
2833 * Takes jobs of the Q and sends them to the hardware, then puts it on
2834 * the Q to wait for completion.
2836 static void start_io(ctlr_info_t
*h
)
2838 CommandList_struct
*c
;
2840 while (!hlist_empty(&h
->reqQ
)) {
2841 c
= hlist_entry(h
->reqQ
.first
, CommandList_struct
, list
);
2842 /* can't do anything if fifo is full */
2843 if ((h
->access
.fifo_full(h
))) {
2844 printk(KERN_WARNING
"cciss: fifo full\n");
2848 /* Get the first entry from the Request Q */
2852 /* Tell the controller execute command */
2853 h
->access
.submit_command(h
, c
);
2855 /* Put job onto the completed Q */
2860 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2861 /* Zeros out the error record and then resends the command back */
2862 /* to the controller */
2863 static inline void resend_cciss_cmd(ctlr_info_t
*h
, CommandList_struct
*c
)
2865 /* erase the old error information */
2866 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2868 /* add it to software queue and then send it to the controller */
2871 if (h
->Qdepth
> h
->maxQsinceinit
)
2872 h
->maxQsinceinit
= h
->Qdepth
;
2877 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte
,
2878 unsigned int msg_byte
, unsigned int host_byte
,
2879 unsigned int driver_byte
)
2881 /* inverse of macros in scsi.h */
2882 return (scsi_status_byte
& 0xff) |
2883 ((msg_byte
& 0xff) << 8) |
2884 ((host_byte
& 0xff) << 16) |
2885 ((driver_byte
& 0xff) << 24);
2888 static inline int evaluate_target_status(ctlr_info_t
*h
,
2889 CommandList_struct
*cmd
, int *retry_cmd
)
2891 unsigned char sense_key
;
2892 unsigned char status_byte
, msg_byte
, host_byte
, driver_byte
;
2896 /* If we get in here, it means we got "target status", that is, scsi status */
2897 status_byte
= cmd
->err_info
->ScsiStatus
;
2898 driver_byte
= DRIVER_OK
;
2899 msg_byte
= cmd
->err_info
->CommandStatus
; /* correct? seems too device specific */
2901 if (blk_pc_request(cmd
->rq
))
2902 host_byte
= DID_PASSTHROUGH
;
2906 error_value
= make_status_bytes(status_byte
, msg_byte
,
2907 host_byte
, driver_byte
);
2909 if (cmd
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
) {
2910 if (!blk_pc_request(cmd
->rq
))
2911 printk(KERN_WARNING
"cciss: cmd %p "
2912 "has SCSI Status 0x%x\n",
2913 cmd
, cmd
->err_info
->ScsiStatus
);
2917 /* check the sense key */
2918 sense_key
= 0xf & cmd
->err_info
->SenseInfo
[2];
2919 /* no status or recovered error */
2920 if (((sense_key
== 0x0) || (sense_key
== 0x1)) && !blk_pc_request(cmd
->rq
))
2923 if (check_for_unit_attention(h
, cmd
)) {
2924 *retry_cmd
= !blk_pc_request(cmd
->rq
);
2928 if (!blk_pc_request(cmd
->rq
)) { /* Not SG_IO or similar? */
2929 if (error_value
!= 0)
2930 printk(KERN_WARNING
"cciss: cmd %p has CHECK CONDITION"
2931 " sense key = 0x%x\n", cmd
, sense_key
);
2935 /* SG_IO or similar, copy sense data back */
2936 if (cmd
->rq
->sense
) {
2937 if (cmd
->rq
->sense_len
> cmd
->err_info
->SenseLen
)
2938 cmd
->rq
->sense_len
= cmd
->err_info
->SenseLen
;
2939 memcpy(cmd
->rq
->sense
, cmd
->err_info
->SenseInfo
,
2940 cmd
->rq
->sense_len
);
2942 cmd
->rq
->sense_len
= 0;
2947 /* checks the status of the job and calls complete buffers to mark all
2948 * buffers for the completed job. Note that this function does not need
2949 * to hold the hba/queue lock.
2951 static inline void complete_command(ctlr_info_t
*h
, CommandList_struct
*cmd
,
2955 struct request
*rq
= cmd
->rq
;
2960 rq
->errors
= make_status_bytes(0, 0, 0, DRIVER_TIMEOUT
);
2962 if (cmd
->err_info
->CommandStatus
== 0) /* no error has occurred */
2963 goto after_error_processing
;
2965 switch (cmd
->err_info
->CommandStatus
) {
2966 case CMD_TARGET_STATUS
:
2967 rq
->errors
= evaluate_target_status(h
, cmd
, &retry_cmd
);
2969 case CMD_DATA_UNDERRUN
:
2970 if (blk_fs_request(cmd
->rq
)) {
2971 printk(KERN_WARNING
"cciss: cmd %p has"
2972 " completed with data underrun "
2974 cmd
->rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
2977 case CMD_DATA_OVERRUN
:
2978 if (blk_fs_request(cmd
->rq
))
2979 printk(KERN_WARNING
"cciss: cmd %p has"
2980 " completed with data overrun "
2984 printk(KERN_WARNING
"cciss: cmd %p is "
2985 "reported invalid\n", cmd
);
2986 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2987 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2988 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
2990 case CMD_PROTOCOL_ERR
:
2991 printk(KERN_WARNING
"cciss: cmd %p has "
2992 "protocol error \n", cmd
);
2993 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2994 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2995 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
2997 case CMD_HARDWARE_ERR
:
2998 printk(KERN_WARNING
"cciss: cmd %p had "
2999 " hardware error\n", cmd
);
3000 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3001 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3002 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3004 case CMD_CONNECTION_LOST
:
3005 printk(KERN_WARNING
"cciss: cmd %p had "
3006 "connection lost\n", cmd
);
3007 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3008 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3009 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3012 printk(KERN_WARNING
"cciss: cmd %p was "
3014 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3015 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3016 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ABORT
);
3018 case CMD_ABORT_FAILED
:
3019 printk(KERN_WARNING
"cciss: cmd %p reports "
3020 "abort failed\n", cmd
);
3021 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3022 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3023 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3025 case CMD_UNSOLICITED_ABORT
:
3026 printk(KERN_WARNING
"cciss%d: unsolicited "
3027 "abort %p\n", h
->ctlr
, cmd
);
3028 if (cmd
->retry_count
< MAX_CMD_RETRIES
) {
3031 "cciss%d: retrying %p\n", h
->ctlr
, cmd
);
3035 "cciss%d: %p retried too "
3036 "many times\n", h
->ctlr
, cmd
);
3037 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3038 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3039 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ABORT
);
3042 printk(KERN_WARNING
"cciss: cmd %p timedout\n", cmd
);
3043 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3044 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3045 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3048 printk(KERN_WARNING
"cciss: cmd %p returned "
3049 "unknown status %x\n", cmd
,
3050 cmd
->err_info
->CommandStatus
);
3051 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3052 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3053 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3056 after_error_processing
:
3058 /* We need to return this command */
3060 resend_cciss_cmd(h
, cmd
);
3063 cmd
->rq
->completion_data
= cmd
;
3064 blk_complete_request(cmd
->rq
);
3068 * Get a request and submit it to the controller.
3070 static void do_cciss_request(struct request_queue
*q
)
3072 ctlr_info_t
*h
= q
->queuedata
;
3073 CommandList_struct
*c
;
3076 struct request
*creq
;
3078 struct scatterlist
*tmp_sg
;
3079 SGDescriptor_struct
*curr_sg
;
3080 drive_info_struct
*drv
;
3086 /* We call start_io here in case there is a command waiting on the
3087 * queue that has not been sent.
3089 if (blk_queue_plugged(q
))
3093 creq
= blk_peek_request(q
);
3097 BUG_ON(creq
->nr_phys_segments
> h
->maxsgentries
);
3099 if ((c
= cmd_alloc(h
, 1)) == NULL
)
3102 blk_start_request(creq
);
3104 tmp_sg
= h
->scatter_list
[c
->cmdindex
];
3105 spin_unlock_irq(q
->queue_lock
);
3107 c
->cmd_type
= CMD_RWREQ
;
3110 /* fill in the request */
3111 drv
= creq
->rq_disk
->private_data
;
3112 c
->Header
.ReplyQueue
= 0; // unused in simple mode
3113 /* got command from pool, so use the command block index instead */
3114 /* for direct lookups. */
3115 /* The first 2 bits are reserved for controller error reporting. */
3116 c
->Header
.Tag
.lower
= (c
->cmdindex
<< 3);
3117 c
->Header
.Tag
.lower
|= 0x04; /* flag for direct lookup. */
3118 memcpy(&c
->Header
.LUN
, drv
->LunID
, sizeof(drv
->LunID
));
3119 c
->Request
.CDBLen
= 10; // 12 byte commands not in FW yet;
3120 c
->Request
.Type
.Type
= TYPE_CMD
; // It is a command.
3121 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3122 c
->Request
.Type
.Direction
=
3123 (rq_data_dir(creq
) == READ
) ? XFER_READ
: XFER_WRITE
;
3124 c
->Request
.Timeout
= 0; // Don't time out
3126 (rq_data_dir(creq
) == READ
) ? h
->cciss_read
: h
->cciss_write
;
3127 start_blk
= blk_rq_pos(creq
);
3129 printk(KERN_DEBUG
"ciss: sector =%d nr_sectors=%d\n",
3130 (int)blk_rq_pos(creq
), (int)blk_rq_sectors(creq
));
3131 #endif /* CCISS_DEBUG */
3133 sg_init_table(tmp_sg
, h
->maxsgentries
);
3134 seg
= blk_rq_map_sg(q
, creq
, tmp_sg
);
3136 /* get the DMA records for the setup */
3137 if (c
->Request
.Type
.Direction
== XFER_READ
)
3138 dir
= PCI_DMA_FROMDEVICE
;
3140 dir
= PCI_DMA_TODEVICE
;
3146 for (i
= 0; i
< seg
; i
++) {
3147 if (((sg_index
+1) == (h
->max_cmd_sgentries
)) &&
3148 !chained
&& ((seg
- i
) > 1)) {
3150 curr_sg
[sg_index
].Len
= (nseg
) *
3151 sizeof(SGDescriptor_struct
);
3152 curr_sg
[sg_index
].Ext
= CCISS_SG_CHAIN
;
3154 /* Point to next chain block. */
3155 curr_sg
= h
->cmd_sg_list
[c
->cmdindex
]->sgchain
;
3159 curr_sg
[sg_index
].Len
= tmp_sg
[i
].length
;
3160 temp64
.val
= (__u64
) pci_map_page(h
->pdev
, sg_page(&tmp_sg
[i
]),
3162 tmp_sg
[i
].length
, dir
);
3163 curr_sg
[sg_index
].Addr
.lower
= temp64
.val32
.lower
;
3164 curr_sg
[sg_index
].Addr
.upper
= temp64
.val32
.upper
;
3165 curr_sg
[sg_index
].Ext
= 0; /* we are not chaining */
3173 sg_index
= h
->max_cmd_sgentries
- 1;
3174 len
= curr_sg
[sg_index
].Len
;
3175 /* Setup pointer to next chain block.
3176 * Fill out last element in current chain
3177 * block with address of next chain block.
3179 temp64
.val
= pci_map_single(h
->pdev
,
3180 h
->cmd_sg_list
[c
->cmdindex
]->sgchain
,
3183 h
->cmd_sg_list
[c
->cmdindex
]->sg_chain_dma
= temp64
.val
;
3184 curr_sg
[sg_index
].Addr
.lower
= temp64
.val32
.lower
;
3185 curr_sg
[sg_index
].Addr
.upper
= temp64
.val32
.upper
;
3187 pci_dma_sync_single_for_device(h
->pdev
,
3188 h
->cmd_sg_list
[c
->cmdindex
]->sg_chain_dma
,
3192 /* track how many SG entries we are using */
3197 printk(KERN_DEBUG
"cciss: Submitting %ld sectors in %d segments "
3199 blk_rq_sectors(creq
), seg
, chained
);
3200 #endif /* CCISS_DEBUG */
3202 c
->Header
.SGList
= c
->Header
.SGTotal
= seg
+ chained
;
3203 if (seg
> h
->max_cmd_sgentries
)
3204 c
->Header
.SGList
= h
->max_cmd_sgentries
;
3206 if (likely(blk_fs_request(creq
))) {
3207 if(h
->cciss_read
== CCISS_READ_10
) {
3208 c
->Request
.CDB
[1] = 0;
3209 c
->Request
.CDB
[2] = (start_blk
>> 24) & 0xff; //MSB
3210 c
->Request
.CDB
[3] = (start_blk
>> 16) & 0xff;
3211 c
->Request
.CDB
[4] = (start_blk
>> 8) & 0xff;
3212 c
->Request
.CDB
[5] = start_blk
& 0xff;
3213 c
->Request
.CDB
[6] = 0; // (sect >> 24) & 0xff; MSB
3214 c
->Request
.CDB
[7] = (blk_rq_sectors(creq
) >> 8) & 0xff;
3215 c
->Request
.CDB
[8] = blk_rq_sectors(creq
) & 0xff;
3216 c
->Request
.CDB
[9] = c
->Request
.CDB
[11] = c
->Request
.CDB
[12] = 0;
3218 u32 upper32
= upper_32_bits(start_blk
);
3220 c
->Request
.CDBLen
= 16;
3221 c
->Request
.CDB
[1]= 0;
3222 c
->Request
.CDB
[2]= (upper32
>> 24) & 0xff; //MSB
3223 c
->Request
.CDB
[3]= (upper32
>> 16) & 0xff;
3224 c
->Request
.CDB
[4]= (upper32
>> 8) & 0xff;
3225 c
->Request
.CDB
[5]= upper32
& 0xff;
3226 c
->Request
.CDB
[6]= (start_blk
>> 24) & 0xff;
3227 c
->Request
.CDB
[7]= (start_blk
>> 16) & 0xff;
3228 c
->Request
.CDB
[8]= (start_blk
>> 8) & 0xff;
3229 c
->Request
.CDB
[9]= start_blk
& 0xff;
3230 c
->Request
.CDB
[10]= (blk_rq_sectors(creq
) >> 24) & 0xff;
3231 c
->Request
.CDB
[11]= (blk_rq_sectors(creq
) >> 16) & 0xff;
3232 c
->Request
.CDB
[12]= (blk_rq_sectors(creq
) >> 8) & 0xff;
3233 c
->Request
.CDB
[13]= blk_rq_sectors(creq
) & 0xff;
3234 c
->Request
.CDB
[14] = c
->Request
.CDB
[15] = 0;
3236 } else if (blk_pc_request(creq
)) {
3237 c
->Request
.CDBLen
= creq
->cmd_len
;
3238 memcpy(c
->Request
.CDB
, creq
->cmd
, BLK_MAX_CDB
);
3240 printk(KERN_WARNING
"cciss%d: bad request type %d\n", h
->ctlr
, creq
->cmd_type
);
3244 spin_lock_irq(q
->queue_lock
);
3248 if (h
->Qdepth
> h
->maxQsinceinit
)
3249 h
->maxQsinceinit
= h
->Qdepth
;
3255 /* We will already have the driver lock here so not need
3261 static inline unsigned long get_next_completion(ctlr_info_t
*h
)
3263 return h
->access
.command_completed(h
);
3266 static inline int interrupt_pending(ctlr_info_t
*h
)
3268 return h
->access
.intr_pending(h
);
3271 static inline long interrupt_not_for_us(ctlr_info_t
*h
)
3273 return (((h
->access
.intr_pending(h
) == 0) ||
3274 (h
->interrupts_enabled
== 0)));
3277 static irqreturn_t
do_cciss_intr(int irq
, void *dev_id
)
3279 ctlr_info_t
*h
= dev_id
;
3280 CommandList_struct
*c
;
3281 unsigned long flags
;
3284 if (interrupt_not_for_us(h
))
3287 * If there are completed commands in the completion queue,
3288 * we had better do something about it.
3290 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
3291 while (interrupt_pending(h
)) {
3292 while ((a
= get_next_completion(h
)) != FIFO_EMPTY
) {
3296 if (a2
>= h
->nr_cmds
) {
3298 "cciss: controller cciss%d failed, stopping.\n",
3300 fail_all_cmds(h
->ctlr
);
3304 c
= h
->cmd_pool
+ a2
;
3308 struct hlist_node
*tmp
;
3312 hlist_for_each_entry(c
, tmp
, &h
->cmpQ
, list
) {
3313 if (c
->busaddr
== a
)
3318 * If we've found the command, take it off the
3319 * completion Q and free it
3321 if (c
&& c
->busaddr
== a
) {
3323 if (c
->cmd_type
== CMD_RWREQ
) {
3324 complete_command(h
, c
, 0);
3325 } else if (c
->cmd_type
== CMD_IOCTL_PEND
) {
3326 complete(c
->waiting
);
3328 # ifdef CONFIG_CISS_SCSI_TAPE
3329 else if (c
->cmd_type
== CMD_SCSI
)
3330 complete_scsi_command(c
, 0, a1
);
3337 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
3342 * add_to_scan_list() - add controller to rescan queue
3343 * @h: Pointer to the controller.
3345 * Adds the controller to the rescan queue if not already on the queue.
3347 * returns 1 if added to the queue, 0 if skipped (could be on the
3348 * queue already, or the controller could be initializing or shutting
3351 static int add_to_scan_list(struct ctlr_info
*h
)
3353 struct ctlr_info
*test_h
;
3357 if (h
->busy_initializing
)
3360 if (!mutex_trylock(&h
->busy_shutting_down
))
3363 mutex_lock(&scan_mutex
);
3364 list_for_each_entry(test_h
, &scan_q
, scan_list
) {
3370 if (!found
&& !h
->busy_scanning
) {
3371 INIT_COMPLETION(h
->scan_wait
);
3372 list_add_tail(&h
->scan_list
, &scan_q
);
3375 mutex_unlock(&scan_mutex
);
3376 mutex_unlock(&h
->busy_shutting_down
);
3382 * remove_from_scan_list() - remove controller from rescan queue
3383 * @h: Pointer to the controller.
3385 * Removes the controller from the rescan queue if present. Blocks if
3386 * the controller is currently conducting a rescan. The controller
3387 * can be in one of three states:
3388 * 1. Doesn't need a scan
3389 * 2. On the scan list, but not scanning yet (we remove it)
3390 * 3. Busy scanning (and not on the list). In this case we want to wait for
3391 * the scan to complete to make sure the scanning thread for this
3392 * controller is completely idle.
3394 static void remove_from_scan_list(struct ctlr_info
*h
)
3396 struct ctlr_info
*test_h
, *tmp_h
;
3398 mutex_lock(&scan_mutex
);
3399 list_for_each_entry_safe(test_h
, tmp_h
, &scan_q
, scan_list
) {
3400 if (test_h
== h
) { /* state 2. */
3401 list_del(&h
->scan_list
);
3402 complete_all(&h
->scan_wait
);
3403 mutex_unlock(&scan_mutex
);
3407 if (h
->busy_scanning
) { /* state 3. */
3408 mutex_unlock(&scan_mutex
);
3409 wait_for_completion(&h
->scan_wait
);
3410 } else { /* state 1, nothing to do. */
3411 mutex_unlock(&scan_mutex
);
3416 * scan_thread() - kernel thread used to rescan controllers
3419 * A kernel thread used scan for drive topology changes on
3420 * controllers. The thread processes only one controller at a time
3421 * using a queue. Controllers are added to the queue using
3422 * add_to_scan_list() and removed from the queue either after done
3423 * processing or using remove_from_scan_list().
3427 static int scan_thread(void *data
)
3429 struct ctlr_info
*h
;
3432 set_current_state(TASK_INTERRUPTIBLE
);
3434 if (kthread_should_stop())
3438 mutex_lock(&scan_mutex
);
3439 if (list_empty(&scan_q
)) {
3440 mutex_unlock(&scan_mutex
);
3444 h
= list_entry(scan_q
.next
,
3447 list_del(&h
->scan_list
);
3448 h
->busy_scanning
= 1;
3449 mutex_unlock(&scan_mutex
);
3451 rebuild_lun_table(h
, 0, 0);
3452 complete_all(&h
->scan_wait
);
3453 mutex_lock(&scan_mutex
);
3454 h
->busy_scanning
= 0;
3455 mutex_unlock(&scan_mutex
);
3462 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
)
3464 if (c
->err_info
->SenseInfo
[2] != UNIT_ATTENTION
)
3467 switch (c
->err_info
->SenseInfo
[12]) {
3469 printk(KERN_WARNING
"cciss%d: a state change "
3470 "detected, command retried\n", h
->ctlr
);
3474 printk(KERN_WARNING
"cciss%d: LUN failure "
3475 "detected, action required\n", h
->ctlr
);
3478 case REPORT_LUNS_CHANGED
:
3479 printk(KERN_WARNING
"cciss%d: report LUN data "
3480 "changed\n", h
->ctlr
);
3482 * Here, we could call add_to_scan_list and wake up the scan thread,
3483 * except that it's quite likely that we will get more than one
3484 * REPORT_LUNS_CHANGED condition in quick succession, which means
3485 * that those which occur after the first one will likely happen
3486 * *during* the scan_thread's rescan. And the rescan code is not
3487 * robust enough to restart in the middle, undoing what it has already
3488 * done, and it's not clear that it's even possible to do this, since
3489 * part of what it does is notify the block layer, which starts
3490 * doing it's own i/o to read partition tables and so on, and the
3491 * driver doesn't have visibility to know what might need undoing.
3492 * In any event, if possible, it is horribly complicated to get right
3493 * so we just don't do it for now.
3495 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3499 case POWER_OR_RESET
:
3500 printk(KERN_WARNING
"cciss%d: a power on "
3501 "or device reset detected\n", h
->ctlr
);
3504 case UNIT_ATTENTION_CLEARED
:
3505 printk(KERN_WARNING
"cciss%d: unit attention "
3506 "cleared by another initiator\n", h
->ctlr
);
3510 printk(KERN_WARNING
"cciss%d: unknown "
3511 "unit attention detected\n", h
->ctlr
);
3517 * We cannot read the structure directly, for portability we must use
3519 * This is for debug only.
3522 static void print_cfg_table(CfgTable_struct
*tb
)
3527 printk("Controller Configuration information\n");
3528 printk("------------------------------------\n");
3529 for (i
= 0; i
< 4; i
++)
3530 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
3531 temp_name
[4] = '\0';
3532 printk(" Signature = %s\n", temp_name
);
3533 printk(" Spec Number = %d\n", readl(&(tb
->SpecValence
)));
3534 printk(" Transport methods supported = 0x%x\n",
3535 readl(&(tb
->TransportSupport
)));
3536 printk(" Transport methods active = 0x%x\n",
3537 readl(&(tb
->TransportActive
)));
3538 printk(" Requested transport Method = 0x%x\n",
3539 readl(&(tb
->HostWrite
.TransportRequest
)));
3540 printk(" Coalesce Interrupt Delay = 0x%x\n",
3541 readl(&(tb
->HostWrite
.CoalIntDelay
)));
3542 printk(" Coalesce Interrupt Count = 0x%x\n",
3543 readl(&(tb
->HostWrite
.CoalIntCount
)));
3544 printk(" Max outstanding commands = 0x%d\n",
3545 readl(&(tb
->CmdsOutMax
)));
3546 printk(" Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
3547 for (i
= 0; i
< 16; i
++)
3548 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
3549 temp_name
[16] = '\0';
3550 printk(" Server Name = %s\n", temp_name
);
3551 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb
->HeartBeat
)));
3553 #endif /* CCISS_DEBUG */
3555 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
3557 int i
, offset
, mem_type
, bar_type
;
3558 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
3561 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3562 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
3563 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
3566 mem_type
= pci_resource_flags(pdev
, i
) &
3567 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
3569 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
3570 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
3571 offset
+= 4; /* 32 bit */
3573 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
3576 default: /* reserved in PCI 2.2 */
3578 "Base address is invalid\n");
3583 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
3589 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3590 * controllers that are capable. If not, we use IO-APIC mode.
3593 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*c
,
3594 struct pci_dev
*pdev
, __u32 board_id
)
3596 #ifdef CONFIG_PCI_MSI
3598 struct msix_entry cciss_msix_entries
[4] = { {0, 0}, {0, 1},
3602 /* Some boards advertise MSI but don't really support it */
3603 if ((board_id
== 0x40700E11) ||
3604 (board_id
== 0x40800E11) ||
3605 (board_id
== 0x40820E11) || (board_id
== 0x40830E11))
3606 goto default_int_mode
;
3608 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
)) {
3609 err
= pci_enable_msix(pdev
, cciss_msix_entries
, 4);
3611 c
->intr
[0] = cciss_msix_entries
[0].vector
;
3612 c
->intr
[1] = cciss_msix_entries
[1].vector
;
3613 c
->intr
[2] = cciss_msix_entries
[2].vector
;
3614 c
->intr
[3] = cciss_msix_entries
[3].vector
;
3619 printk(KERN_WARNING
"cciss: only %d MSI-X vectors "
3620 "available\n", err
);
3621 goto default_int_mode
;
3623 printk(KERN_WARNING
"cciss: MSI-X init failed %d\n",
3625 goto default_int_mode
;
3628 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
)) {
3629 if (!pci_enable_msi(pdev
)) {
3632 printk(KERN_WARNING
"cciss: MSI init failed\n");
3636 #endif /* CONFIG_PCI_MSI */
3637 /* if we get here we're going to use the default interrupt mode */
3638 c
->intr
[SIMPLE_MODE_INT
] = pdev
->irq
;
3642 static int __devinit
cciss_pci_init(ctlr_info_t
*c
, struct pci_dev
*pdev
)
3644 ushort subsystem_vendor_id
, subsystem_device_id
, command
;
3645 __u32 board_id
, scratchpad
= 0;
3647 __u32 cfg_base_addr
;
3648 __u64 cfg_base_addr_index
;
3649 int i
, prod_index
, err
;
3651 subsystem_vendor_id
= pdev
->subsystem_vendor
;
3652 subsystem_device_id
= pdev
->subsystem_device
;
3653 board_id
= (((__u32
) (subsystem_device_id
<< 16) & 0xffff0000) |
3654 subsystem_vendor_id
);
3656 for (i
= 0; i
< ARRAY_SIZE(products
); i
++) {
3657 /* Stand aside for hpsa driver on request */
3658 if (cciss_allow_hpsa
&& products
[i
].board_id
== HPSA_BOUNDARY
)
3660 if (board_id
== products
[i
].board_id
)
3664 if (prod_index
== ARRAY_SIZE(products
)) {
3665 dev_warn(&pdev
->dev
,
3666 "unrecognized board ID: 0x%08lx, ignoring.\n",
3667 (unsigned long) board_id
);
3671 /* check to see if controller has been disabled */
3672 /* BEFORE trying to enable it */
3673 (void)pci_read_config_word(pdev
, PCI_COMMAND
, &command
);
3674 if (!(command
& 0x02)) {
3676 "cciss: controller appears to be disabled\n");
3680 err
= pci_enable_device(pdev
);
3682 printk(KERN_ERR
"cciss: Unable to Enable PCI device\n");
3686 err
= pci_request_regions(pdev
, "cciss");
3688 printk(KERN_ERR
"cciss: Cannot obtain PCI resources, "
3694 printk("command = %x\n", command
);
3695 printk("irq = %x\n", pdev
->irq
);
3696 printk("board_id = %x\n", board_id
);
3697 #endif /* CCISS_DEBUG */
3699 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3700 * else we use the IO-APIC interrupt assigned to us by system ROM.
3702 cciss_interrupt_mode(c
, pdev
, board_id
);
3704 /* find the memory BAR */
3705 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3706 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
)
3709 if (i
== DEVICE_COUNT_RESOURCE
) {
3710 printk(KERN_WARNING
"cciss: No memory BAR found\n");
3712 goto err_out_free_res
;
3715 c
->paddr
= pci_resource_start(pdev
, i
); /* addressing mode bits
3720 printk("address 0 = %lx\n", c
->paddr
);
3721 #endif /* CCISS_DEBUG */
3722 c
->vaddr
= remap_pci_mem(c
->paddr
, 0x250);
3724 /* Wait for the board to become ready. (PCI hotplug needs this.)
3725 * We poll for up to 120 secs, once per 100ms. */
3726 for (i
= 0; i
< 1200; i
++) {
3727 scratchpad
= readl(c
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
3728 if (scratchpad
== CCISS_FIRMWARE_READY
)
3730 set_current_state(TASK_INTERRUPTIBLE
);
3731 schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
3733 if (scratchpad
!= CCISS_FIRMWARE_READY
) {
3734 printk(KERN_WARNING
"cciss: Board not ready. Timed out.\n");
3736 goto err_out_free_res
;
3739 /* get the address index number */
3740 cfg_base_addr
= readl(c
->vaddr
+ SA5_CTCFG_OFFSET
);
3741 cfg_base_addr
&= (__u32
) 0x0000ffff;
3743 printk("cfg base address = %x\n", cfg_base_addr
);
3744 #endif /* CCISS_DEBUG */
3745 cfg_base_addr_index
= find_PCI_BAR_index(pdev
, cfg_base_addr
);
3747 printk("cfg base address index = %llx\n",
3748 (unsigned long long)cfg_base_addr_index
);
3749 #endif /* CCISS_DEBUG */
3750 if (cfg_base_addr_index
== -1) {
3751 printk(KERN_WARNING
"cciss: Cannot find cfg_base_addr_index\n");
3753 goto err_out_free_res
;
3756 cfg_offset
= readl(c
->vaddr
+ SA5_CTMEM_OFFSET
);
3758 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset
);
3759 #endif /* CCISS_DEBUG */
3760 c
->cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
3761 cfg_base_addr_index
) +
3762 cfg_offset
, sizeof(CfgTable_struct
));
3763 c
->board_id
= board_id
;
3766 print_cfg_table(c
->cfgtable
);
3767 #endif /* CCISS_DEBUG */
3769 /* Some controllers support Zero Memory Raid (ZMR).
3770 * When configured in ZMR mode the number of supported
3771 * commands drops to 64. So instead of just setting an
3772 * arbitrary value we make the driver a little smarter.
3773 * We read the config table to tell us how many commands
3774 * are supported on the controller then subtract 4 to
3775 * leave a little room for ioctl calls.
3777 c
->max_commands
= readl(&(c
->cfgtable
->CmdsOutMax
));
3778 c
->maxsgentries
= readl(&(c
->cfgtable
->MaxSGElements
));
3781 * Limit native command to 32 s/g elements to save dma'able memory.
3782 * Howvever spec says if 0, use 31
3785 c
->max_cmd_sgentries
= 31;
3786 if (c
->maxsgentries
> 512) {
3787 c
->max_cmd_sgentries
= 32;
3788 c
->chainsize
= c
->maxsgentries
- c
->max_cmd_sgentries
+ 1;
3789 c
->maxsgentries
-= 1; /* account for chain pointer */
3791 c
->maxsgentries
= 31; /* Default to traditional value */
3792 c
->chainsize
= 0; /* traditional */
3795 c
->product_name
= products
[prod_index
].product_name
;
3796 c
->access
= *(products
[prod_index
].access
);
3797 c
->nr_cmds
= c
->max_commands
- 4;
3798 if ((readb(&c
->cfgtable
->Signature
[0]) != 'C') ||
3799 (readb(&c
->cfgtable
->Signature
[1]) != 'I') ||
3800 (readb(&c
->cfgtable
->Signature
[2]) != 'S') ||
3801 (readb(&c
->cfgtable
->Signature
[3]) != 'S')) {
3802 printk("Does not appear to be a valid CISS config table\n");
3804 goto err_out_free_res
;
3808 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3810 prefetch
= readl(&(c
->cfgtable
->SCSI_Prefetch
));
3812 writel(prefetch
, &(c
->cfgtable
->SCSI_Prefetch
));
3816 /* Disabling DMA prefetch and refetch for the P600.
3817 * An ASIC bug may result in accesses to invalid memory addresses.
3818 * We've disabled prefetch for some time now. Testing with XEN
3819 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3821 if(board_id
== 0x3225103C) {
3824 dma_prefetch
= readl(c
->vaddr
+ I2O_DMA1_CFG
);
3825 dma_prefetch
|= 0x8000;
3826 writel(dma_prefetch
, c
->vaddr
+ I2O_DMA1_CFG
);
3827 pci_read_config_dword(pdev
, PCI_COMMAND_PARITY
, &dma_refetch
);
3829 pci_write_config_dword(pdev
, PCI_COMMAND_PARITY
, dma_refetch
);
3833 printk("Trying to put board into Simple mode\n");
3834 #endif /* CCISS_DEBUG */
3835 c
->max_commands
= readl(&(c
->cfgtable
->CmdsOutMax
));
3836 /* Update the field, and then ring the doorbell */
3837 writel(CFGTBL_Trans_Simple
, &(c
->cfgtable
->HostWrite
.TransportRequest
));
3838 writel(CFGTBL_ChangeReq
, c
->vaddr
+ SA5_DOORBELL
);
3840 /* under certain very rare conditions, this can take awhile.
3841 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3842 * as we enter this code.) */
3843 for (i
= 0; i
< MAX_CONFIG_WAIT
; i
++) {
3844 if (!(readl(c
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
3846 /* delay and try again */
3847 set_current_state(TASK_INTERRUPTIBLE
);
3848 schedule_timeout(msecs_to_jiffies(1));
3852 printk(KERN_DEBUG
"I counter got to %d %x\n", i
,
3853 readl(c
->vaddr
+ SA5_DOORBELL
));
3854 #endif /* CCISS_DEBUG */
3856 print_cfg_table(c
->cfgtable
);
3857 #endif /* CCISS_DEBUG */
3859 if (!(readl(&(c
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
)) {
3860 printk(KERN_WARNING
"cciss: unable to get board into"
3863 goto err_out_free_res
;
3869 * Deliberately omit pci_disable_device(): it does something nasty to
3870 * Smart Array controllers that pci_enable_device does not undo
3872 pci_release_regions(pdev
);
3876 /* Function to find the first free pointer into our hba[] array
3877 * Returns -1 if no free entries are left.
3879 static int alloc_cciss_hba(void)
3883 for (i
= 0; i
< MAX_CTLR
; i
++) {
3887 p
= kzalloc(sizeof(ctlr_info_t
), GFP_KERNEL
);
3894 printk(KERN_WARNING
"cciss: This driver supports a maximum"
3895 " of %d controllers.\n", MAX_CTLR
);
3898 printk(KERN_ERR
"cciss: out of memory.\n");
3902 static void free_hba(int n
)
3904 ctlr_info_t
*h
= hba
[n
];
3908 for (i
= 0; i
< h
->highest_lun
+ 1; i
++)
3909 if (h
->gendisk
[i
] != NULL
)
3910 put_disk(h
->gendisk
[i
]);
3914 /* Send a message CDB to the firmware. */
3915 static __devinit
int cciss_message(struct pci_dev
*pdev
, unsigned char opcode
, unsigned char type
)
3918 CommandListHeader_struct CommandHeader
;
3919 RequestBlock_struct Request
;
3920 ErrDescriptor_struct ErrorDescriptor
;
3922 static const size_t cmd_sz
= sizeof(Command
) + sizeof(ErrorInfo_struct
);
3925 uint32_t paddr32
, tag
;
3926 void __iomem
*vaddr
;
3929 vaddr
= ioremap_nocache(pci_resource_start(pdev
, 0), pci_resource_len(pdev
, 0));
3933 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3934 CCISS commands, so they must be allocated from the lower 4GiB of
3936 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3942 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
3948 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3949 although there's no guarantee, we assume that the address is at
3950 least 4-byte aligned (most likely, it's page-aligned). */
3953 cmd
->CommandHeader
.ReplyQueue
= 0;
3954 cmd
->CommandHeader
.SGList
= 0;
3955 cmd
->CommandHeader
.SGTotal
= 0;
3956 cmd
->CommandHeader
.Tag
.lower
= paddr32
;
3957 cmd
->CommandHeader
.Tag
.upper
= 0;
3958 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
3960 cmd
->Request
.CDBLen
= 16;
3961 cmd
->Request
.Type
.Type
= TYPE_MSG
;
3962 cmd
->Request
.Type
.Attribute
= ATTR_HEADOFQUEUE
;
3963 cmd
->Request
.Type
.Direction
= XFER_NONE
;
3964 cmd
->Request
.Timeout
= 0; /* Don't time out */
3965 cmd
->Request
.CDB
[0] = opcode
;
3966 cmd
->Request
.CDB
[1] = type
;
3967 memset(&cmd
->Request
.CDB
[2], 0, 14); /* the rest of the CDB is reserved */
3969 cmd
->ErrorDescriptor
.Addr
.lower
= paddr32
+ sizeof(Command
);
3970 cmd
->ErrorDescriptor
.Addr
.upper
= 0;
3971 cmd
->ErrorDescriptor
.Len
= sizeof(ErrorInfo_struct
);
3973 writel(paddr32
, vaddr
+ SA5_REQUEST_PORT_OFFSET
);
3975 for (i
= 0; i
< 10; i
++) {
3976 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
3977 if ((tag
& ~3) == paddr32
)
3979 schedule_timeout_uninterruptible(HZ
);
3984 /* we leak the DMA buffer here ... no choice since the controller could
3985 still complete the command. */
3987 printk(KERN_ERR
"cciss: controller message %02x:%02x timed out\n",
3992 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
3995 printk(KERN_ERR
"cciss: controller message %02x:%02x failed\n",
4000 printk(KERN_INFO
"cciss: controller message %02x:%02x succeeded\n",
4005 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4006 #define cciss_noop(p) cciss_message(p, 3, 0)
4008 static __devinit
int cciss_reset_msi(struct pci_dev
*pdev
)
4010 /* the #defines are stolen from drivers/pci/msi.h. */
4011 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
4012 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
4017 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSI
);
4019 pci_read_config_word(pdev
, msi_control_reg(pos
), &control
);
4020 if (control
& PCI_MSI_FLAGS_ENABLE
) {
4021 printk(KERN_INFO
"cciss: resetting MSI\n");
4022 pci_write_config_word(pdev
, msi_control_reg(pos
), control
& ~PCI_MSI_FLAGS_ENABLE
);
4026 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSIX
);
4028 pci_read_config_word(pdev
, msi_control_reg(pos
), &control
);
4029 if (control
& PCI_MSIX_FLAGS_ENABLE
) {
4030 printk(KERN_INFO
"cciss: resetting MSI-X\n");
4031 pci_write_config_word(pdev
, msi_control_reg(pos
), control
& ~PCI_MSIX_FLAGS_ENABLE
);
4038 /* This does a hard reset of the controller using PCI power management
4040 static __devinit
int cciss_hard_reset_controller(struct pci_dev
*pdev
)
4042 u16 pmcsr
, saved_config_space
[32];
4045 printk(KERN_INFO
"cciss: using PCI PM to reset controller\n");
4047 /* This is very nearly the same thing as
4049 pci_save_state(pci_dev);
4050 pci_set_power_state(pci_dev, PCI_D3hot);
4051 pci_set_power_state(pci_dev, PCI_D0);
4052 pci_restore_state(pci_dev);
4054 but we can't use these nice canned kernel routines on
4055 kexec, because they also check the MSI/MSI-X state in PCI
4056 configuration space and do the wrong thing when it is
4057 set/cleared. Also, the pci_save/restore_state functions
4058 violate the ordering requirements for restoring the
4059 configuration space from the CCISS document (see the
4060 comment below). So we roll our own .... */
4062 for (i
= 0; i
< 32; i
++)
4063 pci_read_config_word(pdev
, 2*i
, &saved_config_space
[i
]);
4065 pos
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
4067 printk(KERN_ERR
"cciss_reset_controller: PCI PM not supported\n");
4071 /* Quoting from the Open CISS Specification: "The Power
4072 * Management Control/Status Register (CSR) controls the power
4073 * state of the device. The normal operating state is D0,
4074 * CSR=00h. The software off state is D3, CSR=03h. To reset
4075 * the controller, place the interface device in D3 then to
4076 * D0, this causes a secondary PCI reset which will reset the
4079 /* enter the D3hot power management state */
4080 pci_read_config_word(pdev
, pos
+ PCI_PM_CTRL
, &pmcsr
);
4081 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4083 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4085 schedule_timeout_uninterruptible(HZ
>> 1);
4087 /* enter the D0 power management state */
4088 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4090 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4092 schedule_timeout_uninterruptible(HZ
>> 1);
4094 /* Restore the PCI configuration space. The Open CISS
4095 * Specification says, "Restore the PCI Configuration
4096 * Registers, offsets 00h through 60h. It is important to
4097 * restore the command register, 16-bits at offset 04h,
4098 * last. Do not restore the configuration status register,
4099 * 16-bits at offset 06h." Note that the offset is 2*i. */
4100 for (i
= 0; i
< 32; i
++) {
4101 if (i
== 2 || i
== 3)
4103 pci_write_config_word(pdev
, 2*i
, saved_config_space
[i
]);
4106 pci_write_config_word(pdev
, 4, saved_config_space
[2]);
4112 * This is it. Find all the controllers and register them. I really hate
4113 * stealing all these major device numbers.
4114 * returns the number of block devices registered.
4116 static int __devinit
cciss_init_one(struct pci_dev
*pdev
,
4117 const struct pci_device_id
*ent
)
4123 int dac
, return_code
;
4124 InquiryData_struct
*inq_buff
;
4126 if (reset_devices
) {
4127 /* Reset the controller with a PCI power-cycle */
4128 if (cciss_hard_reset_controller(pdev
) || cciss_reset_msi(pdev
))
4131 /* Now try to get the controller to respond to a no-op. Some
4132 devices (notably the HP Smart Array 5i Controller) need
4133 up to 30 seconds to respond. */
4134 for (i
=0; i
<30; i
++) {
4135 if (cciss_noop(pdev
) == 0)
4138 schedule_timeout_uninterruptible(HZ
);
4141 printk(KERN_ERR
"cciss: controller seems dead\n");
4146 i
= alloc_cciss_hba();
4150 hba
[i
]->busy_initializing
= 1;
4151 INIT_HLIST_HEAD(&hba
[i
]->cmpQ
);
4152 INIT_HLIST_HEAD(&hba
[i
]->reqQ
);
4153 mutex_init(&hba
[i
]->busy_shutting_down
);
4155 if (cciss_pci_init(hba
[i
], pdev
) != 0)
4156 goto clean_no_release_regions
;
4158 sprintf(hba
[i
]->devname
, "cciss%d", i
);
4160 hba
[i
]->pdev
= pdev
;
4162 init_completion(&hba
[i
]->scan_wait
);
4164 if (cciss_create_hba_sysfs_entry(hba
[i
]))
4167 /* configure PCI DMA stuff */
4168 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64)))
4170 else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))
4173 printk(KERN_ERR
"cciss: no suitable DMA available\n");
4178 * register with the major number, or get a dynamic major number
4179 * by passing 0 as argument. This is done for greater than
4180 * 8 controller support.
4182 if (i
< MAX_CTLR_ORIG
)
4183 hba
[i
]->major
= COMPAQ_CISS_MAJOR
+ i
;
4184 rc
= register_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4185 if (rc
== -EBUSY
|| rc
== -EINVAL
) {
4187 "cciss: Unable to get major number %d for %s "
4188 "on hba %d\n", hba
[i
]->major
, hba
[i
]->devname
, i
);
4191 if (i
>= MAX_CTLR_ORIG
)
4195 /* make sure the board interrupts are off */
4196 hba
[i
]->access
.set_intr_mask(hba
[i
], CCISS_INTR_OFF
);
4197 if (request_irq(hba
[i
]->intr
[SIMPLE_MODE_INT
], do_cciss_intr
,
4198 IRQF_DISABLED
| IRQF_SHARED
, hba
[i
]->devname
, hba
[i
])) {
4199 printk(KERN_ERR
"cciss: Unable to get irq %d for %s\n",
4200 hba
[i
]->intr
[SIMPLE_MODE_INT
], hba
[i
]->devname
);
4204 printk(KERN_INFO
"%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4205 hba
[i
]->devname
, pdev
->device
, pci_name(pdev
),
4206 hba
[i
]->intr
[SIMPLE_MODE_INT
], dac
? "" : " not");
4208 hba
[i
]->cmd_pool_bits
=
4209 kmalloc(DIV_ROUND_UP(hba
[i
]->nr_cmds
, BITS_PER_LONG
)
4210 * sizeof(unsigned long), GFP_KERNEL
);
4211 hba
[i
]->cmd_pool
= (CommandList_struct
*)
4212 pci_alloc_consistent(hba
[i
]->pdev
,
4213 hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4214 &(hba
[i
]->cmd_pool_dhandle
));
4215 hba
[i
]->errinfo_pool
= (ErrorInfo_struct
*)
4216 pci_alloc_consistent(hba
[i
]->pdev
,
4217 hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4218 &(hba
[i
]->errinfo_pool_dhandle
));
4219 if ((hba
[i
]->cmd_pool_bits
== NULL
)
4220 || (hba
[i
]->cmd_pool
== NULL
)
4221 || (hba
[i
]->errinfo_pool
== NULL
)) {
4222 printk(KERN_ERR
"cciss: out of memory");
4226 /* Need space for temp scatter list */
4227 hba
[i
]->scatter_list
= kmalloc(hba
[i
]->max_commands
*
4228 sizeof(struct scatterlist
*),
4230 for (k
= 0; k
< hba
[i
]->nr_cmds
; k
++) {
4231 hba
[i
]->scatter_list
[k
] = kmalloc(sizeof(struct scatterlist
) *
4232 hba
[i
]->maxsgentries
,
4234 if (hba
[i
]->scatter_list
[k
] == NULL
) {
4235 printk(KERN_ERR
"cciss%d: could not allocate "
4240 hba
[i
]->cmd_sg_list
= kmalloc(sizeof(struct Cmd_sg_list
*) *
4243 if (!hba
[i
]->cmd_sg_list
) {
4244 printk(KERN_ERR
"cciss%d: Cannot get memory for "
4245 "s/g chaining.\n", i
);
4248 /* Build up chain blocks for each command */
4249 if (hba
[i
]->chainsize
> 0) {
4250 for (j
= 0; j
< hba
[i
]->nr_cmds
; j
++) {
4251 hba
[i
]->cmd_sg_list
[j
] =
4252 kmalloc(sizeof(struct Cmd_sg_list
),
4254 if (!hba
[i
]->cmd_sg_list
[j
]) {
4255 printk(KERN_ERR
"cciss%d: Cannot get memory "
4256 "for chain block.\n", i
);
4259 /* Need a block of chainsized s/g elements. */
4260 hba
[i
]->cmd_sg_list
[j
]->sgchain
=
4261 kmalloc((hba
[i
]->chainsize
*
4262 sizeof(SGDescriptor_struct
)),
4264 if (!hba
[i
]->cmd_sg_list
[j
]->sgchain
) {
4265 printk(KERN_ERR
"cciss%d: Cannot get memory "
4266 "for s/g chains\n", i
);
4272 spin_lock_init(&hba
[i
]->lock
);
4274 /* Initialize the pdev driver private data.
4275 have it point to hba[i]. */
4276 pci_set_drvdata(pdev
, hba
[i
]);
4277 /* command and error info recs zeroed out before
4279 memset(hba
[i
]->cmd_pool_bits
, 0,
4280 DIV_ROUND_UP(hba
[i
]->nr_cmds
, BITS_PER_LONG
)
4281 * sizeof(unsigned long));
4283 hba
[i
]->num_luns
= 0;
4284 hba
[i
]->highest_lun
= -1;
4285 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4286 hba
[i
]->drv
[j
] = NULL
;
4287 hba
[i
]->gendisk
[j
] = NULL
;
4290 cciss_scsi_setup(i
);
4292 /* Turn the interrupts on so we can service requests */
4293 hba
[i
]->access
.set_intr_mask(hba
[i
], CCISS_INTR_ON
);
4295 /* Get the firmware version */
4296 inq_buff
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
4297 if (inq_buff
== NULL
) {
4298 printk(KERN_ERR
"cciss: out of memory\n");
4302 return_code
= sendcmd_withirq(CISS_INQUIRY
, i
, inq_buff
,
4303 sizeof(InquiryData_struct
), 0, CTLR_LUNID
, TYPE_CMD
);
4304 if (return_code
== IO_OK
) {
4305 hba
[i
]->firm_ver
[0] = inq_buff
->data_byte
[32];
4306 hba
[i
]->firm_ver
[1] = inq_buff
->data_byte
[33];
4307 hba
[i
]->firm_ver
[2] = inq_buff
->data_byte
[34];
4308 hba
[i
]->firm_ver
[3] = inq_buff
->data_byte
[35];
4309 } else { /* send command failed */
4310 printk(KERN_WARNING
"cciss: unable to determine firmware"
4311 " version of controller\n");
4317 hba
[i
]->cciss_max_sectors
= 8192;
4319 rebuild_lun_table(hba
[i
], 1, 0);
4320 hba
[i
]->busy_initializing
= 0;
4324 kfree(hba
[i
]->cmd_pool_bits
);
4325 /* Free up sg elements */
4326 for (k
= 0; k
< hba
[i
]->nr_cmds
; k
++)
4327 kfree(hba
[i
]->scatter_list
[k
]);
4328 kfree(hba
[i
]->scatter_list
);
4329 /* Only free up extra s/g lists if controller supports them */
4330 if (hba
[i
]->chainsize
> 0) {
4331 for (j
= 0; j
< hba
[i
]->nr_cmds
; j
++) {
4332 if (hba
[i
]->cmd_sg_list
[j
]) {
4333 kfree(hba
[i
]->cmd_sg_list
[j
]->sgchain
);
4334 kfree(hba
[i
]->cmd_sg_list
[j
]);
4337 kfree(hba
[i
]->cmd_sg_list
);
4339 if (hba
[i
]->cmd_pool
)
4340 pci_free_consistent(hba
[i
]->pdev
,
4341 hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4342 hba
[i
]->cmd_pool
, hba
[i
]->cmd_pool_dhandle
);
4343 if (hba
[i
]->errinfo_pool
)
4344 pci_free_consistent(hba
[i
]->pdev
,
4345 hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4346 hba
[i
]->errinfo_pool
,
4347 hba
[i
]->errinfo_pool_dhandle
);
4348 free_irq(hba
[i
]->intr
[SIMPLE_MODE_INT
], hba
[i
]);
4350 unregister_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4352 cciss_destroy_hba_sysfs_entry(hba
[i
]);
4354 pci_release_regions(pdev
);
4355 clean_no_release_regions
:
4356 hba
[i
]->busy_initializing
= 0;
4359 * Deliberately omit pci_disable_device(): it does something nasty to
4360 * Smart Array controllers that pci_enable_device does not undo
4362 pci_set_drvdata(pdev
, NULL
);
4367 static void cciss_shutdown(struct pci_dev
*pdev
)
4373 h
= pci_get_drvdata(pdev
);
4374 flush_buf
= kzalloc(4, GFP_KERNEL
);
4377 "cciss:%d cache not flushed, out of memory.\n",
4381 /* write all data in the battery backed cache to disk */
4382 memset(flush_buf
, 0, 4);
4383 return_code
= sendcmd_withirq(CCISS_CACHE_FLUSH
, h
->ctlr
, flush_buf
,
4384 4, 0, CTLR_LUNID
, TYPE_CMD
);
4386 if (return_code
!= IO_OK
)
4387 printk(KERN_WARNING
"cciss%d: Error flushing cache\n",
4389 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
4390 free_irq(h
->intr
[2], h
);
4393 static void __devexit
cciss_remove_one(struct pci_dev
*pdev
)
4395 ctlr_info_t
*tmp_ptr
;
4398 if (pci_get_drvdata(pdev
) == NULL
) {
4399 printk(KERN_ERR
"cciss: Unable to remove device \n");
4403 tmp_ptr
= pci_get_drvdata(pdev
);
4405 if (hba
[i
] == NULL
) {
4406 printk(KERN_ERR
"cciss: device appears to "
4407 "already be removed \n");
4411 mutex_lock(&hba
[i
]->busy_shutting_down
);
4413 remove_from_scan_list(hba
[i
]);
4414 remove_proc_entry(hba
[i
]->devname
, proc_cciss
);
4415 unregister_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4417 /* remove it from the disk list */
4418 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4419 struct gendisk
*disk
= hba
[i
]->gendisk
[j
];
4421 struct request_queue
*q
= disk
->queue
;
4423 if (disk
->flags
& GENHD_FL_UP
) {
4424 cciss_destroy_ld_sysfs_entry(hba
[i
], j
, 1);
4428 blk_cleanup_queue(q
);
4432 #ifdef CONFIG_CISS_SCSI_TAPE
4433 cciss_unregister_scsi(i
); /* unhook from SCSI subsystem */
4436 cciss_shutdown(pdev
);
4438 #ifdef CONFIG_PCI_MSI
4439 if (hba
[i
]->msix_vector
)
4440 pci_disable_msix(hba
[i
]->pdev
);
4441 else if (hba
[i
]->msi_vector
)
4442 pci_disable_msi(hba
[i
]->pdev
);
4443 #endif /* CONFIG_PCI_MSI */
4445 iounmap(hba
[i
]->vaddr
);
4447 pci_free_consistent(hba
[i
]->pdev
, hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4448 hba
[i
]->cmd_pool
, hba
[i
]->cmd_pool_dhandle
);
4449 pci_free_consistent(hba
[i
]->pdev
, hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4450 hba
[i
]->errinfo_pool
, hba
[i
]->errinfo_pool_dhandle
);
4451 kfree(hba
[i
]->cmd_pool_bits
);
4452 /* Free up sg elements */
4453 for (j
= 0; j
< hba
[i
]->nr_cmds
; j
++)
4454 kfree(hba
[i
]->scatter_list
[j
]);
4455 kfree(hba
[i
]->scatter_list
);
4456 /* Only free up extra s/g lists if controller supports them */
4457 if (hba
[i
]->chainsize
> 0) {
4458 for (j
= 0; j
< hba
[i
]->nr_cmds
; j
++) {
4459 if (hba
[i
]->cmd_sg_list
[j
]) {
4460 kfree(hba
[i
]->cmd_sg_list
[j
]->sgchain
);
4461 kfree(hba
[i
]->cmd_sg_list
[j
]);
4464 kfree(hba
[i
]->cmd_sg_list
);
4467 * Deliberately omit pci_disable_device(): it does something nasty to
4468 * Smart Array controllers that pci_enable_device does not undo
4470 pci_release_regions(pdev
);
4471 pci_set_drvdata(pdev
, NULL
);
4472 cciss_destroy_hba_sysfs_entry(hba
[i
]);
4473 mutex_unlock(&hba
[i
]->busy_shutting_down
);
4477 static struct pci_driver cciss_pci_driver
= {
4479 .probe
= cciss_init_one
,
4480 .remove
= __devexit_p(cciss_remove_one
),
4481 .id_table
= cciss_pci_device_id
, /* id_table */
4482 .shutdown
= cciss_shutdown
,
4486 * This is it. Register the PCI driver information for the cards we control
4487 * the OS will call our registered routines when it finds one of our cards.
4489 static int __init
cciss_init(void)
4494 * The hardware requires that commands are aligned on a 64-bit
4495 * boundary. Given that we use pci_alloc_consistent() to allocate an
4496 * array of them, the size must be a multiple of 8 bytes.
4498 BUILD_BUG_ON(sizeof(CommandList_struct
) % 8);
4500 printk(KERN_INFO DRIVER_NAME
"\n");
4502 err
= bus_register(&cciss_bus_type
);
4506 /* Start the scan thread */
4507 cciss_scan_thread
= kthread_run(scan_thread
, NULL
, "cciss_scan");
4508 if (IS_ERR(cciss_scan_thread
)) {
4509 err
= PTR_ERR(cciss_scan_thread
);
4510 goto err_bus_unregister
;
4513 /* Register for our PCI devices */
4514 err
= pci_register_driver(&cciss_pci_driver
);
4516 goto err_thread_stop
;
4521 kthread_stop(cciss_scan_thread
);
4523 bus_unregister(&cciss_bus_type
);
4528 static void __exit
cciss_cleanup(void)
4532 pci_unregister_driver(&cciss_pci_driver
);
4533 /* double check that all controller entrys have been removed */
4534 for (i
= 0; i
< MAX_CTLR
; i
++) {
4535 if (hba
[i
] != NULL
) {
4536 printk(KERN_WARNING
"cciss: had to remove"
4537 " controller %d\n", i
);
4538 cciss_remove_one(hba
[i
]->pdev
);
4541 kthread_stop(cciss_scan_thread
);
4542 remove_proc_entry("driver/cciss", NULL
);
4543 bus_unregister(&cciss_bus_type
);
4546 static void fail_all_cmds(unsigned long ctlr
)
4548 /* If we get here, the board is apparently dead. */
4549 ctlr_info_t
*h
= hba
[ctlr
];
4550 CommandList_struct
*c
;
4551 unsigned long flags
;
4553 printk(KERN_WARNING
"cciss%d: controller not responding.\n", h
->ctlr
);
4554 h
->alive
= 0; /* the controller apparently died... */
4556 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
4558 pci_disable_device(h
->pdev
); /* Make sure it is really dead. */
4560 /* move everything off the request queue onto the completed queue */
4561 while (!hlist_empty(&h
->reqQ
)) {
4562 c
= hlist_entry(h
->reqQ
.first
, CommandList_struct
, list
);
4568 /* Now, fail everything on the completed queue with a HW error */
4569 while (!hlist_empty(&h
->cmpQ
)) {
4570 c
= hlist_entry(h
->cmpQ
.first
, CommandList_struct
, list
);
4572 if (c
->cmd_type
!= CMD_MSG_STALE
)
4573 c
->err_info
->CommandStatus
= CMD_HARDWARE_ERR
;
4574 if (c
->cmd_type
== CMD_RWREQ
) {
4575 complete_command(h
, c
, 0);
4576 } else if (c
->cmd_type
== CMD_IOCTL_PEND
)
4577 complete(c
->waiting
);
4578 #ifdef CONFIG_CISS_SCSI_TAPE
4579 else if (c
->cmd_type
== CMD_SCSI
)
4580 complete_scsi_command(c
, 0, 0);
4583 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
4587 module_init(cciss_init
);
4588 module_exit(cciss_cleanup
);