powerpc/pseries/eeh: Handle functional reset on non-PCIe device
[linux-2.6/next.git] / arch / ia64 / kernel / topology.c
blob0e0e0cc9e3929c8ddd91a4062351a2fb1b63c79d
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * This file contains NUMA specific variables and functions which can
7 * be split away from DISCONTIGMEM and are used on NUMA machines with
8 * contiguous memory.
9 * 2002/08/07 Erich Focht <efocht@ess.nec.de>
10 * Populate cpu entries in sysfs for non-numa systems as well
11 * Intel Corporation - Ashok Raj
12 * 02/27/2006 Zhang, Yanmin
13 * Populate cpu cache entries in sysfs for cpu cache info
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/bootmem.h>
23 #include <linux/nodemask.h>
24 #include <linux/notifier.h>
25 #include <asm/mmzone.h>
26 #include <asm/numa.h>
27 #include <asm/cpu.h>
29 static struct ia64_cpu *sysfs_cpus;
31 void arch_fix_phys_package_id(int num, u32 slot)
33 #ifdef CONFIG_SMP
34 if (cpu_data(num)->socket_id == -1)
35 cpu_data(num)->socket_id = slot;
36 #endif
38 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
41 #ifdef CONFIG_HOTPLUG_CPU
42 int __ref arch_register_cpu(int num)
44 #ifdef CONFIG_ACPI
46 * If CPEI can be re-targeted or if this is not
47 * CPEI target, then it is hotpluggable
49 if (can_cpei_retarget() || !is_cpu_cpei_target(num))
50 sysfs_cpus[num].cpu.hotpluggable = 1;
51 map_cpu_to_node(num, node_cpuid[num].nid);
52 #endif
53 return register_cpu(&sysfs_cpus[num].cpu, num);
55 EXPORT_SYMBOL(arch_register_cpu);
57 void __ref arch_unregister_cpu(int num)
59 unregister_cpu(&sysfs_cpus[num].cpu);
60 #ifdef CONFIG_ACPI
61 unmap_cpu_from_node(num, cpu_to_node(num));
62 #endif
64 EXPORT_SYMBOL(arch_unregister_cpu);
65 #else
66 static int __init arch_register_cpu(int num)
68 return register_cpu(&sysfs_cpus[num].cpu, num);
70 #endif /*CONFIG_HOTPLUG_CPU*/
73 static int __init topology_init(void)
75 int i, err = 0;
77 #ifdef CONFIG_NUMA
79 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
81 for_each_online_node(i) {
82 if ((err = register_one_node(i)))
83 goto out;
85 #endif
87 sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
88 if (!sysfs_cpus)
89 panic("kzalloc in topology_init failed - NR_CPUS too big?");
91 for_each_present_cpu(i) {
92 if((err = arch_register_cpu(i)))
93 goto out;
95 out:
96 return err;
99 subsys_initcall(topology_init);
103 * Export cpu cache information through sysfs
107 * A bunch of string array to get pretty printing
109 static const char *cache_types[] = {
110 "", /* not used */
111 "Instruction",
112 "Data",
113 "Unified" /* unified */
116 static const char *cache_mattrib[]={
117 "WriteThrough",
118 "WriteBack",
119 "", /* reserved */
120 "" /* reserved */
123 struct cache_info {
124 pal_cache_config_info_t cci;
125 cpumask_t shared_cpu_map;
126 int level;
127 int type;
128 struct kobject kobj;
131 struct cpu_cache_info {
132 struct cache_info *cache_leaves;
133 int num_cache_leaves;
134 struct kobject kobj;
137 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS] __cpuinitdata;
138 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
140 #ifdef CONFIG_SMP
141 static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu,
142 struct cache_info * this_leaf)
144 pal_cache_shared_info_t csi;
145 int num_shared, i = 0;
146 unsigned int j;
148 if (cpu_data(cpu)->threads_per_core <= 1 &&
149 cpu_data(cpu)->cores_per_socket <= 1) {
150 cpu_set(cpu, this_leaf->shared_cpu_map);
151 return;
154 if (ia64_pal_cache_shared_info(this_leaf->level,
155 this_leaf->type,
157 &csi) != PAL_STATUS_SUCCESS)
158 return;
160 num_shared = (int) csi.num_shared;
161 do {
162 for_each_possible_cpu(j)
163 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
164 && cpu_data(j)->core_id == csi.log1_cid
165 && cpu_data(j)->thread_id == csi.log1_tid)
166 cpu_set(j, this_leaf->shared_cpu_map);
168 i++;
169 } while (i < num_shared &&
170 ia64_pal_cache_shared_info(this_leaf->level,
171 this_leaf->type,
173 &csi) == PAL_STATUS_SUCCESS);
175 #else
176 static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu,
177 struct cache_info * this_leaf)
179 cpu_set(cpu, this_leaf->shared_cpu_map);
180 return;
182 #endif
184 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
185 char *buf)
187 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
190 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
191 char *buf)
193 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
196 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
198 return sprintf(buf,
199 "%s\n",
200 cache_mattrib[this_leaf->cci.pcci_cache_attr]);
203 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
205 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
208 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
210 unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
211 number_of_sets /= this_leaf->cci.pcci_assoc;
212 number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
214 return sprintf(buf, "%u\n", number_of_sets);
217 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
219 ssize_t len;
220 cpumask_t shared_cpu_map;
222 cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
223 len = cpumask_scnprintf(buf, NR_CPUS+1, &shared_cpu_map);
224 len += sprintf(buf+len, "\n");
225 return len;
228 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
230 int type = this_leaf->type + this_leaf->cci.pcci_unified;
231 return sprintf(buf, "%s\n", cache_types[type]);
234 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
236 return sprintf(buf, "%u\n", this_leaf->level);
239 struct cache_attr {
240 struct attribute attr;
241 ssize_t (*show)(struct cache_info *, char *);
242 ssize_t (*store)(struct cache_info *, const char *, size_t count);
245 #ifdef define_one_ro
246 #undef define_one_ro
247 #endif
248 #define define_one_ro(_name) \
249 static struct cache_attr _name = \
250 __ATTR(_name, 0444, show_##_name, NULL)
252 define_one_ro(level);
253 define_one_ro(type);
254 define_one_ro(coherency_line_size);
255 define_one_ro(ways_of_associativity);
256 define_one_ro(size);
257 define_one_ro(number_of_sets);
258 define_one_ro(shared_cpu_map);
259 define_one_ro(attributes);
261 static struct attribute * cache_default_attrs[] = {
262 &type.attr,
263 &level.attr,
264 &coherency_line_size.attr,
265 &ways_of_associativity.attr,
266 &attributes.attr,
267 &size.attr,
268 &number_of_sets.attr,
269 &shared_cpu_map.attr,
270 NULL
273 #define to_object(k) container_of(k, struct cache_info, kobj)
274 #define to_attr(a) container_of(a, struct cache_attr, attr)
276 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
278 struct cache_attr *fattr = to_attr(attr);
279 struct cache_info *this_leaf = to_object(kobj);
280 ssize_t ret;
282 ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
283 return ret;
286 static const struct sysfs_ops cache_sysfs_ops = {
287 .show = cache_show
290 static struct kobj_type cache_ktype = {
291 .sysfs_ops = &cache_sysfs_ops,
292 .default_attrs = cache_default_attrs,
295 static struct kobj_type cache_ktype_percpu_entry = {
296 .sysfs_ops = &cache_sysfs_ops,
299 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
301 kfree(all_cpu_cache_info[cpu].cache_leaves);
302 all_cpu_cache_info[cpu].cache_leaves = NULL;
303 all_cpu_cache_info[cpu].num_cache_leaves = 0;
304 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
305 return;
308 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
310 unsigned long i, levels, unique_caches;
311 pal_cache_config_info_t cci;
312 int j;
313 long status;
314 struct cache_info *this_cache;
315 int num_cache_leaves = 0;
317 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
318 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
319 return -1;
322 this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
323 GFP_KERNEL);
324 if (this_cache == NULL)
325 return -ENOMEM;
327 for (i=0; i < levels; i++) {
328 for (j=2; j >0 ; j--) {
329 if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
330 PAL_STATUS_SUCCESS)
331 continue;
333 this_cache[num_cache_leaves].cci = cci;
334 this_cache[num_cache_leaves].level = i + 1;
335 this_cache[num_cache_leaves].type = j;
337 cache_shared_cpu_map_setup(cpu,
338 &this_cache[num_cache_leaves]);
339 num_cache_leaves ++;
343 all_cpu_cache_info[cpu].cache_leaves = this_cache;
344 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
346 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
348 return 0;
351 /* Add cache interface for CPU device */
352 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
354 unsigned int cpu = sys_dev->id;
355 unsigned long i, j;
356 struct cache_info *this_object;
357 int retval = 0;
358 cpumask_t oldmask;
360 if (all_cpu_cache_info[cpu].kobj.parent)
361 return 0;
363 oldmask = current->cpus_allowed;
364 retval = set_cpus_allowed_ptr(current, cpumask_of(cpu));
365 if (unlikely(retval))
366 return retval;
368 retval = cpu_cache_sysfs_init(cpu);
369 set_cpus_allowed_ptr(current, &oldmask);
370 if (unlikely(retval < 0))
371 return retval;
373 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
374 &cache_ktype_percpu_entry, &sys_dev->kobj,
375 "%s", "cache");
376 if (unlikely(retval < 0)) {
377 cpu_cache_sysfs_exit(cpu);
378 return retval;
381 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
382 this_object = LEAF_KOBJECT_PTR(cpu,i);
383 retval = kobject_init_and_add(&(this_object->kobj),
384 &cache_ktype,
385 &all_cpu_cache_info[cpu].kobj,
386 "index%1lu", i);
387 if (unlikely(retval)) {
388 for (j = 0; j < i; j++) {
389 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
391 kobject_put(&all_cpu_cache_info[cpu].kobj);
392 cpu_cache_sysfs_exit(cpu);
393 return retval;
395 kobject_uevent(&(this_object->kobj), KOBJ_ADD);
397 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
398 return retval;
401 /* Remove cache interface for CPU device */
402 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
404 unsigned int cpu = sys_dev->id;
405 unsigned long i;
407 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
408 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
410 if (all_cpu_cache_info[cpu].kobj.parent) {
411 kobject_put(&all_cpu_cache_info[cpu].kobj);
412 memset(&all_cpu_cache_info[cpu].kobj,
414 sizeof(struct kobject));
417 cpu_cache_sysfs_exit(cpu);
419 return 0;
423 * When a cpu is hot-plugged, do a check and initiate
424 * cache kobject if necessary
426 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
427 unsigned long action, void *hcpu)
429 unsigned int cpu = (unsigned long)hcpu;
430 struct sys_device *sys_dev;
432 sys_dev = get_cpu_sysdev(cpu);
433 switch (action) {
434 case CPU_ONLINE:
435 case CPU_ONLINE_FROZEN:
436 cache_add_dev(sys_dev);
437 break;
438 case CPU_DEAD:
439 case CPU_DEAD_FROZEN:
440 cache_remove_dev(sys_dev);
441 break;
443 return NOTIFY_OK;
446 static struct notifier_block __cpuinitdata cache_cpu_notifier =
448 .notifier_call = cache_cpu_callback
451 static int __init cache_sysfs_init(void)
453 int i;
455 for_each_online_cpu(i) {
456 struct sys_device *sys_dev = get_cpu_sysdev((unsigned int)i);
457 cache_add_dev(sys_dev);
460 register_hotcpu_notifier(&cache_cpu_notifier);
462 return 0;
465 device_initcall(cache_sysfs_init);