3 * Linux ethernet bridge
6 * Lennert Buytenhek <buytenh@gnu.org>
7 * Bart De Schuymer <bdschuym@pandora.be>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
14 * Lennert dedicates this file to Kerstin Wurdinger.
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
21 #include <linux/netdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_arp.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_pppox.h>
27 #include <linux/ppp_defs.h>
28 #include <linux/netfilter_bridge.h>
29 #include <linux/netfilter_ipv4.h>
30 #include <linux/netfilter_ipv6.h>
31 #include <linux/netfilter_arp.h>
32 #include <linux/in_route.h>
33 #include <linux/inetdevice.h>
37 #include <net/route.h>
39 #include <asm/uaccess.h>
40 #include "br_private.h"
42 #include <linux/sysctl.h>
45 #define skb_origaddr(skb) (((struct bridge_skb_cb *) \
46 (skb->nf_bridge->data))->daddr.ipv4)
47 #define store_orig_dstaddr(skb) (skb_origaddr(skb) = ip_hdr(skb)->daddr)
48 #define dnat_took_place(skb) (skb_origaddr(skb) != ip_hdr(skb)->daddr)
51 static struct ctl_table_header
*brnf_sysctl_header
;
52 static int brnf_call_iptables __read_mostly
= 1;
53 static int brnf_call_ip6tables __read_mostly
= 1;
54 static int brnf_call_arptables __read_mostly
= 1;
55 static int brnf_filter_vlan_tagged __read_mostly
= 0;
56 static int brnf_filter_pppoe_tagged __read_mostly
= 0;
58 #define brnf_filter_vlan_tagged 0
59 #define brnf_filter_pppoe_tagged 0
62 static inline __be16
vlan_proto(const struct sk_buff
*skb
)
64 return vlan_eth_hdr(skb
)->h_vlan_encapsulated_proto
;
67 #define IS_VLAN_IP(skb) \
68 (skb->protocol == htons(ETH_P_8021Q) && \
69 vlan_proto(skb) == htons(ETH_P_IP) && \
70 brnf_filter_vlan_tagged)
72 #define IS_VLAN_IPV6(skb) \
73 (skb->protocol == htons(ETH_P_8021Q) && \
74 vlan_proto(skb) == htons(ETH_P_IPV6) &&\
75 brnf_filter_vlan_tagged)
77 #define IS_VLAN_ARP(skb) \
78 (skb->protocol == htons(ETH_P_8021Q) && \
79 vlan_proto(skb) == htons(ETH_P_ARP) && \
80 brnf_filter_vlan_tagged)
82 static inline __be16
pppoe_proto(const struct sk_buff
*skb
)
84 return *((__be16
*)(skb_mac_header(skb
) + ETH_HLEN
+
85 sizeof(struct pppoe_hdr
)));
88 #define IS_PPPOE_IP(skb) \
89 (skb->protocol == htons(ETH_P_PPP_SES) && \
90 pppoe_proto(skb) == htons(PPP_IP) && \
91 brnf_filter_pppoe_tagged)
93 #define IS_PPPOE_IPV6(skb) \
94 (skb->protocol == htons(ETH_P_PPP_SES) && \
95 pppoe_proto(skb) == htons(PPP_IPV6) && \
96 brnf_filter_pppoe_tagged)
98 static void fake_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
102 static struct dst_ops fake_dst_ops
= {
104 .protocol
= cpu_to_be16(ETH_P_IP
),
105 .update_pmtu
= fake_update_pmtu
,
106 .entries
= ATOMIC_INIT(0),
110 * Initialize bogus route table used to keep netfilter happy.
111 * Currently, we fill in the PMTU entry because netfilter
112 * refragmentation needs it, and the rt_flags entry because
113 * ipt_REJECT needs it. Future netfilter modules might
114 * require us to fill additional fields.
116 void br_netfilter_rtable_init(struct net_bridge
*br
)
118 struct rtable
*rt
= &br
->fake_rtable
;
120 atomic_set(&rt
->u
.dst
.__refcnt
, 1);
121 rt
->u
.dst
.dev
= br
->dev
;
122 rt
->u
.dst
.path
= &rt
->u
.dst
;
123 rt
->u
.dst
.metrics
[RTAX_MTU
- 1] = 1500;
124 rt
->u
.dst
.flags
= DST_NOXFRM
;
125 rt
->u
.dst
.ops
= &fake_dst_ops
;
128 static inline struct rtable
*bridge_parent_rtable(const struct net_device
*dev
)
130 struct net_bridge_port
*port
= rcu_dereference(dev
->br_port
);
132 return port
? &port
->br
->fake_rtable
: NULL
;
135 static inline struct net_device
*bridge_parent(const struct net_device
*dev
)
137 struct net_bridge_port
*port
= rcu_dereference(dev
->br_port
);
139 return port
? port
->br
->dev
: NULL
;
142 static inline struct nf_bridge_info
*nf_bridge_alloc(struct sk_buff
*skb
)
144 skb
->nf_bridge
= kzalloc(sizeof(struct nf_bridge_info
), GFP_ATOMIC
);
145 if (likely(skb
->nf_bridge
))
146 atomic_set(&(skb
->nf_bridge
->use
), 1);
148 return skb
->nf_bridge
;
151 static inline struct nf_bridge_info
*nf_bridge_unshare(struct sk_buff
*skb
)
153 struct nf_bridge_info
*nf_bridge
= skb
->nf_bridge
;
155 if (atomic_read(&nf_bridge
->use
) > 1) {
156 struct nf_bridge_info
*tmp
= nf_bridge_alloc(skb
);
159 memcpy(tmp
, nf_bridge
, sizeof(struct nf_bridge_info
));
160 atomic_set(&tmp
->use
, 1);
161 nf_bridge_put(nf_bridge
);
168 static inline void nf_bridge_push_encap_header(struct sk_buff
*skb
)
170 unsigned int len
= nf_bridge_encap_header_len(skb
);
173 skb
->network_header
-= len
;
176 static inline void nf_bridge_pull_encap_header(struct sk_buff
*skb
)
178 unsigned int len
= nf_bridge_encap_header_len(skb
);
181 skb
->network_header
+= len
;
184 static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff
*skb
)
186 unsigned int len
= nf_bridge_encap_header_len(skb
);
188 skb_pull_rcsum(skb
, len
);
189 skb
->network_header
+= len
;
192 static inline void nf_bridge_save_header(struct sk_buff
*skb
)
194 int header_size
= ETH_HLEN
+ nf_bridge_encap_header_len(skb
);
196 skb_copy_from_linear_data_offset(skb
, -header_size
,
197 skb
->nf_bridge
->data
, header_size
);
200 static inline void nf_bridge_update_protocol(struct sk_buff
*skb
)
202 if (skb
->nf_bridge
->mask
& BRNF_8021Q
)
203 skb
->protocol
= htons(ETH_P_8021Q
);
204 else if (skb
->nf_bridge
->mask
& BRNF_PPPoE
)
205 skb
->protocol
= htons(ETH_P_PPP_SES
);
208 /* Fill in the header for fragmented IP packets handled by
209 * the IPv4 connection tracking code.
211 int nf_bridge_copy_header(struct sk_buff
*skb
)
214 unsigned int header_size
;
216 nf_bridge_update_protocol(skb
);
217 header_size
= ETH_HLEN
+ nf_bridge_encap_header_len(skb
);
218 err
= skb_cow_head(skb
, header_size
);
222 skb_copy_to_linear_data_offset(skb
, -header_size
,
223 skb
->nf_bridge
->data
, header_size
);
224 __skb_push(skb
, nf_bridge_encap_header_len(skb
));
228 /* PF_BRIDGE/PRE_ROUTING *********************************************/
229 /* Undo the changes made for ip6tables PREROUTING and continue the
230 * bridge PRE_ROUTING hook. */
231 static int br_nf_pre_routing_finish_ipv6(struct sk_buff
*skb
)
233 struct nf_bridge_info
*nf_bridge
= skb
->nf_bridge
;
236 if (nf_bridge
->mask
& BRNF_PKT_TYPE
) {
237 skb
->pkt_type
= PACKET_OTHERHOST
;
238 nf_bridge
->mask
^= BRNF_PKT_TYPE
;
240 nf_bridge
->mask
^= BRNF_NF_BRIDGE_PREROUTING
;
242 rt
= bridge_parent_rtable(nf_bridge
->physindev
);
247 dst_hold(&rt
->u
.dst
);
248 skb_dst_set(skb
, &rt
->u
.dst
);
250 skb
->dev
= nf_bridge
->physindev
;
251 nf_bridge_update_protocol(skb
);
252 nf_bridge_push_encap_header(skb
);
253 NF_HOOK_THRESH(NFPROTO_BRIDGE
, NF_BR_PRE_ROUTING
, skb
, skb
->dev
, NULL
,
254 br_handle_frame_finish
, 1);
259 /* Obtain the correct destination MAC address, while preserving the original
260 * source MAC address. If we already know this address, we just copy it. If we
261 * don't, we use the neighbour framework to find out. In both cases, we make
262 * sure that br_handle_frame_finish() is called afterwards.
264 static int br_nf_pre_routing_finish_bridge(struct sk_buff
*skb
)
266 struct nf_bridge_info
*nf_bridge
= skb
->nf_bridge
;
267 struct dst_entry
*dst
;
269 skb
->dev
= bridge_parent(skb
->dev
);
274 neigh_hh_bridge(dst
->hh
, skb
);
275 skb
->dev
= nf_bridge
->physindev
;
276 return br_handle_frame_finish(skb
);
277 } else if (dst
->neighbour
) {
278 /* the neighbour function below overwrites the complete
279 * MAC header, so we save the Ethernet source address and
280 * protocol number. */
281 skb_copy_from_linear_data_offset(skb
, -(ETH_HLEN
-ETH_ALEN
), skb
->nf_bridge
->data
, ETH_HLEN
-ETH_ALEN
);
282 /* tell br_dev_xmit to continue with forwarding */
283 nf_bridge
->mask
|= BRNF_BRIDGED_DNAT
;
284 return dst
->neighbour
->output(skb
);
291 /* This requires some explaining. If DNAT has taken place,
292 * we will need to fix up the destination Ethernet address.
294 * There are two cases to consider:
295 * 1. The packet was DNAT'ed to a device in the same bridge
296 * port group as it was received on. We can still bridge
298 * 2. The packet was DNAT'ed to a different device, either
299 * a non-bridged device or another bridge port group.
300 * The packet will need to be routed.
302 * The correct way of distinguishing between these two cases is to
303 * call ip_route_input() and to look at skb->dst->dev, which is
304 * changed to the destination device if ip_route_input() succeeds.
306 * Let's first consider the case that ip_route_input() succeeds:
308 * If the output device equals the logical bridge device the packet
309 * came in on, we can consider this bridging. The corresponding MAC
310 * address will be obtained in br_nf_pre_routing_finish_bridge.
311 * Otherwise, the packet is considered to be routed and we just
312 * change the destination MAC address so that the packet will
313 * later be passed up to the IP stack to be routed. For a redirected
314 * packet, ip_route_input() will give back the localhost as output device,
315 * which differs from the bridge device.
317 * Let's now consider the case that ip_route_input() fails:
319 * This can be because the destination address is martian, in which case
320 * the packet will be dropped.
321 * If IP forwarding is disabled, ip_route_input() will fail, while
322 * ip_route_output_key() can return success. The source
323 * address for ip_route_output_key() is set to zero, so ip_route_output_key()
324 * thinks we're handling a locally generated packet and won't care
325 * if IP forwarding is enabled. If the output device equals the logical bridge
326 * device, we proceed as if ip_route_input() succeeded. If it differs from the
327 * logical bridge port or if ip_route_output_key() fails we drop the packet.
329 static int br_nf_pre_routing_finish(struct sk_buff
*skb
)
331 struct net_device
*dev
= skb
->dev
;
332 struct iphdr
*iph
= ip_hdr(skb
);
333 struct nf_bridge_info
*nf_bridge
= skb
->nf_bridge
;
337 if (nf_bridge
->mask
& BRNF_PKT_TYPE
) {
338 skb
->pkt_type
= PACKET_OTHERHOST
;
339 nf_bridge
->mask
^= BRNF_PKT_TYPE
;
341 nf_bridge
->mask
^= BRNF_NF_BRIDGE_PREROUTING
;
342 if (dnat_took_place(skb
)) {
343 if ((err
= ip_route_input(skb
, iph
->daddr
, iph
->saddr
, iph
->tos
, dev
))) {
349 .tos
= RT_TOS(iph
->tos
) },
353 struct in_device
*in_dev
= __in_dev_get_rcu(dev
);
355 /* If err equals -EHOSTUNREACH the error is due to a
356 * martian destination or due to the fact that
357 * forwarding is disabled. For most martian packets,
358 * ip_route_output_key() will fail. It won't fail for 2 types of
359 * martian destinations: loopback destinations and destination
360 * 0.0.0.0. In both cases the packet will be dropped because the
361 * destination is the loopback device and not the bridge. */
362 if (err
!= -EHOSTUNREACH
|| !in_dev
|| IN_DEV_FORWARD(in_dev
))
365 if (!ip_route_output_key(dev_net(dev
), &rt
, &fl
)) {
366 /* - Bridged-and-DNAT'ed traffic doesn't
367 * require ip_forwarding. */
368 if (((struct dst_entry
*)rt
)->dev
== dev
) {
369 skb_dst_set(skb
, (struct dst_entry
*)rt
);
372 dst_release((struct dst_entry
*)rt
);
378 if (skb_dst(skb
)->dev
== dev
) {
380 skb
->dev
= nf_bridge
->physindev
;
381 nf_bridge_update_protocol(skb
);
382 nf_bridge_push_encap_header(skb
);
383 NF_HOOK_THRESH(NFPROTO_BRIDGE
,
386 br_nf_pre_routing_finish_bridge
,
390 memcpy(eth_hdr(skb
)->h_dest
, dev
->dev_addr
, ETH_ALEN
);
391 skb
->pkt_type
= PACKET_HOST
;
394 rt
= bridge_parent_rtable(nf_bridge
->physindev
);
399 dst_hold(&rt
->u
.dst
);
400 skb_dst_set(skb
, &rt
->u
.dst
);
403 skb
->dev
= nf_bridge
->physindev
;
404 nf_bridge_update_protocol(skb
);
405 nf_bridge_push_encap_header(skb
);
406 NF_HOOK_THRESH(NFPROTO_BRIDGE
, NF_BR_PRE_ROUTING
, skb
, skb
->dev
, NULL
,
407 br_handle_frame_finish
, 1);
412 /* Some common code for IPv4/IPv6 */
413 static struct net_device
*setup_pre_routing(struct sk_buff
*skb
)
415 struct nf_bridge_info
*nf_bridge
= skb
->nf_bridge
;
417 if (skb
->pkt_type
== PACKET_OTHERHOST
) {
418 skb
->pkt_type
= PACKET_HOST
;
419 nf_bridge
->mask
|= BRNF_PKT_TYPE
;
422 nf_bridge
->mask
|= BRNF_NF_BRIDGE_PREROUTING
;
423 nf_bridge
->physindev
= skb
->dev
;
424 skb
->dev
= bridge_parent(skb
->dev
);
425 if (skb
->protocol
== htons(ETH_P_8021Q
))
426 nf_bridge
->mask
|= BRNF_8021Q
;
427 else if (skb
->protocol
== htons(ETH_P_PPP_SES
))
428 nf_bridge
->mask
|= BRNF_PPPoE
;
433 /* We only check the length. A bridge shouldn't do any hop-by-hop stuff anyway */
434 static int check_hbh_len(struct sk_buff
*skb
)
436 unsigned char *raw
= (u8
*)(ipv6_hdr(skb
) + 1);
438 const unsigned char *nh
= skb_network_header(skb
);
440 int len
= (raw
[1] + 1) << 3;
442 if ((raw
+ len
) - skb
->data
> skb_headlen(skb
))
449 int optlen
= nh
[off
+ 1] + 2;
460 if (nh
[off
+ 1] != 4 || (off
& 3) != 2)
462 pkt_len
= ntohl(*(__be32
*) (nh
+ off
+ 2));
463 if (pkt_len
<= IPV6_MAXPLEN
||
464 ipv6_hdr(skb
)->payload_len
)
466 if (pkt_len
> skb
->len
- sizeof(struct ipv6hdr
))
468 if (pskb_trim_rcsum(skb
,
469 pkt_len
+ sizeof(struct ipv6hdr
)))
471 nh
= skb_network_header(skb
);
488 /* Replicate the checks that IPv6 does on packet reception and pass the packet
489 * to ip6tables, which doesn't support NAT, so things are fairly simple. */
490 static unsigned int br_nf_pre_routing_ipv6(unsigned int hook
,
492 const struct net_device
*in
,
493 const struct net_device
*out
,
494 int (*okfn
)(struct sk_buff
*))
499 if (skb
->len
< sizeof(struct ipv6hdr
))
502 if (!pskb_may_pull(skb
, sizeof(struct ipv6hdr
)))
507 if (hdr
->version
!= 6)
510 pkt_len
= ntohs(hdr
->payload_len
);
512 if (pkt_len
|| hdr
->nexthdr
!= NEXTHDR_HOP
) {
513 if (pkt_len
+ sizeof(struct ipv6hdr
) > skb
->len
)
515 if (pskb_trim_rcsum(skb
, pkt_len
+ sizeof(struct ipv6hdr
)))
518 if (hdr
->nexthdr
== NEXTHDR_HOP
&& check_hbh_len(skb
))
521 nf_bridge_put(skb
->nf_bridge
);
522 if (!nf_bridge_alloc(skb
))
524 if (!setup_pre_routing(skb
))
527 skb
->protocol
= htons(ETH_P_IPV6
);
528 NF_HOOK(NFPROTO_IPV6
, NF_INET_PRE_ROUTING
, skb
, skb
->dev
, NULL
,
529 br_nf_pre_routing_finish_ipv6
);
537 /* Direct IPv6 traffic to br_nf_pre_routing_ipv6.
538 * Replicate the checks that IPv4 does on packet reception.
539 * Set skb->dev to the bridge device (i.e. parent of the
540 * receiving device) to make netfilter happy, the REDIRECT
541 * target in particular. Save the original destination IP
542 * address to be able to detect DNAT afterwards. */
543 static unsigned int br_nf_pre_routing(unsigned int hook
, struct sk_buff
*skb
,
544 const struct net_device
*in
,
545 const struct net_device
*out
,
546 int (*okfn
)(struct sk_buff
*))
549 __u32 len
= nf_bridge_encap_header_len(skb
);
551 if (unlikely(!pskb_may_pull(skb
, len
)))
554 if (skb
->protocol
== htons(ETH_P_IPV6
) || IS_VLAN_IPV6(skb
) ||
555 IS_PPPOE_IPV6(skb
)) {
557 if (!brnf_call_ip6tables
)
560 nf_bridge_pull_encap_header_rcsum(skb
);
561 return br_nf_pre_routing_ipv6(hook
, skb
, in
, out
, okfn
);
564 if (!brnf_call_iptables
)
568 if (skb
->protocol
!= htons(ETH_P_IP
) && !IS_VLAN_IP(skb
) &&
572 nf_bridge_pull_encap_header_rcsum(skb
);
574 if (!pskb_may_pull(skb
, sizeof(struct iphdr
)))
578 if (iph
->ihl
< 5 || iph
->version
!= 4)
581 if (!pskb_may_pull(skb
, 4 * iph
->ihl
))
585 if (ip_fast_csum((__u8
*) iph
, iph
->ihl
) != 0)
588 len
= ntohs(iph
->tot_len
);
589 if (skb
->len
< len
|| len
< 4 * iph
->ihl
)
592 pskb_trim_rcsum(skb
, len
);
594 nf_bridge_put(skb
->nf_bridge
);
595 if (!nf_bridge_alloc(skb
))
597 if (!setup_pre_routing(skb
))
599 store_orig_dstaddr(skb
);
600 skb
->protocol
= htons(ETH_P_IP
);
602 NF_HOOK(NFPROTO_IPV4
, NF_INET_PRE_ROUTING
, skb
, skb
->dev
, NULL
,
603 br_nf_pre_routing_finish
);
608 // IP_INC_STATS_BH(IpInHdrErrors);
614 /* PF_BRIDGE/LOCAL_IN ************************************************/
615 /* The packet is locally destined, which requires a real
616 * dst_entry, so detach the fake one. On the way up, the
617 * packet would pass through PRE_ROUTING again (which already
618 * took place when the packet entered the bridge), but we
619 * register an IPv4 PRE_ROUTING 'sabotage' hook that will
620 * prevent this from happening. */
621 static unsigned int br_nf_local_in(unsigned int hook
, struct sk_buff
*skb
,
622 const struct net_device
*in
,
623 const struct net_device
*out
,
624 int (*okfn
)(struct sk_buff
*))
626 struct rtable
*rt
= skb_rtable(skb
);
628 if (rt
&& rt
== bridge_parent_rtable(in
))
634 /* PF_BRIDGE/FORWARD *************************************************/
635 static int br_nf_forward_finish(struct sk_buff
*skb
)
637 struct nf_bridge_info
*nf_bridge
= skb
->nf_bridge
;
638 struct net_device
*in
;
640 if (skb
->protocol
!= htons(ETH_P_ARP
) && !IS_VLAN_ARP(skb
)) {
641 in
= nf_bridge
->physindev
;
642 if (nf_bridge
->mask
& BRNF_PKT_TYPE
) {
643 skb
->pkt_type
= PACKET_OTHERHOST
;
644 nf_bridge
->mask
^= BRNF_PKT_TYPE
;
646 nf_bridge_update_protocol(skb
);
648 in
= *((struct net_device
**)(skb
->cb
));
650 nf_bridge_push_encap_header(skb
);
652 NF_HOOK_THRESH(NFPROTO_BRIDGE
, NF_BR_FORWARD
, skb
, in
,
653 skb
->dev
, br_forward_finish
, 1);
657 /* This is the 'purely bridged' case. For IP, we pass the packet to
658 * netfilter with indev and outdev set to the bridge device,
659 * but we are still able to filter on the 'real' indev/outdev
660 * because of the physdev module. For ARP, indev and outdev are the
662 static unsigned int br_nf_forward_ip(unsigned int hook
, struct sk_buff
*skb
,
663 const struct net_device
*in
,
664 const struct net_device
*out
,
665 int (*okfn
)(struct sk_buff
*))
667 struct nf_bridge_info
*nf_bridge
;
668 struct net_device
*parent
;
674 /* Need exclusive nf_bridge_info since we might have multiple
675 * different physoutdevs. */
676 if (!nf_bridge_unshare(skb
))
679 parent
= bridge_parent(out
);
683 if (skb
->protocol
== htons(ETH_P_IP
) || IS_VLAN_IP(skb
) ||
686 else if (skb
->protocol
== htons(ETH_P_IPV6
) || IS_VLAN_IPV6(skb
) ||
692 nf_bridge_pull_encap_header(skb
);
694 nf_bridge
= skb
->nf_bridge
;
695 if (skb
->pkt_type
== PACKET_OTHERHOST
) {
696 skb
->pkt_type
= PACKET_HOST
;
697 nf_bridge
->mask
|= BRNF_PKT_TYPE
;
700 /* The physdev module checks on this */
701 nf_bridge
->mask
|= BRNF_BRIDGED
;
702 nf_bridge
->physoutdev
= skb
->dev
;
704 skb
->protocol
= htons(ETH_P_IP
);
706 skb
->protocol
= htons(ETH_P_IPV6
);
708 NF_HOOK(pf
, NF_INET_FORWARD
, skb
, bridge_parent(in
), parent
,
709 br_nf_forward_finish
);
714 static unsigned int br_nf_forward_arp(unsigned int hook
, struct sk_buff
*skb
,
715 const struct net_device
*in
,
716 const struct net_device
*out
,
717 int (*okfn
)(struct sk_buff
*))
719 struct net_device
**d
= (struct net_device
**)(skb
->cb
);
722 if (!brnf_call_arptables
)
726 if (skb
->protocol
!= htons(ETH_P_ARP
)) {
727 if (!IS_VLAN_ARP(skb
))
729 nf_bridge_pull_encap_header(skb
);
732 if (arp_hdr(skb
)->ar_pln
!= 4) {
733 if (IS_VLAN_ARP(skb
))
734 nf_bridge_push_encap_header(skb
);
737 *d
= (struct net_device
*)in
;
738 NF_HOOK(NFPROTO_ARP
, NF_ARP_FORWARD
, skb
, (struct net_device
*)in
,
739 (struct net_device
*)out
, br_nf_forward_finish
);
744 #if defined(CONFIG_NF_CONNTRACK_IPV4) || defined(CONFIG_NF_CONNTRACK_IPV4_MODULE)
745 static int br_nf_dev_queue_xmit(struct sk_buff
*skb
)
747 if (skb
->nfct
!= NULL
&& skb
->protocol
== htons(ETH_P_IP
) &&
748 skb
->len
+ nf_bridge_mtu_reduction(skb
) > skb
->dev
->mtu
&&
750 return ip_fragment(skb
, br_dev_queue_push_xmit
);
752 return br_dev_queue_push_xmit(skb
);
755 static int br_nf_dev_queue_xmit(struct sk_buff
*skb
)
757 return br_dev_queue_push_xmit(skb
);
761 /* PF_BRIDGE/POST_ROUTING ********************************************/
762 static unsigned int br_nf_post_routing(unsigned int hook
, struct sk_buff
*skb
,
763 const struct net_device
*in
,
764 const struct net_device
*out
,
765 int (*okfn
)(struct sk_buff
*))
767 struct nf_bridge_info
*nf_bridge
= skb
->nf_bridge
;
768 struct net_device
*realoutdev
= bridge_parent(skb
->dev
);
771 if (!nf_bridge
|| !(nf_bridge
->mask
& BRNF_BRIDGED
))
777 if (skb
->protocol
== htons(ETH_P_IP
) || IS_VLAN_IP(skb
) ||
780 else if (skb
->protocol
== htons(ETH_P_IPV6
) || IS_VLAN_IPV6(skb
) ||
786 /* We assume any code from br_dev_queue_push_xmit onwards doesn't care
787 * about the value of skb->pkt_type. */
788 if (skb
->pkt_type
== PACKET_OTHERHOST
) {
789 skb
->pkt_type
= PACKET_HOST
;
790 nf_bridge
->mask
|= BRNF_PKT_TYPE
;
793 nf_bridge_pull_encap_header(skb
);
794 nf_bridge_save_header(skb
);
796 skb
->protocol
= htons(ETH_P_IP
);
798 skb
->protocol
= htons(ETH_P_IPV6
);
800 NF_HOOK(pf
, NF_INET_POST_ROUTING
, skb
, NULL
, realoutdev
,
801 br_nf_dev_queue_xmit
);
806 /* IP/SABOTAGE *****************************************************/
807 /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING
808 * for the second time. */
809 static unsigned int ip_sabotage_in(unsigned int hook
, struct sk_buff
*skb
,
810 const struct net_device
*in
,
811 const struct net_device
*out
,
812 int (*okfn
)(struct sk_buff
*))
814 if (skb
->nf_bridge
&&
815 !(skb
->nf_bridge
->mask
& BRNF_NF_BRIDGE_PREROUTING
)) {
822 /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because
823 * br_dev_queue_push_xmit is called afterwards */
824 static struct nf_hook_ops br_nf_ops
[] __read_mostly
= {
826 .hook
= br_nf_pre_routing
,
827 .owner
= THIS_MODULE
,
829 .hooknum
= NF_BR_PRE_ROUTING
,
830 .priority
= NF_BR_PRI_BRNF
,
833 .hook
= br_nf_local_in
,
834 .owner
= THIS_MODULE
,
836 .hooknum
= NF_BR_LOCAL_IN
,
837 .priority
= NF_BR_PRI_BRNF
,
840 .hook
= br_nf_forward_ip
,
841 .owner
= THIS_MODULE
,
843 .hooknum
= NF_BR_FORWARD
,
844 .priority
= NF_BR_PRI_BRNF
- 1,
847 .hook
= br_nf_forward_arp
,
848 .owner
= THIS_MODULE
,
850 .hooknum
= NF_BR_FORWARD
,
851 .priority
= NF_BR_PRI_BRNF
,
854 .hook
= br_nf_post_routing
,
855 .owner
= THIS_MODULE
,
857 .hooknum
= NF_BR_POST_ROUTING
,
858 .priority
= NF_BR_PRI_LAST
,
861 .hook
= ip_sabotage_in
,
862 .owner
= THIS_MODULE
,
864 .hooknum
= NF_INET_PRE_ROUTING
,
865 .priority
= NF_IP_PRI_FIRST
,
868 .hook
= ip_sabotage_in
,
869 .owner
= THIS_MODULE
,
871 .hooknum
= NF_INET_PRE_ROUTING
,
872 .priority
= NF_IP6_PRI_FIRST
,
878 int brnf_sysctl_call_tables(ctl_table
* ctl
, int write
,
879 void __user
* buffer
, size_t * lenp
, loff_t
* ppos
)
883 ret
= proc_dointvec(ctl
, write
, buffer
, lenp
, ppos
);
885 if (write
&& *(int *)(ctl
->data
))
886 *(int *)(ctl
->data
) = 1;
890 static ctl_table brnf_table
[] = {
892 .procname
= "bridge-nf-call-arptables",
893 .data
= &brnf_call_arptables
,
894 .maxlen
= sizeof(int),
896 .proc_handler
= brnf_sysctl_call_tables
,
899 .procname
= "bridge-nf-call-iptables",
900 .data
= &brnf_call_iptables
,
901 .maxlen
= sizeof(int),
903 .proc_handler
= brnf_sysctl_call_tables
,
906 .procname
= "bridge-nf-call-ip6tables",
907 .data
= &brnf_call_ip6tables
,
908 .maxlen
= sizeof(int),
910 .proc_handler
= brnf_sysctl_call_tables
,
913 .procname
= "bridge-nf-filter-vlan-tagged",
914 .data
= &brnf_filter_vlan_tagged
,
915 .maxlen
= sizeof(int),
917 .proc_handler
= brnf_sysctl_call_tables
,
920 .procname
= "bridge-nf-filter-pppoe-tagged",
921 .data
= &brnf_filter_pppoe_tagged
,
922 .maxlen
= sizeof(int),
924 .proc_handler
= brnf_sysctl_call_tables
,
929 static struct ctl_path brnf_path
[] = {
930 { .procname
= "net", },
931 { .procname
= "bridge", },
936 int __init
br_netfilter_init(void)
940 ret
= nf_register_hooks(br_nf_ops
, ARRAY_SIZE(br_nf_ops
));
944 brnf_sysctl_header
= register_sysctl_paths(brnf_path
, brnf_table
);
945 if (brnf_sysctl_header
== NULL
) {
947 "br_netfilter: can't register to sysctl.\n");
948 nf_unregister_hooks(br_nf_ops
, ARRAY_SIZE(br_nf_ops
));
952 printk(KERN_NOTICE
"Bridge firewalling registered\n");
956 void br_netfilter_fini(void)
958 nf_unregister_hooks(br_nf_ops
, ARRAY_SIZE(br_nf_ops
));
960 unregister_sysctl_table(brnf_sysctl_header
);