writeback: split writeback_inodes_wb
[linux-2.6/next.git] / net / dccp / ccids / lib / packet_history.c
blob3a4f414e94a0051bf66429739680d3d5ee8fb432
1 /*
2 * Copyright (c) 2007 The University of Aberdeen, Scotland, UK
3 * Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
5 * An implementation of the DCCP protocol
7 * This code has been developed by the University of Waikato WAND
8 * research group. For further information please see http://www.wand.net.nz/
9 * or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
11 * This code also uses code from Lulea University, rereleased as GPL by its
12 * authors:
13 * Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
15 * Changes to meet Linux coding standards, to make it meet latest ccid3 draft
16 * and to make it work as a loadable module in the DCCP stack written by
17 * Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
19 * Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License as published by
23 * the Free Software Foundation; either version 2 of the License, or
24 * (at your option) any later version.
26 * This program is distributed in the hope that it will be useful,
27 * but WITHOUT ANY WARRANTY; without even the implied warranty of
28 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
29 * GNU General Public License for more details.
31 * You should have received a copy of the GNU General Public License
32 * along with this program; if not, write to the Free Software
33 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include "packet_history.h"
39 #include "../../dccp.h"
41 /**
42 * tfrc_tx_hist_entry - Simple singly-linked TX history list
43 * @next: next oldest entry (LIFO order)
44 * @seqno: sequence number of this entry
45 * @stamp: send time of packet with sequence number @seqno
47 struct tfrc_tx_hist_entry {
48 struct tfrc_tx_hist_entry *next;
49 u64 seqno;
50 ktime_t stamp;
54 * Transmitter History Routines
56 static struct kmem_cache *tfrc_tx_hist_slab;
58 int __init tfrc_tx_packet_history_init(void)
60 tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
61 sizeof(struct tfrc_tx_hist_entry),
62 0, SLAB_HWCACHE_ALIGN, NULL);
63 return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
66 void tfrc_tx_packet_history_exit(void)
68 if (tfrc_tx_hist_slab != NULL) {
69 kmem_cache_destroy(tfrc_tx_hist_slab);
70 tfrc_tx_hist_slab = NULL;
74 static struct tfrc_tx_hist_entry *
75 tfrc_tx_hist_find_entry(struct tfrc_tx_hist_entry *head, u64 seqno)
77 while (head != NULL && head->seqno != seqno)
78 head = head->next;
80 return head;
83 int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno)
85 struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
87 if (entry == NULL)
88 return -ENOBUFS;
89 entry->seqno = seqno;
90 entry->stamp = ktime_get_real();
91 entry->next = *headp;
92 *headp = entry;
93 return 0;
96 void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp)
98 struct tfrc_tx_hist_entry *head = *headp;
100 while (head != NULL) {
101 struct tfrc_tx_hist_entry *next = head->next;
103 kmem_cache_free(tfrc_tx_hist_slab, head);
104 head = next;
107 *headp = NULL;
110 u32 tfrc_tx_hist_rtt(struct tfrc_tx_hist_entry *head, const u64 seqno,
111 const ktime_t now)
113 u32 rtt = 0;
114 struct tfrc_tx_hist_entry *packet = tfrc_tx_hist_find_entry(head, seqno);
116 if (packet != NULL) {
117 rtt = ktime_us_delta(now, packet->stamp);
119 * Garbage-collect older (irrelevant) entries:
121 tfrc_tx_hist_purge(&packet->next);
124 return rtt;
129 * Receiver History Routines
131 static struct kmem_cache *tfrc_rx_hist_slab;
133 int __init tfrc_rx_packet_history_init(void)
135 tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
136 sizeof(struct tfrc_rx_hist_entry),
137 0, SLAB_HWCACHE_ALIGN, NULL);
138 return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
141 void tfrc_rx_packet_history_exit(void)
143 if (tfrc_rx_hist_slab != NULL) {
144 kmem_cache_destroy(tfrc_rx_hist_slab);
145 tfrc_rx_hist_slab = NULL;
149 static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
150 const struct sk_buff *skb,
151 const u64 ndp)
153 const struct dccp_hdr *dh = dccp_hdr(skb);
155 entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
156 entry->tfrchrx_ccval = dh->dccph_ccval;
157 entry->tfrchrx_type = dh->dccph_type;
158 entry->tfrchrx_ndp = ndp;
159 entry->tfrchrx_tstamp = ktime_get_real();
162 void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h,
163 const struct sk_buff *skb,
164 const u64 ndp)
166 struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);
168 tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
171 /* has the packet contained in skb been seen before? */
172 int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb)
174 const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
175 int i;
177 if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
178 return 1;
180 for (i = 1; i <= h->loss_count; i++)
181 if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
182 return 1;
184 return 0;
187 static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
189 const u8 idx_a = tfrc_rx_hist_index(h, a),
190 idx_b = tfrc_rx_hist_index(h, b);
191 struct tfrc_rx_hist_entry *tmp = h->ring[idx_a];
193 h->ring[idx_a] = h->ring[idx_b];
194 h->ring[idx_b] = tmp;
198 * Private helper functions for loss detection.
200 * In the descriptions, `Si' refers to the sequence number of entry number i,
201 * whose NDP count is `Ni' (lower case is used for variables).
202 * Note: All __xxx_loss functions expect that a test against duplicates has been
203 * performed already: the seqno of the skb must not be less than the seqno
204 * of loss_prev; and it must not equal that of any valid history entry.
206 static void __do_track_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u64 n1)
208 u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
209 s1 = DCCP_SKB_CB(skb)->dccpd_seq;
211 if (!dccp_loss_free(s0, s1, n1)) { /* gap between S0 and S1 */
212 h->loss_count = 1;
213 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n1);
217 static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
219 u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
220 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
221 s2 = DCCP_SKB_CB(skb)->dccpd_seq;
223 if (likely(dccp_delta_seqno(s1, s2) > 0)) { /* S1 < S2 */
224 h->loss_count = 2;
225 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
226 return;
229 /* S0 < S2 < S1 */
231 if (dccp_loss_free(s0, s2, n2)) {
232 u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
234 if (dccp_loss_free(s2, s1, n1)) {
235 /* hole is filled: S0, S2, and S1 are consecutive */
236 h->loss_count = 0;
237 h->loss_start = tfrc_rx_hist_index(h, 1);
238 } else
239 /* gap between S2 and S1: just update loss_prev */
240 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);
242 } else { /* gap between S0 and S2 */
244 * Reorder history to insert S2 between S0 and S1
246 tfrc_rx_hist_swap(h, 0, 3);
247 h->loss_start = tfrc_rx_hist_index(h, 3);
248 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
249 h->loss_count = 2;
253 /* return 1 if a new loss event has been identified */
254 static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
256 u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
257 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
258 s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
259 s3 = DCCP_SKB_CB(skb)->dccpd_seq;
261 if (likely(dccp_delta_seqno(s2, s3) > 0)) { /* S2 < S3 */
262 h->loss_count = 3;
263 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
264 return 1;
267 /* S3 < S2 */
269 if (dccp_delta_seqno(s1, s3) > 0) { /* S1 < S3 < S2 */
271 * Reorder history to insert S3 between S1 and S2
273 tfrc_rx_hist_swap(h, 2, 3);
274 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
275 h->loss_count = 3;
276 return 1;
279 /* S0 < S3 < S1 */
281 if (dccp_loss_free(s0, s3, n3)) {
282 u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
284 if (dccp_loss_free(s3, s1, n1)) {
285 /* hole between S0 and S1 filled by S3 */
286 u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
288 if (dccp_loss_free(s1, s2, n2)) {
289 /* entire hole filled by S0, S3, S1, S2 */
290 h->loss_start = tfrc_rx_hist_index(h, 2);
291 h->loss_count = 0;
292 } else {
293 /* gap remains between S1 and S2 */
294 h->loss_start = tfrc_rx_hist_index(h, 1);
295 h->loss_count = 1;
298 } else /* gap exists between S3 and S1, loss_count stays at 2 */
299 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);
301 return 0;
305 * The remaining case: S0 < S3 < S1 < S2; gap between S0 and S3
306 * Reorder history to insert S3 between S0 and S1.
308 tfrc_rx_hist_swap(h, 0, 3);
309 h->loss_start = tfrc_rx_hist_index(h, 3);
310 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
311 h->loss_count = 3;
313 return 1;
316 /* recycle RX history records to continue loss detection if necessary */
317 static void __three_after_loss(struct tfrc_rx_hist *h)
320 * At this stage we know already that there is a gap between S0 and S1
321 * (since S0 was the highest sequence number received before detecting
322 * the loss). To recycle the loss record, it is thus only necessary to
323 * check for other possible gaps between S1/S2 and between S2/S3.
325 u64 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
326 s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
327 s3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_seqno;
328 u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
329 n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;
331 if (dccp_loss_free(s1, s2, n2)) {
333 if (dccp_loss_free(s2, s3, n3)) {
334 /* no gap between S2 and S3: entire hole is filled */
335 h->loss_start = tfrc_rx_hist_index(h, 3);
336 h->loss_count = 0;
337 } else {
338 /* gap between S2 and S3 */
339 h->loss_start = tfrc_rx_hist_index(h, 2);
340 h->loss_count = 1;
343 } else { /* gap between S1 and S2 */
344 h->loss_start = tfrc_rx_hist_index(h, 1);
345 h->loss_count = 2;
350 * tfrc_rx_handle_loss - Loss detection and further processing
351 * @h: The non-empty RX history object
352 * @lh: Loss Intervals database to update
353 * @skb: Currently received packet
354 * @ndp: The NDP count belonging to @skb
355 * @calc_first_li: Caller-dependent computation of first loss interval in @lh
356 * @sk: Used by @calc_first_li (see tfrc_lh_interval_add)
357 * Chooses action according to pending loss, updates LI database when a new
358 * loss was detected, and does required post-processing. Returns 1 when caller
359 * should send feedback, 0 otherwise.
360 * Since it also takes care of reordering during loss detection and updates the
361 * records accordingly, the caller should not perform any more RX history
362 * operations when loss_count is greater than 0 after calling this function.
364 int tfrc_rx_handle_loss(struct tfrc_rx_hist *h,
365 struct tfrc_loss_hist *lh,
366 struct sk_buff *skb, const u64 ndp,
367 u32 (*calc_first_li)(struct sock *), struct sock *sk)
369 int is_new_loss = 0;
371 if (h->loss_count == 0) {
372 __do_track_loss(h, skb, ndp);
373 } else if (h->loss_count == 1) {
374 __one_after_loss(h, skb, ndp);
375 } else if (h->loss_count != 2) {
376 DCCP_BUG("invalid loss_count %d", h->loss_count);
377 } else if (__two_after_loss(h, skb, ndp)) {
379 * Update Loss Interval database and recycle RX records
381 is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
382 __three_after_loss(h);
384 return is_new_loss;
387 int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h)
389 int i;
391 for (i = 0; i <= TFRC_NDUPACK; i++) {
392 h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
393 if (h->ring[i] == NULL)
394 goto out_free;
397 h->loss_count = h->loss_start = 0;
398 return 0;
400 out_free:
401 while (i-- != 0) {
402 kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
403 h->ring[i] = NULL;
405 return -ENOBUFS;
408 void tfrc_rx_hist_purge(struct tfrc_rx_hist *h)
410 int i;
412 for (i = 0; i <= TFRC_NDUPACK; ++i)
413 if (h->ring[i] != NULL) {
414 kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
415 h->ring[i] = NULL;
420 * tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
422 static inline struct tfrc_rx_hist_entry *
423 tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
425 return h->ring[0];
429 * tfrc_rx_hist_rtt_prev_s: previously suitable (wrt rtt_last_s) RTT-sampling entry
431 static inline struct tfrc_rx_hist_entry *
432 tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
434 return h->ring[h->rtt_sample_prev];
438 * tfrc_rx_hist_sample_rtt - Sample RTT from timestamp / CCVal
439 * Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
440 * to compute a sample with given data - calling function should check this.
442 u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
444 u32 sample = 0,
445 delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
446 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
448 if (delta_v < 1 || delta_v > 4) { /* unsuitable CCVal delta */
449 if (h->rtt_sample_prev == 2) { /* previous candidate stored */
450 sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
451 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
452 if (sample)
453 sample = 4 / sample *
454 ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
455 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
456 else /*
457 * FIXME: This condition is in principle not
458 * possible but occurs when CCID is used for
459 * two-way data traffic. I have tried to trace
460 * it, but the cause does not seem to be here.
462 DCCP_BUG("please report to dccp@vger.kernel.org"
463 " => prev = %u, last = %u",
464 tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
465 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
466 } else if (delta_v < 1) {
467 h->rtt_sample_prev = 1;
468 goto keep_ref_for_next_time;
471 } else if (delta_v == 4) /* optimal match */
472 sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
473 else { /* suboptimal match */
474 h->rtt_sample_prev = 2;
475 goto keep_ref_for_next_time;
478 if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
479 DCCP_WARN("RTT sample %u too large, using max\n", sample);
480 sample = DCCP_SANE_RTT_MAX;
483 h->rtt_sample_prev = 0; /* use current entry as next reference */
484 keep_ref_for_next_time:
486 return sample;