2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
76 int sysctl_tcp_timestamps __read_mostly
= 1;
77 int sysctl_tcp_window_scaling __read_mostly
= 1;
78 int sysctl_tcp_sack __read_mostly
= 1;
79 int sysctl_tcp_fack __read_mostly
= 1;
80 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
81 int sysctl_tcp_ecn __read_mostly
= 2;
82 int sysctl_tcp_dsack __read_mostly
= 1;
83 int sysctl_tcp_app_win __read_mostly
= 31;
84 int sysctl_tcp_adv_win_scale __read_mostly
= 2;
86 int sysctl_tcp_stdurg __read_mostly
;
87 int sysctl_tcp_rfc1337 __read_mostly
;
88 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
89 int sysctl_tcp_frto __read_mostly
= 2;
90 int sysctl_tcp_frto_response __read_mostly
;
91 int sysctl_tcp_nometrics_save __read_mostly
;
93 int sysctl_tcp_thin_dupack __read_mostly
;
95 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
96 int sysctl_tcp_abc __read_mostly
;
98 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
99 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
100 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
101 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
102 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
103 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
104 #define FLAG_ECE 0x40 /* ECE in this ACK */
105 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
106 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
107 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
108 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
109 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
110 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
111 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
113 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
114 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
115 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
116 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
117 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
119 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
120 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
122 /* Adapt the MSS value used to make delayed ack decision to the
125 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
127 struct inet_connection_sock
*icsk
= inet_csk(sk
);
128 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
131 icsk
->icsk_ack
.last_seg_size
= 0;
133 /* skb->len may jitter because of SACKs, even if peer
134 * sends good full-sized frames.
136 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
137 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
138 icsk
->icsk_ack
.rcv_mss
= len
;
140 /* Otherwise, we make more careful check taking into account,
141 * that SACKs block is variable.
143 * "len" is invariant segment length, including TCP header.
145 len
+= skb
->data
- skb_transport_header(skb
);
146 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
147 /* If PSH is not set, packet should be
148 * full sized, provided peer TCP is not badly broken.
149 * This observation (if it is correct 8)) allows
150 * to handle super-low mtu links fairly.
152 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
153 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
154 /* Subtract also invariant (if peer is RFC compliant),
155 * tcp header plus fixed timestamp option length.
156 * Resulting "len" is MSS free of SACK jitter.
158 len
-= tcp_sk(sk
)->tcp_header_len
;
159 icsk
->icsk_ack
.last_seg_size
= len
;
161 icsk
->icsk_ack
.rcv_mss
= len
;
165 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
166 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
167 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
171 static void tcp_incr_quickack(struct sock
*sk
)
173 struct inet_connection_sock
*icsk
= inet_csk(sk
);
174 unsigned quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
178 if (quickacks
> icsk
->icsk_ack
.quick
)
179 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
182 void tcp_enter_quickack_mode(struct sock
*sk
)
184 struct inet_connection_sock
*icsk
= inet_csk(sk
);
185 tcp_incr_quickack(sk
);
186 icsk
->icsk_ack
.pingpong
= 0;
187 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
190 /* Send ACKs quickly, if "quick" count is not exhausted
191 * and the session is not interactive.
194 static inline int tcp_in_quickack_mode(const struct sock
*sk
)
196 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
197 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
200 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
202 if (tp
->ecn_flags
& TCP_ECN_OK
)
203 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
206 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, struct sk_buff
*skb
)
208 if (tcp_hdr(skb
)->cwr
)
209 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
212 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
214 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
217 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, struct sk_buff
*skb
)
219 if (tp
->ecn_flags
& TCP_ECN_OK
) {
220 if (INET_ECN_is_ce(TCP_SKB_CB(skb
)->flags
))
221 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
222 /* Funny extension: if ECT is not set on a segment,
223 * it is surely retransmit. It is not in ECN RFC,
224 * but Linux follows this rule. */
225 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb
)->flags
)))
226 tcp_enter_quickack_mode((struct sock
*)tp
);
230 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, struct tcphdr
*th
)
232 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
233 tp
->ecn_flags
&= ~TCP_ECN_OK
;
236 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, struct tcphdr
*th
)
238 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
239 tp
->ecn_flags
&= ~TCP_ECN_OK
;
242 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock
*tp
, struct tcphdr
*th
)
244 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
249 /* Buffer size and advertised window tuning.
251 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
254 static void tcp_fixup_sndbuf(struct sock
*sk
)
256 int sndmem
= tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
+ 16 +
257 sizeof(struct sk_buff
);
259 if (sk
->sk_sndbuf
< 3 * sndmem
)
260 sk
->sk_sndbuf
= min(3 * sndmem
, sysctl_tcp_wmem
[2]);
263 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
265 * All tcp_full_space() is split to two parts: "network" buffer, allocated
266 * forward and advertised in receiver window (tp->rcv_wnd) and
267 * "application buffer", required to isolate scheduling/application
268 * latencies from network.
269 * window_clamp is maximal advertised window. It can be less than
270 * tcp_full_space(), in this case tcp_full_space() - window_clamp
271 * is reserved for "application" buffer. The less window_clamp is
272 * the smoother our behaviour from viewpoint of network, but the lower
273 * throughput and the higher sensitivity of the connection to losses. 8)
275 * rcv_ssthresh is more strict window_clamp used at "slow start"
276 * phase to predict further behaviour of this connection.
277 * It is used for two goals:
278 * - to enforce header prediction at sender, even when application
279 * requires some significant "application buffer". It is check #1.
280 * - to prevent pruning of receive queue because of misprediction
281 * of receiver window. Check #2.
283 * The scheme does not work when sender sends good segments opening
284 * window and then starts to feed us spaghetti. But it should work
285 * in common situations. Otherwise, we have to rely on queue collapsing.
288 /* Slow part of check#2. */
289 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
291 struct tcp_sock
*tp
= tcp_sk(sk
);
293 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
294 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
296 while (tp
->rcv_ssthresh
<= window
) {
297 if (truesize
<= skb
->len
)
298 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
306 static void tcp_grow_window(struct sock
*sk
, struct sk_buff
*skb
)
308 struct tcp_sock
*tp
= tcp_sk(sk
);
311 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
312 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
313 !tcp_memory_pressure
) {
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
319 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
320 incr
= 2 * tp
->advmss
;
322 incr
= __tcp_grow_window(sk
, skb
);
325 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
327 inet_csk(sk
)->icsk_ack
.quick
|= 1;
332 /* 3. Tuning rcvbuf, when connection enters established state. */
334 static void tcp_fixup_rcvbuf(struct sock
*sk
)
336 struct tcp_sock
*tp
= tcp_sk(sk
);
337 int rcvmem
= tp
->advmss
+ MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
339 /* Try to select rcvbuf so that 4 mss-sized segments
340 * will fit to window and corresponding skbs will fit to our rcvbuf.
341 * (was 3; 4 is minimum to allow fast retransmit to work.)
343 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
345 if (sk
->sk_rcvbuf
< 4 * rcvmem
)
346 sk
->sk_rcvbuf
= min(4 * rcvmem
, sysctl_tcp_rmem
[2]);
349 /* 4. Try to fixup all. It is made immediately after connection enters
352 static void tcp_init_buffer_space(struct sock
*sk
)
354 struct tcp_sock
*tp
= tcp_sk(sk
);
357 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
358 tcp_fixup_rcvbuf(sk
);
359 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
360 tcp_fixup_sndbuf(sk
);
362 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
364 maxwin
= tcp_full_space(sk
);
366 if (tp
->window_clamp
>= maxwin
) {
367 tp
->window_clamp
= maxwin
;
369 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
370 tp
->window_clamp
= max(maxwin
-
371 (maxwin
>> sysctl_tcp_app_win
),
375 /* Force reservation of one segment. */
376 if (sysctl_tcp_app_win
&&
377 tp
->window_clamp
> 2 * tp
->advmss
&&
378 tp
->window_clamp
+ tp
->advmss
> maxwin
)
379 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
381 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
382 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
385 /* 5. Recalculate window clamp after socket hit its memory bounds. */
386 static void tcp_clamp_window(struct sock
*sk
)
388 struct tcp_sock
*tp
= tcp_sk(sk
);
389 struct inet_connection_sock
*icsk
= inet_csk(sk
);
391 icsk
->icsk_ack
.quick
= 0;
393 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
394 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
395 !tcp_memory_pressure
&&
396 atomic_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0]) {
397 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
400 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
401 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
404 /* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
411 void tcp_initialize_rcv_mss(struct sock
*sk
)
413 struct tcp_sock
*tp
= tcp_sk(sk
);
414 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
416 hint
= min(hint
, tp
->rcv_wnd
/ 2);
417 hint
= min(hint
, TCP_MSS_DEFAULT
);
418 hint
= max(hint
, TCP_MIN_MSS
);
420 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
423 /* Receiver "autotuning" code.
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
434 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
436 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
442 if (new_sample
!= 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
448 * Also, since we are only going for a minimum in the
449 * non-timestamp case, we do not smooth things out
450 * else with timestamps disabled convergence takes too
454 m
-= (new_sample
>> 3);
456 } else if (m
< new_sample
)
459 /* No previous measure. */
463 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
464 tp
->rcv_rtt_est
.rtt
= new_sample
;
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
469 if (tp
->rcv_rtt_est
.time
== 0)
471 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
473 tcp_rcv_rtt_update(tp
, jiffies
- tp
->rcv_rtt_est
.time
, 1);
476 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
477 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
480 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
481 const struct sk_buff
*skb
)
483 struct tcp_sock
*tp
= tcp_sk(sk
);
484 if (tp
->rx_opt
.rcv_tsecr
&&
485 (TCP_SKB_CB(skb
)->end_seq
-
486 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
487 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
491 * This function should be called every time data is copied to user space.
492 * It calculates the appropriate TCP receive buffer space.
494 void tcp_rcv_space_adjust(struct sock
*sk
)
496 struct tcp_sock
*tp
= tcp_sk(sk
);
500 if (tp
->rcvq_space
.time
== 0)
503 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
504 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
507 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
509 space
= max(tp
->rcvq_space
.space
, space
);
511 if (tp
->rcvq_space
.space
!= space
) {
514 tp
->rcvq_space
.space
= space
;
516 if (sysctl_tcp_moderate_rcvbuf
&&
517 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
518 int new_clamp
= space
;
520 /* Receive space grows, normalize in order to
521 * take into account packet headers and sk_buff
522 * structure overhead.
527 rcvmem
= (tp
->advmss
+ MAX_TCP_HEADER
+
528 16 + sizeof(struct sk_buff
));
529 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
532 space
= min(space
, sysctl_tcp_rmem
[2]);
533 if (space
> sk
->sk_rcvbuf
) {
534 sk
->sk_rcvbuf
= space
;
536 /* Make the window clamp follow along. */
537 tp
->window_clamp
= new_clamp
;
543 tp
->rcvq_space
.seq
= tp
->copied_seq
;
544 tp
->rcvq_space
.time
= tcp_time_stamp
;
547 /* There is something which you must keep in mind when you analyze the
548 * behavior of the tp->ato delayed ack timeout interval. When a
549 * connection starts up, we want to ack as quickly as possible. The
550 * problem is that "good" TCP's do slow start at the beginning of data
551 * transmission. The means that until we send the first few ACK's the
552 * sender will sit on his end and only queue most of his data, because
553 * he can only send snd_cwnd unacked packets at any given time. For
554 * each ACK we send, he increments snd_cwnd and transmits more of his
557 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
559 struct tcp_sock
*tp
= tcp_sk(sk
);
560 struct inet_connection_sock
*icsk
= inet_csk(sk
);
563 inet_csk_schedule_ack(sk
);
565 tcp_measure_rcv_mss(sk
, skb
);
567 tcp_rcv_rtt_measure(tp
);
569 now
= tcp_time_stamp
;
571 if (!icsk
->icsk_ack
.ato
) {
572 /* The _first_ data packet received, initialize
573 * delayed ACK engine.
575 tcp_incr_quickack(sk
);
576 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
578 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
580 if (m
<= TCP_ATO_MIN
/ 2) {
581 /* The fastest case is the first. */
582 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
583 } else if (m
< icsk
->icsk_ack
.ato
) {
584 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
585 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
586 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
587 } else if (m
> icsk
->icsk_rto
) {
588 /* Too long gap. Apparently sender failed to
589 * restart window, so that we send ACKs quickly.
591 tcp_incr_quickack(sk
);
595 icsk
->icsk_ack
.lrcvtime
= now
;
597 TCP_ECN_check_ce(tp
, skb
);
600 tcp_grow_window(sk
, skb
);
603 /* Called to compute a smoothed rtt estimate. The data fed to this
604 * routine either comes from timestamps, or from segments that were
605 * known _not_ to have been retransmitted [see Karn/Partridge
606 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
607 * piece by Van Jacobson.
608 * NOTE: the next three routines used to be one big routine.
609 * To save cycles in the RFC 1323 implementation it was better to break
610 * it up into three procedures. -- erics
612 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
614 struct tcp_sock
*tp
= tcp_sk(sk
);
615 long m
= mrtt
; /* RTT */
617 /* The following amusing code comes from Jacobson's
618 * article in SIGCOMM '88. Note that rtt and mdev
619 * are scaled versions of rtt and mean deviation.
620 * This is designed to be as fast as possible
621 * m stands for "measurement".
623 * On a 1990 paper the rto value is changed to:
624 * RTO = rtt + 4 * mdev
626 * Funny. This algorithm seems to be very broken.
627 * These formulae increase RTO, when it should be decreased, increase
628 * too slowly, when it should be increased quickly, decrease too quickly
629 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
630 * does not matter how to _calculate_ it. Seems, it was trap
631 * that VJ failed to avoid. 8)
636 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
637 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
639 m
= -m
; /* m is now abs(error) */
640 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
641 /* This is similar to one of Eifel findings.
642 * Eifel blocks mdev updates when rtt decreases.
643 * This solution is a bit different: we use finer gain
644 * for mdev in this case (alpha*beta).
645 * Like Eifel it also prevents growth of rto,
646 * but also it limits too fast rto decreases,
647 * happening in pure Eifel.
652 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
654 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
655 if (tp
->mdev
> tp
->mdev_max
) {
656 tp
->mdev_max
= tp
->mdev
;
657 if (tp
->mdev_max
> tp
->rttvar
)
658 tp
->rttvar
= tp
->mdev_max
;
660 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
661 if (tp
->mdev_max
< tp
->rttvar
)
662 tp
->rttvar
-= (tp
->rttvar
- tp
->mdev_max
) >> 2;
663 tp
->rtt_seq
= tp
->snd_nxt
;
664 tp
->mdev_max
= tcp_rto_min(sk
);
667 /* no previous measure. */
668 tp
->srtt
= m
<< 3; /* take the measured time to be rtt */
669 tp
->mdev
= m
<< 1; /* make sure rto = 3*rtt */
670 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
671 tp
->rtt_seq
= tp
->snd_nxt
;
675 /* Calculate rto without backoff. This is the second half of Van Jacobson's
676 * routine referred to above.
678 static inline void tcp_set_rto(struct sock
*sk
)
680 const struct tcp_sock
*tp
= tcp_sk(sk
);
681 /* Old crap is replaced with new one. 8)
684 * 1. If rtt variance happened to be less 50msec, it is hallucination.
685 * It cannot be less due to utterly erratic ACK generation made
686 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
687 * to do with delayed acks, because at cwnd>2 true delack timeout
688 * is invisible. Actually, Linux-2.4 also generates erratic
689 * ACKs in some circumstances.
691 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
693 /* 2. Fixups made earlier cannot be right.
694 * If we do not estimate RTO correctly without them,
695 * all the algo is pure shit and should be replaced
696 * with correct one. It is exactly, which we pretend to do.
699 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
700 * guarantees that rto is higher.
705 /* Save metrics learned by this TCP session.
706 This function is called only, when TCP finishes successfully
707 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
709 void tcp_update_metrics(struct sock
*sk
)
711 struct tcp_sock
*tp
= tcp_sk(sk
);
712 struct dst_entry
*dst
= __sk_dst_get(sk
);
714 if (sysctl_tcp_nometrics_save
)
719 if (dst
&& (dst
->flags
& DST_HOST
)) {
720 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
724 if (icsk
->icsk_backoff
|| !tp
->srtt
) {
725 /* This session failed to estimate rtt. Why?
726 * Probably, no packets returned in time.
729 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
730 dst
->metrics
[RTAX_RTT
- 1] = 0;
734 rtt
= dst_metric_rtt(dst
, RTAX_RTT
);
737 /* If newly calculated rtt larger than stored one,
738 * store new one. Otherwise, use EWMA. Remember,
739 * rtt overestimation is always better than underestimation.
741 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
743 set_dst_metric_rtt(dst
, RTAX_RTT
, tp
->srtt
);
745 set_dst_metric_rtt(dst
, RTAX_RTT
, rtt
- (m
>> 3));
748 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
753 /* Scale deviation to rttvar fixed point */
758 var
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
762 var
-= (var
- m
) >> 2;
764 set_dst_metric_rtt(dst
, RTAX_RTTVAR
, var
);
767 if (tcp_in_initial_slowstart(tp
)) {
768 /* Slow start still did not finish. */
769 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
770 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
771 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
772 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_cwnd
>> 1;
773 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
774 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
775 dst
->metrics
[RTAX_CWND
- 1] = tp
->snd_cwnd
;
776 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
777 icsk
->icsk_ca_state
== TCP_CA_Open
) {
778 /* Cong. avoidance phase, cwnd is reliable. */
779 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
780 dst
->metrics
[RTAX_SSTHRESH
-1] =
781 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
);
782 if (!dst_metric_locked(dst
, RTAX_CWND
))
783 dst
->metrics
[RTAX_CWND
-1] = (dst_metric(dst
, RTAX_CWND
) + tp
->snd_cwnd
) >> 1;
785 /* Else slow start did not finish, cwnd is non-sense,
786 ssthresh may be also invalid.
788 if (!dst_metric_locked(dst
, RTAX_CWND
))
789 dst
->metrics
[RTAX_CWND
-1] = (dst_metric(dst
, RTAX_CWND
) + tp
->snd_ssthresh
) >> 1;
790 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
791 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
792 tp
->snd_ssthresh
> dst_metric(dst
, RTAX_SSTHRESH
))
793 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_ssthresh
;
796 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
797 if (dst_metric(dst
, RTAX_REORDERING
) < tp
->reordering
&&
798 tp
->reordering
!= sysctl_tcp_reordering
)
799 dst
->metrics
[RTAX_REORDERING
-1] = tp
->reordering
;
804 /* Numbers are taken from RFC3390.
806 * John Heffner states:
808 * The RFC specifies a window of no more than 4380 bytes
809 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
810 * is a bit misleading because they use a clamp at 4380 bytes
811 * rather than use a multiplier in the relevant range.
813 __u32
tcp_init_cwnd(struct tcp_sock
*tp
, struct dst_entry
*dst
)
815 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
818 if (tp
->mss_cache
> 1460)
821 cwnd
= (tp
->mss_cache
> 1095) ? 3 : 4;
823 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
826 /* Set slow start threshold and cwnd not falling to slow start */
827 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
829 struct tcp_sock
*tp
= tcp_sk(sk
);
830 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
832 tp
->prior_ssthresh
= 0;
834 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
837 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
838 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
839 tcp_packets_in_flight(tp
) + 1U);
840 tp
->snd_cwnd_cnt
= 0;
841 tp
->high_seq
= tp
->snd_nxt
;
842 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
843 TCP_ECN_queue_cwr(tp
);
845 tcp_set_ca_state(sk
, TCP_CA_CWR
);
850 * Packet counting of FACK is based on in-order assumptions, therefore TCP
851 * disables it when reordering is detected
853 static void tcp_disable_fack(struct tcp_sock
*tp
)
855 /* RFC3517 uses different metric in lost marker => reset on change */
857 tp
->lost_skb_hint
= NULL
;
858 tp
->rx_opt
.sack_ok
&= ~2;
861 /* Take a notice that peer is sending D-SACKs */
862 static void tcp_dsack_seen(struct tcp_sock
*tp
)
864 tp
->rx_opt
.sack_ok
|= 4;
867 /* Initialize metrics on socket. */
869 static void tcp_init_metrics(struct sock
*sk
)
871 struct tcp_sock
*tp
= tcp_sk(sk
);
872 struct dst_entry
*dst
= __sk_dst_get(sk
);
879 if (dst_metric_locked(dst
, RTAX_CWND
))
880 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
881 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
882 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
883 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
884 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
886 if (dst_metric(dst
, RTAX_REORDERING
) &&
887 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
888 tcp_disable_fack(tp
);
889 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
892 if (dst_metric(dst
, RTAX_RTT
) == 0)
895 if (!tp
->srtt
&& dst_metric_rtt(dst
, RTAX_RTT
) < (TCP_TIMEOUT_INIT
<< 3))
898 /* Initial rtt is determined from SYN,SYN-ACK.
899 * The segment is small and rtt may appear much
900 * less than real one. Use per-dst memory
901 * to make it more realistic.
903 * A bit of theory. RTT is time passed after "normal" sized packet
904 * is sent until it is ACKed. In normal circumstances sending small
905 * packets force peer to delay ACKs and calculation is correct too.
906 * The algorithm is adaptive and, provided we follow specs, it
907 * NEVER underestimate RTT. BUT! If peer tries to make some clever
908 * tricks sort of "quick acks" for time long enough to decrease RTT
909 * to low value, and then abruptly stops to do it and starts to delay
910 * ACKs, wait for troubles.
912 if (dst_metric_rtt(dst
, RTAX_RTT
) > tp
->srtt
) {
913 tp
->srtt
= dst_metric_rtt(dst
, RTAX_RTT
);
914 tp
->rtt_seq
= tp
->snd_nxt
;
916 if (dst_metric_rtt(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
917 tp
->mdev
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
918 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
921 if (inet_csk(sk
)->icsk_rto
< TCP_TIMEOUT_INIT
&& !tp
->rx_opt
.saw_tstamp
)
925 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
926 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
930 /* Play conservative. If timestamps are not
931 * supported, TCP will fail to recalculate correct
932 * rtt, if initial rto is too small. FORGET ALL AND RESET!
934 if (!tp
->rx_opt
.saw_tstamp
&& tp
->srtt
) {
936 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_INIT
;
937 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
942 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
945 struct tcp_sock
*tp
= tcp_sk(sk
);
946 if (metric
> tp
->reordering
) {
949 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
951 /* This exciting event is worth to be remembered. 8) */
953 mib_idx
= LINUX_MIB_TCPTSREORDER
;
954 else if (tcp_is_reno(tp
))
955 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
956 else if (tcp_is_fack(tp
))
957 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
959 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
961 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
962 #if FASTRETRANS_DEBUG > 1
963 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
964 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
968 tp
->undo_marker
? tp
->undo_retrans
: 0);
970 tcp_disable_fack(tp
);
974 /* This must be called before lost_out is incremented */
975 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
977 if ((tp
->retransmit_skb_hint
== NULL
) ||
978 before(TCP_SKB_CB(skb
)->seq
,
979 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
980 tp
->retransmit_skb_hint
= skb
;
983 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
984 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
987 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
989 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
990 tcp_verify_retransmit_hint(tp
, skb
);
992 tp
->lost_out
+= tcp_skb_pcount(skb
);
993 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
997 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
,
1000 tcp_verify_retransmit_hint(tp
, skb
);
1002 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1003 tp
->lost_out
+= tcp_skb_pcount(skb
);
1004 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1008 /* This procedure tags the retransmission queue when SACKs arrive.
1010 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1011 * Packets in queue with these bits set are counted in variables
1012 * sacked_out, retrans_out and lost_out, correspondingly.
1014 * Valid combinations are:
1015 * Tag InFlight Description
1016 * 0 1 - orig segment is in flight.
1017 * S 0 - nothing flies, orig reached receiver.
1018 * L 0 - nothing flies, orig lost by net.
1019 * R 2 - both orig and retransmit are in flight.
1020 * L|R 1 - orig is lost, retransmit is in flight.
1021 * S|R 1 - orig reached receiver, retrans is still in flight.
1022 * (L|S|R is logically valid, it could occur when L|R is sacked,
1023 * but it is equivalent to plain S and code short-curcuits it to S.
1024 * L|S is logically invalid, it would mean -1 packet in flight 8))
1026 * These 6 states form finite state machine, controlled by the following events:
1027 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1028 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1029 * 3. Loss detection event of one of three flavors:
1030 * A. Scoreboard estimator decided the packet is lost.
1031 * A'. Reno "three dupacks" marks head of queue lost.
1032 * A''. Its FACK modfication, head until snd.fack is lost.
1033 * B. SACK arrives sacking data transmitted after never retransmitted
1034 * hole was sent out.
1035 * C. SACK arrives sacking SND.NXT at the moment, when the
1036 * segment was retransmitted.
1037 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1039 * It is pleasant to note, that state diagram turns out to be commutative,
1040 * so that we are allowed not to be bothered by order of our actions,
1041 * when multiple events arrive simultaneously. (see the function below).
1043 * Reordering detection.
1044 * --------------------
1045 * Reordering metric is maximal distance, which a packet can be displaced
1046 * in packet stream. With SACKs we can estimate it:
1048 * 1. SACK fills old hole and the corresponding segment was not
1049 * ever retransmitted -> reordering. Alas, we cannot use it
1050 * when segment was retransmitted.
1051 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1052 * for retransmitted and already SACKed segment -> reordering..
1053 * Both of these heuristics are not used in Loss state, when we cannot
1054 * account for retransmits accurately.
1056 * SACK block validation.
1057 * ----------------------
1059 * SACK block range validation checks that the received SACK block fits to
1060 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1061 * Note that SND.UNA is not included to the range though being valid because
1062 * it means that the receiver is rather inconsistent with itself reporting
1063 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1064 * perfectly valid, however, in light of RFC2018 which explicitly states
1065 * that "SACK block MUST reflect the newest segment. Even if the newest
1066 * segment is going to be discarded ...", not that it looks very clever
1067 * in case of head skb. Due to potentional receiver driven attacks, we
1068 * choose to avoid immediate execution of a walk in write queue due to
1069 * reneging and defer head skb's loss recovery to standard loss recovery
1070 * procedure that will eventually trigger (nothing forbids us doing this).
1072 * Implements also blockage to start_seq wrap-around. Problem lies in the
1073 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1074 * there's no guarantee that it will be before snd_nxt (n). The problem
1075 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1078 * <- outs wnd -> <- wrapzone ->
1079 * u e n u_w e_w s n_w
1081 * |<------------+------+----- TCP seqno space --------------+---------->|
1082 * ...-- <2^31 ->| |<--------...
1083 * ...---- >2^31 ------>| |<--------...
1085 * Current code wouldn't be vulnerable but it's better still to discard such
1086 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1087 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1088 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1089 * equal to the ideal case (infinite seqno space without wrap caused issues).
1091 * With D-SACK the lower bound is extended to cover sequence space below
1092 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1093 * again, D-SACK block must not to go across snd_una (for the same reason as
1094 * for the normal SACK blocks, explained above). But there all simplicity
1095 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1096 * fully below undo_marker they do not affect behavior in anyway and can
1097 * therefore be safely ignored. In rare cases (which are more or less
1098 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1099 * fragmentation and packet reordering past skb's retransmission. To consider
1100 * them correctly, the acceptable range must be extended even more though
1101 * the exact amount is rather hard to quantify. However, tp->max_window can
1102 * be used as an exaggerated estimate.
1104 static int tcp_is_sackblock_valid(struct tcp_sock
*tp
, int is_dsack
,
1105 u32 start_seq
, u32 end_seq
)
1107 /* Too far in future, or reversed (interpretation is ambiguous) */
1108 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1111 /* Nasty start_seq wrap-around check (see comments above) */
1112 if (!before(start_seq
, tp
->snd_nxt
))
1115 /* In outstanding window? ...This is valid exit for D-SACKs too.
1116 * start_seq == snd_una is non-sensical (see comments above)
1118 if (after(start_seq
, tp
->snd_una
))
1121 if (!is_dsack
|| !tp
->undo_marker
)
1124 /* ...Then it's D-SACK, and must reside below snd_una completely */
1125 if (!after(end_seq
, tp
->snd_una
))
1128 if (!before(start_seq
, tp
->undo_marker
))
1132 if (!after(end_seq
, tp
->undo_marker
))
1135 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1136 * start_seq < undo_marker and end_seq >= undo_marker.
1138 return !before(start_seq
, end_seq
- tp
->max_window
);
1141 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1142 * Event "C". Later note: FACK people cheated me again 8), we have to account
1143 * for reordering! Ugly, but should help.
1145 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1146 * less than what is now known to be received by the other end (derived from
1147 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1148 * retransmitted skbs to avoid some costly processing per ACKs.
1150 static void tcp_mark_lost_retrans(struct sock
*sk
)
1152 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1153 struct tcp_sock
*tp
= tcp_sk(sk
);
1154 struct sk_buff
*skb
;
1156 u32 new_low_seq
= tp
->snd_nxt
;
1157 u32 received_upto
= tcp_highest_sack_seq(tp
);
1159 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
1160 !after(received_upto
, tp
->lost_retrans_low
) ||
1161 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1164 tcp_for_write_queue(skb
, sk
) {
1165 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
1167 if (skb
== tcp_send_head(sk
))
1169 if (cnt
== tp
->retrans_out
)
1171 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1174 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1177 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1178 * constraint here (see above) but figuring out that at
1179 * least tp->reordering SACK blocks reside between ack_seq
1180 * and received_upto is not easy task to do cheaply with
1181 * the available datastructures.
1183 * Whether FACK should check here for tp->reordering segs
1184 * in-between one could argue for either way (it would be
1185 * rather simple to implement as we could count fack_count
1186 * during the walk and do tp->fackets_out - fack_count).
1188 if (after(received_upto
, ack_seq
)) {
1189 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1190 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1192 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1193 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
);
1195 if (before(ack_seq
, new_low_seq
))
1196 new_low_seq
= ack_seq
;
1197 cnt
+= tcp_skb_pcount(skb
);
1201 if (tp
->retrans_out
)
1202 tp
->lost_retrans_low
= new_low_seq
;
1205 static int tcp_check_dsack(struct sock
*sk
, struct sk_buff
*ack_skb
,
1206 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1209 struct tcp_sock
*tp
= tcp_sk(sk
);
1210 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1211 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1214 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1217 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1218 } else if (num_sacks
> 1) {
1219 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1220 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1222 if (!after(end_seq_0
, end_seq_1
) &&
1223 !before(start_seq_0
, start_seq_1
)) {
1226 NET_INC_STATS_BH(sock_net(sk
),
1227 LINUX_MIB_TCPDSACKOFORECV
);
1231 /* D-SACK for already forgotten data... Do dumb counting. */
1233 !after(end_seq_0
, prior_snd_una
) &&
1234 after(end_seq_0
, tp
->undo_marker
))
1240 struct tcp_sacktag_state
{
1246 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1247 * the incoming SACK may not exactly match but we can find smaller MSS
1248 * aligned portion of it that matches. Therefore we might need to fragment
1249 * which may fail and creates some hassle (caller must handle error case
1252 * FIXME: this could be merged to shift decision code
1254 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1255 u32 start_seq
, u32 end_seq
)
1258 unsigned int pkt_len
;
1261 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1262 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1264 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1265 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1266 mss
= tcp_skb_mss(skb
);
1267 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1270 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1274 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1279 /* Round if necessary so that SACKs cover only full MSSes
1280 * and/or the remaining small portion (if present)
1282 if (pkt_len
> mss
) {
1283 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1284 if (!in_sack
&& new_len
< pkt_len
) {
1286 if (new_len
> skb
->len
)
1291 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
);
1299 static u8
tcp_sacktag_one(struct sk_buff
*skb
, struct sock
*sk
,
1300 struct tcp_sacktag_state
*state
,
1301 int dup_sack
, int pcount
)
1303 struct tcp_sock
*tp
= tcp_sk(sk
);
1304 u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1305 int fack_count
= state
->fack_count
;
1307 /* Account D-SACK for retransmitted packet. */
1308 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1309 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->undo_marker
))
1311 if (sacked
& TCPCB_SACKED_ACKED
)
1312 state
->reord
= min(fack_count
, state
->reord
);
1315 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1316 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1319 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1320 if (sacked
& TCPCB_SACKED_RETRANS
) {
1321 /* If the segment is not tagged as lost,
1322 * we do not clear RETRANS, believing
1323 * that retransmission is still in flight.
1325 if (sacked
& TCPCB_LOST
) {
1326 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1327 tp
->lost_out
-= pcount
;
1328 tp
->retrans_out
-= pcount
;
1331 if (!(sacked
& TCPCB_RETRANS
)) {
1332 /* New sack for not retransmitted frame,
1333 * which was in hole. It is reordering.
1335 if (before(TCP_SKB_CB(skb
)->seq
,
1336 tcp_highest_sack_seq(tp
)))
1337 state
->reord
= min(fack_count
,
1340 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1341 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->frto_highmark
))
1342 state
->flag
|= FLAG_ONLY_ORIG_SACKED
;
1345 if (sacked
& TCPCB_LOST
) {
1346 sacked
&= ~TCPCB_LOST
;
1347 tp
->lost_out
-= pcount
;
1351 sacked
|= TCPCB_SACKED_ACKED
;
1352 state
->flag
|= FLAG_DATA_SACKED
;
1353 tp
->sacked_out
+= pcount
;
1355 fack_count
+= pcount
;
1357 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1358 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1359 before(TCP_SKB_CB(skb
)->seq
,
1360 TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1361 tp
->lost_cnt_hint
+= pcount
;
1363 if (fack_count
> tp
->fackets_out
)
1364 tp
->fackets_out
= fack_count
;
1367 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1368 * frames and clear it. undo_retrans is decreased above, L|R frames
1369 * are accounted above as well.
1371 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1372 sacked
&= ~TCPCB_SACKED_RETRANS
;
1373 tp
->retrans_out
-= pcount
;
1379 static int tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1380 struct tcp_sacktag_state
*state
,
1381 unsigned int pcount
, int shifted
, int mss
,
1384 struct tcp_sock
*tp
= tcp_sk(sk
);
1385 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1389 /* Tweak before seqno plays */
1390 if (!tcp_is_fack(tp
) && tcp_is_sack(tp
) && tp
->lost_skb_hint
&&
1391 !before(TCP_SKB_CB(tp
->lost_skb_hint
)->seq
, TCP_SKB_CB(skb
)->seq
))
1392 tp
->lost_cnt_hint
+= pcount
;
1394 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1395 TCP_SKB_CB(skb
)->seq
+= shifted
;
1397 skb_shinfo(prev
)->gso_segs
+= pcount
;
1398 BUG_ON(skb_shinfo(skb
)->gso_segs
< pcount
);
1399 skb_shinfo(skb
)->gso_segs
-= pcount
;
1401 /* When we're adding to gso_segs == 1, gso_size will be zero,
1402 * in theory this shouldn't be necessary but as long as DSACK
1403 * code can come after this skb later on it's better to keep
1404 * setting gso_size to something.
1406 if (!skb_shinfo(prev
)->gso_size
) {
1407 skb_shinfo(prev
)->gso_size
= mss
;
1408 skb_shinfo(prev
)->gso_type
= sk
->sk_gso_type
;
1411 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1412 if (skb_shinfo(skb
)->gso_segs
<= 1) {
1413 skb_shinfo(skb
)->gso_size
= 0;
1414 skb_shinfo(skb
)->gso_type
= 0;
1417 /* We discard results */
1418 tcp_sacktag_one(skb
, sk
, state
, dup_sack
, pcount
);
1420 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1421 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1424 BUG_ON(!tcp_skb_pcount(skb
));
1425 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1429 /* Whole SKB was eaten :-) */
1431 if (skb
== tp
->retransmit_skb_hint
)
1432 tp
->retransmit_skb_hint
= prev
;
1433 if (skb
== tp
->scoreboard_skb_hint
)
1434 tp
->scoreboard_skb_hint
= prev
;
1435 if (skb
== tp
->lost_skb_hint
) {
1436 tp
->lost_skb_hint
= prev
;
1437 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1440 TCP_SKB_CB(skb
)->flags
|= TCP_SKB_CB(prev
)->flags
;
1441 if (skb
== tcp_highest_sack(sk
))
1442 tcp_advance_highest_sack(sk
, skb
);
1444 tcp_unlink_write_queue(skb
, sk
);
1445 sk_wmem_free_skb(sk
, skb
);
1447 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1452 /* I wish gso_size would have a bit more sane initialization than
1453 * something-or-zero which complicates things
1455 static int tcp_skb_seglen(struct sk_buff
*skb
)
1457 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1460 /* Shifting pages past head area doesn't work */
1461 static int skb_can_shift(struct sk_buff
*skb
)
1463 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1466 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1469 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1470 struct tcp_sacktag_state
*state
,
1471 u32 start_seq
, u32 end_seq
,
1474 struct tcp_sock
*tp
= tcp_sk(sk
);
1475 struct sk_buff
*prev
;
1481 if (!sk_can_gso(sk
))
1484 /* Normally R but no L won't result in plain S */
1486 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1488 if (!skb_can_shift(skb
))
1490 /* This frame is about to be dropped (was ACKed). */
1491 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1494 /* Can only happen with delayed DSACK + discard craziness */
1495 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1497 prev
= tcp_write_queue_prev(sk
, skb
);
1499 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1502 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1503 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1507 pcount
= tcp_skb_pcount(skb
);
1508 mss
= tcp_skb_seglen(skb
);
1510 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1511 * drop this restriction as unnecessary
1513 if (mss
!= tcp_skb_seglen(prev
))
1516 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1518 /* CHECKME: This is non-MSS split case only?, this will
1519 * cause skipped skbs due to advancing loop btw, original
1520 * has that feature too
1522 if (tcp_skb_pcount(skb
) <= 1)
1525 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1527 /* TODO: head merge to next could be attempted here
1528 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1529 * though it might not be worth of the additional hassle
1531 * ...we can probably just fallback to what was done
1532 * previously. We could try merging non-SACKed ones
1533 * as well but it probably isn't going to buy off
1534 * because later SACKs might again split them, and
1535 * it would make skb timestamp tracking considerably
1541 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1543 BUG_ON(len
> skb
->len
);
1545 /* MSS boundaries should be honoured or else pcount will
1546 * severely break even though it makes things bit trickier.
1547 * Optimize common case to avoid most of the divides
1549 mss
= tcp_skb_mss(skb
);
1551 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1552 * drop this restriction as unnecessary
1554 if (mss
!= tcp_skb_seglen(prev
))
1559 } else if (len
< mss
) {
1567 if (!skb_shift(prev
, skb
, len
))
1569 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1572 /* Hole filled allows collapsing with the next as well, this is very
1573 * useful when hole on every nth skb pattern happens
1575 if (prev
== tcp_write_queue_tail(sk
))
1577 skb
= tcp_write_queue_next(sk
, prev
);
1579 if (!skb_can_shift(skb
) ||
1580 (skb
== tcp_send_head(sk
)) ||
1581 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1582 (mss
!= tcp_skb_seglen(skb
)))
1586 if (skb_shift(prev
, skb
, len
)) {
1587 pcount
+= tcp_skb_pcount(skb
);
1588 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1592 state
->fack_count
+= pcount
;
1599 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1603 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1604 struct tcp_sack_block
*next_dup
,
1605 struct tcp_sacktag_state
*state
,
1606 u32 start_seq
, u32 end_seq
,
1609 struct tcp_sock
*tp
= tcp_sk(sk
);
1610 struct sk_buff
*tmp
;
1612 tcp_for_write_queue_from(skb
, sk
) {
1614 int dup_sack
= dup_sack_in
;
1616 if (skb
== tcp_send_head(sk
))
1619 /* queue is in-order => we can short-circuit the walk early */
1620 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1623 if ((next_dup
!= NULL
) &&
1624 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1625 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1626 next_dup
->start_seq
,
1632 /* skb reference here is a bit tricky to get right, since
1633 * shifting can eat and free both this skb and the next,
1634 * so not even _safe variant of the loop is enough.
1637 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1638 start_seq
, end_seq
, dup_sack
);
1647 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1653 if (unlikely(in_sack
< 0))
1657 TCP_SKB_CB(skb
)->sacked
= tcp_sacktag_one(skb
, sk
,
1660 tcp_skb_pcount(skb
));
1662 if (!before(TCP_SKB_CB(skb
)->seq
,
1663 tcp_highest_sack_seq(tp
)))
1664 tcp_advance_highest_sack(sk
, skb
);
1667 state
->fack_count
+= tcp_skb_pcount(skb
);
1672 /* Avoid all extra work that is being done by sacktag while walking in
1675 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1676 struct tcp_sacktag_state
*state
,
1679 tcp_for_write_queue_from(skb
, sk
) {
1680 if (skb
== tcp_send_head(sk
))
1683 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1686 state
->fack_count
+= tcp_skb_pcount(skb
);
1691 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1693 struct tcp_sack_block
*next_dup
,
1694 struct tcp_sacktag_state
*state
,
1697 if (next_dup
== NULL
)
1700 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1701 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1702 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1703 next_dup
->start_seq
, next_dup
->end_seq
,
1710 static int tcp_sack_cache_ok(struct tcp_sock
*tp
, struct tcp_sack_block
*cache
)
1712 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1716 tcp_sacktag_write_queue(struct sock
*sk
, struct sk_buff
*ack_skb
,
1719 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1720 struct tcp_sock
*tp
= tcp_sk(sk
);
1721 unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1722 TCP_SKB_CB(ack_skb
)->sacked
);
1723 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1724 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1725 struct tcp_sack_block
*cache
;
1726 struct tcp_sacktag_state state
;
1727 struct sk_buff
*skb
;
1728 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1730 int found_dup_sack
= 0;
1732 int first_sack_index
;
1735 state
.reord
= tp
->packets_out
;
1737 if (!tp
->sacked_out
) {
1738 if (WARN_ON(tp
->fackets_out
))
1739 tp
->fackets_out
= 0;
1740 tcp_highest_sack_reset(sk
);
1743 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1744 num_sacks
, prior_snd_una
);
1746 state
.flag
|= FLAG_DSACKING_ACK
;
1748 /* Eliminate too old ACKs, but take into
1749 * account more or less fresh ones, they can
1750 * contain valid SACK info.
1752 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1755 if (!tp
->packets_out
)
1759 first_sack_index
= 0;
1760 for (i
= 0; i
< num_sacks
; i
++) {
1761 int dup_sack
= !i
&& found_dup_sack
;
1763 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1764 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1766 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1767 sp
[used_sacks
].start_seq
,
1768 sp
[used_sacks
].end_seq
)) {
1772 if (!tp
->undo_marker
)
1773 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1775 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1777 /* Don't count olds caused by ACK reordering */
1778 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1779 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1781 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1784 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1786 first_sack_index
= -1;
1790 /* Ignore very old stuff early */
1791 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1797 /* order SACK blocks to allow in order walk of the retrans queue */
1798 for (i
= used_sacks
- 1; i
> 0; i
--) {
1799 for (j
= 0; j
< i
; j
++) {
1800 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1801 swap(sp
[j
], sp
[j
+ 1]);
1803 /* Track where the first SACK block goes to */
1804 if (j
== first_sack_index
)
1805 first_sack_index
= j
+ 1;
1810 skb
= tcp_write_queue_head(sk
);
1811 state
.fack_count
= 0;
1814 if (!tp
->sacked_out
) {
1815 /* It's already past, so skip checking against it */
1816 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1818 cache
= tp
->recv_sack_cache
;
1819 /* Skip empty blocks in at head of the cache */
1820 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1825 while (i
< used_sacks
) {
1826 u32 start_seq
= sp
[i
].start_seq
;
1827 u32 end_seq
= sp
[i
].end_seq
;
1828 int dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1829 struct tcp_sack_block
*next_dup
= NULL
;
1831 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1832 next_dup
= &sp
[i
+ 1];
1834 /* Event "B" in the comment above. */
1835 if (after(end_seq
, tp
->high_seq
))
1836 state
.flag
|= FLAG_DATA_LOST
;
1838 /* Skip too early cached blocks */
1839 while (tcp_sack_cache_ok(tp
, cache
) &&
1840 !before(start_seq
, cache
->end_seq
))
1843 /* Can skip some work by looking recv_sack_cache? */
1844 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1845 after(end_seq
, cache
->start_seq
)) {
1848 if (before(start_seq
, cache
->start_seq
)) {
1849 skb
= tcp_sacktag_skip(skb
, sk
, &state
,
1851 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1858 /* Rest of the block already fully processed? */
1859 if (!after(end_seq
, cache
->end_seq
))
1862 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1866 /* ...tail remains todo... */
1867 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1868 /* ...but better entrypoint exists! */
1869 skb
= tcp_highest_sack(sk
);
1872 state
.fack_count
= tp
->fackets_out
;
1877 skb
= tcp_sacktag_skip(skb
, sk
, &state
, cache
->end_seq
);
1878 /* Check overlap against next cached too (past this one already) */
1883 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1884 skb
= tcp_highest_sack(sk
);
1887 state
.fack_count
= tp
->fackets_out
;
1889 skb
= tcp_sacktag_skip(skb
, sk
, &state
, start_seq
);
1892 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, &state
,
1893 start_seq
, end_seq
, dup_sack
);
1896 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1897 * due to in-order walk
1899 if (after(end_seq
, tp
->frto_highmark
))
1900 state
.flag
&= ~FLAG_ONLY_ORIG_SACKED
;
1905 /* Clear the head of the cache sack blocks so we can skip it next time */
1906 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1907 tp
->recv_sack_cache
[i
].start_seq
= 0;
1908 tp
->recv_sack_cache
[i
].end_seq
= 0;
1910 for (j
= 0; j
< used_sacks
; j
++)
1911 tp
->recv_sack_cache
[i
++] = sp
[j
];
1913 tcp_mark_lost_retrans(sk
);
1915 tcp_verify_left_out(tp
);
1917 if ((state
.reord
< tp
->fackets_out
) &&
1918 ((icsk
->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
) &&
1919 (!tp
->frto_highmark
|| after(tp
->snd_una
, tp
->frto_highmark
)))
1920 tcp_update_reordering(sk
, tp
->fackets_out
- state
.reord
, 0);
1924 #if FASTRETRANS_DEBUG > 0
1925 WARN_ON((int)tp
->sacked_out
< 0);
1926 WARN_ON((int)tp
->lost_out
< 0);
1927 WARN_ON((int)tp
->retrans_out
< 0);
1928 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1933 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1934 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1936 static int tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1940 holes
= max(tp
->lost_out
, 1U);
1941 holes
= min(holes
, tp
->packets_out
);
1943 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1944 tp
->sacked_out
= tp
->packets_out
- holes
;
1950 /* If we receive more dupacks than we expected counting segments
1951 * in assumption of absent reordering, interpret this as reordering.
1952 * The only another reason could be bug in receiver TCP.
1954 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1956 struct tcp_sock
*tp
= tcp_sk(sk
);
1957 if (tcp_limit_reno_sacked(tp
))
1958 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1961 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1963 static void tcp_add_reno_sack(struct sock
*sk
)
1965 struct tcp_sock
*tp
= tcp_sk(sk
);
1967 tcp_check_reno_reordering(sk
, 0);
1968 tcp_verify_left_out(tp
);
1971 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1973 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1975 struct tcp_sock
*tp
= tcp_sk(sk
);
1978 /* One ACK acked hole. The rest eat duplicate ACKs. */
1979 if (acked
- 1 >= tp
->sacked_out
)
1982 tp
->sacked_out
-= acked
- 1;
1984 tcp_check_reno_reordering(sk
, acked
);
1985 tcp_verify_left_out(tp
);
1988 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1993 static int tcp_is_sackfrto(const struct tcp_sock
*tp
)
1995 return (sysctl_tcp_frto
== 0x2) && !tcp_is_reno(tp
);
1998 /* F-RTO can only be used if TCP has never retransmitted anything other than
1999 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2001 int tcp_use_frto(struct sock
*sk
)
2003 const struct tcp_sock
*tp
= tcp_sk(sk
);
2004 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2005 struct sk_buff
*skb
;
2007 if (!sysctl_tcp_frto
)
2010 /* MTU probe and F-RTO won't really play nicely along currently */
2011 if (icsk
->icsk_mtup
.probe_size
)
2014 if (tcp_is_sackfrto(tp
))
2017 /* Avoid expensive walking of rexmit queue if possible */
2018 if (tp
->retrans_out
> 1)
2021 skb
= tcp_write_queue_head(sk
);
2022 if (tcp_skb_is_last(sk
, skb
))
2024 skb
= tcp_write_queue_next(sk
, skb
); /* Skips head */
2025 tcp_for_write_queue_from(skb
, sk
) {
2026 if (skb
== tcp_send_head(sk
))
2028 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2030 /* Short-circuit when first non-SACKed skb has been checked */
2031 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2037 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2038 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2039 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2040 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2041 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2042 * bits are handled if the Loss state is really to be entered (in
2043 * tcp_enter_frto_loss).
2045 * Do like tcp_enter_loss() would; when RTO expires the second time it
2047 * "Reduce ssthresh if it has not yet been made inside this window."
2049 void tcp_enter_frto(struct sock
*sk
)
2051 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2052 struct tcp_sock
*tp
= tcp_sk(sk
);
2053 struct sk_buff
*skb
;
2055 if ((!tp
->frto_counter
&& icsk
->icsk_ca_state
<= TCP_CA_Disorder
) ||
2056 tp
->snd_una
== tp
->high_seq
||
2057 ((icsk
->icsk_ca_state
== TCP_CA_Loss
|| tp
->frto_counter
) &&
2058 !icsk
->icsk_retransmits
)) {
2059 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2060 /* Our state is too optimistic in ssthresh() call because cwnd
2061 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2062 * recovery has not yet completed. Pattern would be this: RTO,
2063 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2065 * RFC4138 should be more specific on what to do, even though
2066 * RTO is quite unlikely to occur after the first Cumulative ACK
2067 * due to back-off and complexity of triggering events ...
2069 if (tp
->frto_counter
) {
2071 stored_cwnd
= tp
->snd_cwnd
;
2073 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2074 tp
->snd_cwnd
= stored_cwnd
;
2076 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2078 /* ... in theory, cong.control module could do "any tricks" in
2079 * ssthresh(), which means that ca_state, lost bits and lost_out
2080 * counter would have to be faked before the call occurs. We
2081 * consider that too expensive, unlikely and hacky, so modules
2082 * using these in ssthresh() must deal these incompatibility
2083 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2085 tcp_ca_event(sk
, CA_EVENT_FRTO
);
2088 tp
->undo_marker
= tp
->snd_una
;
2089 tp
->undo_retrans
= 0;
2091 skb
= tcp_write_queue_head(sk
);
2092 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2093 tp
->undo_marker
= 0;
2094 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2095 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2096 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2098 tcp_verify_left_out(tp
);
2100 /* Too bad if TCP was application limited */
2101 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2103 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2104 * The last condition is necessary at least in tp->frto_counter case.
2106 if (tcp_is_sackfrto(tp
) && (tp
->frto_counter
||
2107 ((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Recovery
|TCPF_CA_Loss
))) &&
2108 after(tp
->high_seq
, tp
->snd_una
)) {
2109 tp
->frto_highmark
= tp
->high_seq
;
2111 tp
->frto_highmark
= tp
->snd_nxt
;
2113 tcp_set_ca_state(sk
, TCP_CA_Disorder
);
2114 tp
->high_seq
= tp
->snd_nxt
;
2115 tp
->frto_counter
= 1;
2118 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2119 * which indicates that we should follow the traditional RTO recovery,
2120 * i.e. mark everything lost and do go-back-N retransmission.
2122 static void tcp_enter_frto_loss(struct sock
*sk
, int allowed_segments
, int flag
)
2124 struct tcp_sock
*tp
= tcp_sk(sk
);
2125 struct sk_buff
*skb
;
2128 tp
->retrans_out
= 0;
2129 if (tcp_is_reno(tp
))
2130 tcp_reset_reno_sack(tp
);
2132 tcp_for_write_queue(skb
, sk
) {
2133 if (skb
== tcp_send_head(sk
))
2136 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2138 * Count the retransmission made on RTO correctly (only when
2139 * waiting for the first ACK and did not get it)...
2141 if ((tp
->frto_counter
== 1) && !(flag
& FLAG_DATA_ACKED
)) {
2142 /* For some reason this R-bit might get cleared? */
2143 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
2144 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2145 /* ...enter this if branch just for the first segment */
2146 flag
|= FLAG_DATA_ACKED
;
2148 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2149 tp
->undo_marker
= 0;
2150 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2153 /* Marking forward transmissions that were made after RTO lost
2154 * can cause unnecessary retransmissions in some scenarios,
2155 * SACK blocks will mitigate that in some but not in all cases.
2156 * We used to not mark them but it was causing break-ups with
2157 * receivers that do only in-order receival.
2159 * TODO: we could detect presence of such receiver and select
2160 * different behavior per flow.
2162 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2163 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2164 tp
->lost_out
+= tcp_skb_pcount(skb
);
2165 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2168 tcp_verify_left_out(tp
);
2170 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + allowed_segments
;
2171 tp
->snd_cwnd_cnt
= 0;
2172 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2173 tp
->frto_counter
= 0;
2174 tp
->bytes_acked
= 0;
2176 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2177 sysctl_tcp_reordering
);
2178 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2179 tp
->high_seq
= tp
->snd_nxt
;
2180 TCP_ECN_queue_cwr(tp
);
2182 tcp_clear_all_retrans_hints(tp
);
2185 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
2187 tp
->retrans_out
= 0;
2190 tp
->undo_marker
= 0;
2191 tp
->undo_retrans
= 0;
2194 void tcp_clear_retrans(struct tcp_sock
*tp
)
2196 tcp_clear_retrans_partial(tp
);
2198 tp
->fackets_out
= 0;
2202 /* Enter Loss state. If "how" is not zero, forget all SACK information
2203 * and reset tags completely, otherwise preserve SACKs. If receiver
2204 * dropped its ofo queue, we will know this due to reneging detection.
2206 void tcp_enter_loss(struct sock
*sk
, int how
)
2208 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2209 struct tcp_sock
*tp
= tcp_sk(sk
);
2210 struct sk_buff
*skb
;
2212 /* Reduce ssthresh if it has not yet been made inside this window. */
2213 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
2214 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2215 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2216 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2217 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2220 tp
->snd_cwnd_cnt
= 0;
2221 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2223 tp
->bytes_acked
= 0;
2224 tcp_clear_retrans_partial(tp
);
2226 if (tcp_is_reno(tp
))
2227 tcp_reset_reno_sack(tp
);
2230 /* Push undo marker, if it was plain RTO and nothing
2231 * was retransmitted. */
2232 tp
->undo_marker
= tp
->snd_una
;
2235 tp
->fackets_out
= 0;
2237 tcp_clear_all_retrans_hints(tp
);
2239 tcp_for_write_queue(skb
, sk
) {
2240 if (skb
== tcp_send_head(sk
))
2243 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2244 tp
->undo_marker
= 0;
2245 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
2246 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
2247 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2248 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2249 tp
->lost_out
+= tcp_skb_pcount(skb
);
2250 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2253 tcp_verify_left_out(tp
);
2255 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2256 sysctl_tcp_reordering
);
2257 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2258 tp
->high_seq
= tp
->snd_nxt
;
2259 TCP_ECN_queue_cwr(tp
);
2260 /* Abort F-RTO algorithm if one is in progress */
2261 tp
->frto_counter
= 0;
2264 /* If ACK arrived pointing to a remembered SACK, it means that our
2265 * remembered SACKs do not reflect real state of receiver i.e.
2266 * receiver _host_ is heavily congested (or buggy).
2268 * Do processing similar to RTO timeout.
2270 static int tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2272 if (flag
& FLAG_SACK_RENEGING
) {
2273 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2274 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
2276 tcp_enter_loss(sk
, 1);
2277 icsk
->icsk_retransmits
++;
2278 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
2279 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2280 icsk
->icsk_rto
, TCP_RTO_MAX
);
2286 static inline int tcp_fackets_out(struct tcp_sock
*tp
)
2288 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2291 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2292 * counter when SACK is enabled (without SACK, sacked_out is used for
2295 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2296 * segments up to the highest received SACK block so far and holes in
2299 * With reordering, holes may still be in flight, so RFC3517 recovery
2300 * uses pure sacked_out (total number of SACKed segments) even though
2301 * it violates the RFC that uses duplicate ACKs, often these are equal
2302 * but when e.g. out-of-window ACKs or packet duplication occurs,
2303 * they differ. Since neither occurs due to loss, TCP should really
2306 static inline int tcp_dupack_heuristics(struct tcp_sock
*tp
)
2308 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2311 static inline int tcp_skb_timedout(struct sock
*sk
, struct sk_buff
*skb
)
2313 return (tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
);
2316 static inline int tcp_head_timedout(struct sock
*sk
)
2318 struct tcp_sock
*tp
= tcp_sk(sk
);
2320 return tp
->packets_out
&&
2321 tcp_skb_timedout(sk
, tcp_write_queue_head(sk
));
2324 /* Linux NewReno/SACK/FACK/ECN state machine.
2325 * --------------------------------------
2327 * "Open" Normal state, no dubious events, fast path.
2328 * "Disorder" In all the respects it is "Open",
2329 * but requires a bit more attention. It is entered when
2330 * we see some SACKs or dupacks. It is split of "Open"
2331 * mainly to move some processing from fast path to slow one.
2332 * "CWR" CWND was reduced due to some Congestion Notification event.
2333 * It can be ECN, ICMP source quench, local device congestion.
2334 * "Recovery" CWND was reduced, we are fast-retransmitting.
2335 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2337 * tcp_fastretrans_alert() is entered:
2338 * - each incoming ACK, if state is not "Open"
2339 * - when arrived ACK is unusual, namely:
2344 * Counting packets in flight is pretty simple.
2346 * in_flight = packets_out - left_out + retrans_out
2348 * packets_out is SND.NXT-SND.UNA counted in packets.
2350 * retrans_out is number of retransmitted segments.
2352 * left_out is number of segments left network, but not ACKed yet.
2354 * left_out = sacked_out + lost_out
2356 * sacked_out: Packets, which arrived to receiver out of order
2357 * and hence not ACKed. With SACKs this number is simply
2358 * amount of SACKed data. Even without SACKs
2359 * it is easy to give pretty reliable estimate of this number,
2360 * counting duplicate ACKs.
2362 * lost_out: Packets lost by network. TCP has no explicit
2363 * "loss notification" feedback from network (for now).
2364 * It means that this number can be only _guessed_.
2365 * Actually, it is the heuristics to predict lossage that
2366 * distinguishes different algorithms.
2368 * F.e. after RTO, when all the queue is considered as lost,
2369 * lost_out = packets_out and in_flight = retrans_out.
2371 * Essentially, we have now two algorithms counting
2374 * FACK: It is the simplest heuristics. As soon as we decided
2375 * that something is lost, we decide that _all_ not SACKed
2376 * packets until the most forward SACK are lost. I.e.
2377 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2378 * It is absolutely correct estimate, if network does not reorder
2379 * packets. And it loses any connection to reality when reordering
2380 * takes place. We use FACK by default until reordering
2381 * is suspected on the path to this destination.
2383 * NewReno: when Recovery is entered, we assume that one segment
2384 * is lost (classic Reno). While we are in Recovery and
2385 * a partial ACK arrives, we assume that one more packet
2386 * is lost (NewReno). This heuristics are the same in NewReno
2389 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2390 * deflation etc. CWND is real congestion window, never inflated, changes
2391 * only according to classic VJ rules.
2393 * Really tricky (and requiring careful tuning) part of algorithm
2394 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2395 * The first determines the moment _when_ we should reduce CWND and,
2396 * hence, slow down forward transmission. In fact, it determines the moment
2397 * when we decide that hole is caused by loss, rather than by a reorder.
2399 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2400 * holes, caused by lost packets.
2402 * And the most logically complicated part of algorithm is undo
2403 * heuristics. We detect false retransmits due to both too early
2404 * fast retransmit (reordering) and underestimated RTO, analyzing
2405 * timestamps and D-SACKs. When we detect that some segments were
2406 * retransmitted by mistake and CWND reduction was wrong, we undo
2407 * window reduction and abort recovery phase. This logic is hidden
2408 * inside several functions named tcp_try_undo_<something>.
2411 /* This function decides, when we should leave Disordered state
2412 * and enter Recovery phase, reducing congestion window.
2414 * Main question: may we further continue forward transmission
2415 * with the same cwnd?
2417 static int tcp_time_to_recover(struct sock
*sk
)
2419 struct tcp_sock
*tp
= tcp_sk(sk
);
2422 /* Do not perform any recovery during F-RTO algorithm */
2423 if (tp
->frto_counter
)
2426 /* Trick#1: The loss is proven. */
2430 /* Not-A-Trick#2 : Classic rule... */
2431 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2434 /* Trick#3 : when we use RFC2988 timer restart, fast
2435 * retransmit can be triggered by timeout of queue head.
2437 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
))
2440 /* Trick#4: It is still not OK... But will it be useful to delay
2443 packets_out
= tp
->packets_out
;
2444 if (packets_out
<= tp
->reordering
&&
2445 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2446 !tcp_may_send_now(sk
)) {
2447 /* We have nothing to send. This connection is limited
2448 * either by receiver window or by application.
2453 /* If a thin stream is detected, retransmit after first
2454 * received dupack. Employ only if SACK is supported in order
2455 * to avoid possible corner-case series of spurious retransmissions
2456 * Use only if there are no unsent data.
2458 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2459 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2460 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2466 /* New heuristics: it is possible only after we switched to restart timer
2467 * each time when something is ACKed. Hence, we can detect timed out packets
2468 * during fast retransmit without falling to slow start.
2470 * Usefulness of this as is very questionable, since we should know which of
2471 * the segments is the next to timeout which is relatively expensive to find
2472 * in general case unless we add some data structure just for that. The
2473 * current approach certainly won't find the right one too often and when it
2474 * finally does find _something_ it usually marks large part of the window
2475 * right away (because a retransmission with a larger timestamp blocks the
2476 * loop from advancing). -ij
2478 static void tcp_timeout_skbs(struct sock
*sk
)
2480 struct tcp_sock
*tp
= tcp_sk(sk
);
2481 struct sk_buff
*skb
;
2483 if (!tcp_is_fack(tp
) || !tcp_head_timedout(sk
))
2486 skb
= tp
->scoreboard_skb_hint
;
2487 if (tp
->scoreboard_skb_hint
== NULL
)
2488 skb
= tcp_write_queue_head(sk
);
2490 tcp_for_write_queue_from(skb
, sk
) {
2491 if (skb
== tcp_send_head(sk
))
2493 if (!tcp_skb_timedout(sk
, skb
))
2496 tcp_skb_mark_lost(tp
, skb
);
2499 tp
->scoreboard_skb_hint
= skb
;
2501 tcp_verify_left_out(tp
);
2504 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2505 * is against sacked "cnt", otherwise it's against facked "cnt"
2507 static void tcp_mark_head_lost(struct sock
*sk
, int packets
)
2509 struct tcp_sock
*tp
= tcp_sk(sk
);
2510 struct sk_buff
*skb
;
2518 WARN_ON(packets
> tp
->packets_out
);
2519 if (tp
->lost_skb_hint
) {
2520 skb
= tp
->lost_skb_hint
;
2521 cnt
= tp
->lost_cnt_hint
;
2523 skb
= tcp_write_queue_head(sk
);
2527 tcp_for_write_queue_from(skb
, sk
) {
2528 if (skb
== tcp_send_head(sk
))
2530 /* TODO: do this better */
2531 /* this is not the most efficient way to do this... */
2532 tp
->lost_skb_hint
= skb
;
2533 tp
->lost_cnt_hint
= cnt
;
2535 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->high_seq
))
2539 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2540 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2541 cnt
+= tcp_skb_pcount(skb
);
2543 if (cnt
> packets
) {
2544 if (tcp_is_sack(tp
) || (oldcnt
>= packets
))
2547 mss
= skb_shinfo(skb
)->gso_size
;
2548 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
, mss
);
2554 tcp_skb_mark_lost(tp
, skb
);
2556 tcp_verify_left_out(tp
);
2559 /* Account newly detected lost packet(s) */
2561 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2563 struct tcp_sock
*tp
= tcp_sk(sk
);
2565 if (tcp_is_reno(tp
)) {
2566 tcp_mark_head_lost(sk
, 1);
2567 } else if (tcp_is_fack(tp
)) {
2568 int lost
= tp
->fackets_out
- tp
->reordering
;
2571 tcp_mark_head_lost(sk
, lost
);
2573 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2574 if (sacked_upto
< fast_rexmit
)
2575 sacked_upto
= fast_rexmit
;
2576 tcp_mark_head_lost(sk
, sacked_upto
);
2579 tcp_timeout_skbs(sk
);
2582 /* CWND moderation, preventing bursts due to too big ACKs
2583 * in dubious situations.
2585 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2587 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2588 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2589 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2592 /* Lower bound on congestion window is slow start threshold
2593 * unless congestion avoidance choice decides to overide it.
2595 static inline u32
tcp_cwnd_min(const struct sock
*sk
)
2597 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
2599 return ca_ops
->min_cwnd
? ca_ops
->min_cwnd(sk
) : tcp_sk(sk
)->snd_ssthresh
;
2602 /* Decrease cwnd each second ack. */
2603 static void tcp_cwnd_down(struct sock
*sk
, int flag
)
2605 struct tcp_sock
*tp
= tcp_sk(sk
);
2606 int decr
= tp
->snd_cwnd_cnt
+ 1;
2608 if ((flag
& (FLAG_ANY_PROGRESS
| FLAG_DSACKING_ACK
)) ||
2609 (tcp_is_reno(tp
) && !(flag
& FLAG_NOT_DUP
))) {
2610 tp
->snd_cwnd_cnt
= decr
& 1;
2613 if (decr
&& tp
->snd_cwnd
> tcp_cwnd_min(sk
))
2614 tp
->snd_cwnd
-= decr
;
2616 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2617 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2621 /* Nothing was retransmitted or returned timestamp is less
2622 * than timestamp of the first retransmission.
2624 static inline int tcp_packet_delayed(struct tcp_sock
*tp
)
2626 return !tp
->retrans_stamp
||
2627 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2628 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2631 /* Undo procedures. */
2633 #if FASTRETRANS_DEBUG > 1
2634 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2636 struct tcp_sock
*tp
= tcp_sk(sk
);
2637 struct inet_sock
*inet
= inet_sk(sk
);
2639 if (sk
->sk_family
== AF_INET
) {
2640 printk(KERN_DEBUG
"Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2642 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2643 tp
->snd_cwnd
, tcp_left_out(tp
),
2644 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2647 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2648 else if (sk
->sk_family
== AF_INET6
) {
2649 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2650 printk(KERN_DEBUG
"Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2652 &np
->daddr
, ntohs(inet
->inet_dport
),
2653 tp
->snd_cwnd
, tcp_left_out(tp
),
2654 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2660 #define DBGUNDO(x...) do { } while (0)
2663 static void tcp_undo_cwr(struct sock
*sk
, const int undo
)
2665 struct tcp_sock
*tp
= tcp_sk(sk
);
2667 if (tp
->prior_ssthresh
) {
2668 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2670 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2671 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2673 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2675 if (undo
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2676 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2677 TCP_ECN_withdraw_cwr(tp
);
2680 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2682 tcp_moderate_cwnd(tp
);
2683 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2686 static inline int tcp_may_undo(struct tcp_sock
*tp
)
2688 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2691 /* People celebrate: "We love our President!" */
2692 static int tcp_try_undo_recovery(struct sock
*sk
)
2694 struct tcp_sock
*tp
= tcp_sk(sk
);
2696 if (tcp_may_undo(tp
)) {
2699 /* Happy end! We did not retransmit anything
2700 * or our original transmission succeeded.
2702 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2703 tcp_undo_cwr(sk
, 1);
2704 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2705 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2707 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2709 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2710 tp
->undo_marker
= 0;
2712 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2713 /* Hold old state until something *above* high_seq
2714 * is ACKed. For Reno it is MUST to prevent false
2715 * fast retransmits (RFC2582). SACK TCP is safe. */
2716 tcp_moderate_cwnd(tp
);
2719 tcp_set_ca_state(sk
, TCP_CA_Open
);
2723 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2724 static void tcp_try_undo_dsack(struct sock
*sk
)
2726 struct tcp_sock
*tp
= tcp_sk(sk
);
2728 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2729 DBGUNDO(sk
, "D-SACK");
2730 tcp_undo_cwr(sk
, 1);
2731 tp
->undo_marker
= 0;
2732 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2736 /* We can clear retrans_stamp when there are no retransmissions in the
2737 * window. It would seem that it is trivially available for us in
2738 * tp->retrans_out, however, that kind of assumptions doesn't consider
2739 * what will happen if errors occur when sending retransmission for the
2740 * second time. ...It could the that such segment has only
2741 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2742 * the head skb is enough except for some reneging corner cases that
2743 * are not worth the effort.
2745 * Main reason for all this complexity is the fact that connection dying
2746 * time now depends on the validity of the retrans_stamp, in particular,
2747 * that successive retransmissions of a segment must not advance
2748 * retrans_stamp under any conditions.
2750 static int tcp_any_retrans_done(struct sock
*sk
)
2752 struct tcp_sock
*tp
= tcp_sk(sk
);
2753 struct sk_buff
*skb
;
2755 if (tp
->retrans_out
)
2758 skb
= tcp_write_queue_head(sk
);
2759 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2765 /* Undo during fast recovery after partial ACK. */
2767 static int tcp_try_undo_partial(struct sock
*sk
, int acked
)
2769 struct tcp_sock
*tp
= tcp_sk(sk
);
2770 /* Partial ACK arrived. Force Hoe's retransmit. */
2771 int failed
= tcp_is_reno(tp
) || (tcp_fackets_out(tp
) > tp
->reordering
);
2773 if (tcp_may_undo(tp
)) {
2774 /* Plain luck! Hole if filled with delayed
2775 * packet, rather than with a retransmit.
2777 if (!tcp_any_retrans_done(sk
))
2778 tp
->retrans_stamp
= 0;
2780 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2783 tcp_undo_cwr(sk
, 0);
2784 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2786 /* So... Do not make Hoe's retransmit yet.
2787 * If the first packet was delayed, the rest
2788 * ones are most probably delayed as well.
2795 /* Undo during loss recovery after partial ACK. */
2796 static int tcp_try_undo_loss(struct sock
*sk
)
2798 struct tcp_sock
*tp
= tcp_sk(sk
);
2800 if (tcp_may_undo(tp
)) {
2801 struct sk_buff
*skb
;
2802 tcp_for_write_queue(skb
, sk
) {
2803 if (skb
== tcp_send_head(sk
))
2805 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2808 tcp_clear_all_retrans_hints(tp
);
2810 DBGUNDO(sk
, "partial loss");
2812 tcp_undo_cwr(sk
, 1);
2813 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2814 inet_csk(sk
)->icsk_retransmits
= 0;
2815 tp
->undo_marker
= 0;
2816 if (tcp_is_sack(tp
))
2817 tcp_set_ca_state(sk
, TCP_CA_Open
);
2823 static inline void tcp_complete_cwr(struct sock
*sk
)
2825 struct tcp_sock
*tp
= tcp_sk(sk
);
2826 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2827 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2828 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2831 static void tcp_try_keep_open(struct sock
*sk
)
2833 struct tcp_sock
*tp
= tcp_sk(sk
);
2834 int state
= TCP_CA_Open
;
2836 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
) || tp
->undo_marker
)
2837 state
= TCP_CA_Disorder
;
2839 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2840 tcp_set_ca_state(sk
, state
);
2841 tp
->high_seq
= tp
->snd_nxt
;
2845 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2847 struct tcp_sock
*tp
= tcp_sk(sk
);
2849 tcp_verify_left_out(tp
);
2851 if (!tp
->frto_counter
&& !tcp_any_retrans_done(sk
))
2852 tp
->retrans_stamp
= 0;
2854 if (flag
& FLAG_ECE
)
2855 tcp_enter_cwr(sk
, 1);
2857 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2858 tcp_try_keep_open(sk
);
2859 tcp_moderate_cwnd(tp
);
2861 tcp_cwnd_down(sk
, flag
);
2865 static void tcp_mtup_probe_failed(struct sock
*sk
)
2867 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2869 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2870 icsk
->icsk_mtup
.probe_size
= 0;
2873 static void tcp_mtup_probe_success(struct sock
*sk
)
2875 struct tcp_sock
*tp
= tcp_sk(sk
);
2876 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2878 /* FIXME: breaks with very large cwnd */
2879 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2880 tp
->snd_cwnd
= tp
->snd_cwnd
*
2881 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2882 icsk
->icsk_mtup
.probe_size
;
2883 tp
->snd_cwnd_cnt
= 0;
2884 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2885 tp
->rcv_ssthresh
= tcp_current_ssthresh(sk
);
2887 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2888 icsk
->icsk_mtup
.probe_size
= 0;
2889 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2892 /* Do a simple retransmit without using the backoff mechanisms in
2893 * tcp_timer. This is used for path mtu discovery.
2894 * The socket is already locked here.
2896 void tcp_simple_retransmit(struct sock
*sk
)
2898 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2899 struct tcp_sock
*tp
= tcp_sk(sk
);
2900 struct sk_buff
*skb
;
2901 unsigned int mss
= tcp_current_mss(sk
);
2902 u32 prior_lost
= tp
->lost_out
;
2904 tcp_for_write_queue(skb
, sk
) {
2905 if (skb
== tcp_send_head(sk
))
2907 if (tcp_skb_seglen(skb
) > mss
&&
2908 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2909 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2910 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2911 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2913 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2917 tcp_clear_retrans_hints_partial(tp
);
2919 if (prior_lost
== tp
->lost_out
)
2922 if (tcp_is_reno(tp
))
2923 tcp_limit_reno_sacked(tp
);
2925 tcp_verify_left_out(tp
);
2927 /* Don't muck with the congestion window here.
2928 * Reason is that we do not increase amount of _data_
2929 * in network, but units changed and effective
2930 * cwnd/ssthresh really reduced now.
2932 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2933 tp
->high_seq
= tp
->snd_nxt
;
2934 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2935 tp
->prior_ssthresh
= 0;
2936 tp
->undo_marker
= 0;
2937 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2939 tcp_xmit_retransmit_queue(sk
);
2942 /* Process an event, which can update packets-in-flight not trivially.
2943 * Main goal of this function is to calculate new estimate for left_out,
2944 * taking into account both packets sitting in receiver's buffer and
2945 * packets lost by network.
2947 * Besides that it does CWND reduction, when packet loss is detected
2948 * and changes state of machine.
2950 * It does _not_ decide what to send, it is made in function
2951 * tcp_xmit_retransmit_queue().
2953 static void tcp_fastretrans_alert(struct sock
*sk
, int pkts_acked
, int flag
)
2955 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2956 struct tcp_sock
*tp
= tcp_sk(sk
);
2957 int is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
2958 int do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2959 (tcp_fackets_out(tp
) > tp
->reordering
));
2960 int fast_rexmit
= 0, mib_idx
;
2962 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2964 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2965 tp
->fackets_out
= 0;
2967 /* Now state machine starts.
2968 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2969 if (flag
& FLAG_ECE
)
2970 tp
->prior_ssthresh
= 0;
2972 /* B. In all the states check for reneging SACKs. */
2973 if (tcp_check_sack_reneging(sk
, flag
))
2976 /* C. Process data loss notification, provided it is valid. */
2977 if (tcp_is_fack(tp
) && (flag
& FLAG_DATA_LOST
) &&
2978 before(tp
->snd_una
, tp
->high_seq
) &&
2979 icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2980 tp
->fackets_out
> tp
->reordering
) {
2981 tcp_mark_head_lost(sk
, tp
->fackets_out
- tp
->reordering
);
2982 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSS
);
2985 /* D. Check consistency of the current state. */
2986 tcp_verify_left_out(tp
);
2988 /* E. Check state exit conditions. State can be terminated
2989 * when high_seq is ACKed. */
2990 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2991 WARN_ON(tp
->retrans_out
!= 0);
2992 tp
->retrans_stamp
= 0;
2993 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2994 switch (icsk
->icsk_ca_state
) {
2996 icsk
->icsk_retransmits
= 0;
2997 if (tcp_try_undo_recovery(sk
))
3002 /* CWR is to be held something *above* high_seq
3003 * is ACKed for CWR bit to reach receiver. */
3004 if (tp
->snd_una
!= tp
->high_seq
) {
3005 tcp_complete_cwr(sk
);
3006 tcp_set_ca_state(sk
, TCP_CA_Open
);
3010 case TCP_CA_Disorder
:
3011 tcp_try_undo_dsack(sk
);
3012 if (!tp
->undo_marker
||
3013 /* For SACK case do not Open to allow to undo
3014 * catching for all duplicate ACKs. */
3015 tcp_is_reno(tp
) || tp
->snd_una
!= tp
->high_seq
) {
3016 tp
->undo_marker
= 0;
3017 tcp_set_ca_state(sk
, TCP_CA_Open
);
3021 case TCP_CA_Recovery
:
3022 if (tcp_is_reno(tp
))
3023 tcp_reset_reno_sack(tp
);
3024 if (tcp_try_undo_recovery(sk
))
3026 tcp_complete_cwr(sk
);
3031 /* F. Process state. */
3032 switch (icsk
->icsk_ca_state
) {
3033 case TCP_CA_Recovery
:
3034 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
3035 if (tcp_is_reno(tp
) && is_dupack
)
3036 tcp_add_reno_sack(sk
);
3038 do_lost
= tcp_try_undo_partial(sk
, pkts_acked
);
3041 if (flag
& FLAG_DATA_ACKED
)
3042 icsk
->icsk_retransmits
= 0;
3043 if (tcp_is_reno(tp
) && flag
& FLAG_SND_UNA_ADVANCED
)
3044 tcp_reset_reno_sack(tp
);
3045 if (!tcp_try_undo_loss(sk
)) {
3046 tcp_moderate_cwnd(tp
);
3047 tcp_xmit_retransmit_queue(sk
);
3050 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
3052 /* Loss is undone; fall through to processing in Open state. */
3054 if (tcp_is_reno(tp
)) {
3055 if (flag
& FLAG_SND_UNA_ADVANCED
)
3056 tcp_reset_reno_sack(tp
);
3058 tcp_add_reno_sack(sk
);
3061 if (icsk
->icsk_ca_state
== TCP_CA_Disorder
)
3062 tcp_try_undo_dsack(sk
);
3064 if (!tcp_time_to_recover(sk
)) {
3065 tcp_try_to_open(sk
, flag
);
3069 /* MTU probe failure: don't reduce cwnd */
3070 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
3071 icsk
->icsk_mtup
.probe_size
&&
3072 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
3073 tcp_mtup_probe_failed(sk
);
3074 /* Restores the reduction we did in tcp_mtup_probe() */
3076 tcp_simple_retransmit(sk
);
3080 /* Otherwise enter Recovery state */
3082 if (tcp_is_reno(tp
))
3083 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
3085 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
3087 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
3089 tp
->high_seq
= tp
->snd_nxt
;
3090 tp
->prior_ssthresh
= 0;
3091 tp
->undo_marker
= tp
->snd_una
;
3092 tp
->undo_retrans
= tp
->retrans_out
;
3094 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
3095 if (!(flag
& FLAG_ECE
))
3096 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
3097 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
3098 TCP_ECN_queue_cwr(tp
);
3101 tp
->bytes_acked
= 0;
3102 tp
->snd_cwnd_cnt
= 0;
3103 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
3107 if (do_lost
|| (tcp_is_fack(tp
) && tcp_head_timedout(sk
)))
3108 tcp_update_scoreboard(sk
, fast_rexmit
);
3109 tcp_cwnd_down(sk
, flag
);
3110 tcp_xmit_retransmit_queue(sk
);
3113 static void tcp_valid_rtt_meas(struct sock
*sk
, u32 seq_rtt
)
3115 tcp_rtt_estimator(sk
, seq_rtt
);
3117 inet_csk(sk
)->icsk_backoff
= 0;
3120 /* Read draft-ietf-tcplw-high-performance before mucking
3121 * with this code. (Supersedes RFC1323)
3123 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
3125 /* RTTM Rule: A TSecr value received in a segment is used to
3126 * update the averaged RTT measurement only if the segment
3127 * acknowledges some new data, i.e., only if it advances the
3128 * left edge of the send window.
3130 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3131 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3133 * Changed: reset backoff as soon as we see the first valid sample.
3134 * If we do not, we get strongly overestimated rto. With timestamps
3135 * samples are accepted even from very old segments: f.e., when rtt=1
3136 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3137 * answer arrives rto becomes 120 seconds! If at least one of segments
3138 * in window is lost... Voila. --ANK (010210)
3140 struct tcp_sock
*tp
= tcp_sk(sk
);
3142 tcp_valid_rtt_meas(sk
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
);
3145 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
3147 /* We don't have a timestamp. Can only use
3148 * packets that are not retransmitted to determine
3149 * rtt estimates. Also, we must not reset the
3150 * backoff for rto until we get a non-retransmitted
3151 * packet. This allows us to deal with a situation
3152 * where the network delay has increased suddenly.
3153 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3156 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3159 tcp_valid_rtt_meas(sk
, seq_rtt
);
3162 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
3165 const struct tcp_sock
*tp
= tcp_sk(sk
);
3166 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3167 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3168 tcp_ack_saw_tstamp(sk
, flag
);
3169 else if (seq_rtt
>= 0)
3170 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
3173 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
3175 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3176 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
);
3177 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3180 /* Restart timer after forward progress on connection.
3181 * RFC2988 recommends to restart timer to now+rto.
3183 static void tcp_rearm_rto(struct sock
*sk
)
3185 struct tcp_sock
*tp
= tcp_sk(sk
);
3187 if (!tp
->packets_out
) {
3188 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3190 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3191 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3195 /* If we get here, the whole TSO packet has not been acked. */
3196 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3198 struct tcp_sock
*tp
= tcp_sk(sk
);
3201 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3203 packets_acked
= tcp_skb_pcount(skb
);
3204 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3206 packets_acked
-= tcp_skb_pcount(skb
);
3208 if (packets_acked
) {
3209 BUG_ON(tcp_skb_pcount(skb
) == 0);
3210 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3213 return packets_acked
;
3216 /* Remove acknowledged frames from the retransmission queue. If our packet
3217 * is before the ack sequence we can discard it as it's confirmed to have
3218 * arrived at the other end.
3220 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3223 struct tcp_sock
*tp
= tcp_sk(sk
);
3224 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3225 struct sk_buff
*skb
;
3226 u32 now
= tcp_time_stamp
;
3227 int fully_acked
= 1;
3230 u32 reord
= tp
->packets_out
;
3231 u32 prior_sacked
= tp
->sacked_out
;
3233 s32 ca_seq_rtt
= -1;
3234 ktime_t last_ackt
= net_invalid_timestamp();
3236 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3237 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3239 u8 sacked
= scb
->sacked
;
3241 /* Determine how many packets and what bytes were acked, tso and else */
3242 if (after(scb
->end_seq
, tp
->snd_una
)) {
3243 if (tcp_skb_pcount(skb
) == 1 ||
3244 !after(tp
->snd_una
, scb
->seq
))
3247 acked_pcount
= tcp_tso_acked(sk
, skb
);
3253 acked_pcount
= tcp_skb_pcount(skb
);
3256 if (sacked
& TCPCB_RETRANS
) {
3257 if (sacked
& TCPCB_SACKED_RETRANS
)
3258 tp
->retrans_out
-= acked_pcount
;
3259 flag
|= FLAG_RETRANS_DATA_ACKED
;
3262 if ((flag
& FLAG_DATA_ACKED
) || (acked_pcount
> 1))
3263 flag
|= FLAG_NONHEAD_RETRANS_ACKED
;
3265 ca_seq_rtt
= now
- scb
->when
;
3266 last_ackt
= skb
->tstamp
;
3268 seq_rtt
= ca_seq_rtt
;
3270 if (!(sacked
& TCPCB_SACKED_ACKED
))
3271 reord
= min(pkts_acked
, reord
);
3274 if (sacked
& TCPCB_SACKED_ACKED
)
3275 tp
->sacked_out
-= acked_pcount
;
3276 if (sacked
& TCPCB_LOST
)
3277 tp
->lost_out
-= acked_pcount
;
3279 tp
->packets_out
-= acked_pcount
;
3280 pkts_acked
+= acked_pcount
;
3282 /* Initial outgoing SYN's get put onto the write_queue
3283 * just like anything else we transmit. It is not
3284 * true data, and if we misinform our callers that
3285 * this ACK acks real data, we will erroneously exit
3286 * connection startup slow start one packet too
3287 * quickly. This is severely frowned upon behavior.
3289 if (!(scb
->flags
& TCPCB_FLAG_SYN
)) {
3290 flag
|= FLAG_DATA_ACKED
;
3292 flag
|= FLAG_SYN_ACKED
;
3293 tp
->retrans_stamp
= 0;
3299 tcp_unlink_write_queue(skb
, sk
);
3300 sk_wmem_free_skb(sk
, skb
);
3301 tp
->scoreboard_skb_hint
= NULL
;
3302 if (skb
== tp
->retransmit_skb_hint
)
3303 tp
->retransmit_skb_hint
= NULL
;
3304 if (skb
== tp
->lost_skb_hint
)
3305 tp
->lost_skb_hint
= NULL
;
3308 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3309 tp
->snd_up
= tp
->snd_una
;
3311 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3312 flag
|= FLAG_SACK_RENEGING
;
3314 if (flag
& FLAG_ACKED
) {
3315 const struct tcp_congestion_ops
*ca_ops
3316 = inet_csk(sk
)->icsk_ca_ops
;
3318 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3319 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3320 tcp_mtup_probe_success(sk
);
3323 tcp_ack_update_rtt(sk
, flag
, seq_rtt
);
3326 if (tcp_is_reno(tp
)) {
3327 tcp_remove_reno_sacks(sk
, pkts_acked
);
3331 /* Non-retransmitted hole got filled? That's reordering */
3332 if (reord
< prior_fackets
)
3333 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3335 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3336 prior_sacked
- tp
->sacked_out
;
3337 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3340 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3342 if (ca_ops
->pkts_acked
) {
3345 /* Is the ACK triggering packet unambiguous? */
3346 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3347 /* High resolution needed and available? */
3348 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
3349 !ktime_equal(last_ackt
,
3350 net_invalid_timestamp()))
3351 rtt_us
= ktime_us_delta(ktime_get_real(),
3353 else if (ca_seq_rtt
> 0)
3354 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
3357 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
3361 #if FASTRETRANS_DEBUG > 0
3362 WARN_ON((int)tp
->sacked_out
< 0);
3363 WARN_ON((int)tp
->lost_out
< 0);
3364 WARN_ON((int)tp
->retrans_out
< 0);
3365 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3366 icsk
= inet_csk(sk
);
3368 printk(KERN_DEBUG
"Leak l=%u %d\n",
3369 tp
->lost_out
, icsk
->icsk_ca_state
);
3372 if (tp
->sacked_out
) {
3373 printk(KERN_DEBUG
"Leak s=%u %d\n",
3374 tp
->sacked_out
, icsk
->icsk_ca_state
);
3377 if (tp
->retrans_out
) {
3378 printk(KERN_DEBUG
"Leak r=%u %d\n",
3379 tp
->retrans_out
, icsk
->icsk_ca_state
);
3380 tp
->retrans_out
= 0;
3387 static void tcp_ack_probe(struct sock
*sk
)
3389 const struct tcp_sock
*tp
= tcp_sk(sk
);
3390 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3392 /* Was it a usable window open? */
3394 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3395 icsk
->icsk_backoff
= 0;
3396 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3397 /* Socket must be waked up by subsequent tcp_data_snd_check().
3398 * This function is not for random using!
3401 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3402 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
3407 static inline int tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3409 return (!(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3410 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
);
3413 static inline int tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3415 const struct tcp_sock
*tp
= tcp_sk(sk
);
3416 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
3417 !((1 << inet_csk(sk
)->icsk_ca_state
) & (TCPF_CA_Recovery
| TCPF_CA_CWR
));
3420 /* Check that window update is acceptable.
3421 * The function assumes that snd_una<=ack<=snd_next.
3423 static inline int tcp_may_update_window(const struct tcp_sock
*tp
,
3424 const u32 ack
, const u32 ack_seq
,
3427 return (after(ack
, tp
->snd_una
) ||
3428 after(ack_seq
, tp
->snd_wl1
) ||
3429 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
));
3432 /* Update our send window.
3434 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3435 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3437 static int tcp_ack_update_window(struct sock
*sk
, struct sk_buff
*skb
, u32 ack
,
3440 struct tcp_sock
*tp
= tcp_sk(sk
);
3442 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3444 if (likely(!tcp_hdr(skb
)->syn
))
3445 nwin
<<= tp
->rx_opt
.snd_wscale
;
3447 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3448 flag
|= FLAG_WIN_UPDATE
;
3449 tcp_update_wl(tp
, ack_seq
);
3451 if (tp
->snd_wnd
!= nwin
) {
3454 /* Note, it is the only place, where
3455 * fast path is recovered for sending TCP.
3458 tcp_fast_path_check(sk
);
3460 if (nwin
> tp
->max_window
) {
3461 tp
->max_window
= nwin
;
3462 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3472 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3473 * continue in congestion avoidance.
3475 static void tcp_conservative_spur_to_response(struct tcp_sock
*tp
)
3477 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
3478 tp
->snd_cwnd_cnt
= 0;
3479 tp
->bytes_acked
= 0;
3480 TCP_ECN_queue_cwr(tp
);
3481 tcp_moderate_cwnd(tp
);
3484 /* A conservative spurious RTO response algorithm: reduce cwnd using
3485 * rate halving and continue in congestion avoidance.
3487 static void tcp_ratehalving_spur_to_response(struct sock
*sk
)
3489 tcp_enter_cwr(sk
, 0);
3492 static void tcp_undo_spur_to_response(struct sock
*sk
, int flag
)
3494 if (flag
& FLAG_ECE
)
3495 tcp_ratehalving_spur_to_response(sk
);
3497 tcp_undo_cwr(sk
, 1);
3500 /* F-RTO spurious RTO detection algorithm (RFC4138)
3502 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3503 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3504 * window (but not to or beyond highest sequence sent before RTO):
3505 * On First ACK, send two new segments out.
3506 * On Second ACK, RTO was likely spurious. Do spurious response (response
3507 * algorithm is not part of the F-RTO detection algorithm
3508 * given in RFC4138 but can be selected separately).
3509 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3510 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3511 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3512 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3514 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3515 * original window even after we transmit two new data segments.
3518 * on first step, wait until first cumulative ACK arrives, then move to
3519 * the second step. In second step, the next ACK decides.
3521 * F-RTO is implemented (mainly) in four functions:
3522 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3523 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3524 * called when tcp_use_frto() showed green light
3525 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3526 * - tcp_enter_frto_loss() is called if there is not enough evidence
3527 * to prove that the RTO is indeed spurious. It transfers the control
3528 * from F-RTO to the conventional RTO recovery
3530 static int tcp_process_frto(struct sock
*sk
, int flag
)
3532 struct tcp_sock
*tp
= tcp_sk(sk
);
3534 tcp_verify_left_out(tp
);
3536 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3537 if (flag
& FLAG_DATA_ACKED
)
3538 inet_csk(sk
)->icsk_retransmits
= 0;
3540 if ((flag
& FLAG_NONHEAD_RETRANS_ACKED
) ||
3541 ((tp
->frto_counter
>= 2) && (flag
& FLAG_RETRANS_DATA_ACKED
)))
3542 tp
->undo_marker
= 0;
3544 if (!before(tp
->snd_una
, tp
->frto_highmark
)) {
3545 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 2 : 3), flag
);
3549 if (!tcp_is_sackfrto(tp
)) {
3550 /* RFC4138 shortcoming in step 2; should also have case c):
3551 * ACK isn't duplicate nor advances window, e.g., opposite dir
3554 if (!(flag
& FLAG_ANY_PROGRESS
) && (flag
& FLAG_NOT_DUP
))
3557 if (!(flag
& FLAG_DATA_ACKED
)) {
3558 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 0 : 3),
3563 if (!(flag
& FLAG_DATA_ACKED
) && (tp
->frto_counter
== 1)) {
3564 /* Prevent sending of new data. */
3565 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
3566 tcp_packets_in_flight(tp
));
3570 if ((tp
->frto_counter
>= 2) &&
3571 (!(flag
& FLAG_FORWARD_PROGRESS
) ||
3572 ((flag
& FLAG_DATA_SACKED
) &&
3573 !(flag
& FLAG_ONLY_ORIG_SACKED
)))) {
3574 /* RFC4138 shortcoming (see comment above) */
3575 if (!(flag
& FLAG_FORWARD_PROGRESS
) &&
3576 (flag
& FLAG_NOT_DUP
))
3579 tcp_enter_frto_loss(sk
, 3, flag
);
3584 if (tp
->frto_counter
== 1) {
3585 /* tcp_may_send_now needs to see updated state */
3586 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
3587 tp
->frto_counter
= 2;
3589 if (!tcp_may_send_now(sk
))
3590 tcp_enter_frto_loss(sk
, 2, flag
);
3594 switch (sysctl_tcp_frto_response
) {
3596 tcp_undo_spur_to_response(sk
, flag
);
3599 tcp_conservative_spur_to_response(tp
);
3602 tcp_ratehalving_spur_to_response(sk
);
3605 tp
->frto_counter
= 0;
3606 tp
->undo_marker
= 0;
3607 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSPURIOUSRTOS
);
3612 /* This routine deals with incoming acks, but not outgoing ones. */
3613 static int tcp_ack(struct sock
*sk
, struct sk_buff
*skb
, int flag
)
3615 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3616 struct tcp_sock
*tp
= tcp_sk(sk
);
3617 u32 prior_snd_una
= tp
->snd_una
;
3618 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3619 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3620 u32 prior_in_flight
;
3625 /* If the ack is older than previous acks
3626 * then we can probably ignore it.
3628 if (before(ack
, prior_snd_una
))
3631 /* If the ack includes data we haven't sent yet, discard
3632 * this segment (RFC793 Section 3.9).
3634 if (after(ack
, tp
->snd_nxt
))
3637 if (after(ack
, prior_snd_una
))
3638 flag
|= FLAG_SND_UNA_ADVANCED
;
3640 if (sysctl_tcp_abc
) {
3641 if (icsk
->icsk_ca_state
< TCP_CA_CWR
)
3642 tp
->bytes_acked
+= ack
- prior_snd_una
;
3643 else if (icsk
->icsk_ca_state
== TCP_CA_Loss
)
3644 /* we assume just one segment left network */
3645 tp
->bytes_acked
+= min(ack
- prior_snd_una
,
3649 prior_fackets
= tp
->fackets_out
;
3650 prior_in_flight
= tcp_packets_in_flight(tp
);
3652 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3653 /* Window is constant, pure forward advance.
3654 * No more checks are required.
3655 * Note, we use the fact that SND.UNA>=SND.WL2.
3657 tcp_update_wl(tp
, ack_seq
);
3659 flag
|= FLAG_WIN_UPDATE
;
3661 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3663 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3665 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3668 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3670 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3672 if (TCP_SKB_CB(skb
)->sacked
)
3673 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3675 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3678 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3681 /* We passed data and got it acked, remove any soft error
3682 * log. Something worked...
3684 sk
->sk_err_soft
= 0;
3685 icsk
->icsk_probes_out
= 0;
3686 tp
->rcv_tstamp
= tcp_time_stamp
;
3687 prior_packets
= tp
->packets_out
;
3691 /* See if we can take anything off of the retransmit queue. */
3692 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
);
3694 if (tp
->frto_counter
)
3695 frto_cwnd
= tcp_process_frto(sk
, flag
);
3696 /* Guarantee sacktag reordering detection against wrap-arounds */
3697 if (before(tp
->frto_highmark
, tp
->snd_una
))
3698 tp
->frto_highmark
= 0;
3700 if (tcp_ack_is_dubious(sk
, flag
)) {
3701 /* Advance CWND, if state allows this. */
3702 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
&&
3703 tcp_may_raise_cwnd(sk
, flag
))
3704 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3705 tcp_fastretrans_alert(sk
, prior_packets
- tp
->packets_out
,
3708 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
)
3709 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3712 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3713 dst_confirm(__sk_dst_get(sk
));
3718 /* If this ack opens up a zero window, clear backoff. It was
3719 * being used to time the probes, and is probably far higher than
3720 * it needs to be for normal retransmission.
3722 if (tcp_send_head(sk
))
3727 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3731 if (TCP_SKB_CB(skb
)->sacked
) {
3732 tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3733 if (icsk
->icsk_ca_state
== TCP_CA_Open
)
3734 tcp_try_keep_open(sk
);
3737 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3741 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3742 * But, this can also be called on packets in the established flow when
3743 * the fast version below fails.
3745 void tcp_parse_options(struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
,
3746 u8
**hvpp
, int estab
)
3749 struct tcphdr
*th
= tcp_hdr(skb
);
3750 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3752 ptr
= (unsigned char *)(th
+ 1);
3753 opt_rx
->saw_tstamp
= 0;
3755 while (length
> 0) {
3756 int opcode
= *ptr
++;
3762 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3767 if (opsize
< 2) /* "silly options" */
3769 if (opsize
> length
)
3770 return; /* don't parse partial options */
3773 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3774 u16 in_mss
= get_unaligned_be16(ptr
);
3776 if (opt_rx
->user_mss
&&
3777 opt_rx
->user_mss
< in_mss
)
3778 in_mss
= opt_rx
->user_mss
;
3779 opt_rx
->mss_clamp
= in_mss
;
3784 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3785 !estab
&& sysctl_tcp_window_scaling
) {
3786 __u8 snd_wscale
= *(__u8
*)ptr
;
3787 opt_rx
->wscale_ok
= 1;
3788 if (snd_wscale
> 14) {
3789 if (net_ratelimit())
3790 printk(KERN_INFO
"tcp_parse_options: Illegal window "
3791 "scaling value %d >14 received.\n",
3795 opt_rx
->snd_wscale
= snd_wscale
;
3798 case TCPOPT_TIMESTAMP
:
3799 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3800 ((estab
&& opt_rx
->tstamp_ok
) ||
3801 (!estab
&& sysctl_tcp_timestamps
))) {
3802 opt_rx
->saw_tstamp
= 1;
3803 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3804 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3807 case TCPOPT_SACK_PERM
:
3808 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3809 !estab
&& sysctl_tcp_sack
) {
3810 opt_rx
->sack_ok
= 1;
3811 tcp_sack_reset(opt_rx
);
3816 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3817 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3819 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3822 #ifdef CONFIG_TCP_MD5SIG
3825 * The MD5 Hash has already been
3826 * checked (see tcp_v{4,6}_do_rcv()).
3831 /* This option is variable length.
3834 case TCPOLEN_COOKIE_BASE
:
3835 /* not yet implemented */
3837 case TCPOLEN_COOKIE_PAIR
:
3838 /* not yet implemented */
3840 case TCPOLEN_COOKIE_MIN
+0:
3841 case TCPOLEN_COOKIE_MIN
+2:
3842 case TCPOLEN_COOKIE_MIN
+4:
3843 case TCPOLEN_COOKIE_MIN
+6:
3844 case TCPOLEN_COOKIE_MAX
:
3845 /* 16-bit multiple */
3846 opt_rx
->cookie_plus
= opsize
;
3862 static int tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, struct tcphdr
*th
)
3864 __be32
*ptr
= (__be32
*)(th
+ 1);
3866 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3867 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3868 tp
->rx_opt
.saw_tstamp
= 1;
3870 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3872 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3878 /* Fast parse options. This hopes to only see timestamps.
3879 * If it is wrong it falls back on tcp_parse_options().
3881 static int tcp_fast_parse_options(struct sk_buff
*skb
, struct tcphdr
*th
,
3882 struct tcp_sock
*tp
, u8
**hvpp
)
3884 /* In the spirit of fast parsing, compare doff directly to constant
3885 * values. Because equality is used, short doff can be ignored here.
3887 if (th
->doff
== (sizeof(*th
) / 4)) {
3888 tp
->rx_opt
.saw_tstamp
= 0;
3890 } else if (tp
->rx_opt
.tstamp_ok
&&
3891 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3892 if (tcp_parse_aligned_timestamp(tp
, th
))
3895 tcp_parse_options(skb
, &tp
->rx_opt
, hvpp
, 1);
3899 #ifdef CONFIG_TCP_MD5SIG
3901 * Parse MD5 Signature option
3903 u8
*tcp_parse_md5sig_option(struct tcphdr
*th
)
3905 int length
= (th
->doff
<< 2) - sizeof (*th
);
3906 u8
*ptr
= (u8
*)(th
+ 1);
3908 /* If the TCP option is too short, we can short cut */
3909 if (length
< TCPOLEN_MD5SIG
)
3912 while (length
> 0) {
3913 int opcode
= *ptr
++;
3924 if (opsize
< 2 || opsize
> length
)
3926 if (opcode
== TCPOPT_MD5SIG
)
3936 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
3938 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3939 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3942 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3944 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3945 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3946 * extra check below makes sure this can only happen
3947 * for pure ACK frames. -DaveM
3949 * Not only, also it occurs for expired timestamps.
3952 if (tcp_paws_check(&tp
->rx_opt
, 0))
3953 tcp_store_ts_recent(tp
);
3957 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3959 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3960 * it can pass through stack. So, the following predicate verifies that
3961 * this segment is not used for anything but congestion avoidance or
3962 * fast retransmit. Moreover, we even are able to eliminate most of such
3963 * second order effects, if we apply some small "replay" window (~RTO)
3964 * to timestamp space.
3966 * All these measures still do not guarantee that we reject wrapped ACKs
3967 * on networks with high bandwidth, when sequence space is recycled fastly,
3968 * but it guarantees that such events will be very rare and do not affect
3969 * connection seriously. This doesn't look nice, but alas, PAWS is really
3972 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3973 * states that events when retransmit arrives after original data are rare.
3974 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3975 * the biggest problem on large power networks even with minor reordering.
3976 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3977 * up to bandwidth of 18Gigabit/sec. 8) ]
3980 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3982 struct tcp_sock
*tp
= tcp_sk(sk
);
3983 struct tcphdr
*th
= tcp_hdr(skb
);
3984 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3985 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3987 return (/* 1. Pure ACK with correct sequence number. */
3988 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3990 /* 2. ... and duplicate ACK. */
3991 ack
== tp
->snd_una
&&
3993 /* 3. ... and does not update window. */
3994 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3996 /* 4. ... and sits in replay window. */
3997 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
4000 static inline int tcp_paws_discard(const struct sock
*sk
,
4001 const struct sk_buff
*skb
)
4003 const struct tcp_sock
*tp
= tcp_sk(sk
);
4005 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
4006 !tcp_disordered_ack(sk
, skb
);
4009 /* Check segment sequence number for validity.
4011 * Segment controls are considered valid, if the segment
4012 * fits to the window after truncation to the window. Acceptability
4013 * of data (and SYN, FIN, of course) is checked separately.
4014 * See tcp_data_queue(), for example.
4016 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4017 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4018 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4019 * (borrowed from freebsd)
4022 static inline int tcp_sequence(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4024 return !before(end_seq
, tp
->rcv_wup
) &&
4025 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4028 /* When we get a reset we do this. */
4029 static void tcp_reset(struct sock
*sk
)
4031 /* We want the right error as BSD sees it (and indeed as we do). */
4032 switch (sk
->sk_state
) {
4034 sk
->sk_err
= ECONNREFUSED
;
4036 case TCP_CLOSE_WAIT
:
4042 sk
->sk_err
= ECONNRESET
;
4045 if (!sock_flag(sk
, SOCK_DEAD
))
4046 sk
->sk_error_report(sk
);
4052 * Process the FIN bit. This now behaves as it is supposed to work
4053 * and the FIN takes effect when it is validly part of sequence
4054 * space. Not before when we get holes.
4056 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4057 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4060 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4061 * close and we go into CLOSING (and later onto TIME-WAIT)
4063 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4065 static void tcp_fin(struct sk_buff
*skb
, struct sock
*sk
, struct tcphdr
*th
)
4067 struct tcp_sock
*tp
= tcp_sk(sk
);
4069 inet_csk_schedule_ack(sk
);
4071 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4072 sock_set_flag(sk
, SOCK_DONE
);
4074 switch (sk
->sk_state
) {
4076 case TCP_ESTABLISHED
:
4077 /* Move to CLOSE_WAIT */
4078 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4079 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4082 case TCP_CLOSE_WAIT
:
4084 /* Received a retransmission of the FIN, do
4089 /* RFC793: Remain in the LAST-ACK state. */
4093 /* This case occurs when a simultaneous close
4094 * happens, we must ack the received FIN and
4095 * enter the CLOSING state.
4098 tcp_set_state(sk
, TCP_CLOSING
);
4101 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4103 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4106 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4107 * cases we should never reach this piece of code.
4109 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
4110 __func__
, sk
->sk_state
);
4114 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4115 * Probably, we should reset in this case. For now drop them.
4117 __skb_queue_purge(&tp
->out_of_order_queue
);
4118 if (tcp_is_sack(tp
))
4119 tcp_sack_reset(&tp
->rx_opt
);
4122 if (!sock_flag(sk
, SOCK_DEAD
)) {
4123 sk
->sk_state_change(sk
);
4125 /* Do not send POLL_HUP for half duplex close. */
4126 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4127 sk
->sk_state
== TCP_CLOSE
)
4128 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4130 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4134 static inline int tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4137 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4138 if (before(seq
, sp
->start_seq
))
4139 sp
->start_seq
= seq
;
4140 if (after(end_seq
, sp
->end_seq
))
4141 sp
->end_seq
= end_seq
;
4147 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4149 struct tcp_sock
*tp
= tcp_sk(sk
);
4151 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4154 if (before(seq
, tp
->rcv_nxt
))
4155 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4157 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4159 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4161 tp
->rx_opt
.dsack
= 1;
4162 tp
->duplicate_sack
[0].start_seq
= seq
;
4163 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4167 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4169 struct tcp_sock
*tp
= tcp_sk(sk
);
4171 if (!tp
->rx_opt
.dsack
)
4172 tcp_dsack_set(sk
, seq
, end_seq
);
4174 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4177 static void tcp_send_dupack(struct sock
*sk
, struct sk_buff
*skb
)
4179 struct tcp_sock
*tp
= tcp_sk(sk
);
4181 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4182 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4183 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4184 tcp_enter_quickack_mode(sk
);
4186 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4187 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4189 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4190 end_seq
= tp
->rcv_nxt
;
4191 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4198 /* These routines update the SACK block as out-of-order packets arrive or
4199 * in-order packets close up the sequence space.
4201 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4204 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4205 struct tcp_sack_block
*swalk
= sp
+ 1;
4207 /* See if the recent change to the first SACK eats into
4208 * or hits the sequence space of other SACK blocks, if so coalesce.
4210 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4211 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4214 /* Zap SWALK, by moving every further SACK up by one slot.
4215 * Decrease num_sacks.
4217 tp
->rx_opt
.num_sacks
--;
4218 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4222 this_sack
++, swalk
++;
4226 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4228 struct tcp_sock
*tp
= tcp_sk(sk
);
4229 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4230 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4236 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4237 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4238 /* Rotate this_sack to the first one. */
4239 for (; this_sack
> 0; this_sack
--, sp
--)
4240 swap(*sp
, *(sp
- 1));
4242 tcp_sack_maybe_coalesce(tp
);
4247 /* Could not find an adjacent existing SACK, build a new one,
4248 * put it at the front, and shift everyone else down. We
4249 * always know there is at least one SACK present already here.
4251 * If the sack array is full, forget about the last one.
4253 if (this_sack
>= TCP_NUM_SACKS
) {
4255 tp
->rx_opt
.num_sacks
--;
4258 for (; this_sack
> 0; this_sack
--, sp
--)
4262 /* Build the new head SACK, and we're done. */
4263 sp
->start_seq
= seq
;
4264 sp
->end_seq
= end_seq
;
4265 tp
->rx_opt
.num_sacks
++;
4268 /* RCV.NXT advances, some SACKs should be eaten. */
4270 static void tcp_sack_remove(struct tcp_sock
*tp
)
4272 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4273 int num_sacks
= tp
->rx_opt
.num_sacks
;
4276 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4277 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4278 tp
->rx_opt
.num_sacks
= 0;
4282 for (this_sack
= 0; this_sack
< num_sacks
;) {
4283 /* Check if the start of the sack is covered by RCV.NXT. */
4284 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4287 /* RCV.NXT must cover all the block! */
4288 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4290 /* Zap this SACK, by moving forward any other SACKS. */
4291 for (i
=this_sack
+1; i
< num_sacks
; i
++)
4292 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4299 tp
->rx_opt
.num_sacks
= num_sacks
;
4302 /* This one checks to see if we can put data from the
4303 * out_of_order queue into the receive_queue.
4305 static void tcp_ofo_queue(struct sock
*sk
)
4307 struct tcp_sock
*tp
= tcp_sk(sk
);
4308 __u32 dsack_high
= tp
->rcv_nxt
;
4309 struct sk_buff
*skb
;
4311 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4312 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4315 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4316 __u32 dsack
= dsack_high
;
4317 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4318 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4319 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4322 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4323 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4324 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4328 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4329 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4330 TCP_SKB_CB(skb
)->end_seq
);
4332 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4333 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4334 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4335 if (tcp_hdr(skb
)->fin
)
4336 tcp_fin(skb
, sk
, tcp_hdr(skb
));
4340 static int tcp_prune_ofo_queue(struct sock
*sk
);
4341 static int tcp_prune_queue(struct sock
*sk
);
4343 static inline int tcp_try_rmem_schedule(struct sock
*sk
, unsigned int size
)
4345 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4346 !sk_rmem_schedule(sk
, size
)) {
4348 if (tcp_prune_queue(sk
) < 0)
4351 if (!sk_rmem_schedule(sk
, size
)) {
4352 if (!tcp_prune_ofo_queue(sk
))
4355 if (!sk_rmem_schedule(sk
, size
))
4362 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4364 struct tcphdr
*th
= tcp_hdr(skb
);
4365 struct tcp_sock
*tp
= tcp_sk(sk
);
4368 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4372 __skb_pull(skb
, th
->doff
* 4);
4374 TCP_ECN_accept_cwr(tp
, skb
);
4376 tp
->rx_opt
.dsack
= 0;
4378 /* Queue data for delivery to the user.
4379 * Packets in sequence go to the receive queue.
4380 * Out of sequence packets to the out_of_order_queue.
4382 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4383 if (tcp_receive_window(tp
) == 0)
4386 /* Ok. In sequence. In window. */
4387 if (tp
->ucopy
.task
== current
&&
4388 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4389 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4390 int chunk
= min_t(unsigned int, skb
->len
,
4393 __set_current_state(TASK_RUNNING
);
4396 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
4397 tp
->ucopy
.len
-= chunk
;
4398 tp
->copied_seq
+= chunk
;
4399 eaten
= (chunk
== skb
->len
&& !th
->fin
);
4400 tcp_rcv_space_adjust(sk
);
4408 tcp_try_rmem_schedule(sk
, skb
->truesize
))
4411 skb_set_owner_r(skb
, sk
);
4412 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4414 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4416 tcp_event_data_recv(sk
, skb
);
4418 tcp_fin(skb
, sk
, th
);
4420 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4423 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4424 * gap in queue is filled.
4426 if (skb_queue_empty(&tp
->out_of_order_queue
))
4427 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4430 if (tp
->rx_opt
.num_sacks
)
4431 tcp_sack_remove(tp
);
4433 tcp_fast_path_check(sk
);
4437 else if (!sock_flag(sk
, SOCK_DEAD
))
4438 sk
->sk_data_ready(sk
, 0);
4442 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4443 /* A retransmit, 2nd most common case. Force an immediate ack. */
4444 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4445 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4448 tcp_enter_quickack_mode(sk
);
4449 inet_csk_schedule_ack(sk
);
4455 /* Out of window. F.e. zero window probe. */
4456 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4459 tcp_enter_quickack_mode(sk
);
4461 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4462 /* Partial packet, seq < rcv_next < end_seq */
4463 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4464 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4465 TCP_SKB_CB(skb
)->end_seq
);
4467 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4469 /* If window is closed, drop tail of packet. But after
4470 * remembering D-SACK for its head made in previous line.
4472 if (!tcp_receive_window(tp
))
4477 TCP_ECN_check_ce(tp
, skb
);
4479 if (tcp_try_rmem_schedule(sk
, skb
->truesize
))
4482 /* Disable header prediction. */
4484 inet_csk_schedule_ack(sk
);
4486 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4487 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4489 skb_set_owner_r(skb
, sk
);
4491 if (!skb_peek(&tp
->out_of_order_queue
)) {
4492 /* Initial out of order segment, build 1 SACK. */
4493 if (tcp_is_sack(tp
)) {
4494 tp
->rx_opt
.num_sacks
= 1;
4495 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4496 tp
->selective_acks
[0].end_seq
=
4497 TCP_SKB_CB(skb
)->end_seq
;
4499 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4501 struct sk_buff
*skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4502 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4503 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4505 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4506 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4508 if (!tp
->rx_opt
.num_sacks
||
4509 tp
->selective_acks
[0].end_seq
!= seq
)
4512 /* Common case: data arrive in order after hole. */
4513 tp
->selective_acks
[0].end_seq
= end_seq
;
4517 /* Find place to insert this segment. */
4519 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4521 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4525 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4528 /* Do skb overlap to previous one? */
4529 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4530 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4531 /* All the bits are present. Drop. */
4533 tcp_dsack_set(sk
, seq
, end_seq
);
4536 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4537 /* Partial overlap. */
4538 tcp_dsack_set(sk
, seq
,
4539 TCP_SKB_CB(skb1
)->end_seq
);
4541 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4545 skb1
= skb_queue_prev(
4546 &tp
->out_of_order_queue
,
4551 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4553 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4555 /* And clean segments covered by new one as whole. */
4556 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4557 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4559 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4561 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4562 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4566 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4567 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4568 TCP_SKB_CB(skb1
)->end_seq
);
4573 if (tcp_is_sack(tp
))
4574 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4578 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4579 struct sk_buff_head
*list
)
4581 struct sk_buff
*next
= NULL
;
4583 if (!skb_queue_is_last(list
, skb
))
4584 next
= skb_queue_next(list
, skb
);
4586 __skb_unlink(skb
, list
);
4588 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4593 /* Collapse contiguous sequence of skbs head..tail with
4594 * sequence numbers start..end.
4596 * If tail is NULL, this means until the end of the list.
4598 * Segments with FIN/SYN are not collapsed (only because this
4602 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4603 struct sk_buff
*head
, struct sk_buff
*tail
,
4606 struct sk_buff
*skb
, *n
;
4609 /* First, check that queue is collapsible and find
4610 * the point where collapsing can be useful. */
4614 skb_queue_walk_from_safe(list
, skb
, n
) {
4617 /* No new bits? It is possible on ofo queue. */
4618 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4619 skb
= tcp_collapse_one(sk
, skb
, list
);
4625 /* The first skb to collapse is:
4627 * - bloated or contains data before "start" or
4628 * overlaps to the next one.
4630 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
4631 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4632 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4633 end_of_skbs
= false;
4637 if (!skb_queue_is_last(list
, skb
)) {
4638 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4640 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4641 end_of_skbs
= false;
4646 /* Decided to skip this, advance start seq. */
4647 start
= TCP_SKB_CB(skb
)->end_seq
;
4649 if (end_of_skbs
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
4652 while (before(start
, end
)) {
4653 struct sk_buff
*nskb
;
4654 unsigned int header
= skb_headroom(skb
);
4655 int copy
= SKB_MAX_ORDER(header
, 0);
4657 /* Too big header? This can happen with IPv6. */
4660 if (end
- start
< copy
)
4662 nskb
= alloc_skb(copy
+ header
, GFP_ATOMIC
);
4666 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4667 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4669 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4671 skb_reserve(nskb
, header
);
4672 memcpy(nskb
->head
, skb
->head
, header
);
4673 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4674 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4675 __skb_queue_before(list
, skb
, nskb
);
4676 skb_set_owner_r(nskb
, sk
);
4678 /* Copy data, releasing collapsed skbs. */
4680 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4681 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4685 size
= min(copy
, size
);
4686 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4688 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4692 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4693 skb
= tcp_collapse_one(sk
, skb
, list
);
4696 tcp_hdr(skb
)->syn
||
4704 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4705 * and tcp_collapse() them until all the queue is collapsed.
4707 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4709 struct tcp_sock
*tp
= tcp_sk(sk
);
4710 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4711 struct sk_buff
*head
;
4717 start
= TCP_SKB_CB(skb
)->seq
;
4718 end
= TCP_SKB_CB(skb
)->end_seq
;
4722 struct sk_buff
*next
= NULL
;
4724 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4725 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4728 /* Segment is terminated when we see gap or when
4729 * we are at the end of all the queue. */
4731 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4732 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4733 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4734 head
, skb
, start
, end
);
4738 /* Start new segment */
4739 start
= TCP_SKB_CB(skb
)->seq
;
4740 end
= TCP_SKB_CB(skb
)->end_seq
;
4742 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4743 start
= TCP_SKB_CB(skb
)->seq
;
4744 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4745 end
= TCP_SKB_CB(skb
)->end_seq
;
4751 * Purge the out-of-order queue.
4752 * Return true if queue was pruned.
4754 static int tcp_prune_ofo_queue(struct sock
*sk
)
4756 struct tcp_sock
*tp
= tcp_sk(sk
);
4759 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4760 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4761 __skb_queue_purge(&tp
->out_of_order_queue
);
4763 /* Reset SACK state. A conforming SACK implementation will
4764 * do the same at a timeout based retransmit. When a connection
4765 * is in a sad state like this, we care only about integrity
4766 * of the connection not performance.
4768 if (tp
->rx_opt
.sack_ok
)
4769 tcp_sack_reset(&tp
->rx_opt
);
4776 /* Reduce allocated memory if we can, trying to get
4777 * the socket within its memory limits again.
4779 * Return less than zero if we should start dropping frames
4780 * until the socket owning process reads some of the data
4781 * to stabilize the situation.
4783 static int tcp_prune_queue(struct sock
*sk
)
4785 struct tcp_sock
*tp
= tcp_sk(sk
);
4787 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4789 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4791 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4792 tcp_clamp_window(sk
);
4793 else if (tcp_memory_pressure
)
4794 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4796 tcp_collapse_ofo_queue(sk
);
4797 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4798 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4799 skb_peek(&sk
->sk_receive_queue
),
4801 tp
->copied_seq
, tp
->rcv_nxt
);
4804 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4807 /* Collapsing did not help, destructive actions follow.
4808 * This must not ever occur. */
4810 tcp_prune_ofo_queue(sk
);
4812 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4815 /* If we are really being abused, tell the caller to silently
4816 * drop receive data on the floor. It will get retransmitted
4817 * and hopefully then we'll have sufficient space.
4819 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4821 /* Massive buffer overcommit. */
4826 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4827 * As additional protections, we do not touch cwnd in retransmission phases,
4828 * and if application hit its sndbuf limit recently.
4830 void tcp_cwnd_application_limited(struct sock
*sk
)
4832 struct tcp_sock
*tp
= tcp_sk(sk
);
4834 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4835 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4836 /* Limited by application or receiver window. */
4837 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4838 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4839 if (win_used
< tp
->snd_cwnd
) {
4840 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4841 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4843 tp
->snd_cwnd_used
= 0;
4845 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4848 static int tcp_should_expand_sndbuf(struct sock
*sk
)
4850 struct tcp_sock
*tp
= tcp_sk(sk
);
4852 /* If the user specified a specific send buffer setting, do
4855 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4858 /* If we are under global TCP memory pressure, do not expand. */
4859 if (tcp_memory_pressure
)
4862 /* If we are under soft global TCP memory pressure, do not expand. */
4863 if (atomic_read(&tcp_memory_allocated
) >= sysctl_tcp_mem
[0])
4866 /* If we filled the congestion window, do not expand. */
4867 if (tp
->packets_out
>= tp
->snd_cwnd
)
4873 /* When incoming ACK allowed to free some skb from write_queue,
4874 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4875 * on the exit from tcp input handler.
4877 * PROBLEM: sndbuf expansion does not work well with largesend.
4879 static void tcp_new_space(struct sock
*sk
)
4881 struct tcp_sock
*tp
= tcp_sk(sk
);
4883 if (tcp_should_expand_sndbuf(sk
)) {
4884 int sndmem
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
4885 MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
4886 int demanded
= max_t(unsigned int, tp
->snd_cwnd
,
4887 tp
->reordering
+ 1);
4888 sndmem
*= 2 * demanded
;
4889 if (sndmem
> sk
->sk_sndbuf
)
4890 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
4891 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4894 sk
->sk_write_space(sk
);
4897 static void tcp_check_space(struct sock
*sk
)
4899 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4900 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4901 if (sk
->sk_socket
&&
4902 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
4907 static inline void tcp_data_snd_check(struct sock
*sk
)
4909 tcp_push_pending_frames(sk
);
4910 tcp_check_space(sk
);
4914 * Check if sending an ack is needed.
4916 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4918 struct tcp_sock
*tp
= tcp_sk(sk
);
4920 /* More than one full frame received... */
4921 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
4922 /* ... and right edge of window advances far enough.
4923 * (tcp_recvmsg() will send ACK otherwise). Or...
4925 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
4926 /* We ACK each frame or... */
4927 tcp_in_quickack_mode(sk
) ||
4928 /* We have out of order data. */
4929 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
4930 /* Then ack it now */
4933 /* Else, send delayed ack. */
4934 tcp_send_delayed_ack(sk
);
4938 static inline void tcp_ack_snd_check(struct sock
*sk
)
4940 if (!inet_csk_ack_scheduled(sk
)) {
4941 /* We sent a data segment already. */
4944 __tcp_ack_snd_check(sk
, 1);
4948 * This routine is only called when we have urgent data
4949 * signaled. Its the 'slow' part of tcp_urg. It could be
4950 * moved inline now as tcp_urg is only called from one
4951 * place. We handle URGent data wrong. We have to - as
4952 * BSD still doesn't use the correction from RFC961.
4953 * For 1003.1g we should support a new option TCP_STDURG to permit
4954 * either form (or just set the sysctl tcp_stdurg).
4957 static void tcp_check_urg(struct sock
*sk
, struct tcphdr
*th
)
4959 struct tcp_sock
*tp
= tcp_sk(sk
);
4960 u32 ptr
= ntohs(th
->urg_ptr
);
4962 if (ptr
&& !sysctl_tcp_stdurg
)
4964 ptr
+= ntohl(th
->seq
);
4966 /* Ignore urgent data that we've already seen and read. */
4967 if (after(tp
->copied_seq
, ptr
))
4970 /* Do not replay urg ptr.
4972 * NOTE: interesting situation not covered by specs.
4973 * Misbehaving sender may send urg ptr, pointing to segment,
4974 * which we already have in ofo queue. We are not able to fetch
4975 * such data and will stay in TCP_URG_NOTYET until will be eaten
4976 * by recvmsg(). Seems, we are not obliged to handle such wicked
4977 * situations. But it is worth to think about possibility of some
4978 * DoSes using some hypothetical application level deadlock.
4980 if (before(ptr
, tp
->rcv_nxt
))
4983 /* Do we already have a newer (or duplicate) urgent pointer? */
4984 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
4987 /* Tell the world about our new urgent pointer. */
4990 /* We may be adding urgent data when the last byte read was
4991 * urgent. To do this requires some care. We cannot just ignore
4992 * tp->copied_seq since we would read the last urgent byte again
4993 * as data, nor can we alter copied_seq until this data arrives
4994 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4996 * NOTE. Double Dutch. Rendering to plain English: author of comment
4997 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4998 * and expect that both A and B disappear from stream. This is _wrong_.
4999 * Though this happens in BSD with high probability, this is occasional.
5000 * Any application relying on this is buggy. Note also, that fix "works"
5001 * only in this artificial test. Insert some normal data between A and B and we will
5002 * decline of BSD again. Verdict: it is better to remove to trap
5005 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5006 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5007 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5009 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5010 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5015 tp
->urg_data
= TCP_URG_NOTYET
;
5018 /* Disable header prediction. */
5022 /* This is the 'fast' part of urgent handling. */
5023 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, struct tcphdr
*th
)
5025 struct tcp_sock
*tp
= tcp_sk(sk
);
5027 /* Check if we get a new urgent pointer - normally not. */
5029 tcp_check_urg(sk
, th
);
5031 /* Do we wait for any urgent data? - normally not... */
5032 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5033 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5036 /* Is the urgent pointer pointing into this packet? */
5037 if (ptr
< skb
->len
) {
5039 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5041 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5042 if (!sock_flag(sk
, SOCK_DEAD
))
5043 sk
->sk_data_ready(sk
, 0);
5048 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5050 struct tcp_sock
*tp
= tcp_sk(sk
);
5051 int chunk
= skb
->len
- hlen
;
5055 if (skb_csum_unnecessary(skb
))
5056 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
5058 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
5062 tp
->ucopy
.len
-= chunk
;
5063 tp
->copied_seq
+= chunk
;
5064 tcp_rcv_space_adjust(sk
);
5071 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
5072 struct sk_buff
*skb
)
5076 if (sock_owned_by_user(sk
)) {
5078 result
= __tcp_checksum_complete(skb
);
5081 result
= __tcp_checksum_complete(skb
);
5086 static inline int tcp_checksum_complete_user(struct sock
*sk
,
5087 struct sk_buff
*skb
)
5089 return !skb_csum_unnecessary(skb
) &&
5090 __tcp_checksum_complete_user(sk
, skb
);
5093 #ifdef CONFIG_NET_DMA
5094 static int tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
,
5097 struct tcp_sock
*tp
= tcp_sk(sk
);
5098 int chunk
= skb
->len
- hlen
;
5100 int copied_early
= 0;
5102 if (tp
->ucopy
.wakeup
)
5105 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
5106 tp
->ucopy
.dma_chan
= dma_find_channel(DMA_MEMCPY
);
5108 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
5110 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
5112 tp
->ucopy
.iov
, chunk
,
5113 tp
->ucopy
.pinned_list
);
5118 tp
->ucopy
.dma_cookie
= dma_cookie
;
5121 tp
->ucopy
.len
-= chunk
;
5122 tp
->copied_seq
+= chunk
;
5123 tcp_rcv_space_adjust(sk
);
5125 if ((tp
->ucopy
.len
== 0) ||
5126 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
5127 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
5128 tp
->ucopy
.wakeup
= 1;
5129 sk
->sk_data_ready(sk
, 0);
5131 } else if (chunk
> 0) {
5132 tp
->ucopy
.wakeup
= 1;
5133 sk
->sk_data_ready(sk
, 0);
5136 return copied_early
;
5138 #endif /* CONFIG_NET_DMA */
5140 /* Does PAWS and seqno based validation of an incoming segment, flags will
5141 * play significant role here.
5143 static int tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5144 struct tcphdr
*th
, int syn_inerr
)
5147 struct tcp_sock
*tp
= tcp_sk(sk
);
5149 /* RFC1323: H1. Apply PAWS check first. */
5150 if (tcp_fast_parse_options(skb
, th
, tp
, &hash_location
) &&
5151 tp
->rx_opt
.saw_tstamp
&&
5152 tcp_paws_discard(sk
, skb
)) {
5154 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5155 tcp_send_dupack(sk
, skb
);
5158 /* Reset is accepted even if it did not pass PAWS. */
5161 /* Step 1: check sequence number */
5162 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5163 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5164 * (RST) segments are validated by checking their SEQ-fields."
5165 * And page 69: "If an incoming segment is not acceptable,
5166 * an acknowledgment should be sent in reply (unless the RST
5167 * bit is set, if so drop the segment and return)".
5170 tcp_send_dupack(sk
, skb
);
5174 /* Step 2: check RST bit */
5180 /* ts_recent update must be made after we are sure that the packet
5183 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
5185 /* step 3: check security and precedence [ignored] */
5187 /* step 4: Check for a SYN in window. */
5188 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
5190 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5191 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONSYN
);
5204 * TCP receive function for the ESTABLISHED state.
5206 * It is split into a fast path and a slow path. The fast path is
5208 * - A zero window was announced from us - zero window probing
5209 * is only handled properly in the slow path.
5210 * - Out of order segments arrived.
5211 * - Urgent data is expected.
5212 * - There is no buffer space left
5213 * - Unexpected TCP flags/window values/header lengths are received
5214 * (detected by checking the TCP header against pred_flags)
5215 * - Data is sent in both directions. Fast path only supports pure senders
5216 * or pure receivers (this means either the sequence number or the ack
5217 * value must stay constant)
5218 * - Unexpected TCP option.
5220 * When these conditions are not satisfied it drops into a standard
5221 * receive procedure patterned after RFC793 to handle all cases.
5222 * The first three cases are guaranteed by proper pred_flags setting,
5223 * the rest is checked inline. Fast processing is turned on in
5224 * tcp_data_queue when everything is OK.
5226 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5227 struct tcphdr
*th
, unsigned len
)
5229 struct tcp_sock
*tp
= tcp_sk(sk
);
5233 * Header prediction.
5234 * The code loosely follows the one in the famous
5235 * "30 instruction TCP receive" Van Jacobson mail.
5237 * Van's trick is to deposit buffers into socket queue
5238 * on a device interrupt, to call tcp_recv function
5239 * on the receive process context and checksum and copy
5240 * the buffer to user space. smart...
5242 * Our current scheme is not silly either but we take the
5243 * extra cost of the net_bh soft interrupt processing...
5244 * We do checksum and copy also but from device to kernel.
5247 tp
->rx_opt
.saw_tstamp
= 0;
5249 /* pred_flags is 0xS?10 << 16 + snd_wnd
5250 * if header_prediction is to be made
5251 * 'S' will always be tp->tcp_header_len >> 2
5252 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5253 * turn it off (when there are holes in the receive
5254 * space for instance)
5255 * PSH flag is ignored.
5258 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5259 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5260 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5261 int tcp_header_len
= tp
->tcp_header_len
;
5263 /* Timestamp header prediction: tcp_header_len
5264 * is automatically equal to th->doff*4 due to pred_flags
5268 /* Check timestamp */
5269 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5270 /* No? Slow path! */
5271 if (!tcp_parse_aligned_timestamp(tp
, th
))
5274 /* If PAWS failed, check it more carefully in slow path */
5275 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5278 /* DO NOT update ts_recent here, if checksum fails
5279 * and timestamp was corrupted part, it will result
5280 * in a hung connection since we will drop all
5281 * future packets due to the PAWS test.
5285 if (len
<= tcp_header_len
) {
5286 /* Bulk data transfer: sender */
5287 if (len
== tcp_header_len
) {
5288 /* Predicted packet is in window by definition.
5289 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5290 * Hence, check seq<=rcv_wup reduces to:
5292 if (tcp_header_len
==
5293 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5294 tp
->rcv_nxt
== tp
->rcv_wup
)
5295 tcp_store_ts_recent(tp
);
5297 /* We know that such packets are checksummed
5300 tcp_ack(sk
, skb
, 0);
5302 tcp_data_snd_check(sk
);
5304 } else { /* Header too small */
5305 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5310 int copied_early
= 0;
5312 if (tp
->copied_seq
== tp
->rcv_nxt
&&
5313 len
- tcp_header_len
<= tp
->ucopy
.len
) {
5314 #ifdef CONFIG_NET_DMA
5315 if (tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
5320 if (tp
->ucopy
.task
== current
&&
5321 sock_owned_by_user(sk
) && !copied_early
) {
5322 __set_current_state(TASK_RUNNING
);
5324 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
5328 /* Predicted packet is in window by definition.
5329 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5330 * Hence, check seq<=rcv_wup reduces to:
5332 if (tcp_header_len
==
5333 (sizeof(struct tcphdr
) +
5334 TCPOLEN_TSTAMP_ALIGNED
) &&
5335 tp
->rcv_nxt
== tp
->rcv_wup
)
5336 tcp_store_ts_recent(tp
);
5338 tcp_rcv_rtt_measure_ts(sk
, skb
);
5340 __skb_pull(skb
, tcp_header_len
);
5341 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5342 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5345 tcp_cleanup_rbuf(sk
, skb
->len
);
5348 if (tcp_checksum_complete_user(sk
, skb
))
5351 /* Predicted packet is in window by definition.
5352 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5353 * Hence, check seq<=rcv_wup reduces to:
5355 if (tcp_header_len
==
5356 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5357 tp
->rcv_nxt
== tp
->rcv_wup
)
5358 tcp_store_ts_recent(tp
);
5360 tcp_rcv_rtt_measure_ts(sk
, skb
);
5362 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5365 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5367 /* Bulk data transfer: receiver */
5368 __skb_pull(skb
, tcp_header_len
);
5369 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
5370 skb_set_owner_r(skb
, sk
);
5371 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5374 tcp_event_data_recv(sk
, skb
);
5376 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5377 /* Well, only one small jumplet in fast path... */
5378 tcp_ack(sk
, skb
, FLAG_DATA
);
5379 tcp_data_snd_check(sk
);
5380 if (!inet_csk_ack_scheduled(sk
))
5384 if (!copied_early
|| tp
->rcv_nxt
!= tp
->rcv_wup
)
5385 __tcp_ack_snd_check(sk
, 0);
5387 #ifdef CONFIG_NET_DMA
5389 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
5395 sk
->sk_data_ready(sk
, 0);
5401 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5405 * Standard slow path.
5408 res
= tcp_validate_incoming(sk
, skb
, th
, 1);
5413 if (th
->ack
&& tcp_ack(sk
, skb
, FLAG_SLOWPATH
) < 0)
5416 tcp_rcv_rtt_measure_ts(sk
, skb
);
5418 /* Process urgent data. */
5419 tcp_urg(sk
, skb
, th
);
5421 /* step 7: process the segment text */
5422 tcp_data_queue(sk
, skb
);
5424 tcp_data_snd_check(sk
);
5425 tcp_ack_snd_check(sk
);
5429 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5436 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5437 struct tcphdr
*th
, unsigned len
)
5440 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5441 struct tcp_sock
*tp
= tcp_sk(sk
);
5442 struct tcp_cookie_values
*cvp
= tp
->cookie_values
;
5443 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5445 tcp_parse_options(skb
, &tp
->rx_opt
, &hash_location
, 0);
5449 * "If the state is SYN-SENT then
5450 * first check the ACK bit
5451 * If the ACK bit is set
5452 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5453 * a reset (unless the RST bit is set, if so drop
5454 * the segment and return)"
5456 * We do not send data with SYN, so that RFC-correct
5459 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
5460 goto reset_and_undo
;
5462 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5463 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5465 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5466 goto reset_and_undo
;
5469 /* Now ACK is acceptable.
5471 * "If the RST bit is set
5472 * If the ACK was acceptable then signal the user "error:
5473 * connection reset", drop the segment, enter CLOSED state,
5474 * delete TCB, and return."
5483 * "fifth, if neither of the SYN or RST bits is set then
5484 * drop the segment and return."
5490 goto discard_and_undo
;
5493 * "If the SYN bit is on ...
5494 * are acceptable then ...
5495 * (our SYN has been ACKed), change the connection
5496 * state to ESTABLISHED..."
5499 TCP_ECN_rcv_synack(tp
, th
);
5501 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5502 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5504 /* Ok.. it's good. Set up sequence numbers and
5505 * move to established.
5507 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5508 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5510 /* RFC1323: The window in SYN & SYN/ACK segments is
5513 tp
->snd_wnd
= ntohs(th
->window
);
5514 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5516 if (!tp
->rx_opt
.wscale_ok
) {
5517 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5518 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5521 if (tp
->rx_opt
.saw_tstamp
) {
5522 tp
->rx_opt
.tstamp_ok
= 1;
5523 tp
->tcp_header_len
=
5524 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5525 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5526 tcp_store_ts_recent(tp
);
5528 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5531 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5532 tcp_enable_fack(tp
);
5535 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5536 tcp_initialize_rcv_mss(sk
);
5538 /* Remember, tcp_poll() does not lock socket!
5539 * Change state from SYN-SENT only after copied_seq
5540 * is initialized. */
5541 tp
->copied_seq
= tp
->rcv_nxt
;
5544 cvp
->cookie_pair_size
> 0 &&
5545 tp
->rx_opt
.cookie_plus
> 0) {
5546 int cookie_size
= tp
->rx_opt
.cookie_plus
5547 - TCPOLEN_COOKIE_BASE
;
5548 int cookie_pair_size
= cookie_size
5549 + cvp
->cookie_desired
;
5551 /* A cookie extension option was sent and returned.
5552 * Note that each incoming SYNACK replaces the
5553 * Responder cookie. The initial exchange is most
5554 * fragile, as protection against spoofing relies
5555 * entirely upon the sequence and timestamp (above).
5556 * This replacement strategy allows the correct pair to
5557 * pass through, while any others will be filtered via
5558 * Responder verification later.
5560 if (sizeof(cvp
->cookie_pair
) >= cookie_pair_size
) {
5561 memcpy(&cvp
->cookie_pair
[cvp
->cookie_desired
],
5562 hash_location
, cookie_size
);
5563 cvp
->cookie_pair_size
= cookie_pair_size
;
5568 tcp_set_state(sk
, TCP_ESTABLISHED
);
5570 security_inet_conn_established(sk
, skb
);
5572 /* Make sure socket is routed, for correct metrics. */
5573 icsk
->icsk_af_ops
->rebuild_header(sk
);
5575 tcp_init_metrics(sk
);
5577 tcp_init_congestion_control(sk
);
5579 /* Prevent spurious tcp_cwnd_restart() on first data
5582 tp
->lsndtime
= tcp_time_stamp
;
5584 tcp_init_buffer_space(sk
);
5586 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5587 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5589 if (!tp
->rx_opt
.snd_wscale
)
5590 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5594 if (!sock_flag(sk
, SOCK_DEAD
)) {
5595 sk
->sk_state_change(sk
);
5596 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5599 if (sk
->sk_write_pending
||
5600 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5601 icsk
->icsk_ack
.pingpong
) {
5602 /* Save one ACK. Data will be ready after
5603 * several ticks, if write_pending is set.
5605 * It may be deleted, but with this feature tcpdumps
5606 * look so _wonderfully_ clever, that I was not able
5607 * to stand against the temptation 8) --ANK
5609 inet_csk_schedule_ack(sk
);
5610 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5611 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
5612 tcp_incr_quickack(sk
);
5613 tcp_enter_quickack_mode(sk
);
5614 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5615 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5626 /* No ACK in the segment */
5630 * "If the RST bit is set
5632 * Otherwise (no ACK) drop the segment and return."
5635 goto discard_and_undo
;
5639 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5640 tcp_paws_reject(&tp
->rx_opt
, 0))
5641 goto discard_and_undo
;
5644 /* We see SYN without ACK. It is attempt of
5645 * simultaneous connect with crossed SYNs.
5646 * Particularly, it can be connect to self.
5648 tcp_set_state(sk
, TCP_SYN_RECV
);
5650 if (tp
->rx_opt
.saw_tstamp
) {
5651 tp
->rx_opt
.tstamp_ok
= 1;
5652 tcp_store_ts_recent(tp
);
5653 tp
->tcp_header_len
=
5654 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5656 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5659 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5660 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5662 /* RFC1323: The window in SYN & SYN/ACK segments is
5665 tp
->snd_wnd
= ntohs(th
->window
);
5666 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5667 tp
->max_window
= tp
->snd_wnd
;
5669 TCP_ECN_rcv_syn(tp
, th
);
5672 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5673 tcp_initialize_rcv_mss(sk
);
5675 tcp_send_synack(sk
);
5677 /* Note, we could accept data and URG from this segment.
5678 * There are no obstacles to make this.
5680 * However, if we ignore data in ACKless segments sometimes,
5681 * we have no reasons to accept it sometimes.
5682 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5683 * is not flawless. So, discard packet for sanity.
5684 * Uncomment this return to process the data.
5691 /* "fifth, if neither of the SYN or RST bits is set then
5692 * drop the segment and return."
5696 tcp_clear_options(&tp
->rx_opt
);
5697 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5701 tcp_clear_options(&tp
->rx_opt
);
5702 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5707 * This function implements the receiving procedure of RFC 793 for
5708 * all states except ESTABLISHED and TIME_WAIT.
5709 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5710 * address independent.
5713 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5714 struct tcphdr
*th
, unsigned len
)
5716 struct tcp_sock
*tp
= tcp_sk(sk
);
5717 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5721 tp
->rx_opt
.saw_tstamp
= 0;
5723 switch (sk
->sk_state
) {
5735 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5738 /* Now we have several options: In theory there is
5739 * nothing else in the frame. KA9Q has an option to
5740 * send data with the syn, BSD accepts data with the
5741 * syn up to the [to be] advertised window and
5742 * Solaris 2.1 gives you a protocol error. For now
5743 * we just ignore it, that fits the spec precisely
5744 * and avoids incompatibilities. It would be nice in
5745 * future to drop through and process the data.
5747 * Now that TTCP is starting to be used we ought to
5749 * But, this leaves one open to an easy denial of
5750 * service attack, and SYN cookies can't defend
5751 * against this problem. So, we drop the data
5752 * in the interest of security over speed unless
5753 * it's still in use.
5761 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5765 /* Do step6 onward by hand. */
5766 tcp_urg(sk
, skb
, th
);
5768 tcp_data_snd_check(sk
);
5772 res
= tcp_validate_incoming(sk
, skb
, th
, 0);
5776 /* step 5: check the ACK field */
5778 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
) > 0;
5780 switch (sk
->sk_state
) {
5783 tp
->copied_seq
= tp
->rcv_nxt
;
5785 tcp_set_state(sk
, TCP_ESTABLISHED
);
5786 sk
->sk_state_change(sk
);
5788 /* Note, that this wakeup is only for marginal
5789 * crossed SYN case. Passively open sockets
5790 * are not waked up, because sk->sk_sleep ==
5791 * NULL and sk->sk_socket == NULL.
5795 SOCK_WAKE_IO
, POLL_OUT
);
5797 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5798 tp
->snd_wnd
= ntohs(th
->window
) <<
5799 tp
->rx_opt
.snd_wscale
;
5800 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5802 /* tcp_ack considers this ACK as duplicate
5803 * and does not calculate rtt.
5806 tcp_ack_update_rtt(sk
, 0, 0);
5808 if (tp
->rx_opt
.tstamp_ok
)
5809 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5811 /* Make sure socket is routed, for
5814 icsk
->icsk_af_ops
->rebuild_header(sk
);
5816 tcp_init_metrics(sk
);
5818 tcp_init_congestion_control(sk
);
5820 /* Prevent spurious tcp_cwnd_restart() on
5821 * first data packet.
5823 tp
->lsndtime
= tcp_time_stamp
;
5826 tcp_initialize_rcv_mss(sk
);
5827 tcp_init_buffer_space(sk
);
5828 tcp_fast_path_on(tp
);
5835 if (tp
->snd_una
== tp
->write_seq
) {
5836 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5837 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5838 dst_confirm(__sk_dst_get(sk
));
5840 if (!sock_flag(sk
, SOCK_DEAD
))
5841 /* Wake up lingering close() */
5842 sk
->sk_state_change(sk
);
5846 if (tp
->linger2
< 0 ||
5847 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5848 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5850 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5854 tmo
= tcp_fin_time(sk
);
5855 if (tmo
> TCP_TIMEWAIT_LEN
) {
5856 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5857 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5858 /* Bad case. We could lose such FIN otherwise.
5859 * It is not a big problem, but it looks confusing
5860 * and not so rare event. We still can lose it now,
5861 * if it spins in bh_lock_sock(), but it is really
5864 inet_csk_reset_keepalive_timer(sk
, tmo
);
5866 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5874 if (tp
->snd_una
== tp
->write_seq
) {
5875 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5881 if (tp
->snd_una
== tp
->write_seq
) {
5882 tcp_update_metrics(sk
);
5891 /* step 6: check the URG bit */
5892 tcp_urg(sk
, skb
, th
);
5894 /* step 7: process the segment text */
5895 switch (sk
->sk_state
) {
5896 case TCP_CLOSE_WAIT
:
5899 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
5903 /* RFC 793 says to queue data in these states,
5904 * RFC 1122 says we MUST send a reset.
5905 * BSD 4.4 also does reset.
5907 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
5908 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5909 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5910 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5916 case TCP_ESTABLISHED
:
5917 tcp_data_queue(sk
, skb
);
5922 /* tcp_data could move socket to TIME-WAIT */
5923 if (sk
->sk_state
!= TCP_CLOSE
) {
5924 tcp_data_snd_check(sk
);
5925 tcp_ack_snd_check(sk
);
5935 EXPORT_SYMBOL(sysctl_tcp_ecn
);
5936 EXPORT_SYMBOL(sysctl_tcp_reordering
);
5937 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
5938 EXPORT_SYMBOL(tcp_parse_options
);
5939 #ifdef CONFIG_TCP_MD5SIG
5940 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
5942 EXPORT_SYMBOL(tcp_rcv_established
);
5943 EXPORT_SYMBOL(tcp_rcv_state_process
);
5944 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);