writeback: split writeback_inodes_wb
[linux-2.6/next.git] / net / rds / iw_rdma.c
blob13dc1862d86264288eb0455056d289008d072234
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
36 #include "rds.h"
37 #include "rdma.h"
38 #include "iw.h"
42 * This is stored as mr->r_trans_private.
44 struct rds_iw_mr {
45 struct rds_iw_device *device;
46 struct rds_iw_mr_pool *pool;
47 struct rdma_cm_id *cm_id;
49 struct ib_mr *mr;
50 struct ib_fast_reg_page_list *page_list;
52 struct rds_iw_mapping mapping;
53 unsigned char remap_count;
57 * Our own little MR pool
59 struct rds_iw_mr_pool {
60 struct rds_iw_device *device; /* back ptr to the device that owns us */
62 struct mutex flush_lock; /* serialize fmr invalidate */
63 struct work_struct flush_worker; /* flush worker */
65 spinlock_t list_lock; /* protect variables below */
66 atomic_t item_count; /* total # of MRs */
67 atomic_t dirty_count; /* # dirty of MRs */
68 struct list_head dirty_list; /* dirty mappings */
69 struct list_head clean_list; /* unused & unamapped MRs */
70 atomic_t free_pinned; /* memory pinned by free MRs */
71 unsigned long max_message_size; /* in pages */
72 unsigned long max_items;
73 unsigned long max_items_soft;
74 unsigned long max_free_pinned;
75 int max_pages;
78 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
79 static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
80 static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
81 static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
82 struct rds_iw_mr *ibmr,
83 struct scatterlist *sg, unsigned int nents);
84 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
85 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
86 struct list_head *unmap_list,
87 struct list_head *kill_list);
88 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
90 static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id)
92 struct rds_iw_device *iwdev;
93 struct rds_iw_cm_id *i_cm_id;
95 *rds_iwdev = NULL;
96 *cm_id = NULL;
98 list_for_each_entry(iwdev, &rds_iw_devices, list) {
99 spin_lock_irq(&iwdev->spinlock);
100 list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
101 struct sockaddr_in *src_addr, *dst_addr;
103 src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
104 dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
106 rdsdebug("local ipaddr = %x port %d, "
107 "remote ipaddr = %x port %d"
108 "..looking for %x port %d, "
109 "remote ipaddr = %x port %d\n",
110 src_addr->sin_addr.s_addr,
111 src_addr->sin_port,
112 dst_addr->sin_addr.s_addr,
113 dst_addr->sin_port,
114 rs->rs_bound_addr,
115 rs->rs_bound_port,
116 rs->rs_conn_addr,
117 rs->rs_conn_port);
118 #ifdef WORKING_TUPLE_DETECTION
119 if (src_addr->sin_addr.s_addr == rs->rs_bound_addr &&
120 src_addr->sin_port == rs->rs_bound_port &&
121 dst_addr->sin_addr.s_addr == rs->rs_conn_addr &&
122 dst_addr->sin_port == rs->rs_conn_port) {
123 #else
124 /* FIXME - needs to compare the local and remote
125 * ipaddr/port tuple, but the ipaddr is the only
126 * available infomation in the rds_sock (as the rest are
127 * zero'ed. It doesn't appear to be properly populated
128 * during connection setup...
130 if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) {
131 #endif
132 spin_unlock_irq(&iwdev->spinlock);
133 *rds_iwdev = iwdev;
134 *cm_id = i_cm_id->cm_id;
135 return 0;
138 spin_unlock_irq(&iwdev->spinlock);
141 return 1;
144 static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
146 struct rds_iw_cm_id *i_cm_id;
148 i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
149 if (!i_cm_id)
150 return -ENOMEM;
152 i_cm_id->cm_id = cm_id;
154 spin_lock_irq(&rds_iwdev->spinlock);
155 list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
156 spin_unlock_irq(&rds_iwdev->spinlock);
158 return 0;
161 void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
163 struct rds_iw_cm_id *i_cm_id;
165 spin_lock_irq(&rds_iwdev->spinlock);
166 list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
167 if (i_cm_id->cm_id == cm_id) {
168 list_del(&i_cm_id->list);
169 kfree(i_cm_id);
170 break;
173 spin_unlock_irq(&rds_iwdev->spinlock);
177 int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
179 struct sockaddr_in *src_addr, *dst_addr;
180 struct rds_iw_device *rds_iwdev_old;
181 struct rds_sock rs;
182 struct rdma_cm_id *pcm_id;
183 int rc;
185 src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
186 dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
188 rs.rs_bound_addr = src_addr->sin_addr.s_addr;
189 rs.rs_bound_port = src_addr->sin_port;
190 rs.rs_conn_addr = dst_addr->sin_addr.s_addr;
191 rs.rs_conn_port = dst_addr->sin_port;
193 rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id);
194 if (rc)
195 rds_iw_remove_cm_id(rds_iwdev, cm_id);
197 return rds_iw_add_cm_id(rds_iwdev, cm_id);
200 void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
202 struct rds_iw_connection *ic = conn->c_transport_data;
204 /* conn was previously on the nodev_conns_list */
205 spin_lock_irq(&iw_nodev_conns_lock);
206 BUG_ON(list_empty(&iw_nodev_conns));
207 BUG_ON(list_empty(&ic->iw_node));
208 list_del(&ic->iw_node);
210 spin_lock_irq(&rds_iwdev->spinlock);
211 list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
212 spin_unlock_irq(&rds_iwdev->spinlock);
213 spin_unlock_irq(&iw_nodev_conns_lock);
215 ic->rds_iwdev = rds_iwdev;
218 void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
220 struct rds_iw_connection *ic = conn->c_transport_data;
222 /* place conn on nodev_conns_list */
223 spin_lock(&iw_nodev_conns_lock);
225 spin_lock_irq(&rds_iwdev->spinlock);
226 BUG_ON(list_empty(&ic->iw_node));
227 list_del(&ic->iw_node);
228 spin_unlock_irq(&rds_iwdev->spinlock);
230 list_add_tail(&ic->iw_node, &iw_nodev_conns);
232 spin_unlock(&iw_nodev_conns_lock);
234 rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
235 ic->rds_iwdev = NULL;
238 void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
240 struct rds_iw_connection *ic, *_ic;
241 LIST_HEAD(tmp_list);
243 /* avoid calling conn_destroy with irqs off */
244 spin_lock_irq(list_lock);
245 list_splice(list, &tmp_list);
246 INIT_LIST_HEAD(list);
247 spin_unlock_irq(list_lock);
249 list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
250 rds_conn_destroy(ic->conn);
253 static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
254 struct scatterlist *list, unsigned int sg_len)
256 sg->list = list;
257 sg->len = sg_len;
258 sg->dma_len = 0;
259 sg->dma_npages = 0;
260 sg->bytes = 0;
263 static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
264 struct rds_iw_scatterlist *sg)
266 struct ib_device *dev = rds_iwdev->dev;
267 u64 *dma_pages = NULL;
268 int i, j, ret;
270 WARN_ON(sg->dma_len);
272 sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
273 if (unlikely(!sg->dma_len)) {
274 printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
275 return ERR_PTR(-EBUSY);
278 sg->bytes = 0;
279 sg->dma_npages = 0;
281 ret = -EINVAL;
282 for (i = 0; i < sg->dma_len; ++i) {
283 unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
284 u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
285 u64 end_addr;
287 sg->bytes += dma_len;
289 end_addr = dma_addr + dma_len;
290 if (dma_addr & PAGE_MASK) {
291 if (i > 0)
292 goto out_unmap;
293 dma_addr &= ~PAGE_MASK;
295 if (end_addr & PAGE_MASK) {
296 if (i < sg->dma_len - 1)
297 goto out_unmap;
298 end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
301 sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
304 /* Now gather the dma addrs into one list */
305 if (sg->dma_npages > fastreg_message_size)
306 goto out_unmap;
308 dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
309 if (!dma_pages) {
310 ret = -ENOMEM;
311 goto out_unmap;
314 for (i = j = 0; i < sg->dma_len; ++i) {
315 unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
316 u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
317 u64 end_addr;
319 end_addr = dma_addr + dma_len;
320 dma_addr &= ~PAGE_MASK;
321 for (; dma_addr < end_addr; dma_addr += PAGE_SIZE)
322 dma_pages[j++] = dma_addr;
323 BUG_ON(j > sg->dma_npages);
326 return dma_pages;
328 out_unmap:
329 ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
330 sg->dma_len = 0;
331 kfree(dma_pages);
332 return ERR_PTR(ret);
336 struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
338 struct rds_iw_mr_pool *pool;
340 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
341 if (!pool) {
342 printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
343 return ERR_PTR(-ENOMEM);
346 pool->device = rds_iwdev;
347 INIT_LIST_HEAD(&pool->dirty_list);
348 INIT_LIST_HEAD(&pool->clean_list);
349 mutex_init(&pool->flush_lock);
350 spin_lock_init(&pool->list_lock);
351 INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
353 pool->max_message_size = fastreg_message_size;
354 pool->max_items = fastreg_pool_size;
355 pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
356 pool->max_pages = fastreg_message_size;
358 /* We never allow more than max_items MRs to be allocated.
359 * When we exceed more than max_items_soft, we start freeing
360 * items more aggressively.
361 * Make sure that max_items > max_items_soft > max_items / 2
363 pool->max_items_soft = pool->max_items * 3 / 4;
365 return pool;
368 void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
370 struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
372 iinfo->rdma_mr_max = pool->max_items;
373 iinfo->rdma_mr_size = pool->max_pages;
376 void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
378 flush_workqueue(rds_wq);
379 rds_iw_flush_mr_pool(pool, 1);
380 BUG_ON(atomic_read(&pool->item_count));
381 BUG_ON(atomic_read(&pool->free_pinned));
382 kfree(pool);
385 static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
387 struct rds_iw_mr *ibmr = NULL;
388 unsigned long flags;
390 spin_lock_irqsave(&pool->list_lock, flags);
391 if (!list_empty(&pool->clean_list)) {
392 ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
393 list_del_init(&ibmr->mapping.m_list);
395 spin_unlock_irqrestore(&pool->list_lock, flags);
397 return ibmr;
400 static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
402 struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
403 struct rds_iw_mr *ibmr = NULL;
404 int err = 0, iter = 0;
406 while (1) {
407 ibmr = rds_iw_reuse_fmr(pool);
408 if (ibmr)
409 return ibmr;
411 /* No clean MRs - now we have the choice of either
412 * allocating a fresh MR up to the limit imposed by the
413 * driver, or flush any dirty unused MRs.
414 * We try to avoid stalling in the send path if possible,
415 * so we allocate as long as we're allowed to.
417 * We're fussy with enforcing the FMR limit, though. If the driver
418 * tells us we can't use more than N fmrs, we shouldn't start
419 * arguing with it */
420 if (atomic_inc_return(&pool->item_count) <= pool->max_items)
421 break;
423 atomic_dec(&pool->item_count);
425 if (++iter > 2) {
426 rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
427 return ERR_PTR(-EAGAIN);
430 /* We do have some empty MRs. Flush them out. */
431 rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
432 rds_iw_flush_mr_pool(pool, 0);
435 ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
436 if (!ibmr) {
437 err = -ENOMEM;
438 goto out_no_cigar;
441 spin_lock_init(&ibmr->mapping.m_lock);
442 INIT_LIST_HEAD(&ibmr->mapping.m_list);
443 ibmr->mapping.m_mr = ibmr;
445 err = rds_iw_init_fastreg(pool, ibmr);
446 if (err)
447 goto out_no_cigar;
449 rds_iw_stats_inc(s_iw_rdma_mr_alloc);
450 return ibmr;
452 out_no_cigar:
453 if (ibmr) {
454 rds_iw_destroy_fastreg(pool, ibmr);
455 kfree(ibmr);
457 atomic_dec(&pool->item_count);
458 return ERR_PTR(err);
461 void rds_iw_sync_mr(void *trans_private, int direction)
463 struct rds_iw_mr *ibmr = trans_private;
464 struct rds_iw_device *rds_iwdev = ibmr->device;
466 switch (direction) {
467 case DMA_FROM_DEVICE:
468 ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
469 ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
470 break;
471 case DMA_TO_DEVICE:
472 ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
473 ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
474 break;
478 static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all)
480 unsigned int item_count;
482 item_count = atomic_read(&pool->item_count);
483 if (free_all)
484 return item_count;
486 return 0;
490 * Flush our pool of MRs.
491 * At a minimum, all currently unused MRs are unmapped.
492 * If the number of MRs allocated exceeds the limit, we also try
493 * to free as many MRs as needed to get back to this limit.
495 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
497 struct rds_iw_mr *ibmr, *next;
498 LIST_HEAD(unmap_list);
499 LIST_HEAD(kill_list);
500 unsigned long flags;
501 unsigned int nfreed = 0, ncleaned = 0, free_goal;
502 int ret = 0;
504 rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
506 mutex_lock(&pool->flush_lock);
508 spin_lock_irqsave(&pool->list_lock, flags);
509 /* Get the list of all mappings to be destroyed */
510 list_splice_init(&pool->dirty_list, &unmap_list);
511 if (free_all)
512 list_splice_init(&pool->clean_list, &kill_list);
513 spin_unlock_irqrestore(&pool->list_lock, flags);
515 free_goal = rds_iw_flush_goal(pool, free_all);
517 /* Batched invalidate of dirty MRs.
518 * For FMR based MRs, the mappings on the unmap list are
519 * actually members of an ibmr (ibmr->mapping). They either
520 * migrate to the kill_list, or have been cleaned and should be
521 * moved to the clean_list.
522 * For fastregs, they will be dynamically allocated, and
523 * will be destroyed by the unmap function.
525 if (!list_empty(&unmap_list)) {
526 ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, &kill_list);
527 /* If we've been asked to destroy all MRs, move those
528 * that were simply cleaned to the kill list */
529 if (free_all)
530 list_splice_init(&unmap_list, &kill_list);
533 /* Destroy any MRs that are past their best before date */
534 list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
535 rds_iw_stats_inc(s_iw_rdma_mr_free);
536 list_del(&ibmr->mapping.m_list);
537 rds_iw_destroy_fastreg(pool, ibmr);
538 kfree(ibmr);
539 nfreed++;
542 /* Anything that remains are laundered ibmrs, which we can add
543 * back to the clean list. */
544 if (!list_empty(&unmap_list)) {
545 spin_lock_irqsave(&pool->list_lock, flags);
546 list_splice(&unmap_list, &pool->clean_list);
547 spin_unlock_irqrestore(&pool->list_lock, flags);
550 atomic_sub(ncleaned, &pool->dirty_count);
551 atomic_sub(nfreed, &pool->item_count);
553 mutex_unlock(&pool->flush_lock);
554 return ret;
557 static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
559 struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
561 rds_iw_flush_mr_pool(pool, 0);
564 void rds_iw_free_mr(void *trans_private, int invalidate)
566 struct rds_iw_mr *ibmr = trans_private;
567 struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
569 rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
570 if (!pool)
571 return;
573 /* Return it to the pool's free list */
574 rds_iw_free_fastreg(pool, ibmr);
576 /* If we've pinned too many pages, request a flush */
577 if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
578 atomic_read(&pool->dirty_count) >= pool->max_items / 10)
579 queue_work(rds_wq, &pool->flush_worker);
581 if (invalidate) {
582 if (likely(!in_interrupt())) {
583 rds_iw_flush_mr_pool(pool, 0);
584 } else {
585 /* We get here if the user created a MR marked
586 * as use_once and invalidate at the same time. */
587 queue_work(rds_wq, &pool->flush_worker);
592 void rds_iw_flush_mrs(void)
594 struct rds_iw_device *rds_iwdev;
596 list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
597 struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
599 if (pool)
600 rds_iw_flush_mr_pool(pool, 0);
604 void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
605 struct rds_sock *rs, u32 *key_ret)
607 struct rds_iw_device *rds_iwdev;
608 struct rds_iw_mr *ibmr = NULL;
609 struct rdma_cm_id *cm_id;
610 int ret;
612 ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id);
613 if (ret || !cm_id) {
614 ret = -ENODEV;
615 goto out;
618 if (!rds_iwdev->mr_pool) {
619 ret = -ENODEV;
620 goto out;
623 ibmr = rds_iw_alloc_mr(rds_iwdev);
624 if (IS_ERR(ibmr))
625 return ibmr;
627 ibmr->cm_id = cm_id;
628 ibmr->device = rds_iwdev;
630 ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
631 if (ret == 0)
632 *key_ret = ibmr->mr->rkey;
633 else
634 printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
636 out:
637 if (ret) {
638 if (ibmr)
639 rds_iw_free_mr(ibmr, 0);
640 ibmr = ERR_PTR(ret);
642 return ibmr;
646 * iWARP fastreg handling
648 * The life cycle of a fastreg registration is a bit different from
649 * FMRs.
650 * The idea behind fastreg is to have one MR, to which we bind different
651 * mappings over time. To avoid stalling on the expensive map and invalidate
652 * operations, these operations are pipelined on the same send queue on
653 * which we want to send the message containing the r_key.
655 * This creates a bit of a problem for us, as we do not have the destination
656 * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
657 * RDMA to be correctly setup. If a fastreg request is present, rds_iw_xmit
658 * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
659 * before queuing the SEND. When completions for these arrive, they are
660 * dispatched to the MR has a bit set showing that RDMa can be performed.
662 * There is another interesting aspect that's related to invalidation.
663 * The application can request that a mapping is invalidated in FREE_MR.
664 * The expectation there is that this invalidation step includes ALL
665 * PREVIOUSLY FREED MRs.
667 static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
668 struct rds_iw_mr *ibmr)
670 struct rds_iw_device *rds_iwdev = pool->device;
671 struct ib_fast_reg_page_list *page_list = NULL;
672 struct ib_mr *mr;
673 int err;
675 mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
676 if (IS_ERR(mr)) {
677 err = PTR_ERR(mr);
679 printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
680 return err;
683 /* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
684 * is not filled in.
686 page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
687 if (IS_ERR(page_list)) {
688 err = PTR_ERR(page_list);
690 printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
691 ib_dereg_mr(mr);
692 return err;
695 ibmr->page_list = page_list;
696 ibmr->mr = mr;
697 return 0;
700 static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
702 struct rds_iw_mr *ibmr = mapping->m_mr;
703 struct ib_send_wr f_wr, *failed_wr;
704 int ret;
707 * Perform a WR for the fast_reg_mr. Each individual page
708 * in the sg list is added to the fast reg page list and placed
709 * inside the fast_reg_mr WR. The key used is a rolling 8bit
710 * counter, which should guarantee uniqueness.
712 ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
713 mapping->m_rkey = ibmr->mr->rkey;
715 memset(&f_wr, 0, sizeof(f_wr));
716 f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
717 f_wr.opcode = IB_WR_FAST_REG_MR;
718 f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
719 f_wr.wr.fast_reg.rkey = mapping->m_rkey;
720 f_wr.wr.fast_reg.page_list = ibmr->page_list;
721 f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
722 f_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
723 f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
724 IB_ACCESS_REMOTE_READ |
725 IB_ACCESS_REMOTE_WRITE;
726 f_wr.wr.fast_reg.iova_start = 0;
727 f_wr.send_flags = IB_SEND_SIGNALED;
729 failed_wr = &f_wr;
730 ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
731 BUG_ON(failed_wr != &f_wr);
732 if (ret && printk_ratelimit())
733 printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
734 __func__, __LINE__, ret);
735 return ret;
738 static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
740 struct ib_send_wr s_wr, *failed_wr;
741 int ret = 0;
743 if (!ibmr->cm_id->qp || !ibmr->mr)
744 goto out;
746 memset(&s_wr, 0, sizeof(s_wr));
747 s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
748 s_wr.opcode = IB_WR_LOCAL_INV;
749 s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
750 s_wr.send_flags = IB_SEND_SIGNALED;
752 failed_wr = &s_wr;
753 ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
754 if (ret && printk_ratelimit()) {
755 printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
756 __func__, __LINE__, ret);
757 goto out;
759 out:
760 return ret;
763 static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
764 struct rds_iw_mr *ibmr,
765 struct scatterlist *sg,
766 unsigned int sg_len)
768 struct rds_iw_device *rds_iwdev = pool->device;
769 struct rds_iw_mapping *mapping = &ibmr->mapping;
770 u64 *dma_pages;
771 int i, ret = 0;
773 rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
775 dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
776 if (IS_ERR(dma_pages)) {
777 ret = PTR_ERR(dma_pages);
778 dma_pages = NULL;
779 goto out;
782 if (mapping->m_sg.dma_len > pool->max_message_size) {
783 ret = -EMSGSIZE;
784 goto out;
787 for (i = 0; i < mapping->m_sg.dma_npages; ++i)
788 ibmr->page_list->page_list[i] = dma_pages[i];
790 ret = rds_iw_rdma_build_fastreg(mapping);
791 if (ret)
792 goto out;
794 rds_iw_stats_inc(s_iw_rdma_mr_used);
796 out:
797 kfree(dma_pages);
799 return ret;
803 * "Free" a fastreg MR.
805 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
806 struct rds_iw_mr *ibmr)
808 unsigned long flags;
809 int ret;
811 if (!ibmr->mapping.m_sg.dma_len)
812 return;
814 ret = rds_iw_rdma_fastreg_inv(ibmr);
815 if (ret)
816 return;
818 /* Try to post the LOCAL_INV WR to the queue. */
819 spin_lock_irqsave(&pool->list_lock, flags);
821 list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
822 atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
823 atomic_inc(&pool->dirty_count);
825 spin_unlock_irqrestore(&pool->list_lock, flags);
828 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
829 struct list_head *unmap_list,
830 struct list_head *kill_list)
832 struct rds_iw_mapping *mapping, *next;
833 unsigned int ncleaned = 0;
834 LIST_HEAD(laundered);
836 /* Batched invalidation of fastreg MRs.
837 * Why do we do it this way, even though we could pipeline unmap
838 * and remap? The reason is the application semantics - when the
839 * application requests an invalidation of MRs, it expects all
840 * previously released R_Keys to become invalid.
842 * If we implement MR reuse naively, we risk memory corruption
843 * (this has actually been observed). So the default behavior
844 * requires that a MR goes through an explicit unmap operation before
845 * we can reuse it again.
847 * We could probably improve on this a little, by allowing immediate
848 * reuse of a MR on the same socket (eg you could add small
849 * cache of unused MRs to strct rds_socket - GET_MR could grab one
850 * of these without requiring an explicit invalidate).
852 while (!list_empty(unmap_list)) {
853 unsigned long flags;
855 spin_lock_irqsave(&pool->list_lock, flags);
856 list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
857 list_move(&mapping->m_list, &laundered);
858 ncleaned++;
860 spin_unlock_irqrestore(&pool->list_lock, flags);
863 /* Move all laundered mappings back to the unmap list.
864 * We do not kill any WRs right now - it doesn't seem the
865 * fastreg API has a max_remap limit. */
866 list_splice_init(&laundered, unmap_list);
868 return ncleaned;
871 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
872 struct rds_iw_mr *ibmr)
874 if (ibmr->page_list)
875 ib_free_fast_reg_page_list(ibmr->page_list);
876 if (ibmr->mr)
877 ib_dereg_mr(ibmr->mr);