2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
22 #include <linux/sunrpc/clnt.h>
27 #define RPCDBG_FACILITY RPCDBG_SCHED
31 * RPC slabs and memory pools
33 #define RPC_BUFFER_MAXSIZE (2048)
34 #define RPC_BUFFER_POOLSIZE (8)
35 #define RPC_TASK_POOLSIZE (8)
36 static struct kmem_cache
*rpc_task_slabp __read_mostly
;
37 static struct kmem_cache
*rpc_buffer_slabp __read_mostly
;
38 static mempool_t
*rpc_task_mempool __read_mostly
;
39 static mempool_t
*rpc_buffer_mempool __read_mostly
;
41 static void rpc_async_schedule(struct work_struct
*);
42 static void rpc_release_task(struct rpc_task
*task
);
43 static void __rpc_queue_timer_fn(unsigned long ptr
);
46 * RPC tasks sit here while waiting for conditions to improve.
48 static struct rpc_wait_queue delay_queue
;
51 * rpciod-related stuff
53 struct workqueue_struct
*rpciod_workqueue
;
56 * Disable the timer for a given RPC task. Should be called with
57 * queue->lock and bh_disabled in order to avoid races within
61 __rpc_disable_timer(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
63 if (task
->tk_timeout
== 0)
65 dprintk("RPC: %5u disabling timer\n", task
->tk_pid
);
67 list_del(&task
->u
.tk_wait
.timer_list
);
68 if (list_empty(&queue
->timer_list
.list
))
69 del_timer(&queue
->timer_list
.timer
);
73 rpc_set_queue_timer(struct rpc_wait_queue
*queue
, unsigned long expires
)
75 queue
->timer_list
.expires
= expires
;
76 mod_timer(&queue
->timer_list
.timer
, expires
);
80 * Set up a timer for the current task.
83 __rpc_add_timer(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
85 if (!task
->tk_timeout
)
88 dprintk("RPC: %5u setting alarm for %lu ms\n",
89 task
->tk_pid
, task
->tk_timeout
* 1000 / HZ
);
91 task
->u
.tk_wait
.expires
= jiffies
+ task
->tk_timeout
;
92 if (list_empty(&queue
->timer_list
.list
) || time_before(task
->u
.tk_wait
.expires
, queue
->timer_list
.expires
))
93 rpc_set_queue_timer(queue
, task
->u
.tk_wait
.expires
);
94 list_add(&task
->u
.tk_wait
.timer_list
, &queue
->timer_list
.list
);
98 * Add new request to a priority queue.
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
105 INIT_LIST_HEAD(&task
->u
.tk_wait
.links
);
106 q
= &queue
->tasks
[task
->tk_priority
];
107 if (unlikely(task
->tk_priority
> queue
->maxpriority
))
108 q
= &queue
->tasks
[queue
->maxpriority
];
109 list_for_each_entry(t
, q
, u
.tk_wait
.list
) {
110 if (t
->tk_owner
== task
->tk_owner
) {
111 list_add_tail(&task
->u
.tk_wait
.list
, &t
->u
.tk_wait
.links
);
115 list_add_tail(&task
->u
.tk_wait
.list
, q
);
119 * Add new request to wait queue.
121 * Swapper tasks always get inserted at the head of the queue.
122 * This should avoid many nasty memory deadlocks and hopefully
123 * improve overall performance.
124 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
126 static void __rpc_add_wait_queue(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
128 BUG_ON (RPC_IS_QUEUED(task
));
130 if (RPC_IS_PRIORITY(queue
))
131 __rpc_add_wait_queue_priority(queue
, task
);
132 else if (RPC_IS_SWAPPER(task
))
133 list_add(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
135 list_add_tail(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
136 task
->tk_waitqueue
= queue
;
138 rpc_set_queued(task
);
140 dprintk("RPC: %5u added to queue %p \"%s\"\n",
141 task
->tk_pid
, queue
, rpc_qname(queue
));
145 * Remove request from a priority queue.
147 static void __rpc_remove_wait_queue_priority(struct rpc_task
*task
)
151 if (!list_empty(&task
->u
.tk_wait
.links
)) {
152 t
= list_entry(task
->u
.tk_wait
.links
.next
, struct rpc_task
, u
.tk_wait
.list
);
153 list_move(&t
->u
.tk_wait
.list
, &task
->u
.tk_wait
.list
);
154 list_splice_init(&task
->u
.tk_wait
.links
, &t
->u
.tk_wait
.links
);
159 * Remove request from queue.
160 * Note: must be called with spin lock held.
162 static void __rpc_remove_wait_queue(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
164 __rpc_disable_timer(queue
, task
);
165 if (RPC_IS_PRIORITY(queue
))
166 __rpc_remove_wait_queue_priority(task
);
167 list_del(&task
->u
.tk_wait
.list
);
169 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
170 task
->tk_pid
, queue
, rpc_qname(queue
));
173 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue
*queue
, int priority
)
175 queue
->priority
= priority
;
176 queue
->count
= 1 << (priority
* 2);
179 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue
*queue
, pid_t pid
)
182 queue
->nr
= RPC_BATCH_COUNT
;
185 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue
*queue
)
187 rpc_set_waitqueue_priority(queue
, queue
->maxpriority
);
188 rpc_set_waitqueue_owner(queue
, 0);
191 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
, unsigned char nr_queues
)
195 spin_lock_init(&queue
->lock
);
196 for (i
= 0; i
< ARRAY_SIZE(queue
->tasks
); i
++)
197 INIT_LIST_HEAD(&queue
->tasks
[i
]);
198 queue
->maxpriority
= nr_queues
- 1;
199 rpc_reset_waitqueue_priority(queue
);
201 setup_timer(&queue
->timer_list
.timer
, __rpc_queue_timer_fn
, (unsigned long)queue
);
202 INIT_LIST_HEAD(&queue
->timer_list
.list
);
208 void rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
210 __rpc_init_priority_wait_queue(queue
, qname
, RPC_NR_PRIORITY
);
212 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue
);
214 void rpc_init_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
216 __rpc_init_priority_wait_queue(queue
, qname
, 1);
218 EXPORT_SYMBOL_GPL(rpc_init_wait_queue
);
220 void rpc_destroy_wait_queue(struct rpc_wait_queue
*queue
)
222 del_timer_sync(&queue
->timer_list
.timer
);
224 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue
);
226 static int rpc_wait_bit_killable(void *word
)
228 if (fatal_signal_pending(current
))
235 static void rpc_task_set_debuginfo(struct rpc_task
*task
)
237 static atomic_t rpc_pid
;
239 task
->tk_pid
= atomic_inc_return(&rpc_pid
);
242 static inline void rpc_task_set_debuginfo(struct rpc_task
*task
)
247 static void rpc_set_active(struct rpc_task
*task
)
249 struct rpc_clnt
*clnt
;
250 if (test_and_set_bit(RPC_TASK_ACTIVE
, &task
->tk_runstate
) != 0)
252 rpc_task_set_debuginfo(task
);
253 /* Add to global list of all tasks */
254 clnt
= task
->tk_client
;
256 spin_lock(&clnt
->cl_lock
);
257 list_add_tail(&task
->tk_task
, &clnt
->cl_tasks
);
258 spin_unlock(&clnt
->cl_lock
);
263 * Mark an RPC call as having completed by clearing the 'active' bit
265 static void rpc_mark_complete_task(struct rpc_task
*task
)
267 smp_mb__before_clear_bit();
268 clear_bit(RPC_TASK_ACTIVE
, &task
->tk_runstate
);
269 smp_mb__after_clear_bit();
270 wake_up_bit(&task
->tk_runstate
, RPC_TASK_ACTIVE
);
274 * Allow callers to wait for completion of an RPC call
276 int __rpc_wait_for_completion_task(struct rpc_task
*task
, int (*action
)(void *))
279 action
= rpc_wait_bit_killable
;
280 return wait_on_bit(&task
->tk_runstate
, RPC_TASK_ACTIVE
,
281 action
, TASK_KILLABLE
);
283 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task
);
286 * Make an RPC task runnable.
288 * Note: If the task is ASYNC, this must be called with
289 * the spinlock held to protect the wait queue operation.
291 static void rpc_make_runnable(struct rpc_task
*task
)
293 rpc_clear_queued(task
);
294 if (rpc_test_and_set_running(task
))
296 if (RPC_IS_ASYNC(task
)) {
299 INIT_WORK(&task
->u
.tk_work
, rpc_async_schedule
);
300 status
= queue_work(rpciod_workqueue
, &task
->u
.tk_work
);
302 printk(KERN_WARNING
"RPC: failed to add task to queue: error: %d!\n", status
);
303 task
->tk_status
= status
;
307 wake_up_bit(&task
->tk_runstate
, RPC_TASK_QUEUED
);
311 * Prepare for sleeping on a wait queue.
312 * By always appending tasks to the list we ensure FIFO behavior.
313 * NB: An RPC task will only receive interrupt-driven events as long
314 * as it's on a wait queue.
316 static void __rpc_sleep_on(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
319 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
320 task
->tk_pid
, rpc_qname(q
), jiffies
);
322 if (!RPC_IS_ASYNC(task
) && !RPC_IS_ACTIVATED(task
)) {
323 printk(KERN_ERR
"RPC: Inactive synchronous task put to sleep!\n");
327 __rpc_add_wait_queue(q
, task
);
329 BUG_ON(task
->tk_callback
!= NULL
);
330 task
->tk_callback
= action
;
331 __rpc_add_timer(q
, task
);
334 void rpc_sleep_on(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
337 /* Mark the task as being activated if so needed */
338 rpc_set_active(task
);
341 * Protect the queue operations.
343 spin_lock_bh(&q
->lock
);
344 __rpc_sleep_on(q
, task
, action
);
345 spin_unlock_bh(&q
->lock
);
347 EXPORT_SYMBOL_GPL(rpc_sleep_on
);
350 * __rpc_do_wake_up_task - wake up a single rpc_task
352 * @task: task to be woken up
354 * Caller must hold queue->lock, and have cleared the task queued flag.
356 static void __rpc_do_wake_up_task(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
358 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
359 task
->tk_pid
, jiffies
);
361 /* Has the task been executed yet? If not, we cannot wake it up! */
362 if (!RPC_IS_ACTIVATED(task
)) {
363 printk(KERN_ERR
"RPC: Inactive task (%p) being woken up!\n", task
);
367 __rpc_remove_wait_queue(queue
, task
);
369 rpc_make_runnable(task
);
371 dprintk("RPC: __rpc_wake_up_task done\n");
375 * Wake up a queued task while the queue lock is being held
377 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
379 if (RPC_IS_QUEUED(task
) && task
->tk_waitqueue
== queue
)
380 __rpc_do_wake_up_task(queue
, task
);
384 * Tests whether rpc queue is empty
386 int rpc_queue_empty(struct rpc_wait_queue
*queue
)
390 spin_lock_bh(&queue
->lock
);
392 spin_unlock_bh(&queue
->lock
);
395 EXPORT_SYMBOL_GPL(rpc_queue_empty
);
398 * Wake up a task on a specific queue
400 void rpc_wake_up_queued_task(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
402 spin_lock_bh(&queue
->lock
);
403 rpc_wake_up_task_queue_locked(queue
, task
);
404 spin_unlock_bh(&queue
->lock
);
406 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task
);
409 * Wake up the specified task
411 static void rpc_wake_up_task(struct rpc_task
*task
)
413 rpc_wake_up_queued_task(task
->tk_waitqueue
, task
);
417 * Wake up the next task on a priority queue.
419 static struct rpc_task
* __rpc_wake_up_next_priority(struct rpc_wait_queue
*queue
)
422 struct rpc_task
*task
;
425 * Service a batch of tasks from a single owner.
427 q
= &queue
->tasks
[queue
->priority
];
428 if (!list_empty(q
)) {
429 task
= list_entry(q
->next
, struct rpc_task
, u
.tk_wait
.list
);
430 if (queue
->owner
== task
->tk_owner
) {
433 list_move_tail(&task
->u
.tk_wait
.list
, q
);
436 * Check if we need to switch queues.
443 * Service the next queue.
446 if (q
== &queue
->tasks
[0])
447 q
= &queue
->tasks
[queue
->maxpriority
];
450 if (!list_empty(q
)) {
451 task
= list_entry(q
->next
, struct rpc_task
, u
.tk_wait
.list
);
454 } while (q
!= &queue
->tasks
[queue
->priority
]);
456 rpc_reset_waitqueue_priority(queue
);
460 rpc_set_waitqueue_priority(queue
, (unsigned int)(q
- &queue
->tasks
[0]));
462 rpc_set_waitqueue_owner(queue
, task
->tk_owner
);
464 rpc_wake_up_task_queue_locked(queue
, task
);
469 * Wake up the next task on the wait queue.
471 struct rpc_task
* rpc_wake_up_next(struct rpc_wait_queue
*queue
)
473 struct rpc_task
*task
= NULL
;
475 dprintk("RPC: wake_up_next(%p \"%s\")\n",
476 queue
, rpc_qname(queue
));
477 spin_lock_bh(&queue
->lock
);
478 if (RPC_IS_PRIORITY(queue
))
479 task
= __rpc_wake_up_next_priority(queue
);
481 task_for_first(task
, &queue
->tasks
[0])
482 rpc_wake_up_task_queue_locked(queue
, task
);
484 spin_unlock_bh(&queue
->lock
);
488 EXPORT_SYMBOL_GPL(rpc_wake_up_next
);
491 * rpc_wake_up - wake up all rpc_tasks
492 * @queue: rpc_wait_queue on which the tasks are sleeping
496 void rpc_wake_up(struct rpc_wait_queue
*queue
)
498 struct rpc_task
*task
, *next
;
499 struct list_head
*head
;
501 spin_lock_bh(&queue
->lock
);
502 head
= &queue
->tasks
[queue
->maxpriority
];
504 list_for_each_entry_safe(task
, next
, head
, u
.tk_wait
.list
)
505 rpc_wake_up_task_queue_locked(queue
, task
);
506 if (head
== &queue
->tasks
[0])
510 spin_unlock_bh(&queue
->lock
);
512 EXPORT_SYMBOL_GPL(rpc_wake_up
);
515 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
516 * @queue: rpc_wait_queue on which the tasks are sleeping
517 * @status: status value to set
521 void rpc_wake_up_status(struct rpc_wait_queue
*queue
, int status
)
523 struct rpc_task
*task
, *next
;
524 struct list_head
*head
;
526 spin_lock_bh(&queue
->lock
);
527 head
= &queue
->tasks
[queue
->maxpriority
];
529 list_for_each_entry_safe(task
, next
, head
, u
.tk_wait
.list
) {
530 task
->tk_status
= status
;
531 rpc_wake_up_task_queue_locked(queue
, task
);
533 if (head
== &queue
->tasks
[0])
537 spin_unlock_bh(&queue
->lock
);
539 EXPORT_SYMBOL_GPL(rpc_wake_up_status
);
541 static void __rpc_queue_timer_fn(unsigned long ptr
)
543 struct rpc_wait_queue
*queue
= (struct rpc_wait_queue
*)ptr
;
544 struct rpc_task
*task
, *n
;
545 unsigned long expires
, now
, timeo
;
547 spin_lock(&queue
->lock
);
548 expires
= now
= jiffies
;
549 list_for_each_entry_safe(task
, n
, &queue
->timer_list
.list
, u
.tk_wait
.timer_list
) {
550 timeo
= task
->u
.tk_wait
.expires
;
551 if (time_after_eq(now
, timeo
)) {
552 dprintk("RPC: %5u timeout\n", task
->tk_pid
);
553 task
->tk_status
= -ETIMEDOUT
;
554 rpc_wake_up_task_queue_locked(queue
, task
);
557 if (expires
== now
|| time_after(expires
, timeo
))
560 if (!list_empty(&queue
->timer_list
.list
))
561 rpc_set_queue_timer(queue
, expires
);
562 spin_unlock(&queue
->lock
);
565 static void __rpc_atrun(struct rpc_task
*task
)
571 * Run a task at a later time
573 void rpc_delay(struct rpc_task
*task
, unsigned long delay
)
575 task
->tk_timeout
= delay
;
576 rpc_sleep_on(&delay_queue
, task
, __rpc_atrun
);
578 EXPORT_SYMBOL_GPL(rpc_delay
);
581 * Helper to call task->tk_ops->rpc_call_prepare
583 void rpc_prepare_task(struct rpc_task
*task
)
585 task
->tk_ops
->rpc_call_prepare(task
, task
->tk_calldata
);
589 * Helper that calls task->tk_ops->rpc_call_done if it exists
591 void rpc_exit_task(struct rpc_task
*task
)
593 task
->tk_action
= NULL
;
594 if (task
->tk_ops
->rpc_call_done
!= NULL
) {
595 task
->tk_ops
->rpc_call_done(task
, task
->tk_calldata
);
596 if (task
->tk_action
!= NULL
) {
597 WARN_ON(RPC_ASSASSINATED(task
));
598 /* Always release the RPC slot and buffer memory */
603 EXPORT_SYMBOL_GPL(rpc_exit_task
);
605 void rpc_release_calldata(const struct rpc_call_ops
*ops
, void *calldata
)
607 if (ops
->rpc_release
!= NULL
)
608 ops
->rpc_release(calldata
);
612 * This is the RPC `scheduler' (or rather, the finite state machine).
614 static void __rpc_execute(struct rpc_task
*task
)
616 struct rpc_wait_queue
*queue
;
617 int task_is_async
= RPC_IS_ASYNC(task
);
620 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
621 task
->tk_pid
, task
->tk_flags
);
623 BUG_ON(RPC_IS_QUEUED(task
));
628 * Execute any pending callback.
630 if (task
->tk_callback
) {
631 void (*save_callback
)(struct rpc_task
*);
634 * We set tk_callback to NULL before calling it,
635 * in case it sets the tk_callback field itself:
637 save_callback
= task
->tk_callback
;
638 task
->tk_callback
= NULL
;
643 * Perform the next FSM step.
644 * tk_action may be NULL when the task has been killed
647 if (!RPC_IS_QUEUED(task
)) {
648 if (task
->tk_action
== NULL
)
650 task
->tk_action(task
);
654 * Lockless check for whether task is sleeping or not.
656 if (!RPC_IS_QUEUED(task
))
659 * The queue->lock protects against races with
660 * rpc_make_runnable().
662 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
663 * rpc_task, rpc_make_runnable() can assign it to a
664 * different workqueue. We therefore cannot assume that the
665 * rpc_task pointer may still be dereferenced.
667 queue
= task
->tk_waitqueue
;
668 spin_lock_bh(&queue
->lock
);
669 if (!RPC_IS_QUEUED(task
)) {
670 spin_unlock_bh(&queue
->lock
);
673 rpc_clear_running(task
);
674 spin_unlock_bh(&queue
->lock
);
678 /* sync task: sleep here */
679 dprintk("RPC: %5u sync task going to sleep\n", task
->tk_pid
);
680 status
= out_of_line_wait_on_bit(&task
->tk_runstate
,
681 RPC_TASK_QUEUED
, rpc_wait_bit_killable
,
683 if (status
== -ERESTARTSYS
) {
685 * When a sync task receives a signal, it exits with
686 * -ERESTARTSYS. In order to catch any callbacks that
687 * clean up after sleeping on some queue, we don't
688 * break the loop here, but go around once more.
690 dprintk("RPC: %5u got signal\n", task
->tk_pid
);
691 task
->tk_flags
|= RPC_TASK_KILLED
;
692 rpc_exit(task
, -ERESTARTSYS
);
693 rpc_wake_up_task(task
);
695 rpc_set_running(task
);
696 dprintk("RPC: %5u sync task resuming\n", task
->tk_pid
);
699 dprintk("RPC: %5u return %d, status %d\n", task
->tk_pid
, status
,
701 /* Release all resources associated with the task */
702 rpc_release_task(task
);
706 * User-visible entry point to the scheduler.
708 * This may be called recursively if e.g. an async NFS task updates
709 * the attributes and finds that dirty pages must be flushed.
710 * NOTE: Upon exit of this function the task is guaranteed to be
711 * released. In particular note that tk_release() will have
712 * been called, so your task memory may have been freed.
714 void rpc_execute(struct rpc_task
*task
)
716 rpc_set_active(task
);
717 rpc_set_running(task
);
721 static void rpc_async_schedule(struct work_struct
*work
)
723 __rpc_execute(container_of(work
, struct rpc_task
, u
.tk_work
));
727 * rpc_malloc - allocate an RPC buffer
728 * @task: RPC task that will use this buffer
729 * @size: requested byte size
731 * To prevent rpciod from hanging, this allocator never sleeps,
732 * returning NULL if the request cannot be serviced immediately.
733 * The caller can arrange to sleep in a way that is safe for rpciod.
735 * Most requests are 'small' (under 2KiB) and can be serviced from a
736 * mempool, ensuring that NFS reads and writes can always proceed,
737 * and that there is good locality of reference for these buffers.
739 * In order to avoid memory starvation triggering more writebacks of
740 * NFS requests, we avoid using GFP_KERNEL.
742 void *rpc_malloc(struct rpc_task
*task
, size_t size
)
744 struct rpc_buffer
*buf
;
745 gfp_t gfp
= RPC_IS_SWAPPER(task
) ? GFP_ATOMIC
: GFP_NOWAIT
;
747 size
+= sizeof(struct rpc_buffer
);
748 if (size
<= RPC_BUFFER_MAXSIZE
)
749 buf
= mempool_alloc(rpc_buffer_mempool
, gfp
);
751 buf
= kmalloc(size
, gfp
);
757 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
758 task
->tk_pid
, size
, buf
);
761 EXPORT_SYMBOL_GPL(rpc_malloc
);
764 * rpc_free - free buffer allocated via rpc_malloc
765 * @buffer: buffer to free
768 void rpc_free(void *buffer
)
771 struct rpc_buffer
*buf
;
776 buf
= container_of(buffer
, struct rpc_buffer
, data
);
779 dprintk("RPC: freeing buffer of size %zu at %p\n",
782 if (size
<= RPC_BUFFER_MAXSIZE
)
783 mempool_free(buf
, rpc_buffer_mempool
);
787 EXPORT_SYMBOL_GPL(rpc_free
);
790 * Creation and deletion of RPC task structures
792 static void rpc_init_task(struct rpc_task
*task
, const struct rpc_task_setup
*task_setup_data
)
794 memset(task
, 0, sizeof(*task
));
795 atomic_set(&task
->tk_count
, 1);
796 task
->tk_flags
= task_setup_data
->flags
;
797 task
->tk_ops
= task_setup_data
->callback_ops
;
798 task
->tk_calldata
= task_setup_data
->callback_data
;
799 INIT_LIST_HEAD(&task
->tk_task
);
801 /* Initialize retry counters */
802 task
->tk_garb_retry
= 2;
803 task
->tk_cred_retry
= 2;
805 task
->tk_priority
= task_setup_data
->priority
- RPC_PRIORITY_LOW
;
806 task
->tk_owner
= current
->tgid
;
808 /* Initialize workqueue for async tasks */
809 task
->tk_workqueue
= task_setup_data
->workqueue
;
811 task
->tk_client
= task_setup_data
->rpc_client
;
812 if (task
->tk_client
!= NULL
) {
813 kref_get(&task
->tk_client
->cl_kref
);
814 if (task
->tk_client
->cl_softrtry
)
815 task
->tk_flags
|= RPC_TASK_SOFT
;
818 if (task
->tk_ops
->rpc_call_prepare
!= NULL
)
819 task
->tk_action
= rpc_prepare_task
;
821 if (task_setup_data
->rpc_message
!= NULL
) {
822 task
->tk_msg
.rpc_proc
= task_setup_data
->rpc_message
->rpc_proc
;
823 task
->tk_msg
.rpc_argp
= task_setup_data
->rpc_message
->rpc_argp
;
824 task
->tk_msg
.rpc_resp
= task_setup_data
->rpc_message
->rpc_resp
;
825 /* Bind the user cred */
826 rpcauth_bindcred(task
, task_setup_data
->rpc_message
->rpc_cred
, task_setup_data
->flags
);
827 if (task
->tk_action
== NULL
)
828 rpc_call_start(task
);
831 /* starting timestamp */
832 task
->tk_start
= ktime_get();
834 dprintk("RPC: new task initialized, procpid %u\n",
835 task_pid_nr(current
));
838 static struct rpc_task
*
841 return (struct rpc_task
*)mempool_alloc(rpc_task_mempool
, GFP_NOFS
);
845 * Create a new task for the specified client.
847 struct rpc_task
*rpc_new_task(const struct rpc_task_setup
*setup_data
)
849 struct rpc_task
*task
= setup_data
->task
;
850 unsigned short flags
= 0;
853 task
= rpc_alloc_task();
855 rpc_release_calldata(setup_data
->callback_ops
,
856 setup_data
->callback_data
);
857 return ERR_PTR(-ENOMEM
);
859 flags
= RPC_TASK_DYNAMIC
;
862 rpc_init_task(task
, setup_data
);
863 if (task
->tk_status
< 0) {
864 int err
= task
->tk_status
;
869 task
->tk_flags
|= flags
;
870 dprintk("RPC: allocated task %p\n", task
);
874 static void rpc_free_task(struct rpc_task
*task
)
876 const struct rpc_call_ops
*tk_ops
= task
->tk_ops
;
877 void *calldata
= task
->tk_calldata
;
879 if (task
->tk_flags
& RPC_TASK_DYNAMIC
) {
880 dprintk("RPC: %5u freeing task\n", task
->tk_pid
);
881 mempool_free(task
, rpc_task_mempool
);
883 rpc_release_calldata(tk_ops
, calldata
);
886 static void rpc_async_release(struct work_struct
*work
)
888 rpc_free_task(container_of(work
, struct rpc_task
, u
.tk_work
));
891 void rpc_put_task(struct rpc_task
*task
)
893 if (!atomic_dec_and_test(&task
->tk_count
))
895 /* Release resources */
898 if (task
->tk_msg
.rpc_cred
)
899 rpcauth_unbindcred(task
);
900 if (task
->tk_client
) {
901 rpc_release_client(task
->tk_client
);
902 task
->tk_client
= NULL
;
904 if (task
->tk_workqueue
!= NULL
) {
905 INIT_WORK(&task
->u
.tk_work
, rpc_async_release
);
906 queue_work(task
->tk_workqueue
, &task
->u
.tk_work
);
910 EXPORT_SYMBOL_GPL(rpc_put_task
);
912 static void rpc_release_task(struct rpc_task
*task
)
914 dprintk("RPC: %5u release task\n", task
->tk_pid
);
916 if (!list_empty(&task
->tk_task
)) {
917 struct rpc_clnt
*clnt
= task
->tk_client
;
918 /* Remove from client task list */
919 spin_lock(&clnt
->cl_lock
);
920 list_del(&task
->tk_task
);
921 spin_unlock(&clnt
->cl_lock
);
923 BUG_ON (RPC_IS_QUEUED(task
));
925 /* Wake up anyone who is waiting for task completion */
926 rpc_mark_complete_task(task
);
932 * Kill all tasks for the given client.
933 * XXX: kill their descendants as well?
935 void rpc_killall_tasks(struct rpc_clnt
*clnt
)
937 struct rpc_task
*rovr
;
940 if (list_empty(&clnt
->cl_tasks
))
942 dprintk("RPC: killing all tasks for client %p\n", clnt
);
944 * Spin lock all_tasks to prevent changes...
946 spin_lock(&clnt
->cl_lock
);
947 list_for_each_entry(rovr
, &clnt
->cl_tasks
, tk_task
) {
948 if (! RPC_IS_ACTIVATED(rovr
))
950 if (!(rovr
->tk_flags
& RPC_TASK_KILLED
)) {
951 rovr
->tk_flags
|= RPC_TASK_KILLED
;
952 rpc_exit(rovr
, -EIO
);
953 rpc_wake_up_task(rovr
);
956 spin_unlock(&clnt
->cl_lock
);
958 EXPORT_SYMBOL_GPL(rpc_killall_tasks
);
962 return try_module_get(THIS_MODULE
) ? 0 : -EINVAL
;
965 void rpciod_down(void)
967 module_put(THIS_MODULE
);
971 * Start up the rpciod workqueue.
973 static int rpciod_start(void)
975 struct workqueue_struct
*wq
;
978 * Create the rpciod thread and wait for it to start.
980 dprintk("RPC: creating workqueue rpciod\n");
981 wq
= create_workqueue("rpciod");
982 rpciod_workqueue
= wq
;
983 return rpciod_workqueue
!= NULL
;
986 static void rpciod_stop(void)
988 struct workqueue_struct
*wq
= NULL
;
990 if (rpciod_workqueue
== NULL
)
992 dprintk("RPC: destroying workqueue rpciod\n");
994 wq
= rpciod_workqueue
;
995 rpciod_workqueue
= NULL
;
996 destroy_workqueue(wq
);
1000 rpc_destroy_mempool(void)
1003 if (rpc_buffer_mempool
)
1004 mempool_destroy(rpc_buffer_mempool
);
1005 if (rpc_task_mempool
)
1006 mempool_destroy(rpc_task_mempool
);
1008 kmem_cache_destroy(rpc_task_slabp
);
1009 if (rpc_buffer_slabp
)
1010 kmem_cache_destroy(rpc_buffer_slabp
);
1011 rpc_destroy_wait_queue(&delay_queue
);
1015 rpc_init_mempool(void)
1018 * The following is not strictly a mempool initialisation,
1019 * but there is no harm in doing it here
1021 rpc_init_wait_queue(&delay_queue
, "delayq");
1022 if (!rpciod_start())
1025 rpc_task_slabp
= kmem_cache_create("rpc_tasks",
1026 sizeof(struct rpc_task
),
1027 0, SLAB_HWCACHE_ALIGN
,
1029 if (!rpc_task_slabp
)
1031 rpc_buffer_slabp
= kmem_cache_create("rpc_buffers",
1033 0, SLAB_HWCACHE_ALIGN
,
1035 if (!rpc_buffer_slabp
)
1037 rpc_task_mempool
= mempool_create_slab_pool(RPC_TASK_POOLSIZE
,
1039 if (!rpc_task_mempool
)
1041 rpc_buffer_mempool
= mempool_create_slab_pool(RPC_BUFFER_POOLSIZE
,
1043 if (!rpc_buffer_mempool
)
1047 rpc_destroy_mempool();