2 * Freescale DMA ALSA SoC PCM driver
4 * Author: Timur Tabi <timur@freescale.com>
6 * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
7 * under the terms of the GNU General Public License version 2. This
8 * program is licensed "as is" without any warranty of any kind, whether
11 * This driver implements ASoC support for the Elo DMA controller, which is
12 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
13 * the PCM driver is what handles the DMA buffer.
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/gfp.h>
24 #include <sound/core.h>
25 #include <sound/pcm.h>
26 #include <sound/pcm_params.h>
27 #include <sound/soc.h>
34 * The formats that the DMA controller supports, which is anything
35 * that is 8, 16, or 32 bits.
37 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
38 SNDRV_PCM_FMTBIT_U8 | \
39 SNDRV_PCM_FMTBIT_S16_LE | \
40 SNDRV_PCM_FMTBIT_S16_BE | \
41 SNDRV_PCM_FMTBIT_U16_LE | \
42 SNDRV_PCM_FMTBIT_U16_BE | \
43 SNDRV_PCM_FMTBIT_S24_LE | \
44 SNDRV_PCM_FMTBIT_S24_BE | \
45 SNDRV_PCM_FMTBIT_U24_LE | \
46 SNDRV_PCM_FMTBIT_U24_BE | \
47 SNDRV_PCM_FMTBIT_S32_LE | \
48 SNDRV_PCM_FMTBIT_S32_BE | \
49 SNDRV_PCM_FMTBIT_U32_LE | \
50 SNDRV_PCM_FMTBIT_U32_BE)
52 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
53 SNDRV_PCM_RATE_CONTINUOUS)
55 /* DMA global data. This structure is used by fsl_dma_open() to determine
56 * which DMA channels to assign to a substream. Unfortunately, ASoC V1 does
57 * not allow the machine driver to provide this information to the PCM
58 * driver in advance, and there's no way to differentiate between the two
59 * DMA controllers. So for now, this driver only supports one SSI device
60 * using two DMA channels. We cannot support multiple DMA devices.
62 * ssi_stx_phys: bus address of SSI STX register
63 * ssi_srx_phys: bus address of SSI SRX register
64 * dma_channel: pointer to the DMA channel's registers
65 * irq: IRQ for this DMA channel
66 * assigned: set to 1 if that DMA channel is assigned to a substream
69 dma_addr_t ssi_stx_phys
;
70 dma_addr_t ssi_srx_phys
;
71 struct ccsr_dma_channel __iomem
*dma_channel
[2];
73 unsigned int assigned
[2];
77 * The number of DMA links to use. Two is the bare minimum, but if you
78 * have really small links you might need more.
80 #define NUM_DMA_LINKS 2
82 /** fsl_dma_private: p-substream DMA data
84 * Each substream has a 1-to-1 association with a DMA channel.
86 * The link[] array is first because it needs to be aligned on a 32-byte
87 * boundary, so putting it first will ensure alignment without padding the
90 * @link[]: array of link descriptors
91 * @controller_id: which DMA controller (0, 1, ...)
92 * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
93 * @dma_channel: pointer to the DMA channel's registers
94 * @irq: IRQ for this DMA channel
95 * @substream: pointer to the substream object, needed by the ISR
96 * @ssi_sxx_phys: bus address of the STX or SRX register to use
97 * @ld_buf_phys: physical address of the LD buffer
98 * @current_link: index into link[] of the link currently being processed
99 * @dma_buf_phys: physical address of the DMA buffer
100 * @dma_buf_next: physical address of the next period to process
101 * @dma_buf_end: physical address of the byte after the end of the DMA
102 * @buffer period_size: the size of a single period
103 * @num_periods: the number of periods in the DMA buffer
105 struct fsl_dma_private
{
106 struct fsl_dma_link_descriptor link
[NUM_DMA_LINKS
];
107 unsigned int controller_id
;
108 unsigned int channel_id
;
109 struct ccsr_dma_channel __iomem
*dma_channel
;
111 struct snd_pcm_substream
*substream
;
112 dma_addr_t ssi_sxx_phys
;
113 dma_addr_t ld_buf_phys
;
114 unsigned int current_link
;
115 dma_addr_t dma_buf_phys
;
116 dma_addr_t dma_buf_next
;
117 dma_addr_t dma_buf_end
;
119 unsigned int num_periods
;
123 * fsl_dma_hardare: define characteristics of the PCM hardware.
125 * The PCM hardware is the Freescale DMA controller. This structure defines
126 * the capabilities of that hardware.
128 * Since the sampling rate and data format are not controlled by the DMA
129 * controller, we specify no limits for those values. The only exception is
130 * period_bytes_min, which is set to a reasonably low value to prevent the
131 * DMA controller from generating too many interrupts per second.
133 * Since each link descriptor has a 32-bit byte count field, we set
134 * period_bytes_max to the largest 32-bit number. We also have no maximum
137 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
138 * limitation in the SSI driver requires the sample rates for playback and
139 * capture to be the same.
141 static const struct snd_pcm_hardware fsl_dma_hardware
= {
143 .info
= SNDRV_PCM_INFO_INTERLEAVED
|
144 SNDRV_PCM_INFO_MMAP
|
145 SNDRV_PCM_INFO_MMAP_VALID
|
146 SNDRV_PCM_INFO_JOINT_DUPLEX
|
147 SNDRV_PCM_INFO_PAUSE
,
148 .formats
= FSLDMA_PCM_FORMATS
,
149 .rates
= FSLDMA_PCM_RATES
,
152 .period_bytes_min
= 512, /* A reasonable limit */
153 .period_bytes_max
= (u32
) -1,
154 .periods_min
= NUM_DMA_LINKS
,
155 .periods_max
= (unsigned int) -1,
156 .buffer_bytes_max
= 128 * 1024, /* A reasonable limit */
160 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
162 * This function should be called by the ISR whenever the DMA controller
163 * halts data transfer.
165 static void fsl_dma_abort_stream(struct snd_pcm_substream
*substream
)
169 snd_pcm_stream_lock_irqsave(substream
, flags
);
171 if (snd_pcm_running(substream
))
172 snd_pcm_stop(substream
, SNDRV_PCM_STATE_XRUN
);
174 snd_pcm_stream_unlock_irqrestore(substream
, flags
);
178 * fsl_dma_update_pointers - update LD pointers to point to the next period
180 * As each period is completed, this function changes the the link
181 * descriptor pointers for that period to point to the next period.
183 static void fsl_dma_update_pointers(struct fsl_dma_private
*dma_private
)
185 struct fsl_dma_link_descriptor
*link
=
186 &dma_private
->link
[dma_private
->current_link
];
188 /* Update our link descriptors to point to the next period */
189 if (dma_private
->substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
191 cpu_to_be32(dma_private
->dma_buf_next
);
194 cpu_to_be32(dma_private
->dma_buf_next
);
196 /* Update our variables for next time */
197 dma_private
->dma_buf_next
+= dma_private
->period_size
;
199 if (dma_private
->dma_buf_next
>= dma_private
->dma_buf_end
)
200 dma_private
->dma_buf_next
= dma_private
->dma_buf_phys
;
202 if (++dma_private
->current_link
>= NUM_DMA_LINKS
)
203 dma_private
->current_link
= 0;
207 * fsl_dma_isr: interrupt handler for the DMA controller
209 * @irq: IRQ of the DMA channel
210 * @dev_id: pointer to the dma_private structure for this DMA channel
212 static irqreturn_t
fsl_dma_isr(int irq
, void *dev_id
)
214 struct fsl_dma_private
*dma_private
= dev_id
;
215 struct ccsr_dma_channel __iomem
*dma_channel
= dma_private
->dma_channel
;
216 irqreturn_t ret
= IRQ_NONE
;
219 /* We got an interrupt, so read the status register to see what we
220 were interrupted for.
222 sr
= in_be32(&dma_channel
->sr
);
224 if (sr
& CCSR_DMA_SR_TE
) {
225 dev_err(dma_private
->substream
->pcm
->card
->dev
,
226 "DMA transmit error (controller=%u channel=%u irq=%u\n",
227 dma_private
->controller_id
,
228 dma_private
->channel_id
, irq
);
229 fsl_dma_abort_stream(dma_private
->substream
);
230 sr2
|= CCSR_DMA_SR_TE
;
234 if (sr
& CCSR_DMA_SR_CH
)
237 if (sr
& CCSR_DMA_SR_PE
) {
238 dev_err(dma_private
->substream
->pcm
->card
->dev
,
239 "DMA%u programming error (channel=%u irq=%u)\n",
240 dma_private
->controller_id
,
241 dma_private
->channel_id
, irq
);
242 fsl_dma_abort_stream(dma_private
->substream
);
243 sr2
|= CCSR_DMA_SR_PE
;
247 if (sr
& CCSR_DMA_SR_EOLNI
) {
248 sr2
|= CCSR_DMA_SR_EOLNI
;
252 if (sr
& CCSR_DMA_SR_CB
)
255 if (sr
& CCSR_DMA_SR_EOSI
) {
256 struct snd_pcm_substream
*substream
= dma_private
->substream
;
258 /* Tell ALSA we completed a period. */
259 snd_pcm_period_elapsed(substream
);
262 * Update our link descriptors to point to the next period. We
263 * only need to do this if the number of periods is not equal to
264 * the number of links.
266 if (dma_private
->num_periods
!= NUM_DMA_LINKS
)
267 fsl_dma_update_pointers(dma_private
);
269 sr2
|= CCSR_DMA_SR_EOSI
;
273 if (sr
& CCSR_DMA_SR_EOLSI
) {
274 sr2
|= CCSR_DMA_SR_EOLSI
;
278 /* Clear the bits that we set */
280 out_be32(&dma_channel
->sr
, sr2
);
286 * fsl_dma_new: initialize this PCM driver.
288 * This function is called when the codec driver calls snd_soc_new_pcms(),
289 * once for each .dai_link in the machine driver's snd_soc_card
292 static int fsl_dma_new(struct snd_card
*card
, struct snd_soc_dai
*dai
,
295 static u64 fsl_dma_dmamask
= DMA_BIT_MASK(32);
298 if (!card
->dev
->dma_mask
)
299 card
->dev
->dma_mask
= &fsl_dma_dmamask
;
301 if (!card
->dev
->coherent_dma_mask
)
302 card
->dev
->coherent_dma_mask
= fsl_dma_dmamask
;
304 ret
= snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV
, card
->dev
,
305 fsl_dma_hardware
.buffer_bytes_max
,
306 &pcm
->streams
[0].substream
->dma_buffer
);
309 "Can't allocate playback DMA buffer (size=%u)\n",
310 fsl_dma_hardware
.buffer_bytes_max
);
314 ret
= snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV
, card
->dev
,
315 fsl_dma_hardware
.buffer_bytes_max
,
316 &pcm
->streams
[1].substream
->dma_buffer
);
318 snd_dma_free_pages(&pcm
->streams
[0].substream
->dma_buffer
);
320 "Can't allocate capture DMA buffer (size=%u)\n",
321 fsl_dma_hardware
.buffer_bytes_max
);
329 * fsl_dma_open: open a new substream.
331 * Each substream has its own DMA buffer.
333 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
334 * descriptors that ping-pong from one period to the next. For example, if
335 * there are six periods and two link descriptors, this is how they look
336 * before playback starts:
338 * The last link descriptor
339 * ____________ points back to the first
348 * _________________________________________
349 * | | | | | | | The DMA buffer is
350 * | | | | | | | divided into 6 parts
351 * |______|______|______|______|______|______|
353 * and here's how they look after the first period is finished playing:
365 * _________________________________________
368 * |______|______|______|______|______|______|
370 * The first link descriptor now points to the third period. The DMA
371 * controller is currently playing the second period. When it finishes, it
372 * will jump back to the first descriptor and play the third period.
374 * There are four reasons we do this:
376 * 1. The only way to get the DMA controller to automatically restart the
377 * transfer when it gets to the end of the buffer is to use chaining
378 * mode. Basic direct mode doesn't offer that feature.
379 * 2. We need to receive an interrupt at the end of every period. The DMA
380 * controller can generate an interrupt at the end of every link transfer
381 * (aka segment). Making each period into a DMA segment will give us the
382 * interrupts we need.
383 * 3. By creating only two link descriptors, regardless of the number of
384 * periods, we do not need to reallocate the link descriptors if the
385 * number of periods changes.
386 * 4. All of the audio data is still stored in a single, contiguous DMA
387 * buffer, which is what ALSA expects. We're just dividing it into
388 * contiguous parts, and creating a link descriptor for each one.
390 static int fsl_dma_open(struct snd_pcm_substream
*substream
)
392 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
393 struct fsl_dma_private
*dma_private
;
394 struct ccsr_dma_channel __iomem
*dma_channel
;
395 dma_addr_t ld_buf_phys
;
396 u64 temp_link
; /* Pointer to next link descriptor */
398 unsigned int channel
;
403 * Reject any DMA buffer whose size is not a multiple of the period
404 * size. We need to make sure that the DMA buffer can be evenly divided
407 ret
= snd_pcm_hw_constraint_integer(runtime
,
408 SNDRV_PCM_HW_PARAM_PERIODS
);
410 dev_err(substream
->pcm
->card
->dev
, "invalid buffer size\n");
414 channel
= substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
? 0 : 1;
416 if (dma_global_data
.assigned
[channel
]) {
417 dev_err(substream
->pcm
->card
->dev
,
418 "DMA channel already assigned\n");
422 dma_private
= dma_alloc_coherent(substream
->pcm
->card
->dev
,
423 sizeof(struct fsl_dma_private
), &ld_buf_phys
, GFP_KERNEL
);
425 dev_err(substream
->pcm
->card
->dev
,
426 "can't allocate DMA private data\n");
429 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
430 dma_private
->ssi_sxx_phys
= dma_global_data
.ssi_stx_phys
;
432 dma_private
->ssi_sxx_phys
= dma_global_data
.ssi_srx_phys
;
434 dma_private
->dma_channel
= dma_global_data
.dma_channel
[channel
];
435 dma_private
->irq
= dma_global_data
.irq
[channel
];
436 dma_private
->substream
= substream
;
437 dma_private
->ld_buf_phys
= ld_buf_phys
;
438 dma_private
->dma_buf_phys
= substream
->dma_buffer
.addr
;
440 /* We only support one DMA controller for now */
441 dma_private
->controller_id
= 0;
442 dma_private
->channel_id
= channel
;
444 ret
= request_irq(dma_private
->irq
, fsl_dma_isr
, 0, "DMA", dma_private
);
446 dev_err(substream
->pcm
->card
->dev
,
447 "can't register ISR for IRQ %u (ret=%i)\n",
448 dma_private
->irq
, ret
);
449 dma_free_coherent(substream
->pcm
->card
->dev
,
450 sizeof(struct fsl_dma_private
),
451 dma_private
, dma_private
->ld_buf_phys
);
455 dma_global_data
.assigned
[channel
] = 1;
457 snd_pcm_set_runtime_buffer(substream
, &substream
->dma_buffer
);
458 snd_soc_set_runtime_hwparams(substream
, &fsl_dma_hardware
);
459 runtime
->private_data
= dma_private
;
461 /* Program the fixed DMA controller parameters */
463 dma_channel
= dma_private
->dma_channel
;
465 temp_link
= dma_private
->ld_buf_phys
+
466 sizeof(struct fsl_dma_link_descriptor
);
468 for (i
= 0; i
< NUM_DMA_LINKS
; i
++) {
469 dma_private
->link
[i
].next
= cpu_to_be64(temp_link
);
471 temp_link
+= sizeof(struct fsl_dma_link_descriptor
);
473 /* The last link descriptor points to the first */
474 dma_private
->link
[i
- 1].next
= cpu_to_be64(dma_private
->ld_buf_phys
);
476 /* Tell the DMA controller where the first link descriptor is */
477 out_be32(&dma_channel
->clndar
,
478 CCSR_DMA_CLNDAR_ADDR(dma_private
->ld_buf_phys
));
479 out_be32(&dma_channel
->eclndar
,
480 CCSR_DMA_ECLNDAR_ADDR(dma_private
->ld_buf_phys
));
482 /* The manual says the BCR must be clear before enabling EMP */
483 out_be32(&dma_channel
->bcr
, 0);
486 * Program the mode register for interrupts, external master control,
487 * and source/destination hold. Also clear the Channel Abort bit.
489 mr
= in_be32(&dma_channel
->mr
) &
490 ~(CCSR_DMA_MR_CA
| CCSR_DMA_MR_DAHE
| CCSR_DMA_MR_SAHE
);
493 * We want External Master Start and External Master Pause enabled,
494 * because the SSI is controlling the DMA controller. We want the DMA
495 * controller to be set up in advance, and then we signal only the SSI
496 * to start transferring.
498 * We want End-Of-Segment Interrupts enabled, because this will generate
499 * an interrupt at the end of each segment (each link descriptor
500 * represents one segment). Each DMA segment is the same thing as an
501 * ALSA period, so this is how we get an interrupt at the end of every
504 * We want Error Interrupt enabled, so that we can get an error if
505 * the DMA controller is mis-programmed somehow.
507 mr
|= CCSR_DMA_MR_EOSIE
| CCSR_DMA_MR_EIE
| CCSR_DMA_MR_EMP_EN
|
510 /* For playback, we want the destination address to be held. For
511 capture, set the source address to be held. */
512 mr
|= (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) ?
513 CCSR_DMA_MR_DAHE
: CCSR_DMA_MR_SAHE
;
515 out_be32(&dma_channel
->mr
, mr
);
521 * fsl_dma_hw_params: continue initializing the DMA links
523 * This function obtains hardware parameters about the opened stream and
524 * programs the DMA controller accordingly.
526 * One drawback of big-endian is that when copying integers of different
527 * sizes to a fixed-sized register, the address to which the integer must be
528 * copied is dependent on the size of the integer.
530 * For example, if P is the address of a 32-bit register, and X is a 32-bit
531 * integer, then X should be copied to address P. However, if X is a 16-bit
532 * integer, then it should be copied to P+2. If X is an 8-bit register,
533 * then it should be copied to P+3.
535 * So for playback of 8-bit samples, the DMA controller must transfer single
536 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
537 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
539 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
540 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
541 * and 8 bytes at a time). So we do not support packed 24-bit samples.
542 * 24-bit data must be padded to 32 bits.
544 static int fsl_dma_hw_params(struct snd_pcm_substream
*substream
,
545 struct snd_pcm_hw_params
*hw_params
)
547 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
548 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
550 /* Number of bits per sample */
551 unsigned int sample_size
=
552 snd_pcm_format_physical_width(params_format(hw_params
));
554 /* Number of bytes per frame */
555 unsigned int frame_size
= 2 * (sample_size
/ 8);
557 /* Bus address of SSI STX register */
558 dma_addr_t ssi_sxx_phys
= dma_private
->ssi_sxx_phys
;
560 /* Size of the DMA buffer, in bytes */
561 size_t buffer_size
= params_buffer_bytes(hw_params
);
563 /* Number of bytes per period */
564 size_t period_size
= params_period_bytes(hw_params
);
566 /* Pointer to next period */
567 dma_addr_t temp_addr
= substream
->dma_buffer
.addr
;
569 /* Pointer to DMA controller */
570 struct ccsr_dma_channel __iomem
*dma_channel
= dma_private
->dma_channel
;
572 u32 mr
; /* DMA Mode Register */
576 /* Initialize our DMA tracking variables */
577 dma_private
->period_size
= period_size
;
578 dma_private
->num_periods
= params_periods(hw_params
);
579 dma_private
->dma_buf_end
= dma_private
->dma_buf_phys
+ buffer_size
;
580 dma_private
->dma_buf_next
= dma_private
->dma_buf_phys
+
581 (NUM_DMA_LINKS
* period_size
);
583 if (dma_private
->dma_buf_next
>= dma_private
->dma_buf_end
)
584 /* This happens if the number of periods == NUM_DMA_LINKS */
585 dma_private
->dma_buf_next
= dma_private
->dma_buf_phys
;
587 mr
= in_be32(&dma_channel
->mr
) & ~(CCSR_DMA_MR_BWC_MASK
|
588 CCSR_DMA_MR_SAHTS_MASK
| CCSR_DMA_MR_DAHTS_MASK
);
590 /* Due to a quirk of the SSI's STX register, the target address
591 * for the DMA operations depends on the sample size. So we calculate
592 * that offset here. While we're at it, also tell the DMA controller
593 * how much data to transfer per sample.
595 switch (sample_size
) {
597 mr
|= CCSR_DMA_MR_DAHTS_1
| CCSR_DMA_MR_SAHTS_1
;
601 mr
|= CCSR_DMA_MR_DAHTS_2
| CCSR_DMA_MR_SAHTS_2
;
605 mr
|= CCSR_DMA_MR_DAHTS_4
| CCSR_DMA_MR_SAHTS_4
;
608 /* We should never get here */
609 dev_err(substream
->pcm
->card
->dev
,
610 "unsupported sample size %u\n", sample_size
);
615 * BWC should always be a multiple of the frame size. BWC determines
616 * how many bytes are sent/received before the DMA controller checks the
617 * SSI to see if it needs to stop. For playback, the transmit FIFO can
618 * hold three frames, so we want to send two frames at a time. For
619 * capture, the receive FIFO is triggered when it contains one frame, so
620 * we want to receive one frame at a time.
622 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
623 mr
|= CCSR_DMA_MR_BWC(2 * frame_size
);
625 mr
|= CCSR_DMA_MR_BWC(frame_size
);
627 out_be32(&dma_channel
->mr
, mr
);
629 for (i
= 0; i
< NUM_DMA_LINKS
; i
++) {
630 struct fsl_dma_link_descriptor
*link
= &dma_private
->link
[i
];
632 link
->count
= cpu_to_be32(period_size
);
634 /* Even though the DMA controller supports 36-bit addressing,
635 * for simplicity we allow only 32-bit addresses for the audio
636 * buffer itself. This was enforced in fsl_dma_new() with the
639 * The snoop bit tells the DMA controller whether it should tell
640 * the ECM to snoop during a read or write to an address. For
641 * audio, we use DMA to transfer data between memory and an I/O
642 * device (the SSI's STX0 or SRX0 register). Snooping is only
643 * needed if there is a cache, so we need to snoop memory
644 * addresses only. For playback, that means we snoop the source
645 * but not the destination. For capture, we snoop the
646 * destination but not the source.
648 * Note that failing to snoop properly is unlikely to cause
649 * cache incoherency if the period size is larger than the
650 * size of L1 cache. This is because filling in one period will
651 * flush out the data for the previous period. So if you
652 * increased period_bytes_min to a large enough size, you might
653 * get more performance by not snooping, and you'll still be
656 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) {
657 link
->source_addr
= cpu_to_be32(temp_addr
);
658 link
->source_attr
= cpu_to_be32(CCSR_DMA_ATR_SNOOP
);
660 link
->dest_addr
= cpu_to_be32(ssi_sxx_phys
);
661 link
->dest_attr
= cpu_to_be32(CCSR_DMA_ATR_NOSNOOP
);
663 link
->source_addr
= cpu_to_be32(ssi_sxx_phys
);
664 link
->source_attr
= cpu_to_be32(CCSR_DMA_ATR_NOSNOOP
);
666 link
->dest_addr
= cpu_to_be32(temp_addr
);
667 link
->dest_attr
= cpu_to_be32(CCSR_DMA_ATR_SNOOP
);
670 temp_addr
+= period_size
;
677 * fsl_dma_pointer: determine the current position of the DMA transfer
679 * This function is called by ALSA when ALSA wants to know where in the
680 * stream buffer the hardware currently is.
682 * For playback, the SAR register contains the physical address of the most
683 * recent DMA transfer. For capture, the value is in the DAR register.
685 * The base address of the buffer is stored in the source_addr field of the
686 * first link descriptor.
688 static snd_pcm_uframes_t
fsl_dma_pointer(struct snd_pcm_substream
*substream
)
690 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
691 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
692 struct ccsr_dma_channel __iomem
*dma_channel
= dma_private
->dma_channel
;
694 snd_pcm_uframes_t frames
;
696 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
697 position
= in_be32(&dma_channel
->sar
);
699 position
= in_be32(&dma_channel
->dar
);
702 * When capture is started, the SSI immediately starts to fill its FIFO.
703 * This means that the DMA controller is not started until the FIFO is
704 * full. However, ALSA calls this function before that happens, when
705 * MR.DAR is still zero. In this case, just return zero to indicate
706 * that nothing has been received yet.
711 if ((position
< dma_private
->dma_buf_phys
) ||
712 (position
> dma_private
->dma_buf_end
)) {
713 dev_err(substream
->pcm
->card
->dev
,
714 "dma pointer is out of range, halting stream\n");
715 return SNDRV_PCM_POS_XRUN
;
718 frames
= bytes_to_frames(runtime
, position
- dma_private
->dma_buf_phys
);
721 * If the current address is just past the end of the buffer, wrap it
724 if (frames
== runtime
->buffer_size
)
731 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
733 * Release the resources allocated in fsl_dma_hw_params() and de-program the
736 * This function can be called multiple times.
738 static int fsl_dma_hw_free(struct snd_pcm_substream
*substream
)
740 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
741 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
744 struct ccsr_dma_channel __iomem
*dma_channel
;
746 dma_channel
= dma_private
->dma_channel
;
749 out_be32(&dma_channel
->mr
, CCSR_DMA_MR_CA
);
750 out_be32(&dma_channel
->mr
, 0);
752 /* Reset all the other registers */
753 out_be32(&dma_channel
->sr
, -1);
754 out_be32(&dma_channel
->clndar
, 0);
755 out_be32(&dma_channel
->eclndar
, 0);
756 out_be32(&dma_channel
->satr
, 0);
757 out_be32(&dma_channel
->sar
, 0);
758 out_be32(&dma_channel
->datr
, 0);
759 out_be32(&dma_channel
->dar
, 0);
760 out_be32(&dma_channel
->bcr
, 0);
761 out_be32(&dma_channel
->nlndar
, 0);
762 out_be32(&dma_channel
->enlndar
, 0);
769 * fsl_dma_close: close the stream.
771 static int fsl_dma_close(struct snd_pcm_substream
*substream
)
773 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
774 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
775 int dir
= substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
? 0 : 1;
778 if (dma_private
->irq
)
779 free_irq(dma_private
->irq
, dma_private
);
781 if (dma_private
->ld_buf_phys
) {
782 dma_unmap_single(substream
->pcm
->card
->dev
,
783 dma_private
->ld_buf_phys
,
784 sizeof(dma_private
->link
), DMA_TO_DEVICE
);
787 /* Deallocate the fsl_dma_private structure */
788 dma_free_coherent(substream
->pcm
->card
->dev
,
789 sizeof(struct fsl_dma_private
),
790 dma_private
, dma_private
->ld_buf_phys
);
791 substream
->runtime
->private_data
= NULL
;
794 dma_global_data
.assigned
[dir
] = 0;
800 * Remove this PCM driver.
802 static void fsl_dma_free_dma_buffers(struct snd_pcm
*pcm
)
804 struct snd_pcm_substream
*substream
;
807 for (i
= 0; i
< ARRAY_SIZE(pcm
->streams
); i
++) {
808 substream
= pcm
->streams
[i
].substream
;
810 snd_dma_free_pages(&substream
->dma_buffer
);
811 substream
->dma_buffer
.area
= NULL
;
812 substream
->dma_buffer
.addr
= 0;
817 static struct snd_pcm_ops fsl_dma_ops
= {
818 .open
= fsl_dma_open
,
819 .close
= fsl_dma_close
,
820 .ioctl
= snd_pcm_lib_ioctl
,
821 .hw_params
= fsl_dma_hw_params
,
822 .hw_free
= fsl_dma_hw_free
,
823 .pointer
= fsl_dma_pointer
,
826 struct snd_soc_platform fsl_soc_platform
= {
828 .pcm_ops
= &fsl_dma_ops
,
829 .pcm_new
= fsl_dma_new
,
830 .pcm_free
= fsl_dma_free_dma_buffers
,
832 EXPORT_SYMBOL_GPL(fsl_soc_platform
);
835 * fsl_dma_configure: store the DMA parameters from the fabric driver.
837 * This function is called by the ASoC fabric driver to give us the DMA and
838 * SSI channel information.
840 * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
841 * data when a substream is created, so for now we need to store this data
842 * into a global variable. This means that we can only support one DMA
843 * controller, and hence only one SSI.
845 int fsl_dma_configure(struct fsl_dma_info
*dma_info
)
847 static int initialized
;
849 /* We only support one DMA controller for now */
853 dma_global_data
.ssi_stx_phys
= dma_info
->ssi_stx_phys
;
854 dma_global_data
.ssi_srx_phys
= dma_info
->ssi_srx_phys
;
855 dma_global_data
.dma_channel
[0] = dma_info
->dma_channel
[0];
856 dma_global_data
.dma_channel
[1] = dma_info
->dma_channel
[1];
857 dma_global_data
.irq
[0] = dma_info
->dma_irq
[0];
858 dma_global_data
.irq
[1] = dma_info
->dma_irq
[1];
859 dma_global_data
.assigned
[0] = 0;
860 dma_global_data
.assigned
[1] = 0;
865 EXPORT_SYMBOL_GPL(fsl_dma_configure
);
867 static int __init
fsl_soc_platform_init(void)
869 return snd_soc_register_platform(&fsl_soc_platform
);
871 module_init(fsl_soc_platform_init
);
873 static void __exit
fsl_soc_platform_exit(void)
875 snd_soc_unregister_platform(&fsl_soc_platform
);
877 module_exit(fsl_soc_platform_exit
);
879 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
880 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
881 MODULE_LICENSE("GPL");