4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
66 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
67 unsigned int core_pipe_limit
;
68 int suid_dumpable
= 0;
74 static atomic_t call_count
= ATOMIC_INIT(1);
76 /* The maximal length of core_pattern is also specified in sysctl.c */
78 static LIST_HEAD(formats
);
79 static DEFINE_RWLOCK(binfmt_lock
);
81 int __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
85 write_lock(&binfmt_lock
);
86 insert
? list_add(&fmt
->lh
, &formats
) :
87 list_add_tail(&fmt
->lh
, &formats
);
88 write_unlock(&binfmt_lock
);
92 EXPORT_SYMBOL(__register_binfmt
);
94 void unregister_binfmt(struct linux_binfmt
* fmt
)
96 write_lock(&binfmt_lock
);
98 write_unlock(&binfmt_lock
);
101 EXPORT_SYMBOL(unregister_binfmt
);
103 static inline void put_binfmt(struct linux_binfmt
* fmt
)
105 module_put(fmt
->module
);
109 * Note that a shared library must be both readable and executable due to
112 * Also note that we take the address to load from from the file itself.
114 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
117 char *tmp
= getname(library
);
118 int error
= PTR_ERR(tmp
);
119 static const struct open_flags uselib_flags
= {
120 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
121 .acc_mode
= MAY_READ
| MAY_EXEC
| MAY_OPEN
,
122 .intent
= LOOKUP_OPEN
128 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
, LOOKUP_FOLLOW
);
130 error
= PTR_ERR(file
);
135 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
139 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
146 struct linux_binfmt
* fmt
;
148 read_lock(&binfmt_lock
);
149 list_for_each_entry(fmt
, &formats
, lh
) {
150 if (!fmt
->load_shlib
)
152 if (!try_module_get(fmt
->module
))
154 read_unlock(&binfmt_lock
);
155 error
= fmt
->load_shlib(file
);
156 read_lock(&binfmt_lock
);
158 if (error
!= -ENOEXEC
)
161 read_unlock(&binfmt_lock
);
171 * The nascent bprm->mm is not visible until exec_mmap() but it can
172 * use a lot of memory, account these pages in current->mm temporary
173 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
174 * change the counter back via acct_arg_size(0).
176 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
178 struct mm_struct
*mm
= current
->mm
;
179 long diff
= (long)(pages
- bprm
->vma_pages
);
184 bprm
->vma_pages
= pages
;
186 #ifdef SPLIT_RSS_COUNTING
187 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
189 spin_lock(&mm
->page_table_lock
);
190 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
191 spin_unlock(&mm
->page_table_lock
);
195 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
201 #ifdef CONFIG_STACK_GROWSUP
203 ret
= expand_downwards(bprm
->vma
, pos
);
208 ret
= get_user_pages(current
, bprm
->mm
, pos
,
209 1, write
, 1, &page
, NULL
);
214 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
217 acct_arg_size(bprm
, size
/ PAGE_SIZE
);
220 * We've historically supported up to 32 pages (ARG_MAX)
221 * of argument strings even with small stacks
227 * Limit to 1/4-th the stack size for the argv+env strings.
229 * - the remaining binfmt code will not run out of stack space,
230 * - the program will have a reasonable amount of stack left
233 rlim
= current
->signal
->rlim
;
234 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
) / 4) {
243 static void put_arg_page(struct page
*page
)
248 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
252 static void free_arg_pages(struct linux_binprm
*bprm
)
256 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
259 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
262 static int __bprm_mm_init(struct linux_binprm
*bprm
)
265 struct vm_area_struct
*vma
= NULL
;
266 struct mm_struct
*mm
= bprm
->mm
;
268 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
272 down_write(&mm
->mmap_sem
);
276 * Place the stack at the largest stack address the architecture
277 * supports. Later, we'll move this to an appropriate place. We don't
278 * use STACK_TOP because that can depend on attributes which aren't
281 BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
282 vma
->vm_end
= STACK_TOP_MAX
;
283 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
284 vma
->vm_flags
= VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
285 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
286 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
288 err
= security_file_mmap(NULL
, 0, 0, 0, vma
->vm_start
, 1);
292 err
= insert_vm_struct(mm
, vma
);
296 mm
->stack_vm
= mm
->total_vm
= 1;
297 up_write(&mm
->mmap_sem
);
298 bprm
->p
= vma
->vm_end
- sizeof(void *);
301 up_write(&mm
->mmap_sem
);
303 kmem_cache_free(vm_area_cachep
, vma
);
307 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
309 return len
<= MAX_ARG_STRLEN
;
314 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
318 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
323 page
= bprm
->page
[pos
/ PAGE_SIZE
];
324 if (!page
&& write
) {
325 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
328 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
334 static void put_arg_page(struct page
*page
)
338 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
341 __free_page(bprm
->page
[i
]);
342 bprm
->page
[i
] = NULL
;
346 static void free_arg_pages(struct linux_binprm
*bprm
)
350 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
351 free_arg_page(bprm
, i
);
354 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
359 static int __bprm_mm_init(struct linux_binprm
*bprm
)
361 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
365 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
367 return len
<= bprm
->p
;
370 #endif /* CONFIG_MMU */
373 * Create a new mm_struct and populate it with a temporary stack
374 * vm_area_struct. We don't have enough context at this point to set the stack
375 * flags, permissions, and offset, so we use temporary values. We'll update
376 * them later in setup_arg_pages().
378 int bprm_mm_init(struct linux_binprm
*bprm
)
381 struct mm_struct
*mm
= NULL
;
383 bprm
->mm
= mm
= mm_alloc();
388 err
= init_new_context(current
, mm
);
392 err
= __bprm_mm_init(bprm
);
407 struct user_arg_ptr
{
412 const char __user
*const __user
*native
;
414 compat_uptr_t __user
*compat
;
419 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
421 const char __user
*native
;
424 if (unlikely(argv
.is_compat
)) {
425 compat_uptr_t compat
;
427 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
428 return ERR_PTR(-EFAULT
);
430 return compat_ptr(compat
);
434 if (get_user(native
, argv
.ptr
.native
+ nr
))
435 return ERR_PTR(-EFAULT
);
441 * count() counts the number of strings in array ARGV.
443 static int count(struct user_arg_ptr argv
, int max
)
447 if (argv
.ptr
.native
!= NULL
) {
449 const char __user
*p
= get_user_arg_ptr(argv
, i
);
460 if (fatal_signal_pending(current
))
461 return -ERESTARTNOHAND
;
469 * 'copy_strings()' copies argument/environment strings from the old
470 * processes's memory to the new process's stack. The call to get_user_pages()
471 * ensures the destination page is created and not swapped out.
473 static int copy_strings(int argc
, struct user_arg_ptr argv
,
474 struct linux_binprm
*bprm
)
476 struct page
*kmapped_page
= NULL
;
478 unsigned long kpos
= 0;
482 const char __user
*str
;
487 str
= get_user_arg_ptr(argv
, argc
);
491 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
496 if (!valid_arg_len(bprm
, len
))
499 /* We're going to work our way backwords. */
505 int offset
, bytes_to_copy
;
507 if (fatal_signal_pending(current
)) {
508 ret
= -ERESTARTNOHAND
;
513 offset
= pos
% PAGE_SIZE
;
517 bytes_to_copy
= offset
;
518 if (bytes_to_copy
> len
)
521 offset
-= bytes_to_copy
;
522 pos
-= bytes_to_copy
;
523 str
-= bytes_to_copy
;
524 len
-= bytes_to_copy
;
526 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
529 page
= get_arg_page(bprm
, pos
, 1);
536 flush_kernel_dcache_page(kmapped_page
);
537 kunmap(kmapped_page
);
538 put_arg_page(kmapped_page
);
541 kaddr
= kmap(kmapped_page
);
542 kpos
= pos
& PAGE_MASK
;
543 flush_arg_page(bprm
, kpos
, kmapped_page
);
545 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
554 flush_kernel_dcache_page(kmapped_page
);
555 kunmap(kmapped_page
);
556 put_arg_page(kmapped_page
);
562 * Like copy_strings, but get argv and its values from kernel memory.
564 int copy_strings_kernel(int argc
, const char *const *__argv
,
565 struct linux_binprm
*bprm
)
568 mm_segment_t oldfs
= get_fs();
569 struct user_arg_ptr argv
= {
570 .ptr
.native
= (const char __user
*const __user
*)__argv
,
574 r
= copy_strings(argc
, argv
, bprm
);
579 EXPORT_SYMBOL(copy_strings_kernel
);
584 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
585 * the binfmt code determines where the new stack should reside, we shift it to
586 * its final location. The process proceeds as follows:
588 * 1) Use shift to calculate the new vma endpoints.
589 * 2) Extend vma to cover both the old and new ranges. This ensures the
590 * arguments passed to subsequent functions are consistent.
591 * 3) Move vma's page tables to the new range.
592 * 4) Free up any cleared pgd range.
593 * 5) Shrink the vma to cover only the new range.
595 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
597 struct mm_struct
*mm
= vma
->vm_mm
;
598 unsigned long old_start
= vma
->vm_start
;
599 unsigned long old_end
= vma
->vm_end
;
600 unsigned long length
= old_end
- old_start
;
601 unsigned long new_start
= old_start
- shift
;
602 unsigned long new_end
= old_end
- shift
;
603 struct mmu_gather tlb
;
605 BUG_ON(new_start
> new_end
);
608 * ensure there are no vmas between where we want to go
611 if (vma
!= find_vma(mm
, new_start
))
615 * cover the whole range: [new_start, old_end)
617 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
621 * move the page tables downwards, on failure we rely on
622 * process cleanup to remove whatever mess we made.
624 if (length
!= move_page_tables(vma
, old_start
,
625 vma
, new_start
, length
))
629 tlb_gather_mmu(&tlb
, mm
, 0);
630 if (new_end
> old_start
) {
632 * when the old and new regions overlap clear from new_end.
634 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
635 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
638 * otherwise, clean from old_start; this is done to not touch
639 * the address space in [new_end, old_start) some architectures
640 * have constraints on va-space that make this illegal (IA64) -
641 * for the others its just a little faster.
643 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
644 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
646 tlb_finish_mmu(&tlb
, new_end
, old_end
);
649 * Shrink the vma to just the new range. Always succeeds.
651 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
657 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
658 * the stack is optionally relocated, and some extra space is added.
660 int setup_arg_pages(struct linux_binprm
*bprm
,
661 unsigned long stack_top
,
662 int executable_stack
)
665 unsigned long stack_shift
;
666 struct mm_struct
*mm
= current
->mm
;
667 struct vm_area_struct
*vma
= bprm
->vma
;
668 struct vm_area_struct
*prev
= NULL
;
669 unsigned long vm_flags
;
670 unsigned long stack_base
;
671 unsigned long stack_size
;
672 unsigned long stack_expand
;
673 unsigned long rlim_stack
;
675 #ifdef CONFIG_STACK_GROWSUP
676 /* Limit stack size to 1GB */
677 stack_base
= rlimit_max(RLIMIT_STACK
);
678 if (stack_base
> (1 << 30))
679 stack_base
= 1 << 30;
681 /* Make sure we didn't let the argument array grow too large. */
682 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
685 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
687 stack_shift
= vma
->vm_start
- stack_base
;
688 mm
->arg_start
= bprm
->p
- stack_shift
;
689 bprm
->p
= vma
->vm_end
- stack_shift
;
691 stack_top
= arch_align_stack(stack_top
);
692 stack_top
= PAGE_ALIGN(stack_top
);
694 if (unlikely(stack_top
< mmap_min_addr
) ||
695 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
698 stack_shift
= vma
->vm_end
- stack_top
;
700 bprm
->p
-= stack_shift
;
701 mm
->arg_start
= bprm
->p
;
705 bprm
->loader
-= stack_shift
;
706 bprm
->exec
-= stack_shift
;
708 down_write(&mm
->mmap_sem
);
709 vm_flags
= VM_STACK_FLAGS
;
712 * Adjust stack execute permissions; explicitly enable for
713 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
714 * (arch default) otherwise.
716 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
718 else if (executable_stack
== EXSTACK_DISABLE_X
)
719 vm_flags
&= ~VM_EXEC
;
720 vm_flags
|= mm
->def_flags
;
721 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
723 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
729 /* Move stack pages down in memory. */
731 ret
= shift_arg_pages(vma
, stack_shift
);
736 /* mprotect_fixup is overkill to remove the temporary stack flags */
737 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
739 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
740 stack_size
= vma
->vm_end
- vma
->vm_start
;
742 * Align this down to a page boundary as expand_stack
745 rlim_stack
= rlimit(RLIMIT_STACK
) & PAGE_MASK
;
746 #ifdef CONFIG_STACK_GROWSUP
747 if (stack_size
+ stack_expand
> rlim_stack
)
748 stack_base
= vma
->vm_start
+ rlim_stack
;
750 stack_base
= vma
->vm_end
+ stack_expand
;
752 if (stack_size
+ stack_expand
> rlim_stack
)
753 stack_base
= vma
->vm_end
- rlim_stack
;
755 stack_base
= vma
->vm_start
- stack_expand
;
757 current
->mm
->start_stack
= bprm
->p
;
758 ret
= expand_stack(vma
, stack_base
);
763 up_write(&mm
->mmap_sem
);
766 EXPORT_SYMBOL(setup_arg_pages
);
768 #endif /* CONFIG_MMU */
770 struct file
*open_exec(const char *name
)
774 static const struct open_flags open_exec_flags
= {
775 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
776 .acc_mode
= MAY_EXEC
| MAY_OPEN
,
777 .intent
= LOOKUP_OPEN
780 file
= do_filp_open(AT_FDCWD
, name
, &open_exec_flags
, LOOKUP_FOLLOW
);
785 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
788 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
793 err
= deny_write_access(file
);
804 EXPORT_SYMBOL(open_exec
);
806 int kernel_read(struct file
*file
, loff_t offset
,
807 char *addr
, unsigned long count
)
815 /* The cast to a user pointer is valid due to the set_fs() */
816 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
821 EXPORT_SYMBOL(kernel_read
);
823 static int exec_mmap(struct mm_struct
*mm
)
825 struct task_struct
*tsk
;
826 struct mm_struct
* old_mm
, *active_mm
;
828 /* Notify parent that we're no longer interested in the old VM */
830 old_mm
= current
->mm
;
831 sync_mm_rss(tsk
, old_mm
);
832 mm_release(tsk
, old_mm
);
836 * Make sure that if there is a core dump in progress
837 * for the old mm, we get out and die instead of going
838 * through with the exec. We must hold mmap_sem around
839 * checking core_state and changing tsk->mm.
841 down_read(&old_mm
->mmap_sem
);
842 if (unlikely(old_mm
->core_state
)) {
843 up_read(&old_mm
->mmap_sem
);
848 active_mm
= tsk
->active_mm
;
851 activate_mm(active_mm
, mm
);
852 if (old_mm
&& tsk
->signal
->oom_score_adj
== OOM_SCORE_ADJ_MIN
) {
853 atomic_dec(&old_mm
->oom_disable_count
);
854 atomic_inc(&tsk
->mm
->oom_disable_count
);
857 arch_pick_mmap_layout(mm
);
859 up_read(&old_mm
->mmap_sem
);
860 BUG_ON(active_mm
!= old_mm
);
861 mm_update_next_owner(old_mm
);
870 * This function makes sure the current process has its own signal table,
871 * so that flush_signal_handlers can later reset the handlers without
872 * disturbing other processes. (Other processes might share the signal
873 * table via the CLONE_SIGHAND option to clone().)
875 static int de_thread(struct task_struct
*tsk
)
877 struct signal_struct
*sig
= tsk
->signal
;
878 struct sighand_struct
*oldsighand
= tsk
->sighand
;
879 spinlock_t
*lock
= &oldsighand
->siglock
;
881 if (thread_group_empty(tsk
))
882 goto no_thread_group
;
885 * Kill all other threads in the thread group.
888 if (signal_group_exit(sig
)) {
890 * Another group action in progress, just
891 * return so that the signal is processed.
893 spin_unlock_irq(lock
);
897 sig
->group_exit_task
= tsk
;
898 sig
->notify_count
= zap_other_threads(tsk
);
899 if (!thread_group_leader(tsk
))
902 while (sig
->notify_count
) {
903 __set_current_state(TASK_UNINTERRUPTIBLE
);
904 spin_unlock_irq(lock
);
908 spin_unlock_irq(lock
);
911 * At this point all other threads have exited, all we have to
912 * do is to wait for the thread group leader to become inactive,
913 * and to assume its PID:
915 if (!thread_group_leader(tsk
)) {
916 struct task_struct
*leader
= tsk
->group_leader
;
918 sig
->notify_count
= -1; /* for exit_notify() */
920 write_lock_irq(&tasklist_lock
);
921 if (likely(leader
->exit_state
))
923 __set_current_state(TASK_UNINTERRUPTIBLE
);
924 write_unlock_irq(&tasklist_lock
);
929 * The only record we have of the real-time age of a
930 * process, regardless of execs it's done, is start_time.
931 * All the past CPU time is accumulated in signal_struct
932 * from sister threads now dead. But in this non-leader
933 * exec, nothing survives from the original leader thread,
934 * whose birth marks the true age of this process now.
935 * When we take on its identity by switching to its PID, we
936 * also take its birthdate (always earlier than our own).
938 tsk
->start_time
= leader
->start_time
;
940 BUG_ON(!same_thread_group(leader
, tsk
));
941 BUG_ON(has_group_leader_pid(tsk
));
943 * An exec() starts a new thread group with the
944 * TGID of the previous thread group. Rehash the
945 * two threads with a switched PID, and release
946 * the former thread group leader:
949 /* Become a process group leader with the old leader's pid.
950 * The old leader becomes a thread of the this thread group.
951 * Note: The old leader also uses this pid until release_task
952 * is called. Odd but simple and correct.
954 detach_pid(tsk
, PIDTYPE_PID
);
955 tsk
->pid
= leader
->pid
;
956 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
957 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
958 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
960 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
961 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
963 tsk
->group_leader
= tsk
;
964 leader
->group_leader
= tsk
;
966 tsk
->exit_signal
= SIGCHLD
;
968 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
969 leader
->exit_state
= EXIT_DEAD
;
970 write_unlock_irq(&tasklist_lock
);
972 release_task(leader
);
975 sig
->group_exit_task
= NULL
;
976 sig
->notify_count
= 0;
980 setmax_mm_hiwater_rss(&sig
->maxrss
, current
->mm
);
983 flush_itimer_signals();
985 if (atomic_read(&oldsighand
->count
) != 1) {
986 struct sighand_struct
*newsighand
;
988 * This ->sighand is shared with the CLONE_SIGHAND
989 * but not CLONE_THREAD task, switch to the new one.
991 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
995 atomic_set(&newsighand
->count
, 1);
996 memcpy(newsighand
->action
, oldsighand
->action
,
997 sizeof(newsighand
->action
));
999 write_lock_irq(&tasklist_lock
);
1000 spin_lock(&oldsighand
->siglock
);
1001 rcu_assign_pointer(tsk
->sighand
, newsighand
);
1002 spin_unlock(&oldsighand
->siglock
);
1003 write_unlock_irq(&tasklist_lock
);
1005 __cleanup_sighand(oldsighand
);
1008 BUG_ON(!thread_group_leader(tsk
));
1013 * These functions flushes out all traces of the currently running executable
1014 * so that a new one can be started
1016 static void flush_old_files(struct files_struct
* files
)
1019 struct fdtable
*fdt
;
1021 spin_lock(&files
->file_lock
);
1023 unsigned long set
, i
;
1027 fdt
= files_fdtable(files
);
1028 if (i
>= fdt
->max_fds
)
1030 set
= fdt
->close_on_exec
->fds_bits
[j
];
1033 fdt
->close_on_exec
->fds_bits
[j
] = 0;
1034 spin_unlock(&files
->file_lock
);
1035 for ( ; set
; i
++,set
>>= 1) {
1040 spin_lock(&files
->file_lock
);
1043 spin_unlock(&files
->file_lock
);
1046 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
1048 /* buf must be at least sizeof(tsk->comm) in size */
1050 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
1054 EXPORT_SYMBOL_GPL(get_task_comm
);
1056 void set_task_comm(struct task_struct
*tsk
, char *buf
)
1061 * Threads may access current->comm without holding
1062 * the task lock, so write the string carefully.
1063 * Readers without a lock may see incomplete new
1064 * names but are safe from non-terminating string reads.
1066 memset(tsk
->comm
, 0, TASK_COMM_LEN
);
1068 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1070 perf_event_comm(tsk
);
1073 int flush_old_exec(struct linux_binprm
* bprm
)
1078 * Make sure we have a private signal table and that
1079 * we are unassociated from the previous thread group.
1081 retval
= de_thread(current
);
1085 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1088 * Release all of the old mmap stuff
1090 acct_arg_size(bprm
, 0);
1091 retval
= exec_mmap(bprm
->mm
);
1095 bprm
->mm
= NULL
; /* We're using it now */
1097 current
->flags
&= ~(PF_RANDOMIZE
| PF_KTHREAD
);
1099 current
->personality
&= ~bprm
->per_clear
;
1106 EXPORT_SYMBOL(flush_old_exec
);
1108 void setup_new_exec(struct linux_binprm
* bprm
)
1112 char tcomm
[sizeof(current
->comm
)];
1114 arch_pick_mmap_layout(current
->mm
);
1116 /* This is the point of no return */
1117 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1119 if (current_euid() == current_uid() && current_egid() == current_gid())
1120 set_dumpable(current
->mm
, 1);
1122 set_dumpable(current
->mm
, suid_dumpable
);
1124 name
= bprm
->filename
;
1126 /* Copies the binary name from after last slash */
1127 for (i
=0; (ch
= *(name
++)) != '\0';) {
1129 i
= 0; /* overwrite what we wrote */
1131 if (i
< (sizeof(tcomm
) - 1))
1135 set_task_comm(current
, tcomm
);
1137 /* Set the new mm task size. We have to do that late because it may
1138 * depend on TIF_32BIT which is only updated in flush_thread() on
1139 * some architectures like powerpc
1141 current
->mm
->task_size
= TASK_SIZE
;
1143 /* install the new credentials */
1144 if (bprm
->cred
->uid
!= current_euid() ||
1145 bprm
->cred
->gid
!= current_egid()) {
1146 current
->pdeath_signal
= 0;
1147 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1148 bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
) {
1149 set_dumpable(current
->mm
, suid_dumpable
);
1153 * Flush performance counters when crossing a
1156 if (!get_dumpable(current
->mm
))
1157 perf_event_exit_task(current
);
1159 /* An exec changes our domain. We are no longer part of the thread
1162 current
->self_exec_id
++;
1164 flush_signal_handlers(current
, 0);
1165 flush_old_files(current
->files
);
1167 EXPORT_SYMBOL(setup_new_exec
);
1170 * Prepare credentials and lock ->cred_guard_mutex.
1171 * install_exec_creds() commits the new creds and drops the lock.
1172 * Or, if exec fails before, free_bprm() should release ->cred and
1175 int prepare_bprm_creds(struct linux_binprm
*bprm
)
1177 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1178 return -ERESTARTNOINTR
;
1180 bprm
->cred
= prepare_exec_creds();
1181 if (likely(bprm
->cred
))
1184 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1188 void free_bprm(struct linux_binprm
*bprm
)
1190 free_arg_pages(bprm
);
1192 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1193 abort_creds(bprm
->cred
);
1199 * install the new credentials for this executable
1201 void install_exec_creds(struct linux_binprm
*bprm
)
1203 security_bprm_committing_creds(bprm
);
1205 commit_creds(bprm
->cred
);
1208 * cred_guard_mutex must be held at least to this point to prevent
1209 * ptrace_attach() from altering our determination of the task's
1210 * credentials; any time after this it may be unlocked.
1212 security_bprm_committed_creds(bprm
);
1213 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1215 EXPORT_SYMBOL(install_exec_creds
);
1218 * determine how safe it is to execute the proposed program
1219 * - the caller must hold ->cred_guard_mutex to protect against
1222 int check_unsafe_exec(struct linux_binprm
*bprm
)
1224 struct task_struct
*p
= current
, *t
;
1228 bprm
->unsafe
= tracehook_unsafe_exec(p
);
1231 spin_lock(&p
->fs
->lock
);
1233 for (t
= next_thread(p
); t
!= p
; t
= next_thread(t
)) {
1239 if (p
->fs
->users
> n_fs
) {
1240 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1243 if (!p
->fs
->in_exec
) {
1248 spin_unlock(&p
->fs
->lock
);
1254 * Fill the binprm structure from the inode.
1255 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1257 * This may be called multiple times for binary chains (scripts for example).
1259 int prepare_binprm(struct linux_binprm
*bprm
)
1262 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1265 mode
= inode
->i_mode
;
1266 if (bprm
->file
->f_op
== NULL
)
1269 /* clear any previous set[ug]id data from a previous binary */
1270 bprm
->cred
->euid
= current_euid();
1271 bprm
->cred
->egid
= current_egid();
1273 if (!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1275 if (mode
& S_ISUID
) {
1276 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1277 bprm
->cred
->euid
= inode
->i_uid
;
1282 * If setgid is set but no group execute bit then this
1283 * is a candidate for mandatory locking, not a setgid
1286 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1287 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1288 bprm
->cred
->egid
= inode
->i_gid
;
1292 /* fill in binprm security blob */
1293 retval
= security_bprm_set_creds(bprm
);
1296 bprm
->cred_prepared
= 1;
1298 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1299 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1302 EXPORT_SYMBOL(prepare_binprm
);
1305 * Arguments are '\0' separated strings found at the location bprm->p
1306 * points to; chop off the first by relocating brpm->p to right after
1307 * the first '\0' encountered.
1309 int remove_arg_zero(struct linux_binprm
*bprm
)
1312 unsigned long offset
;
1320 offset
= bprm
->p
& ~PAGE_MASK
;
1321 page
= get_arg_page(bprm
, bprm
->p
, 0);
1326 kaddr
= kmap_atomic(page
, KM_USER0
);
1328 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1329 offset
++, bprm
->p
++)
1332 kunmap_atomic(kaddr
, KM_USER0
);
1335 if (offset
== PAGE_SIZE
)
1336 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1337 } while (offset
== PAGE_SIZE
);
1346 EXPORT_SYMBOL(remove_arg_zero
);
1349 * cycle the list of binary formats handler, until one recognizes the image
1351 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1353 unsigned int depth
= bprm
->recursion_depth
;
1355 struct linux_binfmt
*fmt
;
1357 retval
= security_bprm_check(bprm
);
1361 /* kernel module loader fixup */
1362 /* so we don't try to load run modprobe in kernel space. */
1365 retval
= audit_bprm(bprm
);
1370 for (try=0; try<2; try++) {
1371 read_lock(&binfmt_lock
);
1372 list_for_each_entry(fmt
, &formats
, lh
) {
1373 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1376 if (!try_module_get(fmt
->module
))
1378 read_unlock(&binfmt_lock
);
1379 retval
= fn(bprm
, regs
);
1381 * Restore the depth counter to its starting value
1382 * in this call, so we don't have to rely on every
1383 * load_binary function to restore it on return.
1385 bprm
->recursion_depth
= depth
;
1388 tracehook_report_exec(fmt
, bprm
, regs
);
1390 allow_write_access(bprm
->file
);
1394 current
->did_exec
= 1;
1395 proc_exec_connector(current
);
1398 read_lock(&binfmt_lock
);
1400 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1403 read_unlock(&binfmt_lock
);
1407 read_unlock(&binfmt_lock
);
1408 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1410 #ifdef CONFIG_MODULES
1412 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1413 if (printable(bprm
->buf
[0]) &&
1414 printable(bprm
->buf
[1]) &&
1415 printable(bprm
->buf
[2]) &&
1416 printable(bprm
->buf
[3]))
1417 break; /* -ENOEXEC */
1418 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1425 EXPORT_SYMBOL(search_binary_handler
);
1428 * sys_execve() executes a new program.
1430 static int do_execve_common(const char *filename
,
1431 struct user_arg_ptr argv
,
1432 struct user_arg_ptr envp
,
1433 struct pt_regs
*regs
)
1435 struct linux_binprm
*bprm
;
1437 struct files_struct
*displaced
;
1441 retval
= unshare_files(&displaced
);
1446 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1450 retval
= prepare_bprm_creds(bprm
);
1454 retval
= check_unsafe_exec(bprm
);
1457 clear_in_exec
= retval
;
1458 current
->in_execve
= 1;
1460 file
= open_exec(filename
);
1461 retval
= PTR_ERR(file
);
1468 bprm
->filename
= filename
;
1469 bprm
->interp
= filename
;
1471 retval
= bprm_mm_init(bprm
);
1475 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1476 if ((retval
= bprm
->argc
) < 0)
1479 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1480 if ((retval
= bprm
->envc
) < 0)
1483 retval
= prepare_binprm(bprm
);
1487 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1491 bprm
->exec
= bprm
->p
;
1492 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1496 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1500 retval
= search_binary_handler(bprm
,regs
);
1504 /* execve succeeded */
1505 current
->fs
->in_exec
= 0;
1506 current
->in_execve
= 0;
1507 acct_update_integrals(current
);
1510 put_files_struct(displaced
);
1515 acct_arg_size(bprm
, 0);
1521 allow_write_access(bprm
->file
);
1527 current
->fs
->in_exec
= 0;
1528 current
->in_execve
= 0;
1535 reset_files_struct(displaced
);
1540 int do_execve(const char *filename
,
1541 const char __user
*const __user
*__argv
,
1542 const char __user
*const __user
*__envp
,
1543 struct pt_regs
*regs
)
1545 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1546 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1547 return do_execve_common(filename
, argv
, envp
, regs
);
1550 #ifdef CONFIG_COMPAT
1551 int compat_do_execve(char *filename
,
1552 compat_uptr_t __user
*__argv
,
1553 compat_uptr_t __user
*__envp
,
1554 struct pt_regs
*regs
)
1556 struct user_arg_ptr argv
= {
1558 .ptr
.compat
= __argv
,
1560 struct user_arg_ptr envp
= {
1562 .ptr
.compat
= __envp
,
1564 return do_execve_common(filename
, argv
, envp
, regs
);
1568 void set_binfmt(struct linux_binfmt
*new)
1570 struct mm_struct
*mm
= current
->mm
;
1573 module_put(mm
->binfmt
->module
);
1577 __module_get(new->module
);
1580 EXPORT_SYMBOL(set_binfmt
);
1582 static int expand_corename(struct core_name
*cn
)
1584 char *old_corename
= cn
->corename
;
1586 cn
->size
= CORENAME_MAX_SIZE
* atomic_inc_return(&call_count
);
1587 cn
->corename
= krealloc(old_corename
, cn
->size
, GFP_KERNEL
);
1589 if (!cn
->corename
) {
1590 kfree(old_corename
);
1597 static int cn_printf(struct core_name
*cn
, const char *fmt
, ...)
1605 need
= vsnprintf(NULL
, 0, fmt
, arg
);
1608 if (likely(need
< cn
->size
- cn
->used
- 1))
1611 ret
= expand_corename(cn
);
1616 cur
= cn
->corename
+ cn
->used
;
1618 vsnprintf(cur
, need
+ 1, fmt
, arg
);
1627 /* format_corename will inspect the pattern parameter, and output a
1628 * name into corename, which must have space for at least
1629 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1631 static int format_corename(struct core_name
*cn
, long signr
)
1633 const struct cred
*cred
= current_cred();
1634 const char *pat_ptr
= core_pattern
;
1635 int ispipe
= (*pat_ptr
== '|');
1636 int pid_in_pattern
= 0;
1639 cn
->size
= CORENAME_MAX_SIZE
* atomic_read(&call_count
);
1640 cn
->corename
= kmalloc(cn
->size
, GFP_KERNEL
);
1646 /* Repeat as long as we have more pattern to process and more output
1649 if (*pat_ptr
!= '%') {
1652 err
= cn_printf(cn
, "%c", *pat_ptr
++);
1654 switch (*++pat_ptr
) {
1655 /* single % at the end, drop that */
1658 /* Double percent, output one percent */
1660 err
= cn_printf(cn
, "%c", '%');
1665 err
= cn_printf(cn
, "%d",
1666 task_tgid_vnr(current
));
1670 err
= cn_printf(cn
, "%d", cred
->uid
);
1674 err
= cn_printf(cn
, "%d", cred
->gid
);
1676 /* signal that caused the coredump */
1678 err
= cn_printf(cn
, "%ld", signr
);
1680 /* UNIX time of coredump */
1683 do_gettimeofday(&tv
);
1684 err
= cn_printf(cn
, "%lu", tv
.tv_sec
);
1689 down_read(&uts_sem
);
1690 err
= cn_printf(cn
, "%s",
1691 utsname()->nodename
);
1696 err
= cn_printf(cn
, "%s", current
->comm
);
1698 /* core limit size */
1700 err
= cn_printf(cn
, "%lu",
1701 rlimit(RLIMIT_CORE
));
1713 /* Backward compatibility with core_uses_pid:
1715 * If core_pattern does not include a %p (as is the default)
1716 * and core_uses_pid is set, then .%pid will be appended to
1717 * the filename. Do not do this for piped commands. */
1718 if (!ispipe
&& !pid_in_pattern
&& core_uses_pid
) {
1719 err
= cn_printf(cn
, ".%d", task_tgid_vnr(current
));
1727 static int zap_process(struct task_struct
*start
, int exit_code
)
1729 struct task_struct
*t
;
1732 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1733 start
->signal
->group_exit_code
= exit_code
;
1734 start
->signal
->group_stop_count
= 0;
1738 task_clear_group_stop_pending(t
);
1739 if (t
!= current
&& t
->mm
) {
1740 sigaddset(&t
->pending
.signal
, SIGKILL
);
1741 signal_wake_up(t
, 1);
1744 } while_each_thread(start
, t
);
1749 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1750 struct core_state
*core_state
, int exit_code
)
1752 struct task_struct
*g
, *p
;
1753 unsigned long flags
;
1756 spin_lock_irq(&tsk
->sighand
->siglock
);
1757 if (!signal_group_exit(tsk
->signal
)) {
1758 mm
->core_state
= core_state
;
1759 nr
= zap_process(tsk
, exit_code
);
1761 spin_unlock_irq(&tsk
->sighand
->siglock
);
1762 if (unlikely(nr
< 0))
1765 if (atomic_read(&mm
->mm_users
) == nr
+ 1)
1768 * We should find and kill all tasks which use this mm, and we should
1769 * count them correctly into ->nr_threads. We don't take tasklist
1770 * lock, but this is safe wrt:
1773 * None of sub-threads can fork after zap_process(leader). All
1774 * processes which were created before this point should be
1775 * visible to zap_threads() because copy_process() adds the new
1776 * process to the tail of init_task.tasks list, and lock/unlock
1777 * of ->siglock provides a memory barrier.
1780 * The caller holds mm->mmap_sem. This means that the task which
1781 * uses this mm can't pass exit_mm(), so it can't exit or clear
1785 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1786 * we must see either old or new leader, this does not matter.
1787 * However, it can change p->sighand, so lock_task_sighand(p)
1788 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1791 * Note also that "g" can be the old leader with ->mm == NULL
1792 * and already unhashed and thus removed from ->thread_group.
1793 * This is OK, __unhash_process()->list_del_rcu() does not
1794 * clear the ->next pointer, we will find the new leader via
1798 for_each_process(g
) {
1799 if (g
== tsk
->group_leader
)
1801 if (g
->flags
& PF_KTHREAD
)
1806 if (unlikely(p
->mm
== mm
)) {
1807 lock_task_sighand(p
, &flags
);
1808 nr
+= zap_process(p
, exit_code
);
1809 unlock_task_sighand(p
, &flags
);
1813 } while_each_thread(g
, p
);
1817 atomic_set(&core_state
->nr_threads
, nr
);
1821 static int coredump_wait(int exit_code
, struct core_state
*core_state
)
1823 struct task_struct
*tsk
= current
;
1824 struct mm_struct
*mm
= tsk
->mm
;
1825 struct completion
*vfork_done
;
1826 int core_waiters
= -EBUSY
;
1828 init_completion(&core_state
->startup
);
1829 core_state
->dumper
.task
= tsk
;
1830 core_state
->dumper
.next
= NULL
;
1832 down_write(&mm
->mmap_sem
);
1833 if (!mm
->core_state
)
1834 core_waiters
= zap_threads(tsk
, mm
, core_state
, exit_code
);
1835 up_write(&mm
->mmap_sem
);
1837 if (unlikely(core_waiters
< 0))
1841 * Make sure nobody is waiting for us to release the VM,
1842 * otherwise we can deadlock when we wait on each other
1844 vfork_done
= tsk
->vfork_done
;
1846 tsk
->vfork_done
= NULL
;
1847 complete(vfork_done
);
1851 wait_for_completion(&core_state
->startup
);
1853 return core_waiters
;
1856 static void coredump_finish(struct mm_struct
*mm
)
1858 struct core_thread
*curr
, *next
;
1859 struct task_struct
*task
;
1861 next
= mm
->core_state
->dumper
.next
;
1862 while ((curr
= next
) != NULL
) {
1866 * see exit_mm(), curr->task must not see
1867 * ->task == NULL before we read ->next.
1871 wake_up_process(task
);
1874 mm
->core_state
= NULL
;
1878 * set_dumpable converts traditional three-value dumpable to two flags and
1879 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1880 * these bits are not changed atomically. So get_dumpable can observe the
1881 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1882 * return either old dumpable or new one by paying attention to the order of
1883 * modifying the bits.
1885 * dumpable | mm->flags (binary)
1886 * old new | initial interim final
1887 * ---------+-----------------------
1895 * (*) get_dumpable regards interim value of 10 as 11.
1897 void set_dumpable(struct mm_struct
*mm
, int value
)
1901 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1903 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1906 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1908 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1911 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1913 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1918 static int __get_dumpable(unsigned long mm_flags
)
1922 ret
= mm_flags
& MMF_DUMPABLE_MASK
;
1923 return (ret
>= 2) ? 2 : ret
;
1926 int get_dumpable(struct mm_struct
*mm
)
1928 return __get_dumpable(mm
->flags
);
1931 static void wait_for_dump_helpers(struct file
*file
)
1933 struct pipe_inode_info
*pipe
;
1935 pipe
= file
->f_path
.dentry
->d_inode
->i_pipe
;
1941 while ((pipe
->readers
> 1) && (!signal_pending(current
))) {
1942 wake_up_interruptible_sync(&pipe
->wait
);
1943 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
1956 * helper function to customize the process used
1957 * to collect the core in userspace. Specifically
1958 * it sets up a pipe and installs it as fd 0 (stdin)
1959 * for the process. Returns 0 on success, or
1960 * PTR_ERR on failure.
1961 * Note that it also sets the core limit to 1. This
1962 * is a special value that we use to trap recursive
1965 static int umh_pipe_setup(struct subprocess_info
*info
)
1967 struct file
*rp
, *wp
;
1968 struct fdtable
*fdt
;
1969 struct coredump_params
*cp
= (struct coredump_params
*)info
->data
;
1970 struct files_struct
*cf
= current
->files
;
1972 wp
= create_write_pipe(0);
1976 rp
= create_read_pipe(wp
, 0);
1978 free_write_pipe(wp
);
1986 spin_lock(&cf
->file_lock
);
1987 fdt
= files_fdtable(cf
);
1988 FD_SET(0, fdt
->open_fds
);
1989 FD_CLR(0, fdt
->close_on_exec
);
1990 spin_unlock(&cf
->file_lock
);
1992 /* and disallow core files too */
1993 current
->signal
->rlim
[RLIMIT_CORE
] = (struct rlimit
){1, 1};
1998 void do_coredump(long signr
, int exit_code
, struct pt_regs
*regs
)
2000 struct core_state core_state
;
2001 struct core_name cn
;
2002 struct mm_struct
*mm
= current
->mm
;
2003 struct linux_binfmt
* binfmt
;
2004 const struct cred
*old_cred
;
2009 static atomic_t core_dump_count
= ATOMIC_INIT(0);
2010 struct coredump_params cprm
= {
2013 .limit
= rlimit(RLIMIT_CORE
),
2015 * We must use the same mm->flags while dumping core to avoid
2016 * inconsistency of bit flags, since this flag is not protected
2019 .mm_flags
= mm
->flags
,
2022 audit_core_dumps(signr
);
2024 binfmt
= mm
->binfmt
;
2025 if (!binfmt
|| !binfmt
->core_dump
)
2027 if (!__get_dumpable(cprm
.mm_flags
))
2030 cred
= prepare_creds();
2034 * We cannot trust fsuid as being the "true" uid of the
2035 * process nor do we know its entire history. We only know it
2036 * was tainted so we dump it as root in mode 2.
2038 if (__get_dumpable(cprm
.mm_flags
) == 2) {
2039 /* Setuid core dump mode */
2040 flag
= O_EXCL
; /* Stop rewrite attacks */
2041 cred
->fsuid
= 0; /* Dump root private */
2044 retval
= coredump_wait(exit_code
, &core_state
);
2048 old_cred
= override_creds(cred
);
2051 * Clear any false indication of pending signals that might
2052 * be seen by the filesystem code called to write the core file.
2054 clear_thread_flag(TIF_SIGPENDING
);
2056 ispipe
= format_corename(&cn
, signr
);
2058 if (ispipe
== -ENOMEM
) {
2059 printk(KERN_WARNING
"format_corename failed\n");
2060 printk(KERN_WARNING
"Aborting core\n");
2068 if (cprm
.limit
== 1) {
2070 * Normally core limits are irrelevant to pipes, since
2071 * we're not writing to the file system, but we use
2072 * cprm.limit of 1 here as a speacial value. Any
2073 * non-1 limit gets set to RLIM_INFINITY below, but
2074 * a limit of 0 skips the dump. This is a consistent
2075 * way to catch recursive crashes. We can still crash
2076 * if the core_pattern binary sets RLIM_CORE = !1
2077 * but it runs as root, and can do lots of stupid things
2078 * Note that we use task_tgid_vnr here to grab the pid
2079 * of the process group leader. That way we get the
2080 * right pid if a thread in a multi-threaded
2081 * core_pattern process dies.
2084 "Process %d(%s) has RLIMIT_CORE set to 1\n",
2085 task_tgid_vnr(current
), current
->comm
);
2086 printk(KERN_WARNING
"Aborting core\n");
2089 cprm
.limit
= RLIM_INFINITY
;
2091 dump_count
= atomic_inc_return(&core_dump_count
);
2092 if (core_pipe_limit
&& (core_pipe_limit
< dump_count
)) {
2093 printk(KERN_WARNING
"Pid %d(%s) over core_pipe_limit\n",
2094 task_tgid_vnr(current
), current
->comm
);
2095 printk(KERN_WARNING
"Skipping core dump\n");
2096 goto fail_dropcount
;
2099 helper_argv
= argv_split(GFP_KERNEL
, cn
.corename
+1, NULL
);
2101 printk(KERN_WARNING
"%s failed to allocate memory\n",
2103 goto fail_dropcount
;
2106 retval
= call_usermodehelper_fns(helper_argv
[0], helper_argv
,
2107 NULL
, UMH_WAIT_EXEC
, umh_pipe_setup
,
2109 argv_free(helper_argv
);
2111 printk(KERN_INFO
"Core dump to %s pipe failed\n",
2116 struct inode
*inode
;
2118 if (cprm
.limit
< binfmt
->min_coredump
)
2121 cprm
.file
= filp_open(cn
.corename
,
2122 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
2124 if (IS_ERR(cprm
.file
))
2127 inode
= cprm
.file
->f_path
.dentry
->d_inode
;
2128 if (inode
->i_nlink
> 1)
2130 if (d_unhashed(cprm
.file
->f_path
.dentry
))
2133 * AK: actually i see no reason to not allow this for named
2134 * pipes etc, but keep the previous behaviour for now.
2136 if (!S_ISREG(inode
->i_mode
))
2139 * Dont allow local users get cute and trick others to coredump
2140 * into their pre-created files.
2142 if (inode
->i_uid
!= current_fsuid())
2144 if (!cprm
.file
->f_op
|| !cprm
.file
->f_op
->write
)
2146 if (do_truncate(cprm
.file
->f_path
.dentry
, 0, 0, cprm
.file
))
2150 retval
= binfmt
->core_dump(&cprm
);
2152 current
->signal
->group_exit_code
|= 0x80;
2154 if (ispipe
&& core_pipe_limit
)
2155 wait_for_dump_helpers(cprm
.file
);
2158 filp_close(cprm
.file
, NULL
);
2161 atomic_dec(&core_dump_count
);
2165 coredump_finish(mm
);
2166 revert_creds(old_cred
);
2174 * Core dumping helper functions. These are the only things you should
2175 * do on a core-file: use only these functions to write out all the
2178 int dump_write(struct file
*file
, const void *addr
, int nr
)
2180 return access_ok(VERIFY_READ
, addr
, nr
) && file
->f_op
->write(file
, addr
, nr
, &file
->f_pos
) == nr
;
2182 EXPORT_SYMBOL(dump_write
);
2184 int dump_seek(struct file
*file
, loff_t off
)
2188 if (file
->f_op
->llseek
&& file
->f_op
->llseek
!= no_llseek
) {
2189 if (file
->f_op
->llseek(file
, off
, SEEK_CUR
) < 0)
2192 char *buf
= (char *)get_zeroed_page(GFP_KERNEL
);
2197 unsigned long n
= off
;
2201 if (!dump_write(file
, buf
, n
)) {
2207 free_page((unsigned long)buf
);
2211 EXPORT_SYMBOL(dump_seek
);