2 * File: arch/blackfin/kernel/time.c
3 * Based on: none - original work
7 * Description: This file contains the bfin-specific time handling details.
8 * Most of the stuff is located in the machine specific files.
11 * Copyright 2004-2006 Analog Devices Inc.
13 * Bugs: Enter bugs at http://blackfin.uclinux.org/
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, see the file COPYING, or write
27 * to the Free Software Foundation, Inc.,
28 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
31 #include <linux/module.h>
32 #include <linux/profile.h>
33 #include <linux/interrupt.h>
34 #include <linux/time.h>
35 #include <linux/irq.h>
37 #include <asm/blackfin.h>
39 /* This is an NTP setting */
40 #define TICK_SIZE (tick_nsec / 1000)
42 static void time_sched_init(irqreturn_t(*timer_routine
)
44 static unsigned long gettimeoffset(void);
45 static inline void do_leds(void);
47 #if (defined(CONFIG_BFIN_ALIVE_LED) || defined(CONFIG_BFIN_IDLE_LED))
48 void __init
init_leds(void)
52 #if defined(CONFIG_BFIN_ALIVE_LED)
53 /* config pins as output. */
54 tmp
= bfin_read_CONFIG_BFIN_ALIVE_LED_DPORT();
56 bfin_write_CONFIG_BFIN_ALIVE_LED_DPORT(tmp
| CONFIG_BFIN_ALIVE_LED_PIN
);
59 /* First set led be off */
60 tmp
= bfin_read_CONFIG_BFIN_ALIVE_LED_PORT();
62 bfin_write_CONFIG_BFIN_ALIVE_LED_PORT(tmp
| CONFIG_BFIN_ALIVE_LED_PIN
); /* light off */
66 #if defined(CONFIG_BFIN_IDLE_LED)
67 /* config pins as output. */
68 tmp
= bfin_read_CONFIG_BFIN_IDLE_LED_DPORT();
70 bfin_write_CONFIG_BFIN_IDLE_LED_DPORT(tmp
| CONFIG_BFIN_IDLE_LED_PIN
);
73 /* First set led be off */
74 tmp
= bfin_read_CONFIG_BFIN_IDLE_LED_PORT();
76 bfin_write_CONFIG_BFIN_IDLE_LED_PORT(tmp
| CONFIG_BFIN_IDLE_LED_PIN
); /* light off */
81 void __init
init_leds(void)
86 #if defined(CONFIG_BFIN_ALIVE_LED)
87 static inline void do_leds(void)
89 static unsigned int count
= 50;
91 unsigned short tmp
= 0;
97 tmp
= bfin_read_CONFIG_BFIN_ALIVE_LED_PORT();
101 tmp
&= ~CONFIG_BFIN_ALIVE_LED_PIN
; /* light on */
103 tmp
|= CONFIG_BFIN_ALIVE_LED_PIN
; /* light off */
105 bfin_write_CONFIG_BFIN_ALIVE_LED_PORT(tmp
);
110 static inline void do_leds(void)
115 static struct irqaction bfin_timer_irq
= {
116 .name
= "BFIN Timer Tick",
117 .flags
= IRQF_DISABLED
121 * The way that the Blackfin core timer works is:
122 * - CCLK is divided by a programmable 8-bit pre-scaler (TSCALE)
123 * - Every time TSCALE ticks, a 32bit is counted down (TCOUNT)
125 * If you take the fastest clock (1ns, or 1GHz to make the math work easier)
126 * 10ms is 10,000,000 clock ticks, which fits easy into a 32-bit counter
127 * (32 bit counter is 4,294,967,296ns or 4.2 seconds) so, we don't need
128 * to use TSCALE, and program it to zero (which is pass CCLK through).
129 * If you feel like using it, try to keep HZ * TIMESCALE to some
130 * value that divides easy (like power of 2).
136 time_sched_init(irqreturn_t(*timer_routine
) (int, void *))
140 /* power up the timer, but don't enable it just yet */
145 * the TSCALE prescaler counter.
147 bfin_write_TSCALE((TIME_SCALE
- 1));
149 tcount
= ((get_cclk() / (HZ
* TIME_SCALE
)) - 1);
150 bfin_write_TPERIOD(tcount
);
151 bfin_write_TCOUNT(tcount
);
153 /* now enable the timer */
158 bfin_timer_irq
.handler
= (irq_handler_t
)timer_routine
;
159 /* call setup_irq instead of request_irq because request_irq calls
160 * kmalloc which has not been initialized yet
162 setup_irq(IRQ_CORETMR
, &bfin_timer_irq
);
166 * Should return useconds since last timer tick
168 static unsigned long gettimeoffset(void)
170 unsigned long offset
;
171 unsigned long clocks_per_jiffy
;
173 clocks_per_jiffy
= bfin_read_TPERIOD();
176 bfin_read_TCOUNT()) / (((clocks_per_jiffy
+ 1) * HZ
) /
179 /* Check if we just wrapped the counters and maybe missed a tick */
180 if ((bfin_read_ILAT() & (1 << IRQ_CORETMR
))
181 && (offset
< (100000 / HZ
/ 2)))
182 offset
+= (USEC_PER_SEC
/ HZ
);
187 static inline int set_rtc_mmss(unsigned long nowtime
)
193 * timer_interrupt() needs to keep up the real-time clock,
194 * as well as call the "do_timer()" routine every clocktick
196 #ifdef CONFIG_CORE_TIMER_IRQ_L1
197 irqreturn_t
timer_interrupt(int irq
, void *dummy
)__attribute__((l1_text
));
200 irqreturn_t
timer_interrupt(int irq
, void *dummy
)
202 /* last time the cmos clock got updated */
203 static long last_rtc_update
;
205 write_seqlock(&xtime_lock
);
211 update_process_times(user_mode(get_irq_regs()));
213 profile_tick(CPU_PROFILING
);
216 * If we have an externally synchronized Linux clock, then update
217 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
218 * called as close as possible to 500 ms before the new second starts.
222 xtime
.tv_sec
> last_rtc_update
+ 660 &&
223 (xtime
.tv_nsec
/ NSEC_PER_USEC
) >=
224 500000 - ((unsigned)TICK_SIZE
) / 2
225 && (xtime
.tv_nsec
/ NSEC_PER_USEC
) <=
226 500000 + ((unsigned)TICK_SIZE
) / 2) {
227 if (set_rtc_mmss(xtime
.tv_sec
) == 0)
228 last_rtc_update
= xtime
.tv_sec
;
230 /* Do it again in 60s. */
231 last_rtc_update
= xtime
.tv_sec
- 600;
233 write_sequnlock(&xtime_lock
);
237 void __init
time_init(void)
239 time_t secs_since_1970
= (365 * 37 + 9) * 24 * 60 * 60; /* 1 Jan 2007 */
241 #ifdef CONFIG_RTC_DRV_BFIN
242 /* [#2663] hack to filter junk RTC values that would cause
243 * userspace to have to deal with time values greater than
244 * 2^31 seconds (which uClibc cannot cope with yet)
246 if ((bfin_read_RTC_STAT() & 0xC0000000) == 0xC0000000) {
247 printk(KERN_NOTICE
"bfin-rtc: invalid date; resetting\n");
248 bfin_write_RTC_STAT(0);
252 /* Initialize xtime. From now on, xtime is updated with timer interrupts */
253 xtime
.tv_sec
= secs_since_1970
;
256 wall_to_monotonic
.tv_sec
= -xtime
.tv_sec
;
258 time_sched_init(timer_interrupt
);
261 #ifndef CONFIG_GENERIC_TIME
262 void do_gettimeofday(struct timeval
*tv
)
266 unsigned long usec
, sec
;
269 seq
= read_seqbegin_irqsave(&xtime_lock
, flags
);
270 usec
= gettimeoffset();
272 usec
+= (xtime
.tv_nsec
/ NSEC_PER_USEC
);
274 while (read_seqretry_irqrestore(&xtime_lock
, seq
, flags
));
276 while (usec
>= USEC_PER_SEC
) {
277 usec
-= USEC_PER_SEC
;
284 EXPORT_SYMBOL(do_gettimeofday
);
286 int do_settimeofday(struct timespec
*tv
)
288 time_t wtm_sec
, sec
= tv
->tv_sec
;
289 long wtm_nsec
, nsec
= tv
->tv_nsec
;
291 if ((unsigned long)tv
->tv_nsec
>= NSEC_PER_SEC
)
294 write_seqlock_irq(&xtime_lock
);
296 * This is revolting. We need to set the xtime.tv_usec
297 * correctly. However, the value in this location is
298 * is value at the last tick.
299 * Discover what correction gettimeofday
300 * would have done, and then undo it!
302 nsec
-= (gettimeoffset() * NSEC_PER_USEC
);
304 wtm_sec
= wall_to_monotonic
.tv_sec
+ (xtime
.tv_sec
- sec
);
305 wtm_nsec
= wall_to_monotonic
.tv_nsec
+ (xtime
.tv_nsec
- nsec
);
307 set_normalized_timespec(&xtime
, sec
, nsec
);
308 set_normalized_timespec(&wall_to_monotonic
, wtm_sec
, wtm_nsec
);
312 write_sequnlock_irq(&xtime_lock
);
317 EXPORT_SYMBOL(do_settimeofday
);
318 #endif /* !CONFIG_GENERIC_TIME */
321 * Scheduler clock - returns current time in nanosec units.
323 unsigned long long sched_clock(void)
325 return (unsigned long long)jiffies
*(NSEC_PER_SEC
/ HZ
);