add port definition for mcf UART driver
[linux-2.6/next.git] / sound / pci / hda / hda_codec.c
blobad4cb38109fcc2de06f0891ea737adc91769f2eb
1 /*
2 * Universal Interface for Intel High Definition Audio Codec
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This driver is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <sound/driver.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/mutex.h>
28 #include <sound/core.h>
29 #include "hda_codec.h"
30 #include <sound/asoundef.h>
31 #include <sound/tlv.h>
32 #include <sound/initval.h>
33 #include "hda_local.h"
34 #include <sound/hda_hwdep.h>
36 #ifdef CONFIG_SND_HDA_POWER_SAVE
37 /* define this option here to hide as static */
38 static int power_save = CONFIG_SND_HDA_POWER_SAVE_DEFAULT;
39 module_param(power_save, int, 0644);
40 MODULE_PARM_DESC(power_save, "Automatic power-saving timeout "
41 "(in second, 0 = disable).");
42 #endif
45 * vendor / preset table
48 struct hda_vendor_id {
49 unsigned int id;
50 const char *name;
53 /* codec vendor labels */
54 static struct hda_vendor_id hda_vendor_ids[] = {
55 { 0x10ec, "Realtek" },
56 { 0x1057, "Motorola" },
57 { 0x1106, "VIA" },
58 { 0x11d4, "Analog Devices" },
59 { 0x13f6, "C-Media" },
60 { 0x14f1, "Conexant" },
61 { 0x434d, "C-Media" },
62 { 0x8384, "SigmaTel" },
63 {} /* terminator */
66 /* codec presets */
67 #include "hda_patch.h"
70 #ifdef CONFIG_SND_HDA_POWER_SAVE
71 static void hda_power_work(struct work_struct *work);
72 static void hda_keep_power_on(struct hda_codec *codec);
73 #else
74 static inline void hda_keep_power_on(struct hda_codec *codec) {}
75 #endif
77 /**
78 * snd_hda_codec_read - send a command and get the response
79 * @codec: the HDA codec
80 * @nid: NID to send the command
81 * @direct: direct flag
82 * @verb: the verb to send
83 * @parm: the parameter for the verb
85 * Send a single command and read the corresponding response.
87 * Returns the obtained response value, or -1 for an error.
89 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid,
90 int direct,
91 unsigned int verb, unsigned int parm)
93 unsigned int res;
94 snd_hda_power_up(codec);
95 mutex_lock(&codec->bus->cmd_mutex);
96 if (!codec->bus->ops.command(codec, nid, direct, verb, parm))
97 res = codec->bus->ops.get_response(codec);
98 else
99 res = (unsigned int)-1;
100 mutex_unlock(&codec->bus->cmd_mutex);
101 snd_hda_power_down(codec);
102 return res;
106 * snd_hda_codec_write - send a single command without waiting for response
107 * @codec: the HDA codec
108 * @nid: NID to send the command
109 * @direct: direct flag
110 * @verb: the verb to send
111 * @parm: the parameter for the verb
113 * Send a single command without waiting for response.
115 * Returns 0 if successful, or a negative error code.
117 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
118 unsigned int verb, unsigned int parm)
120 int err;
121 snd_hda_power_up(codec);
122 mutex_lock(&codec->bus->cmd_mutex);
123 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
124 mutex_unlock(&codec->bus->cmd_mutex);
125 snd_hda_power_down(codec);
126 return err;
130 * snd_hda_sequence_write - sequence writes
131 * @codec: the HDA codec
132 * @seq: VERB array to send
134 * Send the commands sequentially from the given array.
135 * The array must be terminated with NID=0.
137 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
139 for (; seq->nid; seq++)
140 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
144 * snd_hda_get_sub_nodes - get the range of sub nodes
145 * @codec: the HDA codec
146 * @nid: NID to parse
147 * @start_id: the pointer to store the start NID
149 * Parse the NID and store the start NID of its sub-nodes.
150 * Returns the number of sub-nodes.
152 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid,
153 hda_nid_t *start_id)
155 unsigned int parm;
157 parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
158 if (parm == -1)
159 return 0;
160 *start_id = (parm >> 16) & 0x7fff;
161 return (int)(parm & 0x7fff);
165 * snd_hda_get_connections - get connection list
166 * @codec: the HDA codec
167 * @nid: NID to parse
168 * @conn_list: connection list array
169 * @max_conns: max. number of connections to store
171 * Parses the connection list of the given widget and stores the list
172 * of NIDs.
174 * Returns the number of connections, or a negative error code.
176 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
177 hda_nid_t *conn_list, int max_conns)
179 unsigned int parm;
180 int i, conn_len, conns;
181 unsigned int shift, num_elems, mask;
182 hda_nid_t prev_nid;
184 snd_assert(conn_list && max_conns > 0, return -EINVAL);
186 parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
187 if (parm & AC_CLIST_LONG) {
188 /* long form */
189 shift = 16;
190 num_elems = 2;
191 } else {
192 /* short form */
193 shift = 8;
194 num_elems = 4;
196 conn_len = parm & AC_CLIST_LENGTH;
197 mask = (1 << (shift-1)) - 1;
199 if (!conn_len)
200 return 0; /* no connection */
202 if (conn_len == 1) {
203 /* single connection */
204 parm = snd_hda_codec_read(codec, nid, 0,
205 AC_VERB_GET_CONNECT_LIST, 0);
206 conn_list[0] = parm & mask;
207 return 1;
210 /* multi connection */
211 conns = 0;
212 prev_nid = 0;
213 for (i = 0; i < conn_len; i++) {
214 int range_val;
215 hda_nid_t val, n;
217 if (i % num_elems == 0)
218 parm = snd_hda_codec_read(codec, nid, 0,
219 AC_VERB_GET_CONNECT_LIST, i);
220 range_val = !!(parm & (1 << (shift-1))); /* ranges */
221 val = parm & mask;
222 parm >>= shift;
223 if (range_val) {
224 /* ranges between the previous and this one */
225 if (!prev_nid || prev_nid >= val) {
226 snd_printk(KERN_WARNING "hda_codec: "
227 "invalid dep_range_val %x:%x\n",
228 prev_nid, val);
229 continue;
231 for (n = prev_nid + 1; n <= val; n++) {
232 if (conns >= max_conns) {
233 snd_printk(KERN_ERR
234 "Too many connections\n");
235 return -EINVAL;
237 conn_list[conns++] = n;
239 } else {
240 if (conns >= max_conns) {
241 snd_printk(KERN_ERR "Too many connections\n");
242 return -EINVAL;
244 conn_list[conns++] = val;
246 prev_nid = val;
248 return conns;
253 * snd_hda_queue_unsol_event - add an unsolicited event to queue
254 * @bus: the BUS
255 * @res: unsolicited event (lower 32bit of RIRB entry)
256 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
258 * Adds the given event to the queue. The events are processed in
259 * the workqueue asynchronously. Call this function in the interrupt
260 * hanlder when RIRB receives an unsolicited event.
262 * Returns 0 if successful, or a negative error code.
264 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
266 struct hda_bus_unsolicited *unsol;
267 unsigned int wp;
269 unsol = bus->unsol;
270 if (!unsol)
271 return 0;
273 wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
274 unsol->wp = wp;
276 wp <<= 1;
277 unsol->queue[wp] = res;
278 unsol->queue[wp + 1] = res_ex;
280 schedule_work(&unsol->work);
282 return 0;
286 * process queueud unsolicited events
288 static void process_unsol_events(struct work_struct *work)
290 struct hda_bus_unsolicited *unsol =
291 container_of(work, struct hda_bus_unsolicited, work);
292 struct hda_bus *bus = unsol->bus;
293 struct hda_codec *codec;
294 unsigned int rp, caddr, res;
296 while (unsol->rp != unsol->wp) {
297 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
298 unsol->rp = rp;
299 rp <<= 1;
300 res = unsol->queue[rp];
301 caddr = unsol->queue[rp + 1];
302 if (!(caddr & (1 << 4))) /* no unsolicited event? */
303 continue;
304 codec = bus->caddr_tbl[caddr & 0x0f];
305 if (codec && codec->patch_ops.unsol_event)
306 codec->patch_ops.unsol_event(codec, res);
311 * initialize unsolicited queue
313 static int __devinit init_unsol_queue(struct hda_bus *bus)
315 struct hda_bus_unsolicited *unsol;
317 if (bus->unsol) /* already initialized */
318 return 0;
320 unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
321 if (!unsol) {
322 snd_printk(KERN_ERR "hda_codec: "
323 "can't allocate unsolicited queue\n");
324 return -ENOMEM;
326 INIT_WORK(&unsol->work, process_unsol_events);
327 unsol->bus = bus;
328 bus->unsol = unsol;
329 return 0;
333 * destructor
335 static void snd_hda_codec_free(struct hda_codec *codec);
337 static int snd_hda_bus_free(struct hda_bus *bus)
339 struct hda_codec *codec, *n;
341 if (!bus)
342 return 0;
343 if (bus->unsol) {
344 flush_scheduled_work();
345 kfree(bus->unsol);
347 list_for_each_entry_safe(codec, n, &bus->codec_list, list) {
348 snd_hda_codec_free(codec);
350 if (bus->ops.private_free)
351 bus->ops.private_free(bus);
352 kfree(bus);
353 return 0;
356 static int snd_hda_bus_dev_free(struct snd_device *device)
358 struct hda_bus *bus = device->device_data;
359 return snd_hda_bus_free(bus);
363 * snd_hda_bus_new - create a HDA bus
364 * @card: the card entry
365 * @temp: the template for hda_bus information
366 * @busp: the pointer to store the created bus instance
368 * Returns 0 if successful, or a negative error code.
370 int __devinit snd_hda_bus_new(struct snd_card *card,
371 const struct hda_bus_template *temp,
372 struct hda_bus **busp)
374 struct hda_bus *bus;
375 int err;
376 static struct snd_device_ops dev_ops = {
377 .dev_free = snd_hda_bus_dev_free,
380 snd_assert(temp, return -EINVAL);
381 snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
383 if (busp)
384 *busp = NULL;
386 bus = kzalloc(sizeof(*bus), GFP_KERNEL);
387 if (bus == NULL) {
388 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
389 return -ENOMEM;
392 bus->card = card;
393 bus->private_data = temp->private_data;
394 bus->pci = temp->pci;
395 bus->modelname = temp->modelname;
396 bus->ops = temp->ops;
398 mutex_init(&bus->cmd_mutex);
399 INIT_LIST_HEAD(&bus->codec_list);
401 err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops);
402 if (err < 0) {
403 snd_hda_bus_free(bus);
404 return err;
406 if (busp)
407 *busp = bus;
408 return 0;
411 #ifdef CONFIG_SND_HDA_GENERIC
412 #define is_generic_config(codec) \
413 (codec->bus->modelname && !strcmp(codec->bus->modelname, "generic"))
414 #else
415 #define is_generic_config(codec) 0
416 #endif
419 * find a matching codec preset
421 static const struct hda_codec_preset __devinit *
422 find_codec_preset(struct hda_codec *codec)
424 const struct hda_codec_preset **tbl, *preset;
426 if (is_generic_config(codec))
427 return NULL; /* use the generic parser */
429 for (tbl = hda_preset_tables; *tbl; tbl++) {
430 for (preset = *tbl; preset->id; preset++) {
431 u32 mask = preset->mask;
432 if (!mask)
433 mask = ~0;
434 if (preset->id == (codec->vendor_id & mask) &&
435 (!preset->rev ||
436 preset->rev == codec->revision_id))
437 return preset;
440 return NULL;
444 * snd_hda_get_codec_name - store the codec name
446 void snd_hda_get_codec_name(struct hda_codec *codec,
447 char *name, int namelen)
449 const struct hda_vendor_id *c;
450 const char *vendor = NULL;
451 u16 vendor_id = codec->vendor_id >> 16;
452 char tmp[16];
454 for (c = hda_vendor_ids; c->id; c++) {
455 if (c->id == vendor_id) {
456 vendor = c->name;
457 break;
460 if (!vendor) {
461 sprintf(tmp, "Generic %04x", vendor_id);
462 vendor = tmp;
464 if (codec->preset && codec->preset->name)
465 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
466 else
467 snprintf(name, namelen, "%s ID %x", vendor,
468 codec->vendor_id & 0xffff);
472 * look for an AFG and MFG nodes
474 static void __devinit setup_fg_nodes(struct hda_codec *codec)
476 int i, total_nodes;
477 hda_nid_t nid;
479 total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
480 for (i = 0; i < total_nodes; i++, nid++) {
481 unsigned int func;
482 func = snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE);
483 switch (func & 0xff) {
484 case AC_GRP_AUDIO_FUNCTION:
485 codec->afg = nid;
486 break;
487 case AC_GRP_MODEM_FUNCTION:
488 codec->mfg = nid;
489 break;
490 default:
491 break;
497 * read widget caps for each widget and store in cache
499 static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
501 int i;
502 hda_nid_t nid;
504 codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
505 &codec->start_nid);
506 codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
507 if (!codec->wcaps)
508 return -ENOMEM;
509 nid = codec->start_nid;
510 for (i = 0; i < codec->num_nodes; i++, nid++)
511 codec->wcaps[i] = snd_hda_param_read(codec, nid,
512 AC_PAR_AUDIO_WIDGET_CAP);
513 return 0;
517 static void init_hda_cache(struct hda_cache_rec *cache,
518 unsigned int record_size);
519 static void free_hda_cache(struct hda_cache_rec *cache);
522 * codec destructor
524 static void snd_hda_codec_free(struct hda_codec *codec)
526 if (!codec)
527 return;
528 #ifdef CONFIG_SND_HDA_POWER_SAVE
529 cancel_delayed_work(&codec->power_work);
530 flush_scheduled_work();
531 #endif
532 list_del(&codec->list);
533 codec->bus->caddr_tbl[codec->addr] = NULL;
534 if (codec->patch_ops.free)
535 codec->patch_ops.free(codec);
536 free_hda_cache(&codec->amp_cache);
537 free_hda_cache(&codec->cmd_cache);
538 kfree(codec->wcaps);
539 kfree(codec);
543 * snd_hda_codec_new - create a HDA codec
544 * @bus: the bus to assign
545 * @codec_addr: the codec address
546 * @codecp: the pointer to store the generated codec
548 * Returns 0 if successful, or a negative error code.
550 int __devinit snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
551 struct hda_codec **codecp)
553 struct hda_codec *codec;
554 char component[13];
555 int err;
557 snd_assert(bus, return -EINVAL);
558 snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
560 if (bus->caddr_tbl[codec_addr]) {
561 snd_printk(KERN_ERR "hda_codec: "
562 "address 0x%x is already occupied\n", codec_addr);
563 return -EBUSY;
566 codec = kzalloc(sizeof(*codec), GFP_KERNEL);
567 if (codec == NULL) {
568 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
569 return -ENOMEM;
572 codec->bus = bus;
573 codec->addr = codec_addr;
574 mutex_init(&codec->spdif_mutex);
575 init_hda_cache(&codec->amp_cache, sizeof(struct hda_amp_info));
576 init_hda_cache(&codec->cmd_cache, sizeof(struct hda_cache_head));
578 #ifdef CONFIG_SND_HDA_POWER_SAVE
579 INIT_DELAYED_WORK(&codec->power_work, hda_power_work);
580 /* snd_hda_codec_new() marks the codec as power-up, and leave it as is.
581 * the caller has to power down appropriatley after initialization
582 * phase.
584 hda_keep_power_on(codec);
585 #endif
587 list_add_tail(&codec->list, &bus->codec_list);
588 bus->caddr_tbl[codec_addr] = codec;
590 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
591 AC_PAR_VENDOR_ID);
592 if (codec->vendor_id == -1)
593 /* read again, hopefully the access method was corrected
594 * in the last read...
596 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
597 AC_PAR_VENDOR_ID);
598 codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT,
599 AC_PAR_SUBSYSTEM_ID);
600 codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT,
601 AC_PAR_REV_ID);
603 setup_fg_nodes(codec);
604 if (!codec->afg && !codec->mfg) {
605 snd_printdd("hda_codec: no AFG or MFG node found\n");
606 snd_hda_codec_free(codec);
607 return -ENODEV;
610 if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
611 snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
612 snd_hda_codec_free(codec);
613 return -ENOMEM;
616 if (!codec->subsystem_id) {
617 hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
618 codec->subsystem_id =
619 snd_hda_codec_read(codec, nid, 0,
620 AC_VERB_GET_SUBSYSTEM_ID, 0);
623 codec->preset = find_codec_preset(codec);
624 /* audio codec should override the mixer name */
625 if (codec->afg || !*bus->card->mixername)
626 snd_hda_get_codec_name(codec, bus->card->mixername,
627 sizeof(bus->card->mixername));
629 if (is_generic_config(codec)) {
630 err = snd_hda_parse_generic_codec(codec);
631 goto patched;
633 if (codec->preset && codec->preset->patch) {
634 err = codec->preset->patch(codec);
635 goto patched;
638 /* call the default parser */
639 err = snd_hda_parse_generic_codec(codec);
640 if (err < 0)
641 printk(KERN_ERR "hda-codec: No codec parser is available\n");
643 patched:
644 if (err < 0) {
645 snd_hda_codec_free(codec);
646 return err;
649 if (codec->patch_ops.unsol_event)
650 init_unsol_queue(bus);
652 snd_hda_codec_proc_new(codec);
653 #ifdef CONFIG_SND_HDA_HWDEP
654 snd_hda_create_hwdep(codec);
655 #endif
657 sprintf(component, "HDA:%08x", codec->vendor_id);
658 snd_component_add(codec->bus->card, component);
660 if (codecp)
661 *codecp = codec;
662 return 0;
666 * snd_hda_codec_setup_stream - set up the codec for streaming
667 * @codec: the CODEC to set up
668 * @nid: the NID to set up
669 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
670 * @channel_id: channel id to pass, zero based.
671 * @format: stream format.
673 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid,
674 u32 stream_tag,
675 int channel_id, int format)
677 if (!nid)
678 return;
680 snd_printdd("hda_codec_setup_stream: "
681 "NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
682 nid, stream_tag, channel_id, format);
683 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
684 (stream_tag << 4) | channel_id);
685 msleep(1);
686 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
690 * amp access functions
693 /* FIXME: more better hash key? */
694 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
695 #define INFO_AMP_CAPS (1<<0)
696 #define INFO_AMP_VOL(ch) (1 << (1 + (ch)))
698 /* initialize the hash table */
699 static void __devinit init_hda_cache(struct hda_cache_rec *cache,
700 unsigned int record_size)
702 memset(cache, 0, sizeof(*cache));
703 memset(cache->hash, 0xff, sizeof(cache->hash));
704 cache->record_size = record_size;
707 static void free_hda_cache(struct hda_cache_rec *cache)
709 kfree(cache->buffer);
712 /* query the hash. allocate an entry if not found. */
713 static struct hda_cache_head *get_alloc_hash(struct hda_cache_rec *cache,
714 u32 key)
716 u16 idx = key % (u16)ARRAY_SIZE(cache->hash);
717 u16 cur = cache->hash[idx];
718 struct hda_cache_head *info;
720 while (cur != 0xffff) {
721 info = (struct hda_cache_head *)(cache->buffer +
722 cur * cache->record_size);
723 if (info->key == key)
724 return info;
725 cur = info->next;
728 /* add a new hash entry */
729 if (cache->num_entries >= cache->size) {
730 /* reallocate the array */
731 unsigned int new_size = cache->size + 64;
732 void *new_buffer;
733 new_buffer = kcalloc(new_size, cache->record_size, GFP_KERNEL);
734 if (!new_buffer) {
735 snd_printk(KERN_ERR "hda_codec: "
736 "can't malloc amp_info\n");
737 return NULL;
739 if (cache->buffer) {
740 memcpy(new_buffer, cache->buffer,
741 cache->size * cache->record_size);
742 kfree(cache->buffer);
744 cache->size = new_size;
745 cache->buffer = new_buffer;
747 cur = cache->num_entries++;
748 info = (struct hda_cache_head *)(cache->buffer +
749 cur * cache->record_size);
750 info->key = key;
751 info->val = 0;
752 info->next = cache->hash[idx];
753 cache->hash[idx] = cur;
755 return info;
758 /* query and allocate an amp hash entry */
759 static inline struct hda_amp_info *
760 get_alloc_amp_hash(struct hda_codec *codec, u32 key)
762 return (struct hda_amp_info *)get_alloc_hash(&codec->amp_cache, key);
766 * query AMP capabilities for the given widget and direction
768 static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
770 struct hda_amp_info *info;
772 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
773 if (!info)
774 return 0;
775 if (!(info->head.val & INFO_AMP_CAPS)) {
776 if (!(get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
777 nid = codec->afg;
778 info->amp_caps = snd_hda_param_read(codec, nid,
779 direction == HDA_OUTPUT ?
780 AC_PAR_AMP_OUT_CAP :
781 AC_PAR_AMP_IN_CAP);
782 if (info->amp_caps)
783 info->head.val |= INFO_AMP_CAPS;
785 return info->amp_caps;
788 int snd_hda_override_amp_caps(struct hda_codec *codec, hda_nid_t nid, int dir,
789 unsigned int caps)
791 struct hda_amp_info *info;
793 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, dir, 0));
794 if (!info)
795 return -EINVAL;
796 info->amp_caps = caps;
797 info->head.val |= INFO_AMP_CAPS;
798 return 0;
802 * read the current volume to info
803 * if the cache exists, read the cache value.
805 static unsigned int get_vol_mute(struct hda_codec *codec,
806 struct hda_amp_info *info, hda_nid_t nid,
807 int ch, int direction, int index)
809 u32 val, parm;
811 if (info->head.val & INFO_AMP_VOL(ch))
812 return info->vol[ch];
814 parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
815 parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
816 parm |= index;
817 val = snd_hda_codec_read(codec, nid, 0,
818 AC_VERB_GET_AMP_GAIN_MUTE, parm);
819 info->vol[ch] = val & 0xff;
820 info->head.val |= INFO_AMP_VOL(ch);
821 return info->vol[ch];
825 * write the current volume in info to the h/w and update the cache
827 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
828 hda_nid_t nid, int ch, int direction, int index,
829 int val)
831 u32 parm;
833 parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
834 parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
835 parm |= index << AC_AMP_SET_INDEX_SHIFT;
836 parm |= val;
837 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
838 info->vol[ch] = val;
842 * read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
844 int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
845 int direction, int index)
847 struct hda_amp_info *info;
848 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
849 if (!info)
850 return 0;
851 return get_vol_mute(codec, info, nid, ch, direction, index);
855 * update the AMP value, mask = bit mask to set, val = the value
857 int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
858 int direction, int idx, int mask, int val)
860 struct hda_amp_info *info;
862 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
863 if (!info)
864 return 0;
865 val &= mask;
866 val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
867 if (info->vol[ch] == val)
868 return 0;
869 put_vol_mute(codec, info, nid, ch, direction, idx, val);
870 return 1;
874 * update the AMP stereo with the same mask and value
876 int snd_hda_codec_amp_stereo(struct hda_codec *codec, hda_nid_t nid,
877 int direction, int idx, int mask, int val)
879 int ch, ret = 0;
880 for (ch = 0; ch < 2; ch++)
881 ret |= snd_hda_codec_amp_update(codec, nid, ch, direction,
882 idx, mask, val);
883 return ret;
886 #ifdef SND_HDA_NEEDS_RESUME
887 /* resume the all amp commands from the cache */
888 void snd_hda_codec_resume_amp(struct hda_codec *codec)
890 struct hda_amp_info *buffer = codec->amp_cache.buffer;
891 int i;
893 for (i = 0; i < codec->amp_cache.size; i++, buffer++) {
894 u32 key = buffer->head.key;
895 hda_nid_t nid;
896 unsigned int idx, dir, ch;
897 if (!key)
898 continue;
899 nid = key & 0xff;
900 idx = (key >> 16) & 0xff;
901 dir = (key >> 24) & 0xff;
902 for (ch = 0; ch < 2; ch++) {
903 if (!(buffer->head.val & INFO_AMP_VOL(ch)))
904 continue;
905 put_vol_mute(codec, buffer, nid, ch, dir, idx,
906 buffer->vol[ch]);
910 #endif /* SND_HDA_NEEDS_RESUME */
913 * AMP control callbacks
915 /* retrieve parameters from private_value */
916 #define get_amp_nid(kc) ((kc)->private_value & 0xffff)
917 #define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
918 #define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
919 #define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
921 /* volume */
922 int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol,
923 struct snd_ctl_elem_info *uinfo)
925 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
926 u16 nid = get_amp_nid(kcontrol);
927 u8 chs = get_amp_channels(kcontrol);
928 int dir = get_amp_direction(kcontrol);
929 u32 caps;
931 caps = query_amp_caps(codec, nid, dir);
932 /* num steps */
933 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
934 if (!caps) {
935 printk(KERN_WARNING "hda_codec: "
936 "num_steps = 0 for NID=0x%x\n", nid);
937 return -EINVAL;
939 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
940 uinfo->count = chs == 3 ? 2 : 1;
941 uinfo->value.integer.min = 0;
942 uinfo->value.integer.max = caps;
943 return 0;
946 int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol,
947 struct snd_ctl_elem_value *ucontrol)
949 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
950 hda_nid_t nid = get_amp_nid(kcontrol);
951 int chs = get_amp_channels(kcontrol);
952 int dir = get_amp_direction(kcontrol);
953 int idx = get_amp_index(kcontrol);
954 long *valp = ucontrol->value.integer.value;
956 if (chs & 1)
957 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx)
958 & HDA_AMP_VOLMASK;
959 if (chs & 2)
960 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx)
961 & HDA_AMP_VOLMASK;
962 return 0;
965 int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol,
966 struct snd_ctl_elem_value *ucontrol)
968 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
969 hda_nid_t nid = get_amp_nid(kcontrol);
970 int chs = get_amp_channels(kcontrol);
971 int dir = get_amp_direction(kcontrol);
972 int idx = get_amp_index(kcontrol);
973 long *valp = ucontrol->value.integer.value;
974 int change = 0;
976 snd_hda_power_up(codec);
977 if (chs & 1) {
978 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
979 0x7f, *valp);
980 valp++;
982 if (chs & 2)
983 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
984 0x7f, *valp);
985 snd_hda_power_down(codec);
986 return change;
989 int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag,
990 unsigned int size, unsigned int __user *_tlv)
992 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
993 hda_nid_t nid = get_amp_nid(kcontrol);
994 int dir = get_amp_direction(kcontrol);
995 u32 caps, val1, val2;
997 if (size < 4 * sizeof(unsigned int))
998 return -ENOMEM;
999 caps = query_amp_caps(codec, nid, dir);
1000 val2 = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
1001 val2 = (val2 + 1) * 25;
1002 val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT);
1003 val1 = ((int)val1) * ((int)val2);
1004 if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv))
1005 return -EFAULT;
1006 if (put_user(2 * sizeof(unsigned int), _tlv + 1))
1007 return -EFAULT;
1008 if (put_user(val1, _tlv + 2))
1009 return -EFAULT;
1010 if (put_user(val2, _tlv + 3))
1011 return -EFAULT;
1012 return 0;
1015 /* switch */
1016 int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol,
1017 struct snd_ctl_elem_info *uinfo)
1019 int chs = get_amp_channels(kcontrol);
1021 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1022 uinfo->count = chs == 3 ? 2 : 1;
1023 uinfo->value.integer.min = 0;
1024 uinfo->value.integer.max = 1;
1025 return 0;
1028 int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol,
1029 struct snd_ctl_elem_value *ucontrol)
1031 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1032 hda_nid_t nid = get_amp_nid(kcontrol);
1033 int chs = get_amp_channels(kcontrol);
1034 int dir = get_amp_direction(kcontrol);
1035 int idx = get_amp_index(kcontrol);
1036 long *valp = ucontrol->value.integer.value;
1038 if (chs & 1)
1039 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) &
1040 HDA_AMP_MUTE) ? 0 : 1;
1041 if (chs & 2)
1042 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) &
1043 HDA_AMP_MUTE) ? 0 : 1;
1044 return 0;
1047 int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol,
1048 struct snd_ctl_elem_value *ucontrol)
1050 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1051 hda_nid_t nid = get_amp_nid(kcontrol);
1052 int chs = get_amp_channels(kcontrol);
1053 int dir = get_amp_direction(kcontrol);
1054 int idx = get_amp_index(kcontrol);
1055 long *valp = ucontrol->value.integer.value;
1056 int change = 0;
1058 snd_hda_power_up(codec);
1059 if (chs & 1) {
1060 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
1061 HDA_AMP_MUTE,
1062 *valp ? 0 : HDA_AMP_MUTE);
1063 valp++;
1065 if (chs & 2)
1066 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
1067 HDA_AMP_MUTE,
1068 *valp ? 0 : HDA_AMP_MUTE);
1069 #ifdef CONFIG_SND_HDA_POWER_SAVE
1070 if (codec->patch_ops.check_power_status)
1071 codec->patch_ops.check_power_status(codec, nid);
1072 #endif
1073 snd_hda_power_down(codec);
1074 return change;
1078 * bound volume controls
1080 * bind multiple volumes (# indices, from 0)
1083 #define AMP_VAL_IDX_SHIFT 19
1084 #define AMP_VAL_IDX_MASK (0x0f<<19)
1086 int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol,
1087 struct snd_ctl_elem_value *ucontrol)
1089 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1090 unsigned long pval;
1091 int err;
1093 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1094 pval = kcontrol->private_value;
1095 kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
1096 err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
1097 kcontrol->private_value = pval;
1098 mutex_unlock(&codec->spdif_mutex);
1099 return err;
1102 int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol,
1103 struct snd_ctl_elem_value *ucontrol)
1105 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1106 unsigned long pval;
1107 int i, indices, err = 0, change = 0;
1109 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1110 pval = kcontrol->private_value;
1111 indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
1112 for (i = 0; i < indices; i++) {
1113 kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) |
1114 (i << AMP_VAL_IDX_SHIFT);
1115 err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
1116 if (err < 0)
1117 break;
1118 change |= err;
1120 kcontrol->private_value = pval;
1121 mutex_unlock(&codec->spdif_mutex);
1122 return err < 0 ? err : change;
1126 * generic bound volume/swtich controls
1128 int snd_hda_mixer_bind_ctls_info(struct snd_kcontrol *kcontrol,
1129 struct snd_ctl_elem_info *uinfo)
1131 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1132 struct hda_bind_ctls *c;
1133 int err;
1135 c = (struct hda_bind_ctls *)kcontrol->private_value;
1136 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1137 kcontrol->private_value = *c->values;
1138 err = c->ops->info(kcontrol, uinfo);
1139 kcontrol->private_value = (long)c;
1140 mutex_unlock(&codec->spdif_mutex);
1141 return err;
1144 int snd_hda_mixer_bind_ctls_get(struct snd_kcontrol *kcontrol,
1145 struct snd_ctl_elem_value *ucontrol)
1147 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1148 struct hda_bind_ctls *c;
1149 int err;
1151 c = (struct hda_bind_ctls *)kcontrol->private_value;
1152 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1153 kcontrol->private_value = *c->values;
1154 err = c->ops->get(kcontrol, ucontrol);
1155 kcontrol->private_value = (long)c;
1156 mutex_unlock(&codec->spdif_mutex);
1157 return err;
1160 int snd_hda_mixer_bind_ctls_put(struct snd_kcontrol *kcontrol,
1161 struct snd_ctl_elem_value *ucontrol)
1163 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1164 struct hda_bind_ctls *c;
1165 unsigned long *vals;
1166 int err = 0, change = 0;
1168 c = (struct hda_bind_ctls *)kcontrol->private_value;
1169 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1170 for (vals = c->values; *vals; vals++) {
1171 kcontrol->private_value = *vals;
1172 err = c->ops->put(kcontrol, ucontrol);
1173 if (err < 0)
1174 break;
1175 change |= err;
1177 kcontrol->private_value = (long)c;
1178 mutex_unlock(&codec->spdif_mutex);
1179 return err < 0 ? err : change;
1182 int snd_hda_mixer_bind_tlv(struct snd_kcontrol *kcontrol, int op_flag,
1183 unsigned int size, unsigned int __user *tlv)
1185 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1186 struct hda_bind_ctls *c;
1187 int err;
1189 c = (struct hda_bind_ctls *)kcontrol->private_value;
1190 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1191 kcontrol->private_value = *c->values;
1192 err = c->ops->tlv(kcontrol, op_flag, size, tlv);
1193 kcontrol->private_value = (long)c;
1194 mutex_unlock(&codec->spdif_mutex);
1195 return err;
1198 struct hda_ctl_ops snd_hda_bind_vol = {
1199 .info = snd_hda_mixer_amp_volume_info,
1200 .get = snd_hda_mixer_amp_volume_get,
1201 .put = snd_hda_mixer_amp_volume_put,
1202 .tlv = snd_hda_mixer_amp_tlv
1205 struct hda_ctl_ops snd_hda_bind_sw = {
1206 .info = snd_hda_mixer_amp_switch_info,
1207 .get = snd_hda_mixer_amp_switch_get,
1208 .put = snd_hda_mixer_amp_switch_put,
1209 .tlv = snd_hda_mixer_amp_tlv
1213 * SPDIF out controls
1216 static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol,
1217 struct snd_ctl_elem_info *uinfo)
1219 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1220 uinfo->count = 1;
1221 return 0;
1224 static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol,
1225 struct snd_ctl_elem_value *ucontrol)
1227 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1228 IEC958_AES0_NONAUDIO |
1229 IEC958_AES0_CON_EMPHASIS_5015 |
1230 IEC958_AES0_CON_NOT_COPYRIGHT;
1231 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
1232 IEC958_AES1_CON_ORIGINAL;
1233 return 0;
1236 static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol,
1237 struct snd_ctl_elem_value *ucontrol)
1239 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1240 IEC958_AES0_NONAUDIO |
1241 IEC958_AES0_PRO_EMPHASIS_5015;
1242 return 0;
1245 static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol,
1246 struct snd_ctl_elem_value *ucontrol)
1248 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1250 ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
1251 ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
1252 ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
1253 ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
1255 return 0;
1258 /* convert from SPDIF status bits to HDA SPDIF bits
1259 * bit 0 (DigEn) is always set zero (to be filled later)
1261 static unsigned short convert_from_spdif_status(unsigned int sbits)
1263 unsigned short val = 0;
1265 if (sbits & IEC958_AES0_PROFESSIONAL)
1266 val |= AC_DIG1_PROFESSIONAL;
1267 if (sbits & IEC958_AES0_NONAUDIO)
1268 val |= AC_DIG1_NONAUDIO;
1269 if (sbits & IEC958_AES0_PROFESSIONAL) {
1270 if ((sbits & IEC958_AES0_PRO_EMPHASIS) ==
1271 IEC958_AES0_PRO_EMPHASIS_5015)
1272 val |= AC_DIG1_EMPHASIS;
1273 } else {
1274 if ((sbits & IEC958_AES0_CON_EMPHASIS) ==
1275 IEC958_AES0_CON_EMPHASIS_5015)
1276 val |= AC_DIG1_EMPHASIS;
1277 if (!(sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
1278 val |= AC_DIG1_COPYRIGHT;
1279 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
1280 val |= AC_DIG1_LEVEL;
1281 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
1283 return val;
1286 /* convert to SPDIF status bits from HDA SPDIF bits
1288 static unsigned int convert_to_spdif_status(unsigned short val)
1290 unsigned int sbits = 0;
1292 if (val & AC_DIG1_NONAUDIO)
1293 sbits |= IEC958_AES0_NONAUDIO;
1294 if (val & AC_DIG1_PROFESSIONAL)
1295 sbits |= IEC958_AES0_PROFESSIONAL;
1296 if (sbits & IEC958_AES0_PROFESSIONAL) {
1297 if (sbits & AC_DIG1_EMPHASIS)
1298 sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
1299 } else {
1300 if (val & AC_DIG1_EMPHASIS)
1301 sbits |= IEC958_AES0_CON_EMPHASIS_5015;
1302 if (!(val & AC_DIG1_COPYRIGHT))
1303 sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
1304 if (val & AC_DIG1_LEVEL)
1305 sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
1306 sbits |= val & (0x7f << 8);
1308 return sbits;
1311 static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol,
1312 struct snd_ctl_elem_value *ucontrol)
1314 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1315 hda_nid_t nid = kcontrol->private_value;
1316 unsigned short val;
1317 int change;
1319 mutex_lock(&codec->spdif_mutex);
1320 codec->spdif_status = ucontrol->value.iec958.status[0] |
1321 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
1322 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
1323 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
1324 val = convert_from_spdif_status(codec->spdif_status);
1325 val |= codec->spdif_ctls & 1;
1326 change = codec->spdif_ctls != val;
1327 codec->spdif_ctls = val;
1329 if (change) {
1330 snd_hda_codec_write_cache(codec, nid, 0,
1331 AC_VERB_SET_DIGI_CONVERT_1,
1332 val & 0xff);
1333 snd_hda_codec_write_cache(codec, nid, 0,
1334 AC_VERB_SET_DIGI_CONVERT_2,
1335 val >> 8);
1338 mutex_unlock(&codec->spdif_mutex);
1339 return change;
1342 #define snd_hda_spdif_out_switch_info snd_ctl_boolean_mono_info
1344 static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol,
1345 struct snd_ctl_elem_value *ucontrol)
1347 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1349 ucontrol->value.integer.value[0] = codec->spdif_ctls & AC_DIG1_ENABLE;
1350 return 0;
1353 static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol,
1354 struct snd_ctl_elem_value *ucontrol)
1356 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1357 hda_nid_t nid = kcontrol->private_value;
1358 unsigned short val;
1359 int change;
1361 mutex_lock(&codec->spdif_mutex);
1362 val = codec->spdif_ctls & ~AC_DIG1_ENABLE;
1363 if (ucontrol->value.integer.value[0])
1364 val |= AC_DIG1_ENABLE;
1365 change = codec->spdif_ctls != val;
1366 if (change) {
1367 codec->spdif_ctls = val;
1368 snd_hda_codec_write_cache(codec, nid, 0,
1369 AC_VERB_SET_DIGI_CONVERT_1,
1370 val & 0xff);
1371 /* unmute amp switch (if any) */
1372 if ((get_wcaps(codec, nid) & AC_WCAP_OUT_AMP) &&
1373 (val & AC_DIG1_ENABLE))
1374 snd_hda_codec_amp_stereo(codec, nid, HDA_OUTPUT, 0,
1375 HDA_AMP_MUTE, 0);
1377 mutex_unlock(&codec->spdif_mutex);
1378 return change;
1381 static struct snd_kcontrol_new dig_mixes[] = {
1383 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1384 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1385 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1386 .info = snd_hda_spdif_mask_info,
1387 .get = snd_hda_spdif_cmask_get,
1390 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1391 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1392 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1393 .info = snd_hda_spdif_mask_info,
1394 .get = snd_hda_spdif_pmask_get,
1397 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1398 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1399 .info = snd_hda_spdif_mask_info,
1400 .get = snd_hda_spdif_default_get,
1401 .put = snd_hda_spdif_default_put,
1404 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1405 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1406 .info = snd_hda_spdif_out_switch_info,
1407 .get = snd_hda_spdif_out_switch_get,
1408 .put = snd_hda_spdif_out_switch_put,
1410 { } /* end */
1414 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1415 * @codec: the HDA codec
1416 * @nid: audio out widget NID
1418 * Creates controls related with the SPDIF output.
1419 * Called from each patch supporting the SPDIF out.
1421 * Returns 0 if successful, or a negative error code.
1423 int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1425 int err;
1426 struct snd_kcontrol *kctl;
1427 struct snd_kcontrol_new *dig_mix;
1429 for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1430 kctl = snd_ctl_new1(dig_mix, codec);
1431 kctl->private_value = nid;
1432 err = snd_ctl_add(codec->bus->card, kctl);
1433 if (err < 0)
1434 return err;
1436 codec->spdif_ctls =
1437 snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1438 codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1439 return 0;
1443 * SPDIF input
1446 #define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
1448 static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol,
1449 struct snd_ctl_elem_value *ucontrol)
1451 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1453 ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1454 return 0;
1457 static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol,
1458 struct snd_ctl_elem_value *ucontrol)
1460 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1461 hda_nid_t nid = kcontrol->private_value;
1462 unsigned int val = !!ucontrol->value.integer.value[0];
1463 int change;
1465 mutex_lock(&codec->spdif_mutex);
1466 change = codec->spdif_in_enable != val;
1467 if (change) {
1468 codec->spdif_in_enable = val;
1469 snd_hda_codec_write_cache(codec, nid, 0,
1470 AC_VERB_SET_DIGI_CONVERT_1, val);
1472 mutex_unlock(&codec->spdif_mutex);
1473 return change;
1476 static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol,
1477 struct snd_ctl_elem_value *ucontrol)
1479 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1480 hda_nid_t nid = kcontrol->private_value;
1481 unsigned short val;
1482 unsigned int sbits;
1484 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1485 sbits = convert_to_spdif_status(val);
1486 ucontrol->value.iec958.status[0] = sbits;
1487 ucontrol->value.iec958.status[1] = sbits >> 8;
1488 ucontrol->value.iec958.status[2] = sbits >> 16;
1489 ucontrol->value.iec958.status[3] = sbits >> 24;
1490 return 0;
1493 static struct snd_kcontrol_new dig_in_ctls[] = {
1495 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1496 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1497 .info = snd_hda_spdif_in_switch_info,
1498 .get = snd_hda_spdif_in_switch_get,
1499 .put = snd_hda_spdif_in_switch_put,
1502 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1503 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1504 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1505 .info = snd_hda_spdif_mask_info,
1506 .get = snd_hda_spdif_in_status_get,
1508 { } /* end */
1512 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1513 * @codec: the HDA codec
1514 * @nid: audio in widget NID
1516 * Creates controls related with the SPDIF input.
1517 * Called from each patch supporting the SPDIF in.
1519 * Returns 0 if successful, or a negative error code.
1521 int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1523 int err;
1524 struct snd_kcontrol *kctl;
1525 struct snd_kcontrol_new *dig_mix;
1527 for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1528 kctl = snd_ctl_new1(dig_mix, codec);
1529 kctl->private_value = nid;
1530 err = snd_ctl_add(codec->bus->card, kctl);
1531 if (err < 0)
1532 return err;
1534 codec->spdif_in_enable =
1535 snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) &
1536 AC_DIG1_ENABLE;
1537 return 0;
1540 #ifdef SND_HDA_NEEDS_RESUME
1542 * command cache
1545 /* build a 32bit cache key with the widget id and the command parameter */
1546 #define build_cmd_cache_key(nid, verb) ((verb << 8) | nid)
1547 #define get_cmd_cache_nid(key) ((key) & 0xff)
1548 #define get_cmd_cache_cmd(key) (((key) >> 8) & 0xffff)
1551 * snd_hda_codec_write_cache - send a single command with caching
1552 * @codec: the HDA codec
1553 * @nid: NID to send the command
1554 * @direct: direct flag
1555 * @verb: the verb to send
1556 * @parm: the parameter for the verb
1558 * Send a single command without waiting for response.
1560 * Returns 0 if successful, or a negative error code.
1562 int snd_hda_codec_write_cache(struct hda_codec *codec, hda_nid_t nid,
1563 int direct, unsigned int verb, unsigned int parm)
1565 int err;
1566 snd_hda_power_up(codec);
1567 mutex_lock(&codec->bus->cmd_mutex);
1568 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
1569 if (!err) {
1570 struct hda_cache_head *c;
1571 u32 key = build_cmd_cache_key(nid, verb);
1572 c = get_alloc_hash(&codec->cmd_cache, key);
1573 if (c)
1574 c->val = parm;
1576 mutex_unlock(&codec->bus->cmd_mutex);
1577 snd_hda_power_down(codec);
1578 return err;
1581 /* resume the all commands from the cache */
1582 void snd_hda_codec_resume_cache(struct hda_codec *codec)
1584 struct hda_cache_head *buffer = codec->cmd_cache.buffer;
1585 int i;
1587 for (i = 0; i < codec->cmd_cache.size; i++, buffer++) {
1588 u32 key = buffer->key;
1589 if (!key)
1590 continue;
1591 snd_hda_codec_write(codec, get_cmd_cache_nid(key), 0,
1592 get_cmd_cache_cmd(key), buffer->val);
1597 * snd_hda_sequence_write_cache - sequence writes with caching
1598 * @codec: the HDA codec
1599 * @seq: VERB array to send
1601 * Send the commands sequentially from the given array.
1602 * Thte commands are recorded on cache for power-save and resume.
1603 * The array must be terminated with NID=0.
1605 void snd_hda_sequence_write_cache(struct hda_codec *codec,
1606 const struct hda_verb *seq)
1608 for (; seq->nid; seq++)
1609 snd_hda_codec_write_cache(codec, seq->nid, 0, seq->verb,
1610 seq->param);
1612 #endif /* SND_HDA_NEEDS_RESUME */
1615 * set power state of the codec
1617 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
1618 unsigned int power_state)
1620 hda_nid_t nid;
1621 int i;
1623 snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
1624 power_state);
1626 nid = codec->start_nid;
1627 for (i = 0; i < codec->num_nodes; i++, nid++) {
1628 if (get_wcaps(codec, nid) & AC_WCAP_POWER) {
1629 unsigned int pincap;
1631 * don't power down the widget if it controls eapd
1632 * and EAPD_BTLENABLE is set.
1634 pincap = snd_hda_param_read(codec, nid, AC_PAR_PIN_CAP);
1635 if (pincap & AC_PINCAP_EAPD) {
1636 int eapd = snd_hda_codec_read(codec, nid,
1637 0, AC_VERB_GET_EAPD_BTLENABLE, 0);
1638 eapd &= 0x02;
1639 if (power_state == AC_PWRST_D3 && eapd)
1640 continue;
1642 snd_hda_codec_write(codec, nid, 0,
1643 AC_VERB_SET_POWER_STATE,
1644 power_state);
1648 if (power_state == AC_PWRST_D0) {
1649 unsigned long end_time;
1650 int state;
1651 msleep(10);
1652 /* wait until the codec reachs to D0 */
1653 end_time = jiffies + msecs_to_jiffies(500);
1654 do {
1655 state = snd_hda_codec_read(codec, fg, 0,
1656 AC_VERB_GET_POWER_STATE, 0);
1657 if (state == power_state)
1658 break;
1659 msleep(1);
1660 } while (time_after_eq(end_time, jiffies));
1664 #ifdef SND_HDA_NEEDS_RESUME
1666 * call suspend and power-down; used both from PM and power-save
1668 static void hda_call_codec_suspend(struct hda_codec *codec)
1670 if (codec->patch_ops.suspend)
1671 codec->patch_ops.suspend(codec, PMSG_SUSPEND);
1672 hda_set_power_state(codec,
1673 codec->afg ? codec->afg : codec->mfg,
1674 AC_PWRST_D3);
1675 #ifdef CONFIG_SND_HDA_POWER_SAVE
1676 cancel_delayed_work(&codec->power_work);
1677 codec->power_on = 0;
1678 codec->power_transition = 0;
1679 #endif
1683 * kick up codec; used both from PM and power-save
1685 static void hda_call_codec_resume(struct hda_codec *codec)
1687 hda_set_power_state(codec,
1688 codec->afg ? codec->afg : codec->mfg,
1689 AC_PWRST_D0);
1690 if (codec->patch_ops.resume)
1691 codec->patch_ops.resume(codec);
1692 else {
1693 if (codec->patch_ops.init)
1694 codec->patch_ops.init(codec);
1695 snd_hda_codec_resume_amp(codec);
1696 snd_hda_codec_resume_cache(codec);
1699 #endif /* SND_HDA_NEEDS_RESUME */
1703 * snd_hda_build_controls - build mixer controls
1704 * @bus: the BUS
1706 * Creates mixer controls for each codec included in the bus.
1708 * Returns 0 if successful, otherwise a negative error code.
1710 int __devinit snd_hda_build_controls(struct hda_bus *bus)
1712 struct hda_codec *codec;
1714 list_for_each_entry(codec, &bus->codec_list, list) {
1715 int err = 0;
1716 /* fake as if already powered-on */
1717 hda_keep_power_on(codec);
1718 /* then fire up */
1719 hda_set_power_state(codec,
1720 codec->afg ? codec->afg : codec->mfg,
1721 AC_PWRST_D0);
1722 /* continue to initialize... */
1723 if (codec->patch_ops.init)
1724 err = codec->patch_ops.init(codec);
1725 if (!err && codec->patch_ops.build_controls)
1726 err = codec->patch_ops.build_controls(codec);
1727 snd_hda_power_down(codec);
1728 if (err < 0)
1729 return err;
1732 return 0;
1736 * stream formats
1738 struct hda_rate_tbl {
1739 unsigned int hz;
1740 unsigned int alsa_bits;
1741 unsigned int hda_fmt;
1744 static struct hda_rate_tbl rate_bits[] = {
1745 /* rate in Hz, ALSA rate bitmask, HDA format value */
1747 /* autodetected value used in snd_hda_query_supported_pcm */
1748 { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1749 { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1750 { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1751 { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1752 { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1753 { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1754 { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1755 { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1756 { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1757 { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1758 { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1759 #define AC_PAR_PCM_RATE_BITS 11
1760 /* up to bits 10, 384kHZ isn't supported properly */
1762 /* not autodetected value */
1763 { 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
1765 { 0 } /* terminator */
1769 * snd_hda_calc_stream_format - calculate format bitset
1770 * @rate: the sample rate
1771 * @channels: the number of channels
1772 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1773 * @maxbps: the max. bps
1775 * Calculate the format bitset from the given rate, channels and th PCM format.
1777 * Return zero if invalid.
1779 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1780 unsigned int channels,
1781 unsigned int format,
1782 unsigned int maxbps)
1784 int i;
1785 unsigned int val = 0;
1787 for (i = 0; rate_bits[i].hz; i++)
1788 if (rate_bits[i].hz == rate) {
1789 val = rate_bits[i].hda_fmt;
1790 break;
1792 if (!rate_bits[i].hz) {
1793 snd_printdd("invalid rate %d\n", rate);
1794 return 0;
1797 if (channels == 0 || channels > 8) {
1798 snd_printdd("invalid channels %d\n", channels);
1799 return 0;
1801 val |= channels - 1;
1803 switch (snd_pcm_format_width(format)) {
1804 case 8: val |= 0x00; break;
1805 case 16: val |= 0x10; break;
1806 case 20:
1807 case 24:
1808 case 32:
1809 if (maxbps >= 32)
1810 val |= 0x40;
1811 else if (maxbps >= 24)
1812 val |= 0x30;
1813 else
1814 val |= 0x20;
1815 break;
1816 default:
1817 snd_printdd("invalid format width %d\n",
1818 snd_pcm_format_width(format));
1819 return 0;
1822 return val;
1826 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1827 * @codec: the HDA codec
1828 * @nid: NID to query
1829 * @ratesp: the pointer to store the detected rate bitflags
1830 * @formatsp: the pointer to store the detected formats
1831 * @bpsp: the pointer to store the detected format widths
1833 * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
1834 * or @bsps argument is ignored.
1836 * Returns 0 if successful, otherwise a negative error code.
1838 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1839 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1841 int i;
1842 unsigned int val, streams;
1844 val = 0;
1845 if (nid != codec->afg &&
1846 (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1847 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1848 if (val == -1)
1849 return -EIO;
1851 if (!val)
1852 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1854 if (ratesp) {
1855 u32 rates = 0;
1856 for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++) {
1857 if (val & (1 << i))
1858 rates |= rate_bits[i].alsa_bits;
1860 *ratesp = rates;
1863 if (formatsp || bpsp) {
1864 u64 formats = 0;
1865 unsigned int bps;
1866 unsigned int wcaps;
1868 wcaps = get_wcaps(codec, nid);
1869 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1870 if (streams == -1)
1871 return -EIO;
1872 if (!streams) {
1873 streams = snd_hda_param_read(codec, codec->afg,
1874 AC_PAR_STREAM);
1875 if (streams == -1)
1876 return -EIO;
1879 bps = 0;
1880 if (streams & AC_SUPFMT_PCM) {
1881 if (val & AC_SUPPCM_BITS_8) {
1882 formats |= SNDRV_PCM_FMTBIT_U8;
1883 bps = 8;
1885 if (val & AC_SUPPCM_BITS_16) {
1886 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1887 bps = 16;
1889 if (wcaps & AC_WCAP_DIGITAL) {
1890 if (val & AC_SUPPCM_BITS_32)
1891 formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1892 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1893 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1894 if (val & AC_SUPPCM_BITS_24)
1895 bps = 24;
1896 else if (val & AC_SUPPCM_BITS_20)
1897 bps = 20;
1898 } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|
1899 AC_SUPPCM_BITS_32)) {
1900 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1901 if (val & AC_SUPPCM_BITS_32)
1902 bps = 32;
1903 else if (val & AC_SUPPCM_BITS_24)
1904 bps = 24;
1905 else if (val & AC_SUPPCM_BITS_20)
1906 bps = 20;
1909 else if (streams == AC_SUPFMT_FLOAT32) {
1910 /* should be exclusive */
1911 formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1912 bps = 32;
1913 } else if (streams == AC_SUPFMT_AC3) {
1914 /* should be exclusive */
1915 /* temporary hack: we have still no proper support
1916 * for the direct AC3 stream...
1918 formats |= SNDRV_PCM_FMTBIT_U8;
1919 bps = 8;
1921 if (formatsp)
1922 *formatsp = formats;
1923 if (bpsp)
1924 *bpsp = bps;
1927 return 0;
1931 * snd_hda_is_supported_format - check whether the given node supports
1932 * the format val
1934 * Returns 1 if supported, 0 if not.
1936 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1937 unsigned int format)
1939 int i;
1940 unsigned int val = 0, rate, stream;
1942 if (nid != codec->afg &&
1943 (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1944 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1945 if (val == -1)
1946 return 0;
1948 if (!val) {
1949 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1950 if (val == -1)
1951 return 0;
1954 rate = format & 0xff00;
1955 for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++)
1956 if (rate_bits[i].hda_fmt == rate) {
1957 if (val & (1 << i))
1958 break;
1959 return 0;
1961 if (i >= AC_PAR_PCM_RATE_BITS)
1962 return 0;
1964 stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1965 if (stream == -1)
1966 return 0;
1967 if (!stream && nid != codec->afg)
1968 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1969 if (!stream || stream == -1)
1970 return 0;
1972 if (stream & AC_SUPFMT_PCM) {
1973 switch (format & 0xf0) {
1974 case 0x00:
1975 if (!(val & AC_SUPPCM_BITS_8))
1976 return 0;
1977 break;
1978 case 0x10:
1979 if (!(val & AC_SUPPCM_BITS_16))
1980 return 0;
1981 break;
1982 case 0x20:
1983 if (!(val & AC_SUPPCM_BITS_20))
1984 return 0;
1985 break;
1986 case 0x30:
1987 if (!(val & AC_SUPPCM_BITS_24))
1988 return 0;
1989 break;
1990 case 0x40:
1991 if (!(val & AC_SUPPCM_BITS_32))
1992 return 0;
1993 break;
1994 default:
1995 return 0;
1997 } else {
1998 /* FIXME: check for float32 and AC3? */
2001 return 1;
2005 * PCM stuff
2007 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
2008 struct hda_codec *codec,
2009 struct snd_pcm_substream *substream)
2011 return 0;
2014 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
2015 struct hda_codec *codec,
2016 unsigned int stream_tag,
2017 unsigned int format,
2018 struct snd_pcm_substream *substream)
2020 snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
2021 return 0;
2024 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
2025 struct hda_codec *codec,
2026 struct snd_pcm_substream *substream)
2028 snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
2029 return 0;
2032 static int __devinit set_pcm_default_values(struct hda_codec *codec,
2033 struct hda_pcm_stream *info)
2035 /* query support PCM information from the given NID */
2036 if (info->nid && (!info->rates || !info->formats)) {
2037 snd_hda_query_supported_pcm(codec, info->nid,
2038 info->rates ? NULL : &info->rates,
2039 info->formats ? NULL : &info->formats,
2040 info->maxbps ? NULL : &info->maxbps);
2042 if (info->ops.open == NULL)
2043 info->ops.open = hda_pcm_default_open_close;
2044 if (info->ops.close == NULL)
2045 info->ops.close = hda_pcm_default_open_close;
2046 if (info->ops.prepare == NULL) {
2047 snd_assert(info->nid, return -EINVAL);
2048 info->ops.prepare = hda_pcm_default_prepare;
2050 if (info->ops.cleanup == NULL) {
2051 snd_assert(info->nid, return -EINVAL);
2052 info->ops.cleanup = hda_pcm_default_cleanup;
2054 return 0;
2058 * snd_hda_build_pcms - build PCM information
2059 * @bus: the BUS
2061 * Create PCM information for each codec included in the bus.
2063 * The build_pcms codec patch is requested to set up codec->num_pcms and
2064 * codec->pcm_info properly. The array is referred by the top-level driver
2065 * to create its PCM instances.
2066 * The allocated codec->pcm_info should be released in codec->patch_ops.free
2067 * callback.
2069 * At least, substreams, channels_min and channels_max must be filled for
2070 * each stream. substreams = 0 indicates that the stream doesn't exist.
2071 * When rates and/or formats are zero, the supported values are queried
2072 * from the given nid. The nid is used also by the default ops.prepare
2073 * and ops.cleanup callbacks.
2075 * The driver needs to call ops.open in its open callback. Similarly,
2076 * ops.close is supposed to be called in the close callback.
2077 * ops.prepare should be called in the prepare or hw_params callback
2078 * with the proper parameters for set up.
2079 * ops.cleanup should be called in hw_free for clean up of streams.
2081 * This function returns 0 if successfull, or a negative error code.
2083 int __devinit snd_hda_build_pcms(struct hda_bus *bus)
2085 struct hda_codec *codec;
2087 list_for_each_entry(codec, &bus->codec_list, list) {
2088 unsigned int pcm, s;
2089 int err;
2090 if (!codec->patch_ops.build_pcms)
2091 continue;
2092 err = codec->patch_ops.build_pcms(codec);
2093 if (err < 0)
2094 return err;
2095 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
2096 for (s = 0; s < 2; s++) {
2097 struct hda_pcm_stream *info;
2098 info = &codec->pcm_info[pcm].stream[s];
2099 if (!info->substreams)
2100 continue;
2101 err = set_pcm_default_values(codec, info);
2102 if (err < 0)
2103 return err;
2107 return 0;
2111 * snd_hda_check_board_config - compare the current codec with the config table
2112 * @codec: the HDA codec
2113 * @num_configs: number of config enums
2114 * @models: array of model name strings
2115 * @tbl: configuration table, terminated by null entries
2117 * Compares the modelname or PCI subsystem id of the current codec with the
2118 * given configuration table. If a matching entry is found, returns its
2119 * config value (supposed to be 0 or positive).
2121 * If no entries are matching, the function returns a negative value.
2123 int snd_hda_check_board_config(struct hda_codec *codec,
2124 int num_configs, const char **models,
2125 const struct snd_pci_quirk *tbl)
2127 if (codec->bus->modelname && models) {
2128 int i;
2129 for (i = 0; i < num_configs; i++) {
2130 if (models[i] &&
2131 !strcmp(codec->bus->modelname, models[i])) {
2132 snd_printd(KERN_INFO "hda_codec: model '%s' is "
2133 "selected\n", models[i]);
2134 return i;
2139 if (!codec->bus->pci || !tbl)
2140 return -1;
2142 tbl = snd_pci_quirk_lookup(codec->bus->pci, tbl);
2143 if (!tbl)
2144 return -1;
2145 if (tbl->value >= 0 && tbl->value < num_configs) {
2146 #ifdef CONFIG_SND_DEBUG_DETECT
2147 char tmp[10];
2148 const char *model = NULL;
2149 if (models)
2150 model = models[tbl->value];
2151 if (!model) {
2152 sprintf(tmp, "#%d", tbl->value);
2153 model = tmp;
2155 snd_printdd(KERN_INFO "hda_codec: model '%s' is selected "
2156 "for config %x:%x (%s)\n",
2157 model, tbl->subvendor, tbl->subdevice,
2158 (tbl->name ? tbl->name : "Unknown device"));
2159 #endif
2160 return tbl->value;
2162 return -1;
2166 * snd_hda_add_new_ctls - create controls from the array
2167 * @codec: the HDA codec
2168 * @knew: the array of struct snd_kcontrol_new
2170 * This helper function creates and add new controls in the given array.
2171 * The array must be terminated with an empty entry as terminator.
2173 * Returns 0 if successful, or a negative error code.
2175 int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
2177 int err;
2179 for (; knew->name; knew++) {
2180 struct snd_kcontrol *kctl;
2181 kctl = snd_ctl_new1(knew, codec);
2182 if (!kctl)
2183 return -ENOMEM;
2184 err = snd_ctl_add(codec->bus->card, kctl);
2185 if (err < 0) {
2186 if (!codec->addr)
2187 return err;
2188 kctl = snd_ctl_new1(knew, codec);
2189 if (!kctl)
2190 return -ENOMEM;
2191 kctl->id.device = codec->addr;
2192 err = snd_ctl_add(codec->bus->card, kctl);
2193 if (err < 0)
2194 return err;
2197 return 0;
2200 #ifdef CONFIG_SND_HDA_POWER_SAVE
2201 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
2202 unsigned int power_state);
2204 static void hda_power_work(struct work_struct *work)
2206 struct hda_codec *codec =
2207 container_of(work, struct hda_codec, power_work.work);
2209 if (!codec->power_on || codec->power_count) {
2210 codec->power_transition = 0;
2211 return;
2214 hda_call_codec_suspend(codec);
2215 if (codec->bus->ops.pm_notify)
2216 codec->bus->ops.pm_notify(codec);
2219 static void hda_keep_power_on(struct hda_codec *codec)
2221 codec->power_count++;
2222 codec->power_on = 1;
2225 void snd_hda_power_up(struct hda_codec *codec)
2227 codec->power_count++;
2228 if (codec->power_on || codec->power_transition)
2229 return;
2231 codec->power_on = 1;
2232 if (codec->bus->ops.pm_notify)
2233 codec->bus->ops.pm_notify(codec);
2234 hda_call_codec_resume(codec);
2235 cancel_delayed_work(&codec->power_work);
2236 codec->power_transition = 0;
2239 void snd_hda_power_down(struct hda_codec *codec)
2241 --codec->power_count;
2242 if (!codec->power_on || codec->power_count || codec->power_transition)
2243 return;
2244 if (power_save) {
2245 codec->power_transition = 1; /* avoid reentrance */
2246 schedule_delayed_work(&codec->power_work,
2247 msecs_to_jiffies(power_save * 1000));
2251 int snd_hda_check_amp_list_power(struct hda_codec *codec,
2252 struct hda_loopback_check *check,
2253 hda_nid_t nid)
2255 struct hda_amp_list *p;
2256 int ch, v;
2258 if (!check->amplist)
2259 return 0;
2260 for (p = check->amplist; p->nid; p++) {
2261 if (p->nid == nid)
2262 break;
2264 if (!p->nid)
2265 return 0; /* nothing changed */
2267 for (p = check->amplist; p->nid; p++) {
2268 for (ch = 0; ch < 2; ch++) {
2269 v = snd_hda_codec_amp_read(codec, p->nid, ch, p->dir,
2270 p->idx);
2271 if (!(v & HDA_AMP_MUTE) && v > 0) {
2272 if (!check->power_on) {
2273 check->power_on = 1;
2274 snd_hda_power_up(codec);
2276 return 1;
2280 if (check->power_on) {
2281 check->power_on = 0;
2282 snd_hda_power_down(codec);
2284 return 0;
2286 #endif
2289 * Channel mode helper
2291 int snd_hda_ch_mode_info(struct hda_codec *codec,
2292 struct snd_ctl_elem_info *uinfo,
2293 const struct hda_channel_mode *chmode,
2294 int num_chmodes)
2296 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2297 uinfo->count = 1;
2298 uinfo->value.enumerated.items = num_chmodes;
2299 if (uinfo->value.enumerated.item >= num_chmodes)
2300 uinfo->value.enumerated.item = num_chmodes - 1;
2301 sprintf(uinfo->value.enumerated.name, "%dch",
2302 chmode[uinfo->value.enumerated.item].channels);
2303 return 0;
2306 int snd_hda_ch_mode_get(struct hda_codec *codec,
2307 struct snd_ctl_elem_value *ucontrol,
2308 const struct hda_channel_mode *chmode,
2309 int num_chmodes,
2310 int max_channels)
2312 int i;
2314 for (i = 0; i < num_chmodes; i++) {
2315 if (max_channels == chmode[i].channels) {
2316 ucontrol->value.enumerated.item[0] = i;
2317 break;
2320 return 0;
2323 int snd_hda_ch_mode_put(struct hda_codec *codec,
2324 struct snd_ctl_elem_value *ucontrol,
2325 const struct hda_channel_mode *chmode,
2326 int num_chmodes,
2327 int *max_channelsp)
2329 unsigned int mode;
2331 mode = ucontrol->value.enumerated.item[0];
2332 snd_assert(mode < num_chmodes, return -EINVAL);
2333 if (*max_channelsp == chmode[mode].channels)
2334 return 0;
2335 /* change the current channel setting */
2336 *max_channelsp = chmode[mode].channels;
2337 if (chmode[mode].sequence)
2338 snd_hda_sequence_write_cache(codec, chmode[mode].sequence);
2339 return 1;
2343 * input MUX helper
2345 int snd_hda_input_mux_info(const struct hda_input_mux *imux,
2346 struct snd_ctl_elem_info *uinfo)
2348 unsigned int index;
2350 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2351 uinfo->count = 1;
2352 uinfo->value.enumerated.items = imux->num_items;
2353 if (!imux->num_items)
2354 return 0;
2355 index = uinfo->value.enumerated.item;
2356 if (index >= imux->num_items)
2357 index = imux->num_items - 1;
2358 strcpy(uinfo->value.enumerated.name, imux->items[index].label);
2359 return 0;
2362 int snd_hda_input_mux_put(struct hda_codec *codec,
2363 const struct hda_input_mux *imux,
2364 struct snd_ctl_elem_value *ucontrol,
2365 hda_nid_t nid,
2366 unsigned int *cur_val)
2368 unsigned int idx;
2370 if (!imux->num_items)
2371 return 0;
2372 idx = ucontrol->value.enumerated.item[0];
2373 if (idx >= imux->num_items)
2374 idx = imux->num_items - 1;
2375 if (*cur_val == idx)
2376 return 0;
2377 snd_hda_codec_write_cache(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
2378 imux->items[idx].index);
2379 *cur_val = idx;
2380 return 1;
2385 * Multi-channel / digital-out PCM helper functions
2388 /* setup SPDIF output stream */
2389 static void setup_dig_out_stream(struct hda_codec *codec, hda_nid_t nid,
2390 unsigned int stream_tag, unsigned int format)
2392 /* turn off SPDIF once; otherwise the IEC958 bits won't be updated */
2393 if (codec->spdif_ctls & AC_DIG1_ENABLE)
2394 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
2395 codec->spdif_ctls & ~AC_DIG1_ENABLE & 0xff);
2396 snd_hda_codec_setup_stream(codec, nid, stream_tag, 0, format);
2397 /* turn on again (if needed) */
2398 if (codec->spdif_ctls & AC_DIG1_ENABLE)
2399 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
2400 codec->spdif_ctls & 0xff);
2404 * open the digital out in the exclusive mode
2406 int snd_hda_multi_out_dig_open(struct hda_codec *codec,
2407 struct hda_multi_out *mout)
2409 mutex_lock(&codec->spdif_mutex);
2410 if (mout->dig_out_used == HDA_DIG_ANALOG_DUP)
2411 /* already opened as analog dup; reset it once */
2412 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
2413 mout->dig_out_used = HDA_DIG_EXCLUSIVE;
2414 mutex_unlock(&codec->spdif_mutex);
2415 return 0;
2418 int snd_hda_multi_out_dig_prepare(struct hda_codec *codec,
2419 struct hda_multi_out *mout,
2420 unsigned int stream_tag,
2421 unsigned int format,
2422 struct snd_pcm_substream *substream)
2424 mutex_lock(&codec->spdif_mutex);
2425 setup_dig_out_stream(codec, mout->dig_out_nid, stream_tag, format);
2426 mutex_unlock(&codec->spdif_mutex);
2427 return 0;
2431 * release the digital out
2433 int snd_hda_multi_out_dig_close(struct hda_codec *codec,
2434 struct hda_multi_out *mout)
2436 mutex_lock(&codec->spdif_mutex);
2437 mout->dig_out_used = 0;
2438 mutex_unlock(&codec->spdif_mutex);
2439 return 0;
2443 * set up more restrictions for analog out
2445 int snd_hda_multi_out_analog_open(struct hda_codec *codec,
2446 struct hda_multi_out *mout,
2447 struct snd_pcm_substream *substream)
2449 substream->runtime->hw.channels_max = mout->max_channels;
2450 return snd_pcm_hw_constraint_step(substream->runtime, 0,
2451 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
2455 * set up the i/o for analog out
2456 * when the digital out is available, copy the front out to digital out, too.
2458 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec,
2459 struct hda_multi_out *mout,
2460 unsigned int stream_tag,
2461 unsigned int format,
2462 struct snd_pcm_substream *substream)
2464 hda_nid_t *nids = mout->dac_nids;
2465 int chs = substream->runtime->channels;
2466 int i;
2468 mutex_lock(&codec->spdif_mutex);
2469 if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
2470 if (chs == 2 &&
2471 snd_hda_is_supported_format(codec, mout->dig_out_nid,
2472 format) &&
2473 !(codec->spdif_status & IEC958_AES0_NONAUDIO)) {
2474 mout->dig_out_used = HDA_DIG_ANALOG_DUP;
2475 setup_dig_out_stream(codec, mout->dig_out_nid,
2476 stream_tag, format);
2477 } else {
2478 mout->dig_out_used = 0;
2479 snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
2480 0, 0, 0);
2483 mutex_unlock(&codec->spdif_mutex);
2485 /* front */
2486 snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag,
2487 0, format);
2488 if (mout->hp_nid && mout->hp_nid != nids[HDA_FRONT])
2489 /* headphone out will just decode front left/right (stereo) */
2490 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag,
2491 0, format);
2492 /* extra outputs copied from front */
2493 for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2494 if (mout->extra_out_nid[i])
2495 snd_hda_codec_setup_stream(codec,
2496 mout->extra_out_nid[i],
2497 stream_tag, 0, format);
2499 /* surrounds */
2500 for (i = 1; i < mout->num_dacs; i++) {
2501 if (chs >= (i + 1) * 2) /* independent out */
2502 snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2503 i * 2, format);
2504 else /* copy front */
2505 snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2506 0, format);
2508 return 0;
2512 * clean up the setting for analog out
2514 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec,
2515 struct hda_multi_out *mout)
2517 hda_nid_t *nids = mout->dac_nids;
2518 int i;
2520 for (i = 0; i < mout->num_dacs; i++)
2521 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
2522 if (mout->hp_nid)
2523 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
2524 for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2525 if (mout->extra_out_nid[i])
2526 snd_hda_codec_setup_stream(codec,
2527 mout->extra_out_nid[i],
2528 0, 0, 0);
2529 mutex_lock(&codec->spdif_mutex);
2530 if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
2531 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
2532 mout->dig_out_used = 0;
2534 mutex_unlock(&codec->spdif_mutex);
2535 return 0;
2539 * Helper for automatic ping configuration
2542 static int is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
2544 for (; *list; list++)
2545 if (*list == nid)
2546 return 1;
2547 return 0;
2552 * Sort an associated group of pins according to their sequence numbers.
2554 static void sort_pins_by_sequence(hda_nid_t * pins, short * sequences,
2555 int num_pins)
2557 int i, j;
2558 short seq;
2559 hda_nid_t nid;
2561 for (i = 0; i < num_pins; i++) {
2562 for (j = i + 1; j < num_pins; j++) {
2563 if (sequences[i] > sequences[j]) {
2564 seq = sequences[i];
2565 sequences[i] = sequences[j];
2566 sequences[j] = seq;
2567 nid = pins[i];
2568 pins[i] = pins[j];
2569 pins[j] = nid;
2577 * Parse all pin widgets and store the useful pin nids to cfg
2579 * The number of line-outs or any primary output is stored in line_outs,
2580 * and the corresponding output pins are assigned to line_out_pins[],
2581 * in the order of front, rear, CLFE, side, ...
2583 * If more extra outputs (speaker and headphone) are found, the pins are
2584 * assisnged to hp_pins[] and speaker_pins[], respectively. If no line-out jack
2585 * is detected, one of speaker of HP pins is assigned as the primary
2586 * output, i.e. to line_out_pins[0]. So, line_outs is always positive
2587 * if any analog output exists.
2589 * The analog input pins are assigned to input_pins array.
2590 * The digital input/output pins are assigned to dig_in_pin and dig_out_pin,
2591 * respectively.
2593 int snd_hda_parse_pin_def_config(struct hda_codec *codec,
2594 struct auto_pin_cfg *cfg,
2595 hda_nid_t *ignore_nids)
2597 hda_nid_t nid, nid_start;
2598 int nodes;
2599 short seq, assoc_line_out, assoc_speaker;
2600 short sequences_line_out[ARRAY_SIZE(cfg->line_out_pins)];
2601 short sequences_speaker[ARRAY_SIZE(cfg->speaker_pins)];
2603 memset(cfg, 0, sizeof(*cfg));
2605 memset(sequences_line_out, 0, sizeof(sequences_line_out));
2606 memset(sequences_speaker, 0, sizeof(sequences_speaker));
2607 assoc_line_out = assoc_speaker = 0;
2609 nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
2610 for (nid = nid_start; nid < nodes + nid_start; nid++) {
2611 unsigned int wid_caps = get_wcaps(codec, nid);
2612 unsigned int wid_type =
2613 (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
2614 unsigned int def_conf;
2615 short assoc, loc;
2617 /* read all default configuration for pin complex */
2618 if (wid_type != AC_WID_PIN)
2619 continue;
2620 /* ignore the given nids (e.g. pc-beep returns error) */
2621 if (ignore_nids && is_in_nid_list(nid, ignore_nids))
2622 continue;
2624 def_conf = snd_hda_codec_read(codec, nid, 0,
2625 AC_VERB_GET_CONFIG_DEFAULT, 0);
2626 if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
2627 continue;
2628 loc = get_defcfg_location(def_conf);
2629 switch (get_defcfg_device(def_conf)) {
2630 case AC_JACK_LINE_OUT:
2631 seq = get_defcfg_sequence(def_conf);
2632 assoc = get_defcfg_association(def_conf);
2633 if (!assoc)
2634 continue;
2635 if (!assoc_line_out)
2636 assoc_line_out = assoc;
2637 else if (assoc_line_out != assoc)
2638 continue;
2639 if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
2640 continue;
2641 cfg->line_out_pins[cfg->line_outs] = nid;
2642 sequences_line_out[cfg->line_outs] = seq;
2643 cfg->line_outs++;
2644 break;
2645 case AC_JACK_SPEAKER:
2646 seq = get_defcfg_sequence(def_conf);
2647 assoc = get_defcfg_association(def_conf);
2648 if (! assoc)
2649 continue;
2650 if (! assoc_speaker)
2651 assoc_speaker = assoc;
2652 else if (assoc_speaker != assoc)
2653 continue;
2654 if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins))
2655 continue;
2656 cfg->speaker_pins[cfg->speaker_outs] = nid;
2657 sequences_speaker[cfg->speaker_outs] = seq;
2658 cfg->speaker_outs++;
2659 break;
2660 case AC_JACK_HP_OUT:
2661 if (cfg->hp_outs >= ARRAY_SIZE(cfg->hp_pins))
2662 continue;
2663 cfg->hp_pins[cfg->hp_outs] = nid;
2664 cfg->hp_outs++;
2665 break;
2666 case AC_JACK_MIC_IN: {
2667 int preferred, alt;
2668 if (loc == AC_JACK_LOC_FRONT) {
2669 preferred = AUTO_PIN_FRONT_MIC;
2670 alt = AUTO_PIN_MIC;
2671 } else {
2672 preferred = AUTO_PIN_MIC;
2673 alt = AUTO_PIN_FRONT_MIC;
2675 if (!cfg->input_pins[preferred])
2676 cfg->input_pins[preferred] = nid;
2677 else if (!cfg->input_pins[alt])
2678 cfg->input_pins[alt] = nid;
2679 break;
2681 case AC_JACK_LINE_IN:
2682 if (loc == AC_JACK_LOC_FRONT)
2683 cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
2684 else
2685 cfg->input_pins[AUTO_PIN_LINE] = nid;
2686 break;
2687 case AC_JACK_CD:
2688 cfg->input_pins[AUTO_PIN_CD] = nid;
2689 break;
2690 case AC_JACK_AUX:
2691 cfg->input_pins[AUTO_PIN_AUX] = nid;
2692 break;
2693 case AC_JACK_SPDIF_OUT:
2694 cfg->dig_out_pin = nid;
2695 break;
2696 case AC_JACK_SPDIF_IN:
2697 cfg->dig_in_pin = nid;
2698 break;
2702 /* sort by sequence */
2703 sort_pins_by_sequence(cfg->line_out_pins, sequences_line_out,
2704 cfg->line_outs);
2705 sort_pins_by_sequence(cfg->speaker_pins, sequences_speaker,
2706 cfg->speaker_outs);
2709 * FIX-UP: if no line-outs are detected, try to use speaker or HP pin
2710 * as a primary output
2712 if (!cfg->line_outs) {
2713 if (cfg->speaker_outs) {
2714 cfg->line_outs = cfg->speaker_outs;
2715 memcpy(cfg->line_out_pins, cfg->speaker_pins,
2716 sizeof(cfg->speaker_pins));
2717 cfg->speaker_outs = 0;
2718 memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
2719 cfg->line_out_type = AUTO_PIN_SPEAKER_OUT;
2720 } else if (cfg->hp_outs) {
2721 cfg->line_outs = cfg->hp_outs;
2722 memcpy(cfg->line_out_pins, cfg->hp_pins,
2723 sizeof(cfg->hp_pins));
2724 cfg->hp_outs = 0;
2725 memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
2726 cfg->line_out_type = AUTO_PIN_HP_OUT;
2730 /* Reorder the surround channels
2731 * ALSA sequence is front/surr/clfe/side
2732 * HDA sequence is:
2733 * 4-ch: front/surr => OK as it is
2734 * 6-ch: front/clfe/surr
2735 * 8-ch: front/clfe/rear/side|fc
2737 switch (cfg->line_outs) {
2738 case 3:
2739 case 4:
2740 nid = cfg->line_out_pins[1];
2741 cfg->line_out_pins[1] = cfg->line_out_pins[2];
2742 cfg->line_out_pins[2] = nid;
2743 break;
2747 * debug prints of the parsed results
2749 snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2750 cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1],
2751 cfg->line_out_pins[2], cfg->line_out_pins[3],
2752 cfg->line_out_pins[4]);
2753 snd_printd(" speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2754 cfg->speaker_outs, cfg->speaker_pins[0],
2755 cfg->speaker_pins[1], cfg->speaker_pins[2],
2756 cfg->speaker_pins[3], cfg->speaker_pins[4]);
2757 snd_printd(" hp_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2758 cfg->hp_outs, cfg->hp_pins[0],
2759 cfg->hp_pins[1], cfg->hp_pins[2],
2760 cfg->hp_pins[3], cfg->hp_pins[4]);
2761 snd_printd(" inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x,"
2762 " cd=0x%x, aux=0x%x\n",
2763 cfg->input_pins[AUTO_PIN_MIC],
2764 cfg->input_pins[AUTO_PIN_FRONT_MIC],
2765 cfg->input_pins[AUTO_PIN_LINE],
2766 cfg->input_pins[AUTO_PIN_FRONT_LINE],
2767 cfg->input_pins[AUTO_PIN_CD],
2768 cfg->input_pins[AUTO_PIN_AUX]);
2770 return 0;
2773 /* labels for input pins */
2774 const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
2775 "Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
2779 #ifdef CONFIG_PM
2781 * power management
2785 * snd_hda_suspend - suspend the codecs
2786 * @bus: the HDA bus
2787 * @state: suspsend state
2789 * Returns 0 if successful.
2791 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
2793 struct hda_codec *codec;
2795 list_for_each_entry(codec, &bus->codec_list, list) {
2796 #ifdef CONFIG_SND_HDA_POWER_SAVE
2797 if (!codec->power_on)
2798 continue;
2799 #endif
2800 hda_call_codec_suspend(codec);
2802 return 0;
2806 * snd_hda_resume - resume the codecs
2807 * @bus: the HDA bus
2808 * @state: resume state
2810 * Returns 0 if successful.
2812 * This fucntion is defined only when POWER_SAVE isn't set.
2813 * In the power-save mode, the codec is resumed dynamically.
2815 int snd_hda_resume(struct hda_bus *bus)
2817 struct hda_codec *codec;
2819 list_for_each_entry(codec, &bus->codec_list, list) {
2820 if (snd_hda_codec_needs_resume(codec))
2821 hda_call_codec_resume(codec);
2823 return 0;
2825 #ifdef CONFIG_SND_HDA_POWER_SAVE
2826 int snd_hda_codecs_inuse(struct hda_bus *bus)
2828 struct hda_codec *codec;
2830 list_for_each_entry(codec, &bus->codec_list, list) {
2831 if (snd_hda_codec_needs_resume(codec))
2832 return 1;
2834 return 0;
2836 #endif
2837 #endif